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Abstract

In this paper, we propose an adaptive online gradient descent method with momentum for
pairwise learning, in which the stepsize is determined by historical information. Due to the
structure of pairwise learning, the sample pairs are dependent on the parameters, causing
difficulties in the convergence analysis. To this end, we develop novel techniques for the
convergence analysis of the proposed algorithm. We show that the proposed algorithm can
output the desired solution in strongly convex, convex, and nonconvex cases. Furthermore,
we present theoretical explanations for why our proposed algorithm can accelerate previous
workhorses for online pairwise learning. All assumptions used in the theoretical analysis
are mild and common, making our results applicable to various pairwise learning problems.
To demonstrate the efficiency of our algorithm, we compare the proposed adaptive method
with the non-adaptive counterpart on the benchmark online AUC maximization problem.

1 Introduction

Let K ⊆ Rd be a closed convex set (can be the full space Rd) representing the parameter space. Given
a statistical sample space Ξ with probability distribution P; let F (·; ξ, ξ′) : Rd → R be a closed function
associated with two samples ξ, ξ′ ∈ Ξ. This paper considers the following pairwise learning problem

min
x∈K⊆Rd

{
f(x) := E(ξ,ξ′)∼P⊕PF (x; ξ, ξ′)

}
, (1)

where the function F (x; ξ, ξ′) can be either convex or nonconvex in x. The pairwise learning model equation 1
describes various classical machine learning tasks, including the metric learning Weinberger & Saul (2009);
Kulis et al. (2013); Xing et al. (2002); Ying & Li (2012), the area under ROC curve (AUC) maximization
Zhao et al. (2011); Gao et al. (2013); Ying et al. (2016); Liu et al. (2018), ranking Rejchel (2012); Agarwal
& Niyogi (2009), two-stage multiple kernel learning Kumar et al. (2012), neural link prediction Wang et al.
(2021), and the minimum error entropy principle Hu et al. (2013).

There are two major kinds of workhorses for model equation 1, i.e., offline and online. The offline one is
similar to the empirical risk minimization (ERM): given an i.i.d. sample set

{
ξ1, . . . , ξn

}
, we solve

min
x∈K

1
n(n− 1)

n∑
i,j∈[n],i6=j

F (x; ξi, ξj),

where [n] :=
{

1, 2, . . . , n
}
. The major difference between the offline pairwise learning model and the ERM

lies in the efficiency of the samples and whether the objective functions are independent of each other. A
n-samples training set outputs a finite-sum minimization with O(n) sub-functions in ERM, while the same
training set results in O(n2) in the offline pairwise learning. Furthermore, the objective functions in the
ERM are independent of each other, which is broken for the offline pairwise learning1. The online pairwise
learning assumes the i.i.d. samples (ξk)k∈[n] are continuously received by the model. In the kth iteration,
the online style algorithm proceeds to sample new data ξk from P and reuses the previous samples (ξji)1≤i≤s
with {ji}1≤i≤s ⊆ [k − 1] to get the mini-batch stochastic gradient gk = 1

s

∑s
i=1∇F (xk; ξk, ξji) Wang et al.

1For example, F (x; ξ1, ξ2) and F (x; ξ1, ξ3) are not independent because they have a shared data ξ1.
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Algorithm 1 Online Gradient Descent (OGD) for Pairwise Learning Yang et al. (2021b)
Parameters: η > 0.
Initialization: x0 = 0, ξ1 ∼ P
for k = 1, 2, 3, . . .
step 1: receive ξk and calculate gk = ∇F (xk; ξk, ξk−1)
step 2: xk+1 = ProjK(xk − ηgk)
End for

(2012); Zhao et al. (2011); Ying & Zhou (2016). Thus, the online method needs to employ a O(s) memory
to store the previously sampled data and O(s) computations to calculate the gradient. Nevertheless, the
mini-batch version suffers two drawbacks: 1) It has been proved that its excess generalization bound can
be as large as O

(
1√
s

+ 1√
n

)
Wang et al. (2012), and we need to use a large s to improve generalization of

the online method. 2) A large s causes tremendous computational and memory costs that are unacceptable
for online settings. To this end, a simple yet efficient online gradient descent (OGD) is proposed (presented
as Algorithm 1), in which the stochastic gradient gk is set to be ∇F

(
xk; ξk, ξk−1) Yang et al. (2021b). An

interesting finding is that the OGD can achieve O
( 1√

n

)
excess generalization bound. The favorable memory

and computation costs make the OGD applicable to broader online settings.

In this paper, we focus on developing provably convergent online algorithms with adaptive stepsizes for
pairwise learning. Considering the efficiency of the sampling method of OGD Yang et al. (2021b), our
algorithm inherits such kind of sampling. Moreover, our algorithm employs momentum.

Algorithm 2 Adaptive Online Gradient Descent (AOGD) for Pairwise Learning
Parameters: η > 0, 0 ≤ θ < 1.
Initialization: x0 = m0 = 0, ξ1 ∼ P
for k = 1, 2, 3, . . .
step 1: receive ξk and calculate gk = ∇F (xk; ξk, ξk−1)
step 2: mk = θmk−1 + (1− θ)gk
step 3: vk = vk−1 + ‖gk‖2

step 4: xk+1 = ProjK(xk − ηmk/(vk) 1
2 )

End for

1.1 The Adaptive Online Gradient Descent for Pairwise Learning

The OGD performs an SGD-style (stochastic gradient descent) iterations but with biased stochastic gradients
since ξk−1 is related to xk. Motivated by the remarkable success of the adaptive variants of SGD for machine
learning Duchi et al. (2011); McMahan & Streeter (2010); Tieleman & Hinton (2012); Kingma & Ba (2015);
Reddi et al. (2018); Ward et al. (2019), we propose the adaptive variant of OGD (AOGD) for pairwise
learning, presented as Algorithm 2. AOGD directly uses the historical sum of the moment rather than the
weighted average form used in Adam Kingma & Ba (2015), and AOGD can be rewritten in the weighted
average form: let v̂k :=

∑k
i=1 ‖gi‖2/k = vk/k, then steps 3 and 4 of AOGD can be reformulated as

v̂k =
(

1− 1
k

)
v̂k−1 + 1

k
‖gk‖2,

xk+1 = ProjK
(

xk − η√
k

mk

(v̂k)1/2

)
.

(2)

In reformulation equation 2, weights of the moment are
{

1/k
}
k≥1 and stepsizes are

{
η/
√
k
}
k≥1, satisfying

the sufficient conditions for the convergence of Adam-type algorithms Zou et al. (2019); Chen et al. (2019).

Compared with OGD, AOGD employs the momentum and adaptive stepsize generated by the historical
information. Thus unlike OGD, AOGD needs a memory of history, but without much computational overhead
since AOGD only computes gradient once in each iteration. Another difference between OGD and AOGD
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lies in the hyper-parameter η: in OGD, η shall be set as small as the desired error ε; while in AOGD, η can
be set as a constant that is independent of ε.

1.2 Comparison with A Closely Related Work

In Ding et al. (2015), by adopting the AdaGrad-style adaptive gradient update Duchi et al. (2011), the
authors have proposed an adaptive method for the online AUC maximization, which is a kind of pairwise
learning. Although both Ding et al. (2015) and our paper consider the adaptive online method for pairwise
learning, there are four major differences between Ding et al. (2015) and our paper, summarized below.

1) We follow the sampling method used by the simple yet efficient OGD algorithm in Yang et al.
(2021b).

2) We consider more general cases and provide the corresponding theoretical guarantees, including
the more general model (pairwise learning rather than only AUC maximization), and convergence
for more general settings, including the nonconvex case, and more general schemes e.g., the use of
momentum.

3) We get rid of using the regret bound because it does not directly tell us whether the algorithm
converges to the desired minimizer. Another important reason for not using the regret bound for
the analysis is that the regret bound has difficulties in covering the nonconvex cases. Based on the
above reasons, a non-regret analysis is necessary.

