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Abstract

The increasing reliance on large-scale datasets in machine learning poses signifi-
cant privacy and ethical challenges, particularly in sensitive domains such as face
recognition. Synthetic data generation offers a promising alternative; however,
most existing methods depend heavily on external datasets or pre-trained models,
increasing complexity and resource demands. In this paper, we introduce AugGen,
a self-contained synthetic augmentation technique. AugGen strategically samples
from a class-conditional generative model trained exclusively on the target FR
dataset, eliminating the need for external resources. Evaluated across 8 FR bench-
marks, including IJB-C and IJB-B, our method achieves 1–12% performance
improvements, outperforming models trained solely on real data and surpass-
ing state-of-the-art synthetic data generation approaches, while using less real
data. Notably, these gains often exceed those from architectural enhancements,
underscoring the value of synthetic augmentation in data-limited scenarios. Our
findings demonstrate that carefully integrated synthetic data can both mitigate pri-
vacy constraints and substantially enhance recognition performance. Paper website:
https://parsa-ra.github.io/auggen/.

1 Introduction

Figure 1: Core idea of AugGen. AugGen boosts the
model’s overall discriminative capabilities without re-
quiring external datasets or pre-trained networks. To
achieve this, we propose a novel sampling strategy us-
ing a conditional diffusion model—trained exclusively
on the discriminator’s original data—this enables the
generation of synthetic “mixes” of source classes. Incor-
porating these synthetic samples into the discriminator’s
training, results in higher intra-class compactness and
greater inter-class separation (θours > θbaseline) than
models trained solely on the original data.

As machine learning increasingly relies on
application-specific data, the demand for
high-quality, accurately labeled datasets
poses significant challenges. Privacy, le-
gal, and ethical concerns amplify these
difficulties, particularly in sensitive areas
like human face images. A popular solu-
tion is synthetic data generation [54, 2, 38],
[3], which leverages methods such as 3D-
rendering graphics and generative models
(e.g., GANs and diffusion models). No-
tably, synthetic data can surpass real data
in model performance, as shown by [54],
where 3D-rendered face models with pre-
cise labels outperformed real-data-based
models in tasks like face landmark local-
ization and segmentation, highlighting the
advantages of data synthesis, especially for
tasks requiring dense annotations. Image
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generative models remain underutilized despite rapid advances in VAEs [27], GANs [12, 22, 20],
and Diffusion models [47, 19, 21, 17, 13]. Comparisons of generative models often use metrics
like Fréchet Distance (FD) [48, 15], which measure similarity to training data, or subjective user
preferences for text-to-image tasks [10].

Figure 2: Unlike prior methods that depend on external
data or pretrained generators, our self-contained syn-
thetic augmentation framework improves recognition
purely through its own generative process.

As depicted in Figure 2, currently, syn-
thetic data generation involves training
large-scale generative models [39] on
datasets such as LAION-5B [43], then re-
fining them via fine-tuning, prompt engi-
neering, or textual inversion [2, 52]. This
trend also applies to Face Recognition (FR),
where synthetic data aims to mitigate pri-
vacy and ethical concerns. However, most
methods still rely on large face datasets
(which carry their own privacy issues) and
auxiliary models, offering no clear advan-
tage over existing real datasets. For in-
stance, DCFace [25] generates diverse face
images from multiple identities and uses
robust FR systems and auxiliary networks
to filter and balance samples. It remains
unclear whether performance gains stem from the datasets, the generative models, or other fac-
tors—though larger, more diverse data typically improves results. Contrary to current trends, we
advocate using generative models as an augmentation tool for FR training rather than replacing real
datasets. Two key factors motivate this stance:

1. Synthetic datasets generated by diffusion models often leak training data [29, 6, 46], offering no
clear benefit over existing priors [25, 5, 32, 49, 55].

2. Since responsible FR datasets are scarce and difficult to collect, we aim to boost performance
with limited real data, thereby narrowing the gap between small-scale and large-scale training
sets.

In this paper, we focus on scenarios involving limited data, demonstrating how we can increase
discriminative power by generating synthetic samples while only using a single labeled dataset.
As illustrