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Abstract: We present R+X, a framework which enables robots to learn skills
from long, unlabelled first-person videos of humans performing everyday tasks.
Given a language command from a human, R+X first retrieves short video clips
containing relevant behaviour, and then conditions an in-context imitation learning
technique on this behaviour to execute the skill. By leveraging a Vision Language
Model (VLM) for retrieval, R+X does not require any manual annotation of the
videos, and by leveraging in-context learning for execution, robots can perform
commanded skills immediately, without requiring a period of training on the
retrieved videos. Experiments studying a range of everyday household tasks show
that R+X succeeds at translating unlabelled human videos into robust robot skills,
and that R+X outperforms several recent alternative methods. Videos are available
at this website https://sites.google.com/view/r-plus-x.

Figure 1: Given a language prompt, R+X first retrieves short relevant video clips extracted from a
long unlabelled video of a human performing everyday tasks, recorded with a wearable camera. With
the use of the retrieved video clips and a VLM, R+X performs in-context imitation learning allowing
it to immediately generate and execute the desired behaviour on the robot.

1 Introduction

Robot learning of diverse, everyday tasks in natural environments, is a significant challenge. Imitation
learning is a promising solution which has been widely adopted in recent years [1, 2], but it remains
difficult to scale up due to the cost of hardware and human demonstration time. If robots could
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instead learn from data which does not require any robot hardware or dedicated human time, the
difficulty of scaling up data collection would be lowered substantially.

In this work, we study the problem of learning robot skills from long, unlabelled, first-person videos
of humans performing everyday tasks in everyday environments. "Long, unlabelled videos" means
that a human simply goes by their everyday life and passively records videos of themselves without
the need to specify which behaviour is being performed. "Everyday environments" means that videos
contain diversity in tasks, scenarios, objects, distractors, illumination, and camera viewpoints and
motion. It is likely that such videos will become abundant through the adoption of wearable devices
such as AR headsets and glasses [3, 4, 5, 6], and thus offer a significant opportunity for future
scalability if robots could learn from such videos.

Previous approaches to learning from videos of humans have often relied on a set of strong constraints
and assumptions, such as human videos manually aligned with robot videos, human videos manually
labelled with language descriptions or demonstrations on robot or MoCap hardware [7, 8, 2, 9, 10,
11, 12]. In this work, we remove all of these constraints and present a framework that requires only
an unlabelled first-person video depicting tens of tasks.

Our framework, R+X, is a two-stage pipeline of Retrieval and EXecution shown in Figure 1 that
uses Foundation Models for both stages. Upon receiving a language command from a user, a Vision
Language Model retrieves all clips where the human executes the specified task. By extracting the
trajectories of the human’s hand in each clip, we then employ a few-shot in-context imitation learning
method to condition on these trajectories, which enables a robot to ingest, learn from, and replicate
the retrieved behaviours to previously unseen settings and objects. The recent literature demonstrated
that, by finetuning large Vision Language Models on robotics data, they can transfer their common
knowledge and ability to reason and plan to robotics settings [13, 14]. This, however, requires very
expensive finetuning of often intractably large models. With our proposed framework, we can equally
leverage these abilities but now via retrieval and video understanding, thus without the need for
any finetuning. Rather than requiring explicit policy training on the retrieved videos, skills can be
learned, and executed immediately following the language command. In particular, we demonstrate
the benefits that this brings over spatial and language generalization, compared to large monolithic
policy networks.

In summary, the two main properties of R+X are: 1) it enables robots to execute everyday tasks from
language commands, given long, unlabelled, first-person videos collected naturally by recording a
human’s daily activities, and 2) it achieves this without the need for any training or finetuning of
models, allowing it to learn and execute tasks immediately.

2 Related Work

Figure 2: The main assumptions and constraints of
many recent Learning from Observation methods.