4) We develop new analysis techniques to get the non-regret convergence analysis. Notice that the
regret bound is not affected by the stochasticity of the data, and thus the analysis in Ding et al.
(2015) does not need to consider how to deal with the biased stochastic gradients.

1.3 Challenges in the Analysis and Difference from Existing Analysis

The primary source of challenges in theoretical analysis comes from the fact that xk is dependent on
ξk−1, which immediately breaks the unbiased expectation of the stochastic gradient ∇F (xk; ξk, ξk−1), i.e.,
E
[
∇F (xk; ξk, ξk−1)

]
6= ∇f(xk). As such, we cannot directly follow the techniques from adaptive SGD Duchi

et al. (2011); Reddi et al. (2018); Chen et al. (2019); Ward et al. (2019); Zou et al. (2019); Li & Orabona
(2019). In paper Yang et al. (2021b), the authors consider the following decomposition

η∇F (xk; ξk, ξk−1) = η∇F (xk−1; ξk, ξk−1) + η∇F (xk; ξk, ξk−1)− η∇F (xk−1; ξk, ξk−1).

Notice that xk−1 is independent of ξk, ξk−1, and E
[
η∇F (xk−1; ξk, ξk−1)

]
= η∇f(xk−1). The Lipschitz

property of the gradient then gives us∥∥∥η∇F (xk; ξk, ξk−1)− η∇F (xk−1; ξk, ξk−1)
∥∥∥ = O(η‖xk − xk−1‖),

and the proof is similar to the “delayed” SGD.

However, our proof cannot directly follow the technique above because AOGD involves two extra recipes,
i.e., momentum and adaptive stepsize. When momentum exists, we need to deal with both gk and mk

rather than only gk, and we have to modify the techniques from Yang et al. (2021b) to analyze the effects
of momentum 2. Another difficulty is the use of the adaptive stepsize variable η/(vk) 1

2 . Furthermore, vk is
dependent of the pair (ξk, ξk−1), making the analysis more challenging.

In contrast to the existing analysis, our approach is not directly establishing the Lyapunov descent starting
from bounding E[f(xk+1)− f(xk)]. Instead, we recruit some intermediate variables. Taking the nonconvex
case as an example, we first establish a Lyapunov-like descent property as follows

E〈−∇f(xk),mk/(vk) 1
2 〉 ≤ θE〈−∇f(xk−1),mk−1/(vk−1) 1

2 〉+ ϕ(xk,xk−1, ξk, ξk−1, ξk−2),
2Indeed, in the conclusion part of Yang et al. (2021b), the authors have listed the momentum variant as future work.
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bounding E[f(xk+1)− f(xk)] Analysis

properties and techniques

Convergence Results intermediate variables

Analysis

properties and
novel techniques

properties of
intermediate variables

Convergence Results

Adaptive SGD or OGD AOGD

Figure 1: Contrasting the analysis of AOGD against adaptive SGD/OGD. Our analysis of AOGD studies
the properties of some intermediate variables. To this end, we develop novel techniques. In the last step, we
use the properties of the intermediate variables to derive the convergence guarantee for AOGD.

where ϕ(xk,xk−1, ξk, ξk−1, ξk−2) is a function of variables xk, xk−1, ξk, ξk−1, and ξk−2. We stress that the
descent is not Lyapunov because θ 6= 1 and ϕ(xk,xk−1, ξk, ξk−1, ξk−2) is not always negative. Then, we build
the correspondence between the mathematical convergence measurement and E

[
〈−∇f(xk),mk/(vk) 1

2 〉
]
. A

big picture of the difference in analyzing adaptive SGD/OGD and AOGD is presented in Figure 1.

1.4 Contributions

Our major contributions are threefold, which are summarized below.

• We propose an adaptive online gradient descent algorithm for pairwise learning with a simple sam-
pling strategy. The proposed algorithm uses adaptive stepsize and momentum, requiring only a
small overhead in memory and computational costs.

• We present the convergence results for the proposed algorithm under different settings, including
strongly convex, general convex, and nonconvex cases. The use of adaptive stepsize and momentum
requires non-trivial techniques for the convergence analysis. We also provide theoretical explanations
for why our proposed algorithm can accelerate OGD.

• We verify the efficiency of the proposed AOGD on the benchmark online AUC maximization task,
showing that AOGD outperforms OGD.

1.5 Notation

Throughout this paper, we use bold face letters to denote vectors, e.g., x,y ∈ Rd. The jth coordinate of
the vector x is denoted by xj . The L2 norm of the vector x is denoted by ‖x‖. We denote E[·] as the
expectation with respect to the underlying probability space. We denote the minimum value of the function
f over K as minK f . For two positive sequences (ak, bk)k≥0, ak = O(bk) means that there exists C > 0 such
that ak ≤ Cbk. The notation ak = Θ(bk) indicates that ak = O(bk) and bk = O(ak). We use ak = Õ(bk)
and ak = Θ̃(bk) to hide the logarithmic factor but still with the same order. We use ak ≥ Θ(bk) to present
the relation ak ≥ Cbk with C > 0.

1.6 Organization

We organize this paper as follows: In Section 2, we present assumptions and theoretical convergence results for
AOGD under general convex, strongly convex, and nonconvex settings. We numerically verify the efficiency
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of AOGD and compare it to the benchmark OGD in Section 3. More related works are discussed in Section 4,
followed by concluding remarks. The detailed proofs are provided in the supplementary materials.

2 Convergence Analysis

2.1 Assumptions

We first collect several necessary assumptions for the convergence analysis of AOGD, which are presented
below.

• Assumption 1: The function F (·; ξ, ξ′) is differentiable and Lipschitz with constant L > 0, i.e.,

‖∇F (x; ξ, ξ′)−∇F (y; ξ, ξ′)‖ ≤ L‖x− y‖, (3)

∀x,y ∈ K, ξ, ξ′ ∈ Ξ.

• Assumption 2: The gradient of F (x; ξ, ξ′) is uniformly bounded, i.e., ‖∇F (x; ξ, ξ′)‖ ≤ B for some
constant B > 0, ∀x ∈ K, and ξ, ξ′ ∈ Ξ.

The Lipschitz smooth gradient assumption is widely used in the (non)convex optimization and pairwise
learning communities. While Assumption 2 is frequently used in the adaptive SGD community, see, e.g.,
Duchi et al. (2011); Reddi et al. (2018); Chen et al. (2019); Ward et al. (2019); Zou et al. (2019); Li &
Orabona (2019) 3. Note that when K is bounded — Duchi et al. (2011); Reddi et al. (2018) have assumed
the boundedness of the constrained set — Assumption 2 directly holds for the continuity of the gradient 4,
but not vice versa. Moreover, Assumption 2 indicates the following estimate of ∇f(x)

‖∇f(x)‖ = ‖Eξ,ξ′∼P⊕P∇F (x; ξ, ξ′)‖ ≤ Eξ,ξ′∼P⊕P‖∇F (x; ξ, ξ′)‖ ≤ B.

Using mathematical induction, we can see that the momentum mk also enjoys the uniform bound according
to Assumption 2. Furthermore, we stress that we do not need to assume the variance is bounded, which is
indicated by Assumption 2 since we have

E‖∇F (x; ξ, ξ′)−∇f(x)‖2 ≤ E‖∇F (x; ξ, ξ′)‖2 ≤ B2.

Assumptions 1 and 2 will be used in the analysis of AOGD for all different scenarios in the subsequent
analysis.

2.2 General Convex Cases

In this subsection, we present the convergence result of AOGD for the general convex case, i.e., F (x; ξ, ξ′)
is convex with respect to x and any fixed ξ, ξ′. Note that the convexity of F (x; ξ, ξ′) indicates the convexity
of f(x) in equation 1, but not vice versa.

