
Published as a conference paper at ICLR 2025

DYNAMIC GAUSSIANS MESH: CONSISTENT MESH RE-
CONSTRUCTION FROM DYNAMIC SCENES

Isabella Liu, Hao Su†, Xiaolong Wang†

UC San Diego, † Equal advising

Figure 1: We propose DG-Mesh, a framework that reconstructs high-fidelity time-consistent mesh for dynamic
scenes with complex non-rigid deformations. Given dynamic input and the camera parameters, our method
reconstructs the high-quality surface and its appearance, as well as the mesh vertice motion across time frames.
Our method can reconstruct mesh with flexible topology change as shown above. Additional results can be
found on: https://www.liuisabella.com/DG-Mesh.

ABSTRACT

Modern 3D engines and graphics pipelines require mesh as a memory-efficient
representation, which allows efficient rendering, geometry processing, texture
editing, and many other downstream operations. However, it is still highly diffi-
cult to obtain high-quality mesh in terms of detailed structure and time consistency
from dynamic observations. To this end, we introduce Dynamic Gaussians Mesh
(DG-Mesh), a framework to reconstruct a high-fidelity and time-consistent mesh
from dynamic input. Our work leverages the recent advancement in 3D Gaus-
sian Splatting to construct the mesh sequence with temporal consistency from
dynamic observations. Building on top of this representation, DG-Mesh recov-
ers high-quality meshes from the Gaussian points and can track the mesh vertices
over time, which enables applications such as texture editing on dynamic objects.
We introduce the Gaussian-Mesh Anchoring, which encourages evenly distributed
Gaussians, resulting better mesh reconstruction through mesh-guided densifica-
tion and pruning on the deformed Gaussians. By applying cycle-consistent de-
formation between the canonical and the deformed space, we can project the an-
chored Gaussian back to the canonical space and optimize Gaussians across all
time frames. During the evaluation on different datasets, DG-Mesh provides sig-
nificantly better mesh reconstruction and rendering than baselines.

Codes and data are publicly available at https://github.com/Isabella98Liu/DG-Mesh.

1

https://www.liuisabella.com/DG-Mesh
https://github.com/Isabella98Liu/DG-Mesh

Published as a conference paper at ICLR 2025

1 INTRODUCTION

The birds fly, the butterflies flutter, and the flowers sway with the breeze from the wind – our natural
world is dynamic, and objects present in the human eyes as an entanglement of structure, motion,
and color. A pivotal goal in computer vision is to empower machines with the human-like ability to
recover object geometry and motion from visual cues in the environment.

The advent of neural rendering techniques has sparked a surge in research focused on extracting
the geometry and motion of dynamic scenes from videos using neural representations. Most stud-
ies have concentrated on learning deformable neural radiance fields using volumetric representa-
tions (Mildenhall et al., 2021). However, these volumetric models often fall short in terms of
memory efficiency and explicit geometric details. The recent introduction of 3D Gaussian Splat-
ting (Kerbl et al., 2023) shifts towards point cloud representations that not only are more memory-
efficient but also can provide explicit geometries and superior rendering quality. Further advance-
ments demonstrate how 3D Gaussian Splatting’s explicit geometry can effectively represent dynamic
scenes by tracking each point’s movement across frames (Luiten et al., 2023; Wu et al., 2023a; Yang
et al., 2023d).

This paper takes a significant step in the realm of explicit geometry and motion estimation for dy-
namic scenes. We introduce a method to extract high-fidelity meshes and their motions by tracking
vertices over time from videos, as illustrated in Figure 3. Meshes, in contrast to volume, offer a
more memory-efficient format. The mapping of correspondences on mesh vertices greatly simpli-
fies texture editing and propagation on target objects. Crucially, the dynamic mesh extracted via
our method can be seamlessly integrated into a physical simulator, enabling rapid, physics-based
rendering adaptable to diverse materials and lighting conditions.

Our method, Dynamic Gaussians Mesh (DG-Mesh), performs a joint optimization procedure of both
3D Gaussians and the corresponding meshes. Our method not only allows the mesh to have flexi-
ble topology changes but also builds the correspondence across meshes over time. Specifically, our
method constructs a set of deformable 3D Gaussians by optimizing the 3D Gaussians in a canonical
space and learning the deformation module for transforming the 3D Gaussians in different time steps
for rendering. For each time step, we transform the deformed Gaussians into a mesh in a differen-
tiable manner using a combination of Poisson solver and marching cube algorithm, which is then
rendered with a differentiable rasterizer for training. Notably, this fully differentiable pipeline allows
the change of mesh topology while maintaining cross-frame consistency implicitly due to the intro-
duction of the canonical space. But how do we find the correspondences given these independent
meshes?

Ref. image W/o anchor W/ anchor

Figure 2: The 3D Gaussian centers before
and after the Gaussian-Mesh Anchoring.

We achieve this by decomposing the mesh-to-mesh cor-
respondence into two separate correspondences that are
easier to acquire: the mesh-to-points correspondence that
maps the mesh faces to the Gaussian points in each time
frame; and the points-to-canonical-points correspondence
that helps tracking the movement of mesh across time. Our
key observation is that the direct training of 3D Gaus-
sians mentioned above will lead to uneven spreading of
Gaussians in 3D space (as shown in Figure 2 left). How-
ever, this is detrimental for mesh reconstruction perfor-
mance due to the violation of the Possion solver assump-
tion that points should be evenly distributed; worse still,
non-uniform Gaussians make it trickier to track across a long time period. Thus, we propose the
Gaussian-Mesh Anchoring procedure during training, which yields uniformly distributed Gaus-
sians at each frame. Concretely, first, we encourage deformed 3D Gaussians in each time step to
align with the corresponding mesh surface that has uniform face distribution due to the underly-
ing iso-surface algorithm; and second, we allow adding Gaussians in the world frame at each time
step if certain mesh faces are not covered by existing deformed Gaussians, as well as deduplicting
Gaussians for mesh faces that are covered multiple times. We call the new set of Gaussians with 1-1
correspondences to mesh faces as anchored Gaussians. As depicted in Figure 2, anchored Gaussians
spread more uniformly in 3D.

Finally, we need to update the canonical space to accommodate the added and removed Gaussians in
the world frame so that canonical and anchored Gaussians are always consistent. This can be done

2

Published as a conference paper at ICLR 2025

by introducing a backward deformation network that computes the deformation from the anchored
Gaussians to the canonical Gaussians, by which we can inject new Gaussians in the canonical space
or remove unnecessary Gaussians. We define a Cycle-Consistent Deformation loss inspired by
(Yang et al., 2023b), where the cycle is formed with: a forward deformation from the canonical
Gaussians to deformed Gaussians, an anchoring process modifying the deformed Gaussians to the
anchored Gaussians, a backward deformation from anchored Gaussians to canonical Gaussians. As
a result, we obtain uniformly distributed 3D Gaussians in each time step, and they are aligned with
the mesh faces. This makes finding the correspondences between meshes much easier.

We demonstrate high-fidelity mesh reconstruction and tracking in our experiments. A few examples
can be found in Figure 1, where the correspondence is shown as the red curves connecting the ver-
tices across time. Even for challenging geometries (e.g., thin structures like bird wings), our method
can still perform reconstruction and achieve much better results than previous approaches, which
usually fail to reconstruct the geometry or construct an oversized mesh. We also demonstrate down-
stream applications, such as texture editing with our extracted mesh and correspondence (Figure 26),
which is much harder to achieve with non-mesh representations. To the best of our knowledge, this
is the first framework that recovers high-fidelity meshes with cross-frame correspondences from
dynamic observations.

2 RELATED WORK

View Synthesis in a Dynamic Scene. The rise of Neural Radiance Fields (NeRFs) (Mildenhall
et al., 2021) has largely transformed 3D scene reconstruction and novel view sythesis. Its success
has also been extended to dynamic scenes in two directions. One direction is to build dynamic
NeRFs (Du et al., 2021; Gao et al., 2021; Li et al., 2021; Xian et al., 2021) which models the motion
of the scene by extending the radiance field with an extra time dimension or a latent code. To achieve
faster rendering speed and more efficient use of memory, recent works perform volume factorization
converting the 4D volume into multiple lower dimension planers or tensors (Cao & Johnson, 2023;
Fridovich-Keil et al., 2023; Shao et al., 2023; Xu et al., 2023). Another direction is to construct an
additional deformation field that maps point coordinates in different time frames into a canonical
space, where large motion and geometry changes can be captured and learned (Park et al., 2021a;
Pumarola et al., 2021; Park et al., 2021b; Tretschk et al., 2021; Fang et al., 2022). The recently
proposed 3D Gaussians Splatting (Kerbl et al., 2023) extends the volumetric rendering in NeRF by
accommodating point clouds. This not only largely improves the speed of neural rendering but also
extracts an explicit point cloud structure from images. When applied to dynamic scenes, the same
idea of building a deformation field is applied with 3D Gaussians (Yang et al., 2023d; Wu et al.,
2023a; Luiten et al., 2023; Li et al., 2024; Yang et al., 2023c). But instead of an implicit field, the
deformation field here explicitly tracks the canonical point clouds over time. Inspired by this line of
research, we push forward the reconstruction of explicit geometry representation by using meshes
with the tracks of the mesh vertices over time from dynamic observations.