Collecting Robotics Data. Scaling data collec-
tion has been proven to be a successful path to-
wards increasingly more general machine learn-
ing models [15, 16, 17, 18]. To collect robotics
data, the most common paradigm is to teleop-
erate robots, collecting datasets of paired obser-
vations and actions [1]. This, however, needs
dedicated teleoperation hardware, and needs hu-
man operators to allocate their time to actively
teach a robot new tasks. In our framework, a
human user interacts with their environments as
usual, completing the tasks they wish, while a
robot passively learns to emulate it, resulting in
a more scalable and time efficient paradigm.

Learning from Human Videos. Many recent works have proposed solutions to teach new skills to
robots by observing a human executing such tasks. However, as we illustrate in Fig. 2, they often
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Figure 3: Upon receiving a language command, R+X retrieves all the relevant clips from the human
video. Each retrieved clip is transformed from pixels to a sparse 3D points representations of the
hand joints movement and salient parts of the visual observation.

relied on a set of assumptions and constraints that limited their use "in-the-wild". Bahl et al. [8], Wang
et al. [19] require a combination of human data and either robot exploration or teleoperation, therefore
needing active assistance of the user in teaching the robot, and videos are recorded from a fixed,
third-person camera. R+X relies entirely on the videos recorded by the user with a mobile camera in
their natural environments. Heppert et al. [9], Zhu et al. [11], Bahety et al. [10] can learn robot skills
entirely from human videos. Heppert et al. [9], Zhu et al. [11], however, focus on replicating the
object trajectory from the demo, and cannot perform tasks that do not involve grasping and moving,
such as pushing or pressing, that R+X can execute. Bahety et al. [10] can learn a larger repertoire of
skills, but still relies on learning single tasks in isolation from a fixed camera, while R+X can replicate
tasks from a given a language command after receiving a single, long, unlabelled video depicting tens
of tasks, without the need to specify which clip demonstrated which behaviour. Methods like Wang
et al. [12] allow a user to naturally interact with their environment while collecting data that can teach
a robot new skills. However, they require additional hardware to wear, like specialised MoCap gloves.
R+X only needs a single RGB-D camera, and does not require any extrinsics calibration. This means
that data could be recorded using a wearable camera, smart glasses, AR visors, and more.

Language-Conditioned Policy Learning. Robots should learn a wide repertoire of skills, and be able
to execute many different tasks while deployed. Language is considered a viable way to instruct robots
and guide their task execution [1, 14, 13]. The common approach is to train a large, language and
image conditioned policy that can, at test time, receive user commands and camera observations [1].
This, however, presents some criticalities: training such models can require enormous computational
effort [13], and unlike other machine learning applications, robots should learn new skills over time.
Therefore, re-training or finetuning such networks should be avoided. R+X therefore does not train
or finetune any networks, but takes advantage of pre-trained models able to retrieve examples of
tasks [16], and to learn to emulate and execute new behaviour directly at deployment via in-context
learning [20].

3 R+X: Retrieval and Execution

We now describe R+X, our proposed method to learn robot skills from long, unlabelled videos of
humans interacting with their environments. We assume R+X has access to a long, unlabelled video
of a user performing a multitude of tasks in many different locations. We call this long, first-person
video of everyday tasks the "human video" H in the rest of the paper. The goal of our method is to
learn to emulate the behaviours recorded in the human video upon receiving a language command
from the user.

Overall, from a high-level perspective, our pipeline takes three inputs: 1) a single, long, unlabelled
video of all the interactions recorded by the humans, H 2) a task to execute in language form, L and
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Figure 4: The visual 3D keypoints of the first frame of each of the Z videos obtained from the retrieval
phase along with each extracted hand joint trajectory are used as context for KAT. To execute a skill,
visual 3D keypoints are extracted from the live observation and used as input to KAT which generates
a sequence of hand joints. By mapping this sequence to gripper poses the robot executes the desired
task.

3) the current observation of the robot as an RGB-D image, Olive. It then outputs a trajectory of
6-DoF gripper poses, which are executed by the robot to tackle the task at hand.

There are however a set of non-trivial challenges: while receiving a language command to execute at
deployment, the robot receives no language information before deployment: the recorded video con-
tains no more information than the recorded visual frames. Additionally, the robot receives no action
information: unlike the case of teleoperation, no joints or end-effector position/velocity/acceleration
data are recorded, and the correct movements need to be inferred by the videos alone: the problem is
additionally complex due to the cross-embodiment between human videos and final robot actions.
Furthermore, as the user is interacting with their natural environment, the visual observations can
be filled with distractor objects typical of household and offices, unrelated to the task the user is
performing. To tackle these challenges, we leverage the abilities of Foundation Models.

Specifically, at the first phase of R+X, which we call the retrieval phase, we use a VLM to extract
from the human video all the examples of the desired behaviour described in the prompt L as a
list of Z shorter video clips [V1,V2, . . . ,VZ ]. We map the Z videos into a lower dimensional 3D
representation, extracting for each video: (1) a list of K visual 3D keypoints that describe the scene,
[k1, k2, . . . , kK ] where k = (xk, yk, zk), and (2) the movement of the user’s hand as a trajectory
of length T of 21 hand joints that parametrise the MANO hand model [21], J = [j1, j2, . . . , jT ],
where j = [[x0, y0, z0], . . . , [x21, y21, z21]]. Finally, at the second stage of R+X, which we call the
execution phase, to emulate the behaviours observed in the retrieved video clips, we condition
a few-shot in-context imitation learning model on this data that, given a live observation of the
environment, it generates a trajectory of 3D hand joints to execute the desired behaviour described
in the prompt. To map such joints to gripper poses, we designed a heuristic that we describe in the
Supplementary Material.

3.1 Retrieval: Extracting visual examples from a long, unlabelled video

The first main phase of R+X is retrieval, shown in Figure 3. Upon receiving a language command L,
and given the human video H, the goal is to retrieve all video clips from the human video that depict
the execution of the requested task. This is accomplished using a recent Vision Language Model
(VLM), Gemini Pro 1.5 Flash [22]. Gemini, which we denote G, is natively multi-modal and can take
as input images, videos, and text, and outputs text. We prompt the model with the human video, and
ask it to retrieve the starting and ending seconds at which the received task happens. The inputs of
this phase is therefore a language command and the human video, and the output is a list of Z shorter
video clips demonstrating the desired task, G(H,L) → [V1, . . . ,VZ ]. Each clip comprises T RGB-D
frames, where T can vary across different clips.
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3.1.1 Preprocessing Videos into a Sparse 3D Representation

Given the Z extracted video clips, [V1, . . . ,VZ ], we apply a preprocessing step that converts each
video clip from a list of RGB-D frames to a set of 3D points describing the visual scene and the
trajectory of the human’s hand, a representation that we will then feed to our few-shot in-context
imitation learning model.

Visual 3D keypoints. To transform the complex RGB-D observations into a lower-dimensional, easier
to interpret input, we harness the powerful vision representations generated by DINO [23], a recent
Vision Foundation Model. As proposed in [24, 20], given the Z clips retrieved as described before,
we find a set of K common 3D visual keypoints that capture interesting semantic or geometrical
aspects of the scene. We extract these keypoints from the first frame of each of the Z videos only.

Figure 5: Visual keypoints are ex-
tracted autonomously from RGB
via a matching algorithm [24].

We first compute the DINO descriptors for the first frame of
each of the Z videos, obtaining a list of Z different N × 384
outputs, where N is the number of patches of each image
[25, 26, 23]. Via a clustering and matching algorithm [24], we
select from the N × 384 descriptors of the first frame of the
first video, OV1,1, a list of the K descriptors that are the most
common in all the remaining Z−1 frames, as shown in Figure 5.
We denote these descriptors as D ∈ RK×384. Therefore, this
way, we autonomously extract descriptors that focus on the
object of interest, as its appearance is common among videos,
while distractors and overall scene will vary [24, 20].

Finally, for each of the K descriptors in D, we extract keypoints
by finding the K nearest neighbours between the N × 384 de-
scriptors of each the Z frames, and compute their 2D coordi-
nates. We then project these in 3D using each frame’s depth
image and known camera intrinsics. As such, given the re-
trieved clips, we obtain and store a list Λ = [KV1

, . . . ,KVz
] ∈

RZ×K×3 of visual 3D keypoints, K for each clip, where each
KVi = [k1, ..., kK ] and kj = (xj , yj , zj). For a more detailed
description please refer to Amir et al. [24].

Hand Joint Actions. To extract human actions from each retrieved video clip we use the HaMeR
model [27], a recent technique for 3D hand pose estimation from images based on DINO. In particular,
using HaMeR we extract from each video frame OVz,t (where 1 ≤ t ≤ T ) of each of the Z clips the
3D hand pose, represented as a set of 21 3D points, jVz,t, describing the hand joints that parameterise
the MANO hand model, as it is commonly done in the literature [21]. As the camera moves between
frames, we design a stabilisation technique to compute transformations between camera poses that is
robust to dynamic scenes (for more details please see our Supplementary Material). This enables
us to express the extracted hand joints relative to a single reference frame, that of the first camera
frame of each clip. For each video clip Vz , this process results in a sequence of 3D hand joint
actions JVz

= [jVz,1, . . . , jVz,T ], expressed relative to the first frame of each video OVz,1 where the
visual 3D keypoints are also expressed in. As such, at the end of this process we are left with a list
M = [JV1

, ...JVZ
] of Z hand joint action sequences.

In summary, from the Z retrieved video clips, we extracted the list of hand joints actions M, along
with the list of visual 3D keypoints Λ, that will be used as context for our in-context imitation learning
model, as Z input-output pairs.

3.2 Execution: Few-Shot, In-Context Imitation from Video Examples

The second main phase of R+X is execution. Our framework is based on the use of a model capable
of performing few-shot, in-context imitation learning, receiving a few examples of desired inputs
and outputs pairs describing a desired behaviour, and able to replicate such behaviour immediately
upon receiving a new input. We use Keypoint Action Tokens (KAT) [20] to achieve this, a
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Figure 6: We test R+X on 12 everyday tasks, executed by a human user in different rooms and with
different distractors.

recently proposed technique that takes 3D visual keypoints as input and outputs a trajectory of 3D
points describing the gripper movement. Instead of explicitly training a model on robot data, KAT
demonstrates that recent, off-the-shelf Large Language Models are able to extract such numerical
patterns, and behave as few-shot, in-context imitation learning machines, without the need for any
further finetuning.

Given the output of the retrieval phase [Λ,M] and a new, live RGB-D observation collected by the
robot Olive, we extract its visual 3D keypoints representation Klive by first extracting its N × 384
DINO descriptors, and then finding the K nearest neighbours to each of the K descriptors in D,
that we obtained in the retrieval phase. This results into K 2D coordinates, that we project in
3D. We then input to KAT as context [Λ,M], as Z examples of the desired input-output mapping,
and the new visual 3D keypoints, and generate a new trajectory of desired hand joint actions,
KAT([Λ,M],Klive) → Jlive with Jlive = [j1, . . . , jT ], as shown in Figure 4. We then map the
predicted trajectories of hand joints actions into gripper poses as described in our Supplementary
Material, and execute them.

To summarize, given a language command L and a human video H, R+X first retrieves Z videos
depicting the described behaviour using a VLM. From the retrieved videos, a list of [Λ,M] visual
3D points and hand joint actions are extracted. Then, to execute the desired behaviour described in
the prompt L, [Λ,M] along with the visual 3D keypoints of the live observation Klive are used as
context for KAT that performs few-shot in-context imitation learning to generate a trajectory of hand
joints actions, which is mapped to gripper poses and executed on the robot.

4 Experiments

Human Video. We collect the human video H using an Intel RealSense 455, worn by the user on
their chest as shown in Figure 1. To reduce downstream computational time, we filter out each frame
in which human hands are not visible right after recording. As our robot is single-armed, we limit
ourselves to single hand tasks. However, our method could identically be applied to bimanual settings
and dexterous manipulators.

Robot Setup. At execution, we use a Sawyer robot equipped with a RealSense 415 head-camera. The
robot is equipped with a two-fingered parallel gripper, the Robotiq 2F-85. As the robot is not mobile,
we setup different scenes in front of it with variations of the tasks recorded by the user, placing
several different distractors for each task, while the human video was recorded in many different
rooms. Although we have a wrist-camera mounted, we do not use that in our work.

Tasks. To evaluate our proposed framework, we use a set of 12 everyday tasks, where the user
interacts with a series of common household objects, listed in Fig. 6. We include movements like
grasping, opening, inserting, pushing, pressing, and wiping.

Baselines. We compare R+X, and its retrieval and execution design, to training a single, language-
conditioned policy. To obtain language captions from the human video, we use Gemini to au-
tonomously caption snippets of the video, obtaining a (observation, actions, language) dataset. We
finetune R3M (ResNet-50 version [28]) [29] and Octo [30] on this data. We extend R3M to also
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Method / Task Plate Push Wipe Beer Wash Box Kettle Micro. Basket Phone Can Light Avg.

R3M-DiffLang 0.5 0.7 0.4 0.7 0.5 0.5 0.4 0.8 0.7 0.4 0.7 0.3 0.55

Octo 0.5 0.8 0.5 0.6 0.5 0.5 0.4 0.7 0.6 0.4 0.6 0.3 0.53

R+X 0.6 0.8 0.7 0.8 0.6 0.7 0.6 0.8 0.7 0.7 0.8 0.6 0.7

Table 1: Result of the various methods on the 12 proposed tasks.

encode language via SentenceBERT and use a Diffusion Policy [31] head to predict actions from
intermediate representations. We denote this version as R3M-DiffLang.

More details on all aspects are provided in the Supplementary Material.

4.1 Results

Can R+X learn robot skills from long, unlabelled videos? How does it perform with respect to a
monolithic language-conditioned policy? In these experiments, we evaluate the performance of
R+X in learning a set of everyday skills. At deployment, we place the object to be interacted with in
front of the robot, and issue a language command. We then run the retrieval and execution pipeline
using the human video, the current observation and the language command. We run 10 episodes
per task, randomising 1) the object pose 2) the type and number of distractors 3) for tasks where
it is possible, we swap the object to interact with, with another one from the same class to test for
generalisation (e.g. a different can, a different piece of clothing, a different telephone). More details
are provided in the Supplementary Material.

Figure 7: Examples of hard spatial and
language generalisation. Gripper moves
from red to blue.

In Table 1, we report the performance of R+X on these
tasks, together with the baselines. As we demonstrate, the
framework is able to tackle a wide range of everyday tasks,
surpassing the monolithic policy baselines. These results
prove the benefit of modeling language-conditioned learn-
ing from observation as distinct retrieval and execution
phases, to fully leverage the abilities of recent Foundation
Models.

What are the main sources of difference in performance
between R+X and a monolithic policy? In these exper-
iments, we investigate more in detail what changes in the
inputs lead to the most noticeable difference in perfor-
mance between R+X and the baselines, R3M-DiffLang
and Octo. We explored two aspects, related to two prop-
erties of R+X:

Hard Spatial Generalisation: R+X, by retrieving videos
of the desired task, can also extract a series of relevant
keypoints Klive from the current observation Olive, some-
thing not possible when using a single policy network.
Going from RGB-D to a list of 3D points for inputs and
outputs allows us to apply simple geometric data aug-
mentation techniques for KAT, such as normalisation or
random translations and rotations. This leads to a stronger
spatial generalisation: in the "grasp a can" and "grasp
a beer" tasks we test performance of each method when
the objects are on the table, or when they are positioned
on top of other objects (a box, a microwave). By running
5 test episodes for each case, we demonstrate how R+X
retains strong performance, while the performance of the

7



Figure 8: Left (barplots 1-3): We compare R+X and the baselines’ ability to learn tasks in succession,
and the time needed to learn such new tasks. Rightmost barplot: Gemini’s retrieval performance.

baselines drop. Results and an example of the predicted
actions can be seen in Fig. 7, top.

Hard Language Generalisation: By leveraging the lan-
guage and video understanding abilities of recent large Vision Language Models, such as Gemini,
R+X can interpret and execute nuanced commands. To evaluate this, we setup a scene with many
objects, and ask the robot to perform three tasks: "give me something to call my mom", "give me
a non-alcoholic drink" and "make the room less dark". We run 5 test episodes for each of these
commands, modifying the position of the objects and the distractors. The language-conditioned
policies struggle to interpret these commands, that are strongly out of distribution. R+X, on the
other hand, leverages Gemini’s ability to understand the meaning of these commands, as it is able
to retrieve useful video clips from the human video (respectively, picking up the phone, grasping a
Fanta can, and turning on the light). Results and an example of output gripper trajectories can be
seen in Fig. 7, bottom.
Can R+X learn task sequentially over time? In these experiments, we demonstrate how R+X
can learn tasks continually, with no need for any additional training or finetuning, while obtaining
strong performance both on the new task and on the old ones, a desirable ability for a robot learning
from an ever increasing dataset of human experience. To measure this ability, and highlight the
difference behaviour with respect to a single language-conditioned policy, we first collect 10 demos
for 3 tasks. We train the baselines on these tasks (after extracting captions via Gemini as described
for the experiments of Table 1) and evaluate them and R+X. Then, we add 10 demos of 3 new tasks,
finetune the baselines, then measure performance on the 3 new tasks, and on the 3 old tasks for all
methods. In Fig. 8, Left, we see how the performance of R3M-DiffLang and Octo deteriorates on
the old task, due to the well known effect of catastrophic forgetting [32]. On the other hand, R+X
performance does not deteriorate, due to the ability to retrieve from an ever-growing video of tasks
and adapting the behaviour model at test time on the retrieved data.

If instead we train the baselines on all the data each time, the performance does not deteriorate:
however, this leads to a substantial growth in time needed to train. As the dataset grows, those
networks would need an increasing amount of time per each new added task in order to be retrained,
while R+X does not need any training or finetuning.

How does the length of the videos affect the retrieval performance? In this experiments, we first
collect a video with 10 demos of 5 tasks (kettle on stove, cloth in basket, pick up phone, cloth in
washing machine, close microwave), and measure Gemini’s ability to retrieve clips for each task. We
then add 10 demos for 5 additional tasks, and compute again the precision and recall of retrieval of
the original 5 tasks, to study how length of video and number of tasks affects it. The original video is
close to 4 minutes in length, while the second is close to 10. In Fig. 8, Right, we show the mean over
all tasks of retrieval’s precision and recall. Results demonstrate how Gemini’s performance remains
high while increasing the length of the video, allowing to scale R+X as the human records more and
more tasks.

5 Discussion and Limitations
We presented R+X, a method to learn robot skills from long, unlabelled videos of users interacting with
their environments, demonstrating its clear benefits over training monolithic language-conditioned
policy networks. There are, however, still a series of limitations that we here describe, proposing
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possible avenues for future work. The method is currently bottlenecked by the performance of
Vision Language Model, that has however seen a drastic improvement in recent time and will likely
still increase. While we can learn a large series of everyday tasks, the errors arising from the hand
pose prediction currently inhibits us from learning precise tasks. Furthermore, while the keypoints
extraction leads to strong spatial generalisation properties, it can become a bottleneck in the presence
of many similar objects: methods that find a dynamic number of keypoints might tackle this issue.
Finally, due to the use of Foundation Models for retrieval and execution, our method has a few seconds
delay between the issuing of the command and execution, that however has reduced dramatically
over the last months with the release of faster models such as GPT-4o [33] or Gemini Flash [22].
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