Theorem 1 (General Convexity) Let Assumption 1 hold, and ‖g0‖2 ≥ δ > 0 for some constant δ, and
F (x; ξ, ξ′) be convex. Assume {xk}k≥1 is generated by AOGD for pairwise learning, x∗ := argminx∈K f(x),
and K is additionally bounded, i.e., maxx,y∈K ‖x− y‖ ≤ D. Then we have

E

[
f

(∑K
k=1 xk

K

)
−min
K

f

]
≤ c1 + c2(K)

K
, (4)

where c1 := E
√
v1‖x∗−x1‖2

2(1−θ)η + 3B2
√
δ
, and c2(K) :=

[
η+2D2

2(1−θ) + (ηθ + 1)
]
· E
√
vK+1 +

[
4L+ 2L2

√
δ

]
ln E
√
vK+1√
δ

.

3The uniform assumption presented in Li & Orabona (2019) enjoys another presentation, i.e., (Assumption (H2)) presented
as |f(x)−f(y)| ≤ G‖x−y‖. Note that when f is differentiable, it is equivalent to supx ‖∇f(x)‖ ≤ G.With bounded assumption
for F (x; ξ)−∇f(x) in Li & Orabona (2019), which is indeed the uniform bound assumption.

4Any continuous function is uniformly bounded over a closed bounded subset of Rd.
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The Assumption 2 is implicitly used in Theorem 1 because we have assumed the boundedness of the con-
strained set K. The bounded constrained set is indeed stronger than the uniform bounded gradient assump-
tion. We leave how to relax the bounded set assumption as future work. From Theorem 1, we can see
that the convergence rate is dependent on E[

√
vK ]. The boundedness of the stochastic gradients indicates

that E[
√
vK ] = O(

√
K), which means the worst convergence rate of AOGD is Õ

(
1√
K

)
. We notice that

the convergence rate Õ
(

1√
K

)
coincides with the rate of OGD for pairwise learning in the general convex

case. However, in some cases E[
√
vK ] can decay faster than O(

√
K), based on which we can establish an

accelerated rate of AOGD.

Proposition 1 Assume the conditions of Theorem 1 hold, and assume E[
√
vK ] = O(Kα) with 0 < α ≤ 1

2 .
Then we have

E

[
f

(∑K
k=1 xk

K

)
−min
K

f

]
= Õ

(
1

K1−α

)
. (5)

If α < 1
2 , the convergence rate of AOGD is thus better than Õ

(
1√
K

)
. Proposition 1 then provides a

theoretical interpretation of why AOGD is possible to be faster than OGD.

Remark 1 Note that α = 1/2 directly holds for the boundedness of the stochastic gradients. Indeed, this
fast decaying condition is standard for analyzing adaptive stochastic optimization algorithms, see, e.g., Reddi
et al. (2018); Chen et al. (2018; 2019); Liu et al. (2019).

2.3 Strongly Convex Cases

In this subsection, we consider the case that the function F (x; ξ, ξ′) is ν-strongly convex for some constant
ν > 0, i.e., F (x; ξ, ξ′) − F (y; ξ, ξ′) − 〈∇F (y; ξ, ξ′),x − y〉 ≥ ν

2‖x − y‖2. In particular, if ν = 0, F (x; ξ, ξ′)
then reduces to general convex.

Stepsize rule for the strongly convex case. Before developing a convergence guarantee of AOGD for
strongly convex cases, we need to select the appropriate stepsize rule for AOGD. We first need to explain the
stepsize rule of AOGD for the general convex case, i.e., η/

√
vk for some constant η > 0, is inappropriate for

solving strongly convex problems. The boundedness of gradient directly gives us 1√
vk
≥ Θ

(
1√
k

)
. However,

such a stepsize rule causes the accumulation of stochastic noise; it will not improve the convergence rate of
AOGD under strong convexity compared to the rate of AOGD under general convexity. A proper stepsize
choice for the strongly convex case is Θ

(
1
k

)
Bach & Moulines (2013). Indeed, in papers Duchi et al. (2011);

Sun et al. (2020), the authors use the 1√
k
√
vk

stepsize rule for AdaGrad when the problem is strongly convex,

and we follow this stepsize rule for the strongly convex online pairwise learning. Note that 1√
k
√
vk
≥ Θ

(
1
k

)
,

which coincides with the stepsize used for SGD when the underlying problem is strongly convex. In summary,
in the strongly convex case, we replace step 4 of Algorithm 2 with step 4’, which is given below

step 4’ : xk+1 = ProjK

(
xk − η√

k
mk/

√
vk

)
. (6)

Next, we present the convergence rate of AOGD for pairwise learning with the strong convexity assumption.

Theorem 2 Let Assumption 1 hold, and ‖g0‖2 ≥ δ > 0, and F (x; ξ, ξ′) be strongly convex. Assume
{xk}k≥1 is generated by the AOGD for pairwise learning with θ = 0 using stepsize rule step 4’, and
x∗ = argminx∈K f(x). By setting η = B

2ν , then we have

E
[
‖xK − x∗‖2] = O

(
lnK
K

)
. (7)

6



Under review as submission to TMLR

In the strongly convex case, Assumption 2 is equivalent to the boundedness assumption of the constrained set
K. This is because the function f(x) is also ν-strongly convex 5, yielding ‖∇f(x)‖ = ‖∇f(x)−∇f(x†)‖ ≥
ν‖x − x†‖ with x† being the global minimizer of f . When Assumption 2 holds, in Subsection 2.1 we have
shown that ‖∇f(x)‖ ≤ B over K. Thus, we get ‖x‖ ≤ ‖x − x†‖ + ‖x†‖ ≤ B

ν + ‖x†‖ when x ∈ K. Notice
that x† is fixed, the set K is then uniform bounded.

Theorem 2 above shows that AOGD can achieve a faster convergence rate under the strong convexity
assumption than that for general convex cases. Theorem 2 also shows that in the strongly convex case,
AOGD achieves the optimal convergence rate of SGD Rakhlin et al. (2012), i.e., Õ

(
1
K

)
. The result in

Theorem 2 does not generalize to the general convex case since we set η = B
2ν , which is infinity when ν = 0.

For technical reasons, we set θ = 0 in Theorem 2, i.e., we only consider the momentum-free case. We will
consider how to build the convergence rate Õ

(
1
K

)
for AOGD with momentum in our future work.

2.4 Nonconvex Cases

In this part, we consider the case when F (x; ξ, ξ′) is nonconvex. The assumptions for the nonconvex case are
much milder than the convex and strongly convex cases. We can even get rid of using the projection operator
ProjK(·) for AOGD. The convergence result of AOGD for the nonconvex case is presented as follows.

Theorem 3 Let Assumptions 1, 2 hold, and let {xk}k≥1 be generated by AOGD, and ‖g0‖2 ≥ δ for some
constant δ > 0. Suppose

√
vk ≤ C · kα for two constants C > 0 and 0 < α ≤ 1

2 , and K is the full space.
Then, we have

min
1≤k≤K

{
E‖∇f(xk)‖2

}
≤ c3 + c4(K)

K1−α , (8)

where c3 := 2(7−6θ)B2C

(1−θ)
√
δ

+ 4Cf(x1)
η , and c4(K) :=

(
(1+θ)η

1−θ + 2L2/
√
δ + L2/δ + 5/2

)
ln
(
CK
δ

)
.

From Theorem 3, we can see that the convergence rate of AOGD is Õ
(

1
K1−α

)
, and α = 1

2 is the worst case
due to the boundedness of the stochastic gradient. When α < 1

2 , we get a faster convergence of AOGD
compared with OGD or SGD in the general nonconvex case.

The conditions of Theorem 3 can also be satisfied by the general convex case without projection. Therefore,
equation 8 also holds when F (x; ξ, ξ′) is convex. However, equation 8 is weaker than equation 4 since the
convergence rate in equation 8 is not established with respect to the function values.

3 Numerical Results

Table 1: Statistics of the dataset used for contrasting the performance of AOGD and OGD, where n is the
number of samples in each dataset, and d is the number of features of each instance in a given dataset. All
datasets come from the LIBSVM website Chang & Lin (2011), and they are used in Yang et al. (2021b).

diabtes german ijcnn1 letter mnist usps
n 768 1,000 49,990 15,000 60,000 7,291
d 8 24 22 161 780 256

In this section, we numerically validate our theoretical findings. To this end, we compare our proposed AOGD
against the baseline OGD proposed in Yang et al. (2021b) for pairwise learning in terms of generalization
and rate of convergence with respect to the number of iteration 6. Following Yang et al. (2021b), we consider

5Taking expectation of both sides of the inequality F (x; ξ, ξ′)− F (y; ξ, ξ′)− 〈∇F (y; ξ, ξ′),x− y〉 ≥ ν
2 ‖x− y‖2 gives us the

strong convexity of f .
6In Yang et al. (2021b), the authors have shown that OGD can remarkably outperform existing algorithms, including OLP

Kar et al. (2013), OAMgra Zhao et al. (2011), SGDpair Lei et al. (2020), and SPAUC Lei & Ying (2021).
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six benchmark datasets, summarized in Table 1. Also, following the data split strategy used in Yang et al.
(2021b), for the dataset with multiple classes, we convert the first half of classes to be the positive class and
the second half of classes to be the negative class.

In particular, we run experiments on AUC maximization using the following loss function

f(w; (x, y), (x′, y′)) = `(w>(x− x′))I[y=1∧y′=−1]

where

I[y=1∧y′=−1] =
{

1 if y = 1 and y′ = −1,
0 otherwise.

And ` is a surrogate loss function, e.g., the hinge loss

`(t) = (1− t)+ =
{

0 if 1− t < 0,
1− t otherwise.

For each dataset, we use 80% of the data for training and the remaining 20% for testing. All the reported
results are based on 25 runs with random shuffling. The generalization performance is reported using the
average AUC score and standard deviation on the test data. To determine proper hyper parameters for
OGD and AOGD, we conduct 5-fold cross-validation on the training sets: 1) for OGD, we select stepsizes
ηt = η ∈ 10[−5:5]7 and the parameter space K is set to be the L2-ball centered at the origin with radius
R ∈ 10[−3,3]; 2) for AOGD, we let θ = 0.9 and we select stepsizes ηt = η ∈ 10[−5:5] and the parameter space
K is also the L2-ball centered at the origin with radius R ∈ 10[−3,3].

Figure 2 plots the AUC scores of AOGD and OGD against the number of iterations on the six benchmark
datasets listed in Table 1. The numerical results on the six benchmark datasets show that AOGD converges
faster than OGD in general, confirming our theoretical results.

Table 2: Average AUC scores ± standard deviation across the six benchmark datasets listed in Table 1. The
best results are highlighted in boldface.

Algorithm diabetes german ijcnn1 letter mnist usps
AOGD .831 ± .027 .795 ± .026 .934 ± .002 .814 ± .006 .931± .002 .925± .004
OGD .831± .030 .793± .021 .934 ± .002 .810± .007 .932 ± .001 .926 ± .006

Table 2 summarizes the generalization performance between AOGD and OGD. The results for AOGD are
obtained from our above experiment and the results for OGD are adapted from Yang et al. (2021b). Overall,
AOGD generalizes as well as OGD, and the two methods perform almost identically. Establishing the
generalization of OAGD is an interesting future direction.

4 More Related Works

Because offline methods employ the ERM-like policy, the core problem of most offline methods is establishing
the generalization bound of the finite-sum model with statistical learning theory or algorithmic stability
Agarwal & Niyogi (2009); Jin et al. (2009); Wang et al. (2019); Gao & Zhou (2013); Lei et al. (2020). It
is worth mentioning that the difficulty in the generalization analysis for pairwise learning lies in that the
objective functions fail to be i.i.d. with each other, which breaks the fundamental assumption in statistical
learning theory and the algorithmic stability communities.

The online methods for pairwise learning assume the model accesses a data stream of i.i.d. samples, including
online AUC maximization algorithms Zhao et al. (2011); Ying et al. (2016); Liu et al. (2018); Natole et al.
(2018); Lei & Ying (2021); Guo et al. (2020), online metric learning algorithms Shalev-Shwartz et al. (2004);
Davis et al. (2007); Jain et al. (2008); Jin et al. (2009), online learning to rank Rejchel (2012); Schuth et al.

7[−5 : 5] stands for integers in the interval [−5, 5].
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Figure 2: The AUC score of AOGD and OGD against the number of iterations for AUC maximization
with hinge loss. It is evident that AOGD converges faster than OGD in general, confirming our established
theoretical results for AOGD.

(2013); Zoghi et al. (2017); Li et al. (2019), neural link prediction Wang et al. (2021), etc. The online AUC
maximization is proposed by the authors of Zhao et al. (2011) with theoretical guarantees. In paper Ying
et al. (2016), a stochastic online AUC maximization algorithm is proposed from the perspective of a saddle
representation. The main advantage of the algorithm in Ying et al. (2016) is to avoid storing all previous
examples and second-order covariance matrices. Leveraging saddle representation, the authors of Liu et al.
(2018) propose a faster online AUC maximization algorithm with provably improved statistical convergence
rates. The stochastic proximal algorithms for AUC maximization with non-differentible regularization are
proposed and studied in Natole et al. (2018). To make the algorithm scalable to large-scale streaming
data, the authors of Lei & Ying (2021) propose a new stochastic proximal algorithm. In paper Guo et al.
(2020), the authors consider the distributed setting and propose a communication-efficient stochastic AUC
maximization with deep neural networks. The authors of Shalev-Shwartz et al. (2004) propose an online
algorithm for supervised learning of pseudo-metrics. In paper Davis et al. (2007), the authors present an
information-theoretic approach for online metric learning. In Jain et al. (2008), leveraging the LogDet
regularization, the authors propose a fast online metric learning for the similarity search. The generalization

9
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bound of regularized distance metric learning is established in Jin et al. (2009). The authors of Rejchel
(2012) consider ranking estimators that minimize the convex empirical risks and prove their generalization
bounds. A framework of online learning to rank is proposed by the authors of Schuth et al. (2013). In paper
Zoghi et al. (2017), the authors investigate the online learning to rank in stochastic click models. Paper Li
et al. (2019) introduces a new model for online ranking with features. The differentially private pairwise
learning has been recently studied, and representative works include Huai et al. (2020); Yang et al. (2021a);
Xue et al. (2021); Yang et al. (2021b).

5 Conclusions

In this paper, we propose the adaptive online gradient descent algorithms to solve pairwise learning problems
and establish their theoretical performance bounds in strongly convex, convex, and nonconvex settings. Our
theoretical results explain why the convergence speed of adaptive online gradient descent can outperform the
one without adaptive stepsize for pairwise learning. We also provide numerical experiments to demonstrate
the efficiency of the proposed algorithm.

Limitation and future work. There are two major limitations in our analysis: 1) we assume the set K is
bounded in establishing Theorem 1, and 2) the convergence rate in Theorem 2 is analyzed for the adaptive
online gradient descent without momentum. We leave how to overcome the above two limitations as future
work. There are numerous other avenues for future work, including 1) Can we establish the lower bound
of the convergence rates for the adaptive online gradient descent applied to pairwise learning? 2) Can we
extend the online adaptive gradient descent to the proximal settings to solve nonsmooth pairwise learning
problems?
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A Proofs of Results in the Convex Scenario

A.1 Technical Lemmas

Given any x∗ ∈ argKmin f , in the (strongly) convex setting, we introduce the following notation
φk := E

[
‖gk‖2
√
vk

]
+ 2B2E

[
1√
vk−2 −

1√
vk−1

]
+ L2E‖xk−xk−1‖2

√
δ

+B2E
[

1√
vk−2 −

1√
vk

]
,

Ak := E(‖mk‖2/(vk) 1
2 ),

Bk := E
(
〈x∗ − xk,mk〉

)
,

Ck := (ηθ + 1−θ
2 )Ak−1 + (1− θ)φk

(9)

We have the following lemmas.

Lemma 1 [Lemma 9 in the appendix, Li & Orabona (2019)] Let a1, a2, . . . , aK be non-negative, and h be a
non-increasing function. Then we have

K∑
k=1

akh(a0 +
k∑
i=1

ai) ≤
∫ ∑K

k=0
ak

a0

h(t)dt.

Lemma 2 Assume {xk}k≥1 is generated by Algorithm 2, then we have
K∑
k=1

Ak ≤
K∑
k=1

E[‖gk‖2/(vk) 1
2 ] ≤ E(vk) 1

2 .

Lemma 3 Assume {xk}k≥1 is generated by Algorithm 2 and ‖g0‖ ≥
√
δ > 0, then we have

K∑
k=1

E‖xk − xk−1‖2 ≤
K∑
k=1

E[‖gk‖2/vk] ≤ E ln v
k

δ
.

Lemma 4 Assume {xk}k≥1 is generated by Algorithm 2, then we have
E‖∇F (xk−1; ξk, ξk−1)‖2 ≤ 2L2E‖xk − xk−1‖2 + 2E‖gk‖2.

Lemma 5 Assume {xk}k≥1 is generated by Algorithm 2, and Assumption 1, 2 hold, then the following result
holds

Bk ≤ θBk−1 + Ck + (1− θ)E
[
f(x∗)− f(xk)

]
.
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A.2 Proof of Theorem 1

Given k ∈ Z+, with Lemma 5 and mathematical induction, we have the following inequality

Bk ≤ θkB1 +
k−1∑
i=1

θk−1−iCi +
k−1∑
i=1

(1− θ)θk−1−iE(f(x∗)− f(xi)).

Notice that m1 = 0 and B1 = 0, we get

Bk ≤
k−1∑
i=1

θk−1−iCi +
k−1∑
i=1

(1− θ)θk−1−iE(f(x∗)− f(xi)). (10)

Summing the inequality equation 10 from k = 1 to K gives us

K∑
k=1

Bk ≤
K∑
k=1

k−1∑
i=1

θk−1−iCi +
K∑
k=1

k−1∑
i=1

(1− θ)θk−1−iE(f(x∗)− f(xi))

≤
∑K
k=1 Ck
1− θ + (1− θ)

K∑
k=1

E(f(x∗)− f(xk)).

Therefore, we have

K∑
k=1

E(f(xk)− f(x∗)) ≤ −
K∑
k=1

Bk
(1− θ) +

∑K
k=1 Ck

(1− θ)2 . (11)

The scheme of the algorithm indicates that

xk+1 = ProjK(xk − ηmk/(vk) 1
2 ).

We then get

‖xk+1 − x∗‖2 = ‖ProjK(xk − ηmk/(vk) 1
2 )− x∗‖2

= ‖ProjK(xk − ηmk/(vk) 1
2 )−ProjK(x∗)‖2

≤ ‖xk − ηmk/(vk) 1
2 − x∗‖2.

Multiplying both sides with (vk) 1
2 , we are then led to

(vk) 1
2 ‖xk+1 − x∗‖2 ≤ (vk) 1

2 ‖x∗ − xk‖2 + 2η〈mk,x∗ − xk〉+ η2‖mk‖2/(vk) 1
2 ,

which is equivalent to

(vk+1) 1
2 ‖xk+1 − x∗‖2 ≤ (vk) 1

2 ‖x∗ − xk‖2 + 2η〈mk,x∗ − xk〉

+ η2‖mk‖2/(vk) 1
2 + ((vk+1) 1

2 − (vk) 1
2 )‖xk+1 − x∗‖2.

Taking the total expectation of both sides of the above equation gives us

−2ηBk ≤ E(vk) 1
2 ‖xk − x∗‖2 − E(vk+1) 1

2 ‖xk+1 − x∗‖2

+ η2Ak + (E(vk+1) 1
2 − E(vk) 1

2 )D2.
(12)

Summing equation 12 from k = 1 to K gives us

K∑
k=1

(−Bk)/(1− θ) ≤ E
√
v1‖x∗ − x1‖2

2η(1− θ) + η

2(1− θ)

K∑
k=1

Ak + D2

(1− θ)E
√
vK+1.
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Together with equation 11, we then have

K∑
k=1

E(f(xk)− f(x∗)) ≤ E
√
v1‖x∗ − x1‖2

2η(1− θ)

+ η

2(1− θ)

K∑
k=1

Ak + D2

(1− θ)E
√
vK+1 +

∑K
k=1 Ck

(1− θ)2 .

(13)

We turn to bound the right-hand side of equation 13, and get the following bound

η

2(1− θ)

K∑
k=1

Ak ≤
η

2(1− θ)E(vK+1) 1
2 . (14)

On the other hand, we can get

∑K
k=1 Ck

(1− θ)2 ≤
ηθ

(1− θ)2E(vK+1) 1
2 + 2L

(1− θ)2E ln v
K+1

δ
+ 1

(1− θ)2

K∑
k=1

Eφk

≤ ηθ

(1− θ)2E(vK+1) 1
2 + 2L

(1− θ)2E ln v
K+1

δ
+

3B2
√
δ

+ L2
√
δ
E ln vK+1

δ + E(vK+1) 1
2

(1− θ)2

(15)

Substituting the bounds equation 14 and equation 15 into equation 13, we are then led to

[ K∑
k=1

E(f(xk)− f(x∗))
]

≤ E
√
v1‖x∗ − x1‖2

2η(1− θ) + [η + 2D2

2(1− θ) + ηθ + 1
(1− θ)2 ] · E

√
vK+1

+ [ 4L
(1− θ)2 + 2L2

(1− θ)2
√
δ

]E ln
√
vK+1
√
δ

+ 3B2

(1− θ)2
√
δ
.

(16)

Notice that − ln(·) and − 1
· are both convex when · is positive, using Jensen’s inequality gives us

− lnE
√
vK+1 ≤ −E ln

√
vK+1, − 1

E(
√
vk)
≤ −E 1√

vk

⇒ E ln
√
vK+1 ≤ lnE

√
vK+1, E

1√
vk
≤ 1

E
√
vk
.

Therefore, equation 16 can be presented as

E

[
f
(∑K

k=1 xk

K

)
−min f

]
≤ c1 + c2(K)

K
,

where

c1 := E
√
v1‖x∗ − x1‖2

2(1− θ)η + 3B2

(1− θ)2
√
δ
,

and

c2(K) := [η + 2D2

2(1− θ) + ηθ + 1
(1− θ)2 ] · E

√
vK+1 + [ 4L

(1− θ)2 + 2L2

(1− θ)2
√
δ

] ln E
√
vK+1
√
δ

.
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B Proofs of Results in the Strongly Convex Scenario

B.1 Proof of Proposition 2

The boundedness of the gradient and the strong convexity indicate K is bounded, whose radius is assumed
to be D > 0. Notice that the operator ProjK(·) is contractive, as θ = 0, we get

E‖xk+1 − x∗‖2 = E‖ProjK(xk − η√
k

mk/
√
vk)− x∗‖2

= E‖ProjK(xk − η√
k

mk/
√
vk)−ProjK(x∗)‖2

≤ E‖xk − η√
k

mk/
√
vk − x∗‖2

= E‖xk − x∗‖2 − 2 η√
k
E( 〈∇F (xk; ξk, ξk−1),xk − x∗〉√

vk
) + η2

k
E‖mk‖2/vk

≤ E
[
(1− 2ην/

√
kvk)E‖xk − x∗‖2

]
+ η2

k
E
‖mk‖2

vk

+ 2 η√
k
E([F (x∗; ξk, ξk−1)− F (xk; ξk, ξk−1)]/

√
vk),

where we used the strong convexity of F (x; ξk, ξk−1). Now, we turn to bound

E([F (x∗; ξk, ξk−1)− F (xk; ξk, ξk−1)]/
√
vk).

With direct computations we have the decomposition

E([F (x∗; ξk, ξk−1)− F (xk; ξk, ξk−1)]/
√
vk)

= E([F (x∗; ξk, ξk−1)− F (xk−1; ξk, ξk−1)]/
√
vk−2)

+ E([F (xk−1; ξk, ξk−1)− F (xk; ξk, ξk−1)]/
√
vk−2)

+ η√
k
E
(

[F (x∗; ξk, ξk−1)− F (xk; ξk, ξk−1)]× (1/
√
vk − 1/

√
vk−2)

)
,

consequently,
E([F (x∗; ξk, ξk−1)− F (xk; ξk, ξk−1)]/

√
vk)

≤ E( 〈m
k−1,∇F (xk−1; ξk, ξk−1)〉
√
k − 1

√
vk−1

√
vk−2

) + DBη√
k

E(1/
√
vk−2 − 1/

√
vk)

≤ 1
2
√
k − 1

E
‖mk−1‖
vk−1 + 1

2
√
k − 1

E
‖∇F (xk−1; ξk, ξk−1)‖2

vk−2

+ DBη√
k

E(1/
√
vk−2 − 1/

√
vk) + B

√
k − 1

√
δ
E(1/

√
vk−2 − 1/

√
vk−1)

≤ 1√
δ
E( ‖m

k−1‖2
√
k − 1vk−1

) + DBη√
k

E(1/
√
vk−2 − 1/

√
vk)

+ B
√
k − 1

√
δ
E(1/

√
vk−2 − 1/

√
vk−1).

where we used E([F (x∗; ξk, ξk−1) − F (xk−1; ξk, ξk−1)]/
√
vk−2) = [f(x∗) − f(xk−1)]/

√
vk−2 ≤ 0. Let-

ting η = B
2ν and βk := η√

k
√
k−1E

‖mk−1‖
vk−1 + η√

k
√
k−1E

‖∇F (xk−1;ξk,ξk−1)‖2

vk−2 + 2DBη2

k E(1/
√
vk−2 − 1/

√
vk) +

2Bη√
k−1
√
k
√
δ
E(1/

√
vk−2 − 1/

√
vk−1) + η2

k E
‖mk‖2

vk
,

ak+1 ≤ (1− 1
k

)ak + βk.

16
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With direct computations, we have

a3 ≤
1
2a2 + β2,

a4 ≤
2
3a3 + β3 ≤

1
3a2 + 2

3β2 + β3,

a5 ≤
3
4a4 + β4 ≤

1
4a2 + 2

4β2 + 3
4β3 + β4,

...

aK+1 ≤
a2

K
+

K∑
k=2

kβk
K

.

Notice that

kβk = O
(
E
‖mk−1‖
vk−1 + E

‖∇F (xk−1; ξk, ξk−1)‖2

vk−2 + E(1/
√
vk−2 − 1/

√
vk)

+ E(1/
√
vk−2 − 1/

√
vk−1) + E

‖mk‖2

vk

)
,

we just need to compute
∑∞
k=1 E

‖∇F (xk−1;ξk,ξk−1)‖2

vk−2 . By using Lemma 4, we have

E‖∇F (xk−1; ξk, ξk−1)‖2/vk−2 ≤ 2L2E‖xk − xk−1‖2/δ + 2E‖gk‖2/vk−2.

With the fact
E
‖gk‖2

vk−2 ≤ E
‖gk‖2

vk
+B2(E1/vk−2 − E1/vk),

we then get
∞∑
k=1

E
‖∇F (xk−1; ξk, ξk−1)‖2

vk−2 = O(ln vK).

With Lemma 3, we can get
K∑
k=2

kβk = O(ln vK) = O(lnK)⇒ aK+1 = lnK
K

.

C Proofs of Results in Nonconvex Scenario

C.1 Additional Technical Lemmas

In the nonconvex case, we denote the following items to simplify the presentations of the technical lemmas
Âk := E

[
‖mk‖2/vk

]
,

B̂k := E
(
〈−∇f(xk),mk/(vk) 1

2 〉
)
,

Ĉk := θηÂk + 2(1− θ)E
[
‖gk‖2/vk

]
+ 6(1− θ)B2E[1/(vk−2) 1

2 − 1/(vk) 1
2 ]

+(1− θ)(2L2/
√
δ + L2/δ + 1/2)E‖xk − xk−1‖2.

(17)

Lemma 6 Assume {xk}k≥1 is generated by Algorithm 2, then we have
K∑
k=1

Âk ≤
K∑
k=1

E‖gk‖2/vk ≤ E ln v
k

δ
.

Lemma 7 Assume {xk}k≥1 is generated by Algorithm 2 and the functions are nonconvex. Let K be the full
space and Assumptions 1 and 2 hold, then the following result holds

B̂k + (1− θ)
2 E

(
‖∇f(xk)‖2/(vk) 1

2

)
≤ θB̂k−1 + Ĉk.

17
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C.2 Proof of Theorem 3

According to Lemma 7, we have

(1− θ)
2

K∑
k=1

E
(
‖∇f(xk)‖2/(vk) 1

2

)
≤ −B̂K + (θ − 1)

K−1∑
k=1

B̂k +
K∑
k=1

Ĉk

≤ (θ − 1)
K−1∑
k=1

B̂k +
K∑
k=1

Ĉk + B2
√
δ
. (18)

The Lipschitz property of the gradients gives

Ef(xk+1)− Ef(xk) ≤ E〈∇f(xk),xk+1 − xk〉+ LE‖xk+1 − xk‖2

2 = ηB̂k + Lη2

2 Âk. (19)

Combining with equation 19, we get the following estimate

K−1∑
k=1
−B̂k ≤ Lη

K−1∑
k=1

Âk + 2f(x1)
η

. (20)

On the other hand, with Lemma 3, we have the following bound

2
1− θ

K∑
k=1

Ĉk ≤
2θη

1− θ

K∑
k=1

Âk + 6B2
√
δ

+ (2L2/
√
δ + L2/δ + 5/2)E ln(v

K

δ
). (21)

Using [Lemma 2, Li & Orabona (2019)] and Lemma 6, we have

K∑
k=1

Âk ≤ E ln(v
K

δ
). (22)

Substituting equation 22, equation 21 and equation 20 into equation 18, then we get

K∑
k=1

E
(
‖∇f(xk)‖2/(vk) 1

2

)
≤
( (1 + θ)η

1− θ + 2L2/
√
δ + L2/δ + 5/2

)
E ln(v

K

δ
) + (7− 6θ)B2

(1− θ)
√
δ

+ 2f(x1)
η

. (23)

Notice that 1
(vk)

1
2
≥ 1

Ckα , then we have

K∑
k=1

E
(
‖[∇f(xk)]2/(vk) 1

2 ‖1

)
≥ (

K∑
k=1

1
kαC

) · min
1≤k≤K

{E‖∇f(xk)‖2}.

We then complete the proof by using the fact that 0 < 1
1−α ≤ 2 when 0 < α ≤ 1/2. Thus, we can get the

following estimate

min
1≤k≤K

{E‖∇f(xk)‖2} ≤ c3 + c4(K)
K1−α ,

where
c3 := 2(7− 6θ)B2C

(1− θ)
√
δ

+ 4Cf(x1)
η

,

and
c4(K) :=

( (1 + θ)η
1− θ + 2L2/

√
δ + L2/δ + 5/2

)
ln(CK

δ
).

18
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D Proofs of the Technical Lemmas

D.1 Proof of Lemma 2

With the fact that mk = (1− θ)
∑k
j=1 θ

k−jgj when k ≥ 1, we have

‖[mk]2/(vk) 1
2 ‖ =

d∑
i=1
|mk

i /(vk) 1
4 |2 ≤

d∑
i=1

(1− θ)2|
k∑
j=1

θk−jgji /(v
k) 1

4 |2

a)
≤

d∑
i=1

(1− θ)2(
k∑
j=1

θk−j(vk) 1
2 )×

k∑
j=1

θk−j(gji )
2/(vk)

≤
d∑
i=1

(1− θ)2 · (vk) 1
2

1− θ ·
k∑
j=1

θk−j(gji )
2/(vk)

= (1− θ) ·
k∑
j=1

θk−j‖gj‖2/(vk) 1
2
b)
≤ (1− θ) ·

k∑
j=1

θk−j‖gj‖2/(vj) 1
2

where a) uses the Cauchy’s inequality (
∑k
j=1 ajbj)2 ≤ (

∑k
j=1 a

2
j ) · (

∑k
j=1 b

2
j ) with aj = θ

k−j
2 (vk) 1

4 and
bj = θ

k−j
2 gji /(vk) 1

2 ; b) is due to vj ≤ vk when j ≤ k. Thus, we are led to

K∑
k=1

k∑
j=1

θk−j‖gj‖2/(vj) 1
2 =

K∑
j=1

K∑
k=j

θk−j‖gj‖2/(vj) 1
2

=
K∑
j=1

K∑
k=j

θk−j‖gj‖2/(vj) 1
2 ≤ 1

1− θ

K∑
j=1
‖gj‖2/(vj) 1

2 .

Thus, we can get
K∑
k=1

Ak ≤
K∑
k=1

E[‖gk‖2/(vk) 1
2 ].

Using Lemma 1 with ak = ‖gk‖2 and h(·) = 1√
· , we get

K∑
k=1
‖gk‖2/(vk) 1

2 ≤
√
vK −

√
v0 ≤

√
vK ,

where we used the fact that v0 ≥ 0. The proof is then completed.

D.2 Proof of Lemma 3

Similar to the proof of Lemma 2, we have

‖xk+1 − xk‖2 = ‖ProjK(xk − ηmk)− xk‖2 = ‖ProjK(xk − ηmk)−ProjK(xk)‖2

≤ ‖mk/(vk) 1
2 ‖2 =

d∑
i=1
|mk

i /(vk) 1
2 |2 ≤

d∑
i=1

(1− θ)2|
k∑
j=1

θk−jgji /(v
k) 1

2 |2

a)
≤

d∑
i=1

(1− θ)2(
k∑
j=1

θk−j) ·
k∑
j=1

θk−j
(gji )2

(vk) ≤
d∑
i=1

(1− θ)2 · 1
1− θ ·

k−1∑
j=1

θk−j(gji )
2/(vk)

= (1− θ) ·
k∑
j=1

θk−j‖gj‖2/(vk) b)= (1− θ) ·
k∑
j=1

θk−j‖gj‖2/vj

19
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where a) uses the fact that (
∑k
j=1 ajbj)2 ≤

∑k
j=1 a

2
j

∑k
j=1 b

2
j with aj = θ

k−j
2 and bj = θ

k−j
2 gji /(vk) 1

2 , and b)
is due to vj ≤ vk when j ≤ k. Thus, we can get

K∑
k=1
‖xk − xk−1‖2 ≤

K∑
k=1
‖gk‖2/vk.

Using Lemma 1 with ak = ‖gk‖2 and h(·) = 1
· , we are then led to

K∑
k=1
‖gk‖2/vk ≤ ln v

k

v0 ≤ ln v
k

δ
.

The proof is then completed.

D.3 Proof of Lemma 4

Direct computations give us

E‖gk‖2 = E‖∇F (xk; ξk, ξk−1)‖2

= E‖∇F (xk; ξk, ξk−1)−∇F (xk−1; ξk, ξk−1) +∇F (xk−1; ξk, ξk−1)‖2

= E‖∇F (xk−1; ξk, ξk−1)‖2 + E‖∇F (xk; ξk, ξk−1)−∇F (xk−1; ξk, ξk−1)‖2

+ 2E〈∇F (xk; ξk, ξk−1)−∇F (xk−1; ξk, ξk−1),∇F (xk−1; ξk, ξk−1)〉
a)
≥ 1

2E‖∇F (xk−1; ξk, ξk−1)‖2 − E‖∇F (xk; ξk, ξk−1)−∇F (xk−1; ξk, ξk−1)‖2

≥ 1
2E‖∇F (xk−1; ξk, ξk−1)‖2 − L2E‖xk − xk−1‖2,

where a) uses the inequality 2E〈∇F (xk; ξk, ξk−1) − ∇F (xk−1; ξk, ξk−1),∇F (xk−1; ξk, ξk−1)〉 ≥
− 1

2E‖∇F (xk−1; ξk, ξk−1)‖2 − 2E‖∇F (xk; ξk, ξk−1)−∇F (xk−1; ξk, ξk−1)‖2. Thus we can get

E‖∇F (xk−1; ξk, ξk−1)‖2 ≤ 2L2E‖xk − xk−1‖2 + 2E‖gk‖2.

D.4 Proof of Lemma 5

The convexity of fik(x) with respect to x and gk = ∇F (xk; ξk, ξk−1) gives us

E〈x∗ − xk, gk〉 ≤ E[F (x∗; ξk, ξk−1)− F (xk; ξk, ξk−1)]
= E[F (xk−1; ξk, ξk−1)− F (xk; ξk, ξk−1) + F (x∗; ξk, ξk−1)− F (xk−1; ξk, ξk−1)]. (24)

The Lipchitz gradient continuity of F (x; ξk, ξk−1) with respect to x indicates

E[F (xk−1; ξk, ξk−1)− F (xk; ξk, ξk−1)]

≤ L

2 E‖xk − xk−1‖2 + E〈xk−1 − xk,∇F (xk; ξk, ξk−1)〉

≤ L

2 E‖xk − xk−1‖2 + E〈xk−1 − xk,∇F (xk−1; ξk, ξk−1)〉

+ E〈xk−1 − xk,∇F (xk; ξk, ξk−1)−∇F (xk−1; ξk, ξk−1)〉

≤ 3L
2 E‖xk − xk−1‖2 + E〈xk−1 − xk,∇F (xk−1; ξk, ξk−1)〉,

(25)

where we used the Cauchy’s inequality E〈xk−1 − xk,∇F (xk; ξk, ξk−1) − ∇F (xk−1; ξk, ξk−1)〉 ≤ L‖xk−1 −
xk‖2. Because ξk, ξk−1 are independent of xk−1,

E(F (x∗; ξk, ξk−1)− F (xk−1; ξk, ξk−1)) = f(x∗)− f(xk−1). (26)
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Turning back to equation 24, we get

E〈x∗ − xk, gk〉 ≤ E[F (xk−1; ξk, ξk−1)− F (xk; ξk, ξk−1)] + f(x∗)− f(xk−1). (27)

Notice that xk−1 is independent of (ξk, ξk−1),

E〈xk−1 − xk,∇F (xk−1; ξk, ξk−1)〉
= E〈xk−1 − xk,∇f(xk−1)〉

+ E〈xk−1 − xk,∇F (xk−1; ξk, ξk−1)− E∇F (xk−1; ξk, ξk−1)〉

≤ E〈xk−1 − xk,∇f(xk−1)〉+ 1
2E
‖mk−1‖2
√
vk−1

+ 1
2E
‖∇F (xk−1; ξk, ξk−1)− E∇F (xk−1; ξk, ξk−1)‖2

√
vk−1

,

(28)

where we used |E〈X,Y 〉| ≤ E‖X‖2 + E‖Y ‖2 with X = 4
√
vk−1(xk−1 − xk), and Y = [∇F (xk−1; ξk, ξk−1)−

E∇F (xk−1; ξk, ξk−1)]/ 4
√
vk−1. Now, we turn to the upper bound of 1

2E
‖∇F (xk−1;ξk,ξk−1)−E∇F (xk−1;ξk,ξk−1)‖2

√
vk−1 :

1
2E
‖∇F (xk−1; ξk, ξk−1)− E∇F (xk−1; ξk, ξk−1)‖2

√
vk−1

= 1
2E
‖∇F (xk−1; ξk, ξk−1)− E∇F (xk−1; ξk, ξk−1)‖2

√
vk−2

+ 1
2E
[
(‖∇F (xk−1; ξk, ξk−1)− E∇F (xk−1; ξk, ξk−1)‖2)× ( 1√

vk−1
− 1√

vk−2
)
]

≤ 1
2
E‖∇F (xk−1; ξk, ξk−1)‖2

√
vk−2

+ 2B2E( 1√
vk−2

− 1√
vk−1

)

a)
≤ L2E‖xk − xk−1‖2 + E‖gk‖2

√
vk−2

+ 2B2E( 1√
vk−2

− 1√
vk−1

)