Dynamic Mesh Reconstruction. Mesh plays an important role in modern 3D engines, which are
widely used for simulation, modeling, and rendering applications. Recovering mesh from static
scenes has been extensively studied over the years. Mesh template-based methods (Hanocka et al.,
2020; Xue et al., 2023; Pan et al., 2019; Wang et al., 2018; Kanazawa et al., 2018; Li et al., 2020)
optimize the vertex positions from a template to align with the object surface. They usually assume
the template is a sphere or a given prior shape, and learn to deform the template into the desired shape
to match with the input images. However, when extended to dynamic scenes, these methods often
fail because of the topology change during the deformation. Another line of work extract meshed
from the implicit field, which can easily handle topology change during deformation. In particular,
the mesh can be extracted by identifying and triangulating the zero level sets with methods like
Marching Cubes (Cubes, 1987), Marching Tetrahedra (Treece et al., 1999), and Dual Contouring
(Ju et al., 2002). Recently, differentiable mesh extraction methods have been proposed (Liao et al.,
2018; Chen et al., 2022; Remelli et al., 2020; Shen et al., 2021; 2023; Wei et al., 2023), directly
optimizing mesh through implicit filed. Besides static scenes, several works have been studying
extracting the surface geometry of deformable objects from dynamic monocular inputs (Yang et al.,
2023a; 2022; Wu et al., 2023b; Yang et al., 2021a;b; Tulsiani et al., 2020; Johnson et al., 2023),
which are more closely related to real-world scenarios. Due to the limited information provided
by monocular inputs, these methods either rely on category template information or require strong
regularization or data modalities to output satisfying results.

3

Published as a conference paper at ICLR 2025

SfM Points Canonical
Gaussians

Forward
Deform

Deformed
Gaussians

Gaussian
Rasterization

DPSR + Diff. M.C.

NvdiffrastBackward
Deform

Forward flow
Gradient flow

Anchored
Gaussians

+/-

Gaussian Image

Mesh Image

γ(t)

γ(t)

Mesh

Surface

Figure 3: Main pipeline of DG-Mesh. We maintain a set of canonical 3D Gaussians. Under each time step, we
transform it into a deformed space. We treat each set of deformed Gaussian points as an oriented point cloud
and apply a differentiable Poisson Solver and differentiable Marching Cubes to recover the deformed surface.
We propose Gaussian-Mesh Anchoring to adjust the deformed Gaussians to be uniformly aligned with the mesh
faces. During anchoring, Gaussian densification and pruning are performed. We use a backward deformation
module to project the newly adjusted Gaussian points back to the canonical space.

3 METHOD

In this section, we present our framework shown in Figure 3. Given inputs from a dynamic scene, as
well as the time label and camera parameters for each input, we reconstruct the dynamic mesh and
its appearance, along with the mesh vertex’s motion trajectory. The surface correspondence across
times benefits many downstream applications, such as dynamic texture editing, which propagates
the editing under a single frame to the rest of the frames.

Our method maintains a set of canonical 3D Gaussians and deformation networks to deform the
Gaussians into different times (Section 3.1). We use a differentiable Poison Solver and a differen-
tiable Marching Cubes method to reconstruct the oriented 3D Gaussian points into meshes (Sec-
tion 3.2). Our model allows the mesh-to-mesh correspondence. This is constructed by two types
of correspondence, including the mesh-to-point correspondence under each time step and the point-
to-canonical-point correspondence across all time frames. We propose the Gaussian-Mesh An-
choring to encourage the 1-1 correspondence between the mesh faces and the Gaussians, producing
more uniformly distributed anchored Gaussians. The Cycle-Consistent Deformation maintains
the points to canonical points correspondence, which includes a backward deformation network that
computes the deformation from the anchored Gaussians to the canonical Gaussians (Section 3.3).
Finally, we combine all the training objectives (Section 3.4).

3.1 DEFORMABLE 3D GAUSSIAN SPLATTING

3D Gaussian Splatting. Recently, 3D Gaussians Splatting (3DGS) (Kerbl et al., 2023) has adopted
a novel approach based on point cloud rendering, achieving optimal results in novel viewpoint syn-
thesis and scene modeling. In our work, 3DGS provides a fast modeling to explicit geometry and
motion, allowing a high-quality and efficient surface reconstruction from the 3D Gaussian point
cloud.

We define each 3D Gaussian G by a position (mean) µ, a full 3D covariance matrix Σ centered at
point (mean) µ, and the opacity α:

G(x;µ,Σ) ∝ exp (−1

2
(x− µ)TΣ−1(x− µ))

During the α-blending process, each Gaussian is multiplied by α. To project 3D Gaussians onto
image space for rendering, we construct a covariance matrix Σ′ through Σ′ = JWΣWTJT , where
J is the Jacobian of the affine approximation of the projective transformation and W is a viewing
transformation (world-to-camera transformation matrix). To ensure a positive semi-definite matrix
during the optimization process, Σ is decomposed into a scaling matrix S and a rotation matrix
R: Σ = RSSTRT . In our implementation, we directly optimize a 3D vector for scaling s and
a quaternion r to represent rotation during the training process. Each 3D Gaussian can now be
represented as G(x;µ, r, s, α).

4

Published as a conference paper at ICLR 2025

(-) (+)

Figure 4: Illustration of our Gaussian-Mesh Anchoring procedure. After obtaining mesh from the DPSR and
differentiable Marching Cubes, we adjust the deformed 3D Gaussians to make it more aligned with the mesh’s
faces. For each Gaussian point, we find its nearest neighbors. If a mesh face is the nearest neighbor to multiple
Gaussian points at the same time, we merge these Gaussians and create a new Gaussian from them. If a mesh
face is not any Gaussian point’s nearest neighbor, we create a new Gaussian on its center.

Deformable 3D Gaussians. 3DGS assumes static scenes and its performance drops drastically
when reconstructing dynamic scenes. Several works (Wu et al., 2023a; Yang et al., 2023d; Jung
et al., 2023; Lin et al., 2023; Zielonka et al., 2023; Li et al., 2024; Yang et al., 2023c) have inves-
tigated the way to extend the 3DGS to dynamic reconstruction and an efficient way is to maintain
a canonical 3D Gaussains set. We define a transformation function F which transforms the 3D
Gaussian G(x;µ, r, s, α) from one space to another by:

F(γ(x), γ(t)) = (δx, δr, δs, δα)

, where γ is the positional encoding function to map x and t to higher dimensional Fourier features
(Tancik et al., 2020) to enhance detailed reconstruction:

γk(p)→ (sin(20πp), cos(20πp), ..., sin(2kπp), cos(2kπp))

The deformed 3D Gaussian in the new space can be represented by:

G′(x+ δx;µ, r + δr, s+ δs, α+ δα)

3.2 MESH RECONSTRUCTION

Surface Extraction and Rendering Pipeline. To apply the isosurface algorithms (such as March-
ing Cubes (Lorensen & Cline, 1998) or DMTet (Shen et al., 2021)) and extract the surface geometry
from the point-cloud representation of the 3DGS, an indicator function χ(x) is required over the
3D grid to describe the geometry. Some work (Tang et al., 2023) query a density grid using 3D
Gaussian’s opacity, which does not satisfy the gradient condition in the non-boundary space and is
computationally inefficient. Instead, we treat 3DGS as an oriented point-cloud and perform a differ-
entiable Poisson solver (DPSR) (Peng et al., 2021) to obtain the χ(x). We then apply differentiable
Marching Cubes (Wei et al., 2023) to generate watertight manifold meshes from the obtained value
grid. We additionally optimize vertex color for the mesh and perform differentiable rasterization
(Laine et al., 2020) to render the final image.

Laplacian Regularization. To better preserve the mesh surface tessellation, we adopt a mesh Lapla-
cian regularization term to penalize local curvature changes. We use a uniformly weighted differ-
ential δi of vertex vi to describe the difference between the position of vertex vi and the average
position of its neighbors. The Laplacian regularization term is the mean square δi for all vertices in
the mesh, and n is the total number of vertices of the mesh.

Llap =
1

n

n∑
i=0

||δi||2, δi = vi −
1

|Ni|
∑
k∈Ni

vk,

where Ni is the one-ring neighbor set of vertex vi.

3.3 DYNAMIC MESH CORRESPONDENCE

We construct our mesh-to-mesh correspondence with two separate correspondences: the mesh-to-
points correspondence which maps the mesh faces to the Gaussian points in each time frame, and
the point-to-canonical-point correspondence across all time frames that helps tracking the movement
of mesh over time.

5

Published as a conference paper at ICLR 2025

GT Hex-Plane
Surf. Render Mesh

TiNeuVox
Surf. Render Mesh

DG-Mesh (Ours)
Surf. Render Mesh

ଵܶ

ଶܶ

ଵܶ

ଶܶ

Figure 5: We compare the mesh reconstruction and rendering results of our method with other baselines on the
D-NeRF dataset. For each object, we visualize the results under two different time steps and different viewing
angles. Our method outperforms others by producing more smooth and detailed structures.

Gaussian-Mesh Anchoring. To build the mesh-to-point correspondence at each time frame, we
introduce the Gaussian-Mesh Anchoring. The original 3D Gaussian densification and deformation
mechanism leads to uneven spreading of Gaussians in 3D space (Figure 2), which is undesirable for
finding the 1-1 correspondence between mesh and the Gaussians. On the other hand, DPSR dis-
cretizes the function values and differential operators in the Poisson equation by assuming the nor-
mal vector field n and indicator function χ are uniformly sampled along each dimension. However,
this uniformity is not guaranteed during the above training procedure. To encourage the uniformity
of the 3D Gaussian distribution, we use reconstructed mesh to guide the densification and pruning of
the 3D Gaussian in the deformed space. Specifically, given a deformed 3D Gaussian set {G(xi)}Ni=0

and the set of the face centroids from its reconstructed mesh {fj}Mj=0 and N ̸= M . For each 3D
Gaussian point xi we find its nearest neighbor in the mesh face set:

nxi
= argmin

f
||xi − f ||, f ∈ {fj}Mj=0

During the densification and pruning process, as shown in Figure 4, for face fj that is the near-
est neighbor to multiple K Gaussian points, we prune the original K Gaussians and create a new
Gaussian by averaging the properties from the K Gaussians:

G′ =
1

K

K∑
k=0

G(xk)

On the other hand, for face fj that is not the nearest neighbor to any Gaussian point, we create a new
Gaussian at the face centroid:

G′ = G(fj)

Besides the above Gaussian density control, we also penalize the distance between Gaussian points
and face centroid that has one-to-one correspondence by:

Lanchor =
1

n

n∑
i=0

||xi − nxi ||2,

where n is the total number of faces that have a one-to-one correspondence to the 3D Gaussian
points. A detailed description of the algorithm can be found in Appendix A. The obtained anchored
Gaussians G′ are applied in the Cycle-Consistent deformation loss Lcycle which will be introduced
in the next paragraph.

6

Published as a conference paper at ICLR 2025

Method Corresp.
Duck Horse Bird

CD ↓ EMD ↓ PSNR ↑ PSNRm ↑ CD ↓ EMD ↓ PSNR ↑ PSNRm ↑ CD ↓ EMD ↓ PSNR ↑ PSNRm ↑
D-NeRF ✗ 0.934 0.073 29.785 23.019 1.685 0.280 25.474 17.381 1.532 0.163 23.848 19.573
K-Plane ✗ 1.085 0.055 33.360 20.372 1.480 0.239 28.111 21.629 0.742 0.131 23.722 19.559

HexPlane ✗ 2.161 0.090 32.108 27.945 1.750 0.199 26.779 22.395 4.158 0.178 22.189 20.595
TiNeuVox-B ✗ 0.969 0.059 34.326 22.073 1.918 0.246 28.161 18.156 8.264 0.215 25.546 19.844

4D-GS ✗ 1.134 0.111 37.127 - 1.500 0.272 29.185 - 2.311 0.187 23.834 -
Deformable-GS ✗ 2.366 0.115 34.187 - 1.510 0.217 30.280 - 1.358 0.141 25.095 -

4DGS ✗ 5.895 0.169 28.608 - 0.895 0.340 31.138 - 20.426 0.277 24.568 -
SC-GS ✗ 1.306 0.097 40.825 - 0.897 0.177 38.402 - 0.897 0.166 32.575 -

DG-Mesh ✔ 0.782 0.047 28.120 32.757 0.297 0.164 23.437 30.865 0.510 0.125 24.362 28.085

Method Corresp.
Beagle Torus2sphere Girlwalk

CD ↓ EMD ↓ PSNR ↑ PSNRm ↑ CD ↓ EMD ↓ PSNR ↑ PSNRm ↑ CD ↓ EMD ↓ PSNR ↑ PSNRm ↑
D-NeRF ✗ 1.001 0.149 34.470 24.446 1.760 0.250 24.227 13.562 0.601 0.190 28.632 21.146
K-Plane ✗ 0.810 0.122 38.329 24.613 1.793 0.161 31.215 15.706 0.495 0.173 32.116 23.008

HexPlane ✗ 0.870 0.115 38.034 29.970 2.190 0.190 29.714 22.350 0.597 0.155 31.771 24.214
TiNeuVox-B ✗ 0.874 0.129 38.972 25.773 2.115 0.203 28.756 14.985 0.568 0.184 32.806 20.207

4D-GS ✗ 0.644 0.106 42.995 - 2.188 0.261 28.329 - 0.596 0.315 33.430 -
Deformable-GS ✗ 1.154 0.161 42.530 - 2.210 0.248 28.274 - 1.103 0.183 34.157 -

4DGS ✗ 6.121 0.198 35.036 - 1.523 0.226 28.533 - 1.815 0.237 35.588 -
SC-GS ✗ 3.359 0.147 41.658 - 2.045 0.225 32.946 - 0.623 0.203 42.615 -

DG-Mesh ✔ 0.623 0.114 29.170 33.572 1.572 0.177 20.531 25.703 0.398 0.151 25.847 33.026

Table 1: Mesh reconstruction results of our method compared with other baselines. We measure the recon-
structed mesh’s: Chamfer Distant (CD) and Earth Mover Distance (EMD) with the ground truth mesh. The
unit for CD is 10−2 for Torus2sphere and 10−3 for the rest of the scenes. We also measure the volume ren-
dering quality PSNR of the baselines as well as the PSNRm of their mesh rendering results. We use , ,
and to indicate the best, the second best and the third results. Overall, our method produces higher quality
meshes among all metrics.

Cycle-Consistent Deformation. Deformable 3D Gaussians provide explicit motion and correspon-
dence across times because of their point-cloud representation. During Gaussian-Mesh Anchoring,
we align the reconstructed mesh faces and the 3D Gaussian points in each time frame and perform
mesh-guided densification and pruning. To update the canonical space to accommodate the anchored
Gaussians and build the point-to-canonical-point correspondence, we encourage the cycle consis-
tency between the canonical and deformed spaces to ensure that the anchoring performed under the
deformed space can be applied back to the canonical space. We define a forward transformation
function Ff and a backward transformation function Fb. Given a canonical 3D Gaussian G and its
new form G′ under deformed space, we have:

Ff (G, t) = −Fb(G
′, t)

We use the L1 loss between Ff and −Fd as our cycle consistent loss Lcycle. This cycle-consistent
deformation allows the anchored Gaussian to be deformed back to the canonical space. Specifically,
G′ will be the anchored Gaussians after the Gaussian-Mesh Anchoring, as introduced previously.
This cycle-consistency constraint will encourage adjustments to the canonical Gaussians. This pro-
cess is visualized on the left side of Figure 3, where the green network is the forward deformation
and the blue network is the backward deformation.

3.4 COMBINING ALL TRAINING OBJECTIVES

We use rendering loss from both mesh rasterization (“Mesh Image” in Figure 3) and the 3DGS
(“Gaussian Image” in Figure 3) to optimize the mesh geometry and appearance. Given the ground
truth image Igt and the Gaussian splatted image Igs. The image loss term of 3DGS can be described
as:

Lgs = (1− λssim) · ||Igs − Igt||+ λssim · Lssim(Igs, Igt)

Same for the mesh image loss Lmesh. We also compute the L1 loss on the rasterized mask Lmask.

The Laplacian loss term Llap in Section 3.2 helps preserve the mesh surface tessellation and pro-
duces smoother surface. The anchoring loss termLanchor and the cycle-consistency loss termLcycle

described in Section 3.3 help the optimization of cross-frame mesh-to-mesh correspondence. The
final loss term can be described as:

L =Lgs + Lmesh + Lmask

+ Llap + Lanchor + Lcycle

7

Published as a conference paper at ICLR 2025

GT D-NeRF HexPlane TiNeuVox Deformable-GS DG-Mesh (Ours)

Figure 6: We present the mesh reconstruction results of our method and other baselines on the DG-Mesh
dataset. Our method delivers better mesh quality and geometry. For objects like the flying bird, other methods
struggle to recover the thin wings, while ours successfully reconstructs them.

4 EXPERIMENTS

We introduce the dataset we evaluate on and our implementation details in Section 4.1 and Sec-
tion 4.2. In Section 4.3, we evaluate our method compared with other baselines. Regarding the
baselines, we primarily compare with the following works: D-NeRF (Pumarola et al., 2021), K-
Plane (Fridovich-Keil et al., 2023), HexPlane (Cao & Johnson, 2023), TiNeuVox (Fang et al., 2022),
4D-GS (Wu et al., 2023a), Deformable-GS (Yang et al., 2023d), 4DGS (Yang et al., 2023c), and
SC-GS (Huang et al., 2024). Among these baselines, D-NeRF (Pumarola et al., 2021) and TiNeu-
Vox (Fang et al., 2022) learn a deformation field to transform the dynamic scene into the canonical
space, while other methods like HexPlane (Cao & Johnson, 2023) and K-Plane (Fridovich-Keil et al.,
2023) utilize volume factorization to learn a compact 4D feature volume. 4D-GS (Wu et al., 2023a),
Deformable-GS (Yang et al., 2023d) 4DGS (Yang et al., 2023c), and SC-GS (Huang et al., 2024)
use 3D Gaussians as their representations and model their dynamics over time. Note that most of
these baselines do not model scene geometry explicitly. To compare the mesh quality, we extract
mesh from either an implicit density field or an occupancy field queried from the 3D Gaussians. In
Section 4.4, we studied several regularization factors in our method and provided quantitative results
of how each factor affects the final performance.

4.1 DATASETS

We evaluate our method on the D-NeRF synthetic dataset and provide the visualization and com-
parison with other baselines in Figure 5. Since the D-NeRF (Pumarola et al., 2021) dataset does
not provide mesh ground truth information, we rendered a synthetic dataset containing six dynamic
scenes to compare the mesh reconstruction quality quantitatively. Each scene includes 200 frames
of a moving object with the ground truth camera parameters and images, as well as the ground
truth mesh under each time frame. Camera views are evenly distributed around the target objects
on the sphere or the upper sphere. The reconstruction visualization is provided in Figure 6, and full
evaluation visualizations can be found in the Appendix L.

For real data evaluation, we run our method on the Nerfies dataset (Park et al., 2021a) , the Dycheck’s
dataset (Gao et al., 2022) and the Unbiased4D dataset (Johnson et al., 2023), all of which contains
monocular videos of everyday deformable objects captured using handheld cameras. To demonstrate
the adaptability of DG-Mesh to different dynamic capturing setups, we also test our method on
the NeuralActor (Liu et al., 2021) dataset, which features multi-view videos of moving humans.
Additionally, we captured several dynamic scenes using a smartphone.

4.2 IMPLEMENTATION DETAILS

We utilize the implementation from 3D Gaussian Splatting (Kerbl et al., 2023) for differential Gaus-
sian rasterization. Our model was trained for a total of 50,000 iterations on a single RTX 3090Ti. To
better initialize deformable 3D Gaussians, we first trained the canonical Gaussians for 3k iterations
while keeping the forward and backward deformation network fixed. This helped to retain rela-
tively stable positions and shapes of 3D Gaussians under the canonical space. After 5k iterations,
we introduce the DPSR and differentiable Marching Cubes to extract the mesh geometry from the
Gaussian points. We perform Gaussian-Mesh Anchoring every 100 iteration during training. For the
mesh rasterization, we use Nvdiffrast. In order to query the vertex color of the deformed mesh, we
project the location of the deformed vertex back to the canonical space and query a time-dependent
appearance module to obtain the color. We found optimizing the vertex color in canonical space
produces better results compared with querying color under different deformed spaces. The final

8

Published as a conference paper at ICLR 2025

Method
Lego Bouncingballs Jumpingjacks Hook

PSNRm ↑ SSIM ↑ LPIPS ↓ PSNRm ↑ SSIM ↑ LPIPS ↓ PSNRm ↑ SSIM ↑ LPIPS ↓ PSNRm ↑ SSIM ↑ LPIPS ↓
D-NeRF 20.384 0.818 0.137 23.398 0.899 0.157 22.255 0.914 0.103 20.300 0.889 0.108
K-Plane 19.523 0.828 0.127 23.307 0.935 0.109 25.240 0.937 0.068 22.503 0.900 0.094

HexPlane 22.872 0.904 0.072 25.389 0.957 0.069 27.078 0.954 0.052 24.513 0.929 0.070
TiNeuVox-B 21.927 0.843 0.126 24.819 0.947 0.101 23.621 0.932 0.075 21.429 0.908 0.085

DG-Mesh 21.289 0.838 0.159 29.145 0.969 0.099 31.769 0.977 0.045 27.884 0.954 0.074

Method
Mutant Standup Trex Hellwarrior

PSNRm ↑ SSIM ↑ LPIPS ↓ PSNRm ↑ SSIM ↑ LPIPS ↓ PSNRm ↑ SSIM ↑ LPIPS ↓ PSNRm ↑ SSIM ↑ LPIPS ↓
D-NeRF 21.070 0.906 0.077 23.380 0.925 0.069 22.594 0.908 0.085 18.907 0.877 0.129
K-Plane 23.226 0.923 0.064 25.778 0.946 0.048 23.093 0.921 0.075 18.073 0.881 0.123

HexPlane 26.811 0.953 0.045 27.931 0.965 0.035 26.629 0.953 0.046 21.250 0.917 0.094
TiNeuVox-B 22.967 0.925 0.064 24.263 0.941 0.051 24.219 0.927 0.070 18.657 0.883 0.118

DG-Mesh 30.400 0.968 0.055 30.208 0.974 0.051 28.951 0.959 0.065 25.460 0.959 0.084

Table 2: We measure the mesh rendering PSNR, SSIM and LPIPS score of the baselines and our method on the
D-NeRF dataset. Our method has the highest surface rendering quality compared with all the other baselines.

supervision comes from the rendering loss from both the splatted Gaussian images and the rendered
mesh images. More implementation details can be found in Appendix B.

4.3 RESULTS AND COMPARISONS

For the D-NeRF dataset, we present our numerical results and comparisons in Table 2 and mesh
visualization in Figure 5. We compare the mesh rendering PSNR, SSIM, and LPIPS scores for
each object in the dataset. Since the D-NeRF dataset does not provide ground truth mesh, we do
not numerically evaluate our performance of the mesh quality. In Figure 5, we highlight the part
where our method outperforms the other baselines and recovers the highly detailed structures. For
the DG-Mesh dataset with mesh ground truth, we provide the numerical results and comparisons
in Table 1 and visualizations in Figure 6. Regarding evaluation metrics of mesh quality, we chose
two metrics to measure our mesh reconstruction’s accuracy: the Chamfer Distance (CD) and the
Earth Mover Distance (EMD) to measure the displacement between the reconstructed mesh and the
ground truth. As shown in Table 1, our method achieves lower CD and EMD scores compared with
other baselines, indicating our method reconstructs the highest quality mesh. In Figure 6, we show
the visualization of our reconstructed mesh compared to other baselines in our dataset. In challeng-
ing areas, such as thin structures like the wings of the bird, our method still recovers high-quality
geometry and surfaces, while other methods produce floaters or oversized meshes. For real evalu-
ation, we provide the quantitative results on the Nerfies dataset in Table 5 and qualitative results in
Appendix G. Our method achieves the highest mesh query speed while delivering rendering quality
comparable to the baseline. Performance on other monocular datasets is detailed in the supplemen-
tary materials, including the Unbiased4D dataset in Appendix J, the Dycheck dataset in Appendix H,
and the self-captured iPhone dataset in Appendix I. Additionally, we present qualitative evaluations
on the NeuralActor dataset in Appendix K, demonstrating the broader applicability of DG-Mesh to
multiview setups.

4.4 ABLATION STUDY

Laplacian Smoothness Regularizer. We study the effect of laplacian regularizer and its different
performance under different loss weights in this part. Laplacian regularization term calculates the
average square Euclidean difference between the vertex and its one-ring neighbors, which discour-
ages deformation that will introduce large surface curvature change. We measure the final mesh ren-
dering quality (PSRN, SSIM, LPIPS) under different laplacian loss weights. As shown in Table 3,
when wlap = 1000, the network produces the highest mesh rendering quality. With appropriate
laplacian regularization, our method recovers a smoother surface.

Gaussian-Mesh Anchoring. We study the effect of our proposed Gaussian-Mesh Anchoring proce-
dure. Since the original densification and pruning mechanism of 3DGS tends to split more Gaussian
in hard areas where the geometry and appearance are more complicated. The original Gaussian
center distribution is not even on the object’s surface. As discussed in Section 3.3, DPSR assumes
uniformly sampled points among the space. An uneven point cloud on the surface will produce the
wrong distance field and harm the optimization process. Our Gaussian-Mesh Anchoring performs
densification and pruning that will result in a more evenly distributed Gaussian point and rely on

9

Published as a conference paper at ICLR 2025

CD ↓ EMD ↓ PSNRm ↑ SSIMm ↑ LPIPSm ↓
wlap = 0 0.972 0.089 31.947 0.971 0.079
wlap = 100 1.239 0.093 32.178 0.969 0.069
wlap = 1000 0.762 0.073 33.890 0.982 0.061
wlap = 2000 0.894 0.069 32.891 0.981 0.072

Table 3: Results of mesh reconstruction and rendering quality with different Laplacian regularizer ratios. When
wlap = 1000 our method produces the best results. During the training process, we set the Laplacian ratio to
be 1000.

GT Deformable-GS DG-Mesh (Ours)t

Figure 7: We provide the reconstructed mesh visualization and mesh rendering image of our method on the
Nerfies real-world datasets. Our method recovers high-quality and consistent mesh surfaces across multiple
time frames, showcasing its robustness and effectiveness in handling dynamic scenes.

the backward deformation network to project it back to the canonical space. As shown in Figure 2,
after applying Gaussian-Mesh Anchoring, the Gaussian centers are more evenly distributed on the
object’s surface. We provide quantitative results of how the Gaussian-Mesh Anchoring procedure
allows the network to produce better geometry in Table 4. Without Gaussian-Mesh Anchoring, the
reconstructed CD and EMD are both higher.

Method CD ↓ EMD ↓ PSNRm ↑
w./o. anchor 0.685 0.146 31.283
w./ anchor 0.516 0.128 32.734

Table 4: Ablation study on the Gaussian-Mesh An-
choring. The anchoring allows mesh to be better
aligned with the ground truth surface.

Method PSNR ↑ PSNRm ↑ FPSm ↑
Deformable-GS 28.310 - 0.10

DG-Mesh - 27.238 10.9

Table 5: Real scene evaluation on the Nerfies dataset.
Our method maintains high mesh querying FPS and
comparable image rendering quality to the baseline.

5 CONCLUSION

We introduce Dynamic Gaussians Mesh (DG-Mesh), a framework to reconstruct high-fidelity mesh
and perform motion tracking from dynamic observations. Leveraging the recent advancements in
3D Gaussian Splatting, DG-Mesh learns a deformable 3D Gaussians set and builds a novel time-
consistent mesh on top of it. DG-Mesh outperforms previous methods in reconstructing intricate
structures like bird wings and horse legs, which are typically difficult to capture. Moreover, DG-
Mesh’s ability to provide cross-frame correspondences enables various downstream applications,
such as texture editing on dynamic objects, making it a versatile tool with great potential in graphics
applications. We will release our code upon paper publication.

Limitations. DG-Mesh is currently applied mainly on the foreground objects in a video. To make
DG-Mesh work with real-world videos, we require segmentation of the foreground object across the
videos. While DG-Mesh handles both the correspondence and topology changes, obtaining corre-
spondence becomes fundamentally challenging in the presence of significant topology changes. For
instance, if an additional object or object part appears in the video over time, establishing correspon-
dence for the new object (or object part) with the first frame becomes difficult. This challenge stems
from the nature of the problem itself, rather than a limitation of our method.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was supported, in part, by the NSF CAREER Awards (IIS-2240014, IIS-2240160) and
by the Qualcomm Embodied AI Fund.

REFERENCES

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.
3, 8, 27, 32

Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. Neural dual contouring.
ACM Transactions on Graphics (TOG), 41(4):1–13, 2022. 3

Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander Schwing, and Joon-Young Lee. Tracking
anything with decoupled video segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1316–1326, 2023. 20, 23

Marching Cubes. A high resolution 3d surface construction algorithm/william e. Lorensen, Harvey
E. Cline–SIG, 87:76, 1987. 3

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance
flow for 4d view synthesis and video processing. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 14304–14314. IEEE Computer Society, 2021. 3

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias
Nießner, and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH
Asia 2022 Conference Papers, pp. 1–9, 2022. 3, 8, 27, 32

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.
3, 8, 27, 32

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 5712–5721, 2021. 3

Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Monocular dy-
namic view synthesis: A reality check. Advances in Neural Information Processing Systems, 35:
33768–33780, 2022. 8, 20, 21, 23

Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Point2mesh: A self-prior for de-
formable meshes. arXiv preprint arXiv:2005.11084, 2020. 3

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-
gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4220–4230, 2024. 8

Erik Johnson, Marc Habermann, Soshi Shimada, Vladislav Golyanik, and Christian Theobalt. Un-
biased 4d: Monocular 4d reconstruction with a neural deformation model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6597–6606, 2023. 3, 8,
24

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of hermite data. In Pro-
ceedings of the 29th annual conference on Computer graphics and interactive techniques, pp.
339–346, 2002. 3

HyunJun Jung, Nikolas Brasch, Jifei Song, Eduardo Perez-Pellitero, Yiren Zhou, Zhihao Li, Nassir
Navab, and Benjamin Busam. Deformable 3d gaussian splatting for animatable human avatars.
arXiv preprint arXiv:2312.15059, 2023. 5

11

Published as a conference paper at ICLR 2025

Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Learning category-
specific mesh reconstruction from image collections. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 371–386, 2018. 3

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (ToG), 42(4):1–14,
2023. 2, 3, 4, 8

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics (TOG),
39(6):1–14, 2020. 5, 17

Xueting Li, Sifei Liu, Shalini De Mello, Kihwan Kim, Xiaolong Wang, Ming-Hsuan Yang, and Jan
Kautz. Online adaptation for consistent mesh reconstruction in the wild. Advances in Neural
Information Processing Systems, 33:15009–15019, 2020. 3

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8508–8520, 2024. 3, 5

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-
time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021. 3

Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit surface
representations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2916–2925, 2018. 3

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. arXiv preprint arXiv:2312.03431, 2023. 5

Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao Gu, and Christian
Theobalt. Neural actor: Neural free-view synthesis of human actors with pose control. ACM
transactions on graphics (TOG), 40(6):1–16, 2021. 8, 26

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In Seminal graphics: pioneering efforts that shaped the field, pp. 347–353. 1998. 5,
17

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023. 2, 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021. 2, 3

Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and Kui Jia. Deep mesh reconstruction
from single rgb images via topology modification networks. in 2019 ieee. In CVF International
Conference on Computer Vision (ICCV), volume 3, 2019. 3

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874, 2021a. 3, 8, 20

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021b. 3

Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger.
Shape as points: A differentiable poisson solver. Advances in Neural Information Processing
Systems, 34:13032–13044, 2021. 5, 17

12

Published as a conference paper at ICLR 2025

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021. 3, 8, 27, 32

Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit Guillard, Timur Bagautdinov, Pierre
Baque, and Pascal Fua. Meshsdf: Differentiable iso-surface extraction. Advances in Neural
Information Processing Systems, 33:22468–22478, 2020. 3

Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu, Hongwen Zhang, and Yebin Liu. Ten-
sor4d: Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16632–16642, 2023. 3

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
a hybrid representation for high-resolution 3d shape synthesis. Advances in Neural Information
Processing Systems, 34:6087–6101, 2021. 3, 5

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan
Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-
based mesh optimization. ACM Transactions on Graphics (TOG), 42(4):1–16, 2023. 3

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537–7547, 2020. 5

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023. 5

Graham M Treece, Richard W Prager, and Andrew H Gee. Regularised marching tetrahedra: im-
proved iso-surface extraction. Computers & Graphics, 23(4):583–598, 1999. 3

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and
Christian Theobalt. Non-rigid neural radiance fields: Reconstruction and novel view synthesis
of a dynamic scene from monocular video. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 12959–12970, 2021. 3

Shubham Tulsiani, Nilesh Kulkarni, and Abhinav Gupta. Implicit mesh reconstruction from unan-
notated image collections. arXiv preprint arXiv:2007.08504, 2020. 3

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In Proceedings of the European conference
on computer vision (ECCV), pp. 52–67, 2018. 3

Xinyue Wei, Fanbo Xiang, Sai Bi, Anpei Chen, Kalyan Sunkavalli, Zexiang Xu, and Hao Su. Neu-
manifold: Neural watertight manifold reconstruction with efficient and high-quality rendering
support. arXiv preprint arXiv:2305.17134, 2023. 3, 5

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023a. 2, 3, 5, 8

Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Dove: Learning deformable
3d objects by watching videos. International Journal of Computer Vision, pp. 1–12, 2023b. 3

Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time neural irradiance fields
for free-viewpoint video. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9421–9431, 2021. 3

Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming Sun, Yujun Shen, Hujun Bao, and
Xiaowei Zhou. 4k4d: Real-time 4d view synthesis at 4k resolution, 2023. 3

13

Published as a conference paper at ICLR 2025

Yuxuan Xue, Bharat Lal Bhatnagar, Riccardo Marin, Nikolaos Sarafianos, Yuanlu Xu, Gerard Pons-
Moll, and Tony Tung. Nsf: Neural surface fields for human modeling from monocular depth. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15049–15060,
2023. 3

Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole, Huiwen Chang, Deva
Ramanan, William T Freeman, and Ce Liu. Lasr: Learning articulated shape reconstruction from
a monocular video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15980–15989, 2021a. 3

Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole, Ce Liu, and Deva
Ramanan. Viser: Video-specific surface embeddings for articulated 3d shape reconstruction.
Advances in Neural Information Processing Systems, 34:19326–19338, 2021b. 3

Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo.
Banmo: Building animatable 3d neural models from many casual videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2863–2873, 2022. 3

Gengshan Yang, Shuo Yang, John Z Zhang, Zachary Manchester, and Deva Ramanan. Ppr: Physi-
cally plausible reconstruction from monocular videos. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 3914–3924, 2023a. 3

Kaizhi Yang, Xiaoshuai Zhang, Zhiao Huang, Xuejin Chen, Zexiang Xu, and Hao Su. Movingparts:
Motion-based 3d part discovery in dynamic radiance field. arXiv preprint arXiv:2303.05703,
2023b. 3

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene repre-
sentation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642, 2023c. 3,
5, 8

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. De-
formable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101, 2023d. 2, 3, 5, 8, 21

Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and Javier
Romero. Drivable 3d gaussian avatars, 2023. 5

14

Published as a conference paper at ICLR 2025

APPENDIX TABLE OF CONTENTS

A Gaussian-Mesh Anchoring Details 16

B Implementation Details and Network Architecture 17

C Ablations Study on the Template-based Deformation Method 18

D Ablations Study on Fine-tuning the Extracted Mesh 18

E Ablation Study on the Appearance Module 18

F Ablation Study on the Anchoring Frequency 19

G More Qualitative Results on the Nerfies Dataset 20

H More Qualitative Results on the Dycheck Dataset 21

I More Qualitative Results on the Self-Captured iPhone Dataset 23

J More Qualitative Results on the Unbiased4D Dataset 24

K More Qualitative Results on the NeuralActor Dataset 26

L More Qualitative Results on the D-NeRF Dataset 27

M More Qualitative Results on the DG-Mesh Dataset 32

N Application Examples 36

15

Published as a conference paper at ICLR 2025

A GAUSSIAN-MESH ANCHORING DETAILS

We employ the Gaussian-Mesh Anchoring procedure to guide the Gaussians into a more uniform
distribution across the object’s surface. This uniformity enhances the smoothness of the mesh recon-
struction obtained from DPSR and DiffMC. A more detailed algorithm is provided in Algorithm 1.

The algorithm begins by finding the nearest mesh face for each Gaussian point. For every mesh face,
the following steps are taken:

• If a mesh face is linked to multiple Gaussian points, we merge these Gaussians to create
a new, single Gaussian. This merging helps in reducing redundancy and promotes uniform
distribution.

• If a mesh face is linked to only one specific Gaussian, we adjust the position of that
Gaussian by moving it towards the centroid of the face. This adjustment ensures that the
Gaussian is more accurately anchored to the mesh surface.

• If a mesh face is not linked to any Gaussian point, we create a new Gaussian at the face’s
centroid. This step fills in any gaps in the Gaussian distribution, ensuring that all areas of
the mesh are adequately represented.

By following this procedure, we ensure that the Gaussians are evenly distributed over the mesh
surface, which is crucial for achieving high-quality mesh reconstructions. The anchoring process
systematically addresses the association between Gaussians and mesh faces, leading to a more ac-
curate and smooth representation of the object’s geometry.

Algorithm 1: Gaussian-Mesh Anchoring
Input : G - set of Gaussians in canonical space

V - mesh vertices
F - mesh faces
Ff (·, t) - forward deformation function
Fb(·, t) - backward deformation function
t - timestep
rs - search radius

Output: Lanchor - anchoring loss
G - updated set of Gaussians in canonical space

Gdef ← {gdef = Ff (g, t) | g ∈ G};
Lanchor ← 0;
foreach f ∈ F do

cf ← centroid(f) ; // Compute the centroid for current face

Gf ← {∥gdef − cf∥ ≤ rs | gdef ∈ Gdef} ; // Find Gaussians within radius rs of cf

if |Gf | > 1 then
gnew ← merge(Gf);
gcanonical ← Fb(gnew, t) ; // Map the merged Gaussian back to the canonical space

G ← G \ {Fb(gdef, t) | gdef ∈ Gf} ; // Remove the original Gaussians

G ← G ∪ {gcanonical} ; // Add the new Gaussian

Lanchor ← Lanchor + ∥gcanonical − cf∥
else

if |Gf | = 1 then
gcanonical ← Fb(gdef, t), gdef ∈ Gf
Lanchor ← Lanchor + ∥gcanonical − cf∥
G ← G ∪ {gcanonical}

else
gnew ← cf ; // Create new Gaussian at the face centroid

gcanonical ← Fb(gnew, t) ; // Add the new Gaussian

end
end

end

16

Published as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS AND NETWORK ARCHITECTURE

The model was trained over 50,000 iterations using a single NVIDIA RTX 3090Ti GPU, which
handled the computational demands effectively. To achieve a more effective initialization of the
deformable 3D Gaussians, we began by training the canonical Gaussians for 3,000 iterations. During
this initial phase, the forward and backward deformation networks were kept fixed and not updated.
This approach helped in maintaining relatively stable positions and shapes of the 3D Gaussians
within the canonical space, providing a good initialization for subsequent deformation learning.

After reaching 5,000 iterations, we introduced the Differentiable Poisson Surface Reconstruction
(DPSR) (Peng et al., 2021) and differentiable Marching Cubes algorithms (Lorensen & Cline,
1998) to extract mesh geometry from the Gaussian points. This integration allowed us to transition
smoothly from point-based representations to mesh-based geometry. Throughout the training pro-
cess, we performed Gaussian-Mesh Anchoring every 100 iterations to ensure consistency between
the Gaussian and mesh representations.

For mesh rasterization, we employed Nvdiffrast (Laine et al., 2020), a GPU-accelerated differen-
tiable renderer. To determine the vertex colors of the deformed mesh, we projected the positions
of the deformed vertices back into the canonical space and used a time-dependent appearance mod-
ule to retrieve the color information. We discovered that optimizing the vertex colors within the
canonical space yielded better results compared to querying colors in various deformed spaces. This
is likely due to the more stable and consistent representation in the canonical space. The final su-
pervision signal for our model came from the rendering losses calculated from both the splatted
Gaussian images and the rendered mesh images, allowing the model to learn from both point-based
and mesh-based representations.

Input Output

Linear ReLU

Figure 8: Results comparison on the DG-Mesh dataset. We show the reconstructed mesh and the mesh render-
ing image. Our method reconstructs better geometry and appearance than other baselines.

Regarding the architecture of the deformation networks, both the forward and backward deformation
networks are designed as multi-layer perceptrons (MLPs) with a depth of D = 8 layers and hidden
layers of dimensionality W = 256. The detailed architecture is illustrated in Figure 8. We apply
positional encoding functions γk(p) to map the spatial position x and the temporal label t into
higher-dimensional feature spaces. Specifically, we set the encoding parameter k = 10 for the
positions x of the 3D Gaussians and k = 6 for the time labels t, enhancing the network’s ability
to capture high-frequency variations in both space and time. After the final hidden layer, we use
a single linear layer without any activation function to produce the predicted offsets for Gaussian
position (δx), scaling (δs), rotation (δr), and opacity (δα). These offsets adjust the Gaussians’
parameters based on the input, allowing for dynamic deformation. The appearance network, which
is responsible for determining the color of the vertices, shares a similar architectural design with the
deformation network.

17

Published as a conference paper at ICLR 2025

C ABLATIONS STUDY ON THE TEMPLATE-BASED DEFORMATION METHOD

DG-Mesh reconstructs the surface of a mesh across different timesteps by first deforming a set
of canonical 3D Gaussians into a deformed space. The surface is then recovered by leveraging
the deformed Gaussian points and their corresponding normals. This method allows the model to
manage flexible topology changes during deformation, distinguishing it from other approaches that
maintain a canonical mesh and learn to deform it over time. We evaluated our method in an extreme
scenario where the dynamic scene involves a sphere transforming into a torus. In this case, the
genus of the object shifts from 0 to 1. To compare, we ran a baseline experiment in which a network
attempted to deform a canonical mesh of a sphere into a torus. The results in Figure 9 indicate that
traditional mesh deformation-based methods struggle to handle topology changes, whereas our
approach effectively overcomes this limitation by using Gaussian points for representation, thereby
avoiding the need to manage face connectivity during deformation.

Deform canonical mesh Ours

!! !" !! !"

Deformable-GS 4D-GS Ours

Figure 9: We evaluated our method in an extreme scenario where a sphere deforms into a torus. The traditional
mesh deformation-based approach fails in this case because it cannot handle the changes in face connectivity
during the deformation process. In contrast, our method successfully reconstructs a high-quality mesh with
a completely different topology. This is because we use 3D Gaussian points as our canonical representation,
which avoids any issues related to managing mesh face connectivity throughout the deformation.

D ABLATIONS STUDY ON FINE-TUNING THE EXTRACTED MESH

Volume rendering V.S. mesh rendering PSNR. Previous baselines primarily rely on volume ren-
dering, which offers advantages in view synthesis but comes with a significant computational
cost. This is because volume rendering integrates color from multiple points along a ray to com-
pute the pixel color, whereas mesh rendering retrieves color from only a single surface point. We
compare the inference speed of volume rendering baselines and our mesh rendering in Table 6.
Additionally, higher-quality results from volume rendering do not necessarily translate into better
geometry or surface reconstruction, as highlighted by the mesh reconstruction comparisons in our
paper. To ensure a fairer comparison of rendering PSNR, we provide the PSNR of mesh rendering
after fine-tuning the baselines with a mesh rendering loss over 20,000 iterations. Even after this
fine-tuning, our method still outperforms the baselines in terms of mesh rendering PSNR.

Methods Fine-tuned PSNRm Training Time Inference Speed
K-Plane 24.683 ∼ 65 min 0.9 FPS

TiNeuVox 24.149 ∼ 70 min 0.3 FPS
Deformable-GS 22.519 ∼ 35 min 185 FPS

Ours 29.782 ∼ 80 min 10.9 FPS

Table 6: We present the fine-tuned mesh rendering results for the baselines, alongside a comparison of training
and inference times. Even after fine-tuning the mesh rendering of other baseline methods, our approach still
delivers the best results. This highlights the efficiency and effectiveness of our method, both in terms of mesh
quality and overall performance.

E ABLATION STUDY ON THE APPEARANCE MODULE

We use the geometry generated by DG-Mesh and render the mesh using appearance queried from
other baseline methods. The results below demonstrate that, even when the underlying geometry

18

Published as a conference paper at ICLR 2025

quality is comparable, DG-Mesh consistently achieves better visual quality compared to other ap-
proaches. The surface rendering approach in DG-Mesh enables it to learn appearance directly and
precisely at the object’s surface. In contrast, other volume rendering-based methods fail to store
appearance details accurately at the surface, leading to less precise results.

Methods PSNRm SSIM
D-NeRF 24.169 0.905
HexPlane 29.013 0.964

TiNeuVox-B 28.157 0.943
DG-Mesh (Ours) 29.790 0.959

Table 7: Comparison of rendering results shows DG-Mesh achieves superior visual quality by accurately learn-
ing surface appearance, unlike volume-based methods that lose surface detail.

F ABLATION STUDY ON THE ANCHORING FREQUENCY

We evaluate the impact of different anchor intervals and provide their quantitative results below. The
mesh geometry quality deteriorates as the anchor intervals increase since larger intervals result in
fewer anchoring steps, reducing the alignment between the Gaussians and the surface. Based on the
ablation results, we set the anchoring interval to 100, as it represents a balanced trade-off between
maintaining geometry quality and achieving optimal rendering performance.

Anchor Interval PSNRm CD EMD
50 30.521 0.314 1.307

100 30.668 0.306 1.298
200 30.599 0.319 1.295
500 30.645 0.320 1.298

Table 8: Quantitative results show that increasing anchor intervals deteriorates mesh geometry quality due
to fewer anchoring steps, with an interval of 100 providing the best balance between geometry quality and
rendering performance. The unit for CD is 10−2 and the unit for EMD is 10−1.

19

Published as a conference paper at ICLR 2025

G MORE QUALITATIVE RESULTS ON THE NERFIES DATASET

We evaluate our method on the Nerfies (Park et al., 2021a) dataset, which consists of monocular
video sequences capturing everyday moving objects, such as pets. The camera poses throughout
the sequences are predominantly forward-facing. To obtain the foreground mask, we utilize an off-
the-shelf segmentation tool from (Cheng et al., 2023), and for the camera parameters, we follow
the pipeline outlined in (Gao et al., 2022). In Figure 10, we display our mesh reconstruction and
rendering results at three different timesteps. Our method consistently recovers high-quality and
coherent mesh surfaces over time, demonstrating its effectiveness in dynamic scenes.

GT Mesh Rendering Mesh GT Mesh Rendering Mesh

t

Figure 10: Mesh reconstruction and rendering results on the Nerfies dataset. Our method recovers high-quality
and consistent mesh surfaces across multiple time frames, showcasing its robustness and effectiveness in han-
dling dynamic scenes.

20

Published as a conference paper at ICLR 2025

H MORE QUALITATIVE RESULTS ON THE DYCHECK DATASET

We evaluate our method on the DyCheck dataset (Gao et al., 2022), which consists of monocu-
lar videos captured using smartphones, and compare its mesh reconstruction and rendering quality
against Deformable-GS (Yang et al., 2023d). The results show that our method achieves better mesh
geometry reconstruction, particularly in scenarios with limited observations from monocular videos.
However, we acknowledge that, similar to other dynamic Gaussian-based methods, our approach
faces challenges when dealing with extreme object motion or imperfect segmentation.

Figure 11: Comparison of mesh reconstruction results with Deformable-GS on the DyCheck dataset. DG-Mesh
demonstrates better reconstruction of both mesh geometry and appearance.

21

Published as a conference paper at ICLR 2025

Figure 12: Fail Cases on the DyCheck Dataset: Similar to other dynamic Gaussian-based methods, our ap-
proach encounters limitations in scenarios with extreme object motion or imperfect segmentation.

22

Published as a conference paper at ICLR 2025

I MORE QUALITATIVE RESULTS ON THE SELF-CAPTURED IPHONE DATASET

We captured several casual, everyday videos of moving objects using a smartphone and processed
them using a similar data processing pipeline to the one proposed in (Gao et al., 2022). To obtain
the data masks, we used an off-the-shelf segmentation tool from (Cheng et al., 2023). The self-
captured videos have a frame rate of 60 FPS, with the camera rotating 360 degrees around the
object over 8-10 seconds. In Figure 13, we present the mesh reconstruction and rendering results.
Our method demonstrates the ability to recover high-quality mesh surfaces from casual smartphone
videos, highlighting its practicality and robustness for real-world applications.

GT Mesh Rendering Mesh GT Mesh Rendering Mesh

t

Figure 13: We present the mesh reconstruction and rendering results on the self-captured iPhone dataset. Our
method successfully recovers high-quality and consistent mesh surfaces over multiple time frames, demon-
strating its robustness and efficiency in processing real-world dynamic scenes captured in casual smartphone
videos.

23

Published as a conference paper at ICLR 2025

J MORE QUALITATIVE RESULTS ON THE UNBIASED4D DATASET

e evaluate our method on a real video sequence from the Unbiased4D dataset (Johnson et al., 2023)
and compare it with the results produced by the method proposed in their paper. The video captures
a fast-moving cactus toy, making surface recovery particularly challenging due to the high-speed
motion. As shown in Figure 14, our method achieves superior geometry recovery, especially in the
hand area of the toy during rapid movement, whereas the Unbiased4D method produces blurrier
results and incorrect geometry. Additionally, we provide our mesh reconstruction and rendering
results for the sequence at different timeframes in Figure 15, showcasing the robustness of our
approach in handling fast-moving objects.

GT Unbiased4D Ours GT Unbiased4D Ours

Figure 14: Comparison of the mesh results with the Unbiased4D method. Our approach achieves outstanding
geometry recovery, particularly in the hand area of the toy during rapid movement, while the Unbiased4D
method results in blurrier outputs and incorrect geometry.

24

Published as a conference paper at ICLR 2025

t

GT Mesh Rendering Mesh

Figure 15: Mesh reconstruction and rendering results on the Unbiased4D dataset. The results indicate the
robustness of our approach in handling fast-moving objects.

25

Published as a conference paper at ICLR 2025

K MORE QUALITATIVE RESULTS ON THE NEURALACTOR DATASET

We evaluate our method on the NeuralActor dataset (Liu et al., 2021), a multi-view dynamic dataset
featuring videos of moving humans captured from multiple angles. In Figure 16, we present the
reconstructed meshes and corresponding mesh rendering results at different time frames. The vi-
sualizations demonstrate that, with the benefit of multi-view observations, our method achieves
even better surface reconstruction compared to the monocular setup, highlighting its effectiveness
in leveraging additional views for more accurate and detailed mesh recovery.

t

GT Mesh Rendering Mesh GT Mesh Rendering Mesh

Figure 16: Mesh reconstruction and rendering results on the NeuralActor dataset. The result highlights the
effectiveness of our approach in utilizing multiple viewpoints to produce more accurate and detailed mesh
recovery in dynamic scenes.

26

Published as a conference paper at ICLR 2025

L MORE QUALITATIVE RESULTS ON THE D-NERF DATASET

We present the mesh reconstruction results of DG-Mesh across all eight samples from the D-NeRF
dataset. For each sample, we provide visualizations of the reconstructed mesh along with the mesh
surface rendering results at two different time frames, t0 and t1. We compare our visual outcomes
with those from several baseline methods, including D-NeRF (Pumarola et al., 2021), HexPlane
(Cao & Johnson, 2023), K-Plane (Fridovich-Keil et al., 2023), and TiNeuVox (Fang et al., 2022).
The results clearly demonstrate that our method achieves superior mesh reconstruction and rendering
quality compared to these baselines.

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 17: Results comparison on the D-NeRF dataset. We show the reconstructed mesh and the mesh rendering
image. Our method reconstructs better geometry and appearance than other baselines.

27

Published as a conference paper at ICLR 2025

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 18: Results comparison on the D-NeRF dataset. We show the reconstructed mesh and the mesh rendering
image. Our method reconstructs better geometry and appearance than other baselines.

28

Published as a conference paper at ICLR 2025

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 19: Results comparison on the D-NeRF dataset. We show the reconstructed mesh and the mesh rendering
image. Our method reconstructs better geometry and appearance than other baselines.

29

Published as a conference paper at ICLR 2025

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 20: Results comparison on the D-NeRF dataset. We show the reconstructed mesh and the mesh rendering
image. Our method reconstructs better geometry and appearance than other baselines.

30

Published as a conference paper at ICLR 2025

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1 N./A.

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 21: Results comparison on the D-NeRF dataset. We show the reconstructed mesh and the mesh rendering
image. Our method reconstructs better geometry and appearance than other baselines.

31

Published as a conference paper at ICLR 2025

M MORE QUALITATIVE RESULTS ON THE DG-MESH DATASET

We present the mesh reconstruction results of DG-Mesh across all six samples in the DG-Mesh
dataset. Each sample consists of 200 frames of a moving object, with ground truth camera param-
eters, corresponding images, and ground truth mesh for each time frame. The camera views are
uniformly distributed around the target objects, either on a full sphere or an upper hemisphere. For
each sample, we provide visualizations of the reconstructed mesh along with mesh surface render-
ing results at two different time frames, t0 and t1. We compare these visual results against several
baselines, including D-NeRF (Pumarola et al., 2021), HexPlane (Cao & Johnson, 2023), K-Plane
(Fridovich-Keil et al., 2023), and TiNeuVox (Fang et al., 2022). The results demonstrate that our
method achieves superior mesh reconstruction and rendering quality. Notably, DG-Mesh excels in
reconstructing high-quality mesh surfaces, even in challenging regions such as a bird’s wings or a
horse’s tail, where fine details and complex motions are involved.

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 22: Results comparison on the DG-Mesh dataset. We show the reconstructed mesh and the mesh
rendering image. Our method reconstructs better geometry and appearance than other baselines.

32

Published as a conference paper at ICLR 2025

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 23: Results comparison on the DG-Mesh dataset. We show the reconstructed mesh and the mesh
rendering image. Our method reconstructs better geometry and appearance than other baselines.

33

Published as a conference paper at ICLR 2025

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 24: Results comparison on the DG-Mesh dataset. We show the reconstructed mesh and the mesh
rendering image. Our method reconstructs better geometry and appearance than other baselines.

34

Published as a conference paper at ICLR 2025

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t0

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

GT (img) GT (mesh) D-NeRF (img) D-NeRF (mesh) HexPlane (img) HexPlane (mesh)

t1

Ours (img) Ours (mesh) K-Plane (img) K-Plane (mesh) TiNeuVox (img) TiNeuVox (mesh)

Figure 25: Results comparison on the DG-Mesh dataset. We show the reconstructed mesh and the mesh
rendering image. Our method reconstructs better geometry and appearance than other baselines.

35

Published as a conference paper at ICLR 2025

N APPLICATION EXAMPLES

Mesh remains the predominant representation supported by many physics simulators and rendering
engines, making it a versatile tool for various applications. DG-Mesh provides dense correspon-
dence, which proves especially useful for downstream tasks like shape manipulation and texture
editing.

We demonstrate two examples of mesh editing enabled by our method, as illustrated in Figure 26.
One application involves inserting the extracted mesh into a new scene, where ray-tracing can be per-
formed. Another application is dynamic texture editing. Using the time-consistent mesh in the first
frame, we can edit the vertex colors by painting them directly onto the surface. This modification
is then propagated consistently across subsequent frames, maintaining the same color and pattern
for the corresponding vertices. The entire editing process is intuitive and user-friendly, making it
accessible even for complex tasks.

Figure 26: Two types of application can be done with time-consistent mesh: 1. Ray-tracing in the rendering
engine. 2. Texture editing in dynamic object: With correspondence across time frames, we just need to edit the
first frame in a sequence and the change will be automatically applied to the rest of the sequence.

36

	Introduction
	Related Work
	Method
	Deformable 3D Gaussian Splatting
	Mesh Reconstruction
	Dynamic Mesh Correspondence
	Combining All Training Objectives

	Experiments
	Datasets
	Implementation Details
	Results and Comparisons
	Ablation Study

	Conclusion
	Gaussian-Mesh Anchoring Details
	Implementation Details and Network Architecture
	Ablations Study on the Template-based Deformation Method
	Ablations Study on Fine-tuning the Extracted Mesh
	Ablation Study on the Appearance Module
	Ablation Study on the Anchoring Frequency
	More Qualitative Results on the Nerfies Dataset
	More Qualitative Results on the Dycheck Dataset
	More Qualitative Results on the Self-Captured iPhone Dataset
	More Qualitative Results on the Unbiased4D Dataset
	More Qualitative Results on the NeuralActor Dataset
	More Qualitative Results on the D-NeRF Dataset
	More Qualitative Results on the DG-Mesh Dataset
	Application Examples