≤ φk,

(29)

where φk := E‖g
k‖2
√
vk

+ 2B2E( 1√
vk−2 −

1√
vk−1 ) + L2E‖xk−xk−1‖2

√
δ

+ B2E( 1√
vk−2 −

1√
vk

), and a) depends on
Lemma 4. Thus, we have

E〈xk−1 − xk,∇F (xk−1; ξk, ξk−1)〉

≤ E〈xk−1 − xk,∇f(xk−1)〉+ 1
2E
‖mk−1‖2
√
vk−1

+ φk.
(30)

Once with the Lipchitz property,

〈∇f(xk−1),xk−1 − xk〉 ≤ f(xk−1)− f(xk) + L

2 ‖x
k − xk−1‖2. (31)

Combing equation 31 and equation 30, we then get

E〈xk−1 − xk,∇F (xk−1; ξk, ξk−1)〉 ≤ f(xk−1)− f(xk)

+ L

2 ‖x
k − xk−1‖2 + 1

2E
‖mk−1‖2
√
vk−1

+ φk.
(32)

Substituting equation 32 into equation 25,

E[F (xk−1; ξk, ξk−1)− F (xk; ξk, ξk−1)] ≤ 2LE‖xk − xk−1‖2

+ f(xk−1)− f(xk) + 1
2E
‖mk−1‖2
√
vk−1

+ φk.
(33)
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Substituting equation 33 into equation 27, we then get

E〈x∗ − xk, gk〉 ≤ 2LE‖xk − xk−1‖2 + f(x∗)− f(xk) + 1
2E
‖mk−1‖2
√
vk−1

+ φk. (34)

According to our algorithm and we denote Λ := E(〈x∗ − xk, gk〉), then we have

E
(
〈x∗ − xk,mk〉

)
= E

(
〈x∗ − xk, θmk−1 + (1− θ)gk〉

)
= (1− θ) · Λ + θE〈x∗ − xk,mk−1〉
= (1− θ) · Λ + θE〈x∗ − xk−1,mk−1〉+ θE〈xk − xk−1,mk−1〉
b)
≤ (1− θ) · Λ + θE〈x∗ − xk−1,mk−1〉+ ηθE‖mk−1‖2/(vk−1) 1

2 ,

where b) depends on that 〈xk−xk−1,mk−1〉 ≤ ‖xk−xk−1‖·‖mk−1‖ = ‖ProjK(xk−1−ηmk)−ProjK(xk−1)‖·
‖mk−1‖ ≤ ‖mk−1‖2/(vk−1) 1

2 . Then, we get

Bk ≤ (1− θ)E〈x∗ − xk, gk〉+ θBk−1 + ηθAk−1. (35)

Substituting equation 34 into equation 35, we then proved the desired result.

D.5 Proof of Lemma 6

This proof is identical to the proof of Lemma 3 and will not be reproduced.

D.6 Proof of Lemma 7

Notice that E∇F (xk−1; ξk, ξk−1) = ∇f(xk−1), we then get

E〈−∇f(xk)/(vk)1/2, gk〉
= E〈−∇f(xk)/(vk)1/2,∇F (xk; ξk, ξk−1)〉

= −E‖∇f(xk)‖2/(vk)1/2 + E〈∇f(xk)/(vk) 1
2 ,∇f(xk)−∇f(xk−1)〉

+ E〈∇f(xk)/(vk) 1
2 ,∇f(xk−1)−∇F (xk−1; ξk, ξk−1)〉︸ ︷︷ ︸

:=(†)

+ E〈∇f(xk)
(vk) 1

2
,∇F (xk−1; ξk, ξk−1)−∇F (xk; ξk, ξk−1)〉.

(36)

The Cauchy’s inequality together with the smooth assumption gives us

E〈∇f(xk)/(vk) 1
2 ,∇f(xk)−∇f(xk−1)〉

≤ |E〈∇f(xk)/(vk) 1
4 , [∇f(xk−1)−∇f(xk)]/(vk) 1

4 〉|

≤ 1
4E‖∇f(xk)‖2/(vk) 1

2 + E‖∇f(xk−1)−∇f(xk)‖2/(vk) 1
2

≤ 1
4E‖∇f(xk)‖2/(vk) 1

2 + L2E‖xk−1 − xk‖2/(vk) 1
2 .

(37)

Similarly, the Lipschitz property of the stochastic gradient yields

E〈∇f(xk)/(vk) 1
2 ,∇F (xk−1; ξk, ξk−1)−∇F (xk; ξk, ξk−1)〉

≤ E|〈∇f(xk)
(vk) 1

4
,

[∇F (xk−1; ξk, ξk−1)−∇F (xk; ξk, ξk−1)]
(vk) 1

4
〉|

≤ 1
4E‖∇f(xk)‖2/(vk) 1

2 + L2E‖xk−1 − xk‖2/(vk) 1
2 .

(38)
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Substituting equation 38 and equation 37 into equation 36, we are then led to

E〈−∇f(xk)/(vk) 1
2 , gk〉 ≤ −E

(
‖∇f(xk)‖2/(vk) 1

2

)
+ (†)

+ 1
2E(‖∇f(xk)‖2/(vk) 1

2 ) + 2L2E(‖xk−1 − xk‖2/(vk) 1
2 ).

(39)

Now, we turn to bound (†):

(†) = E〈∇f(xk−1)/(vk−1) 1
2 ,∇f(xk−1)−∇F (xk−1; ξk, ξk−1)〉︸ ︷︷ ︸

=0

+ E
〈
∇f(xk)/(vk) 1

2 −∇f(xk−1)/(vk) 1
2

+∇f(xk−1)/(vk) 1
2 −∇f(xk−1)/(vk−1) 1

2 ,∇f(xk−1)−∇F (xk−1; ξk, ξk−1)
〉

≤ E〈[∇f(xk)−∇f(xk−1)]/(vk) 1
2 ,∇f(xk−1)−∇F (xk−1; ξk, ξk−1)〉

+ 2B2E[1/(vk−2) 1
2 − 1/(vk) 1

2 ]

≤ E‖xk − xk−1‖2

2 + 2B2E[1/(vk−2) 1
2 − 1/(vk) 1

2 ]

+ 1
2E‖∇f(xk−1)−∇F (xk−1; ξk, ξk−1)‖2/vk.

Furthermore, we have

1
2E‖∇f(xk−1)−∇F (xk−1; ξk, ξk−1)‖2/vk

= 1
2E‖∇f(xk−1)−∇F (xk−1; ξk, ξk−1)‖2/vk−2

+ 1
2E‖∇f(xk−1)−∇F (xk−1; ξk, ξk−1)‖2(1/vk − 1/vk−2)

Lemma 4
≤ L2E‖xk − xk−1‖2/vk−2 + 2E‖gk‖2/vk−2 + 2B2E(1/vk − 1/vk−2)

≤ L2

δ
E‖xk − xk−1‖2 + 2E‖gk‖2/vk + 4B2E(1/vk − 1/vk−2).

Thus, equation 39 can also be bounded as

E〈−∇f(xk)/(vk) 1
2 , gk〉 ≤ −1

2E
(
‖∇f(xk)‖2/(vk) 1

2

)
+ 6B2E[1/(vk−2) 1

2 − 1/(vk) 1
2 ] + 2E‖gk‖2/vk

+ (2L2/
√
δ + L2/δ + 1/2)E‖xk − xk−1‖2.

(40)

We also use a shorthand notation Λ := E(〈−∇f(xk)/(vk) 1
2 , gk〉) and then

E
(
〈−∇f(xk),mk/(vk) 1

2 〉
)

= E
(
〈−∇f(xk)/(vk) 1

2 , θmk−1 + (1− θ)gk〉
)

= (1− θ) · Λ + θE〈−∇f(xk)/(vk) 1
2 ,mk−1〉

a)
≤ (1− θ) · Λ + θE〈−∇f(xk−1)/(vk−1) 1

2 ,mk−1〉+ θηE‖mk−1‖2/vk−1. (41)

where a) uses the Cauchy-Schwarz inequality and the Lipschitz property of f and vk−1 ≤ vk. Substituting
equation 41 into equation 40, we then proved the result.
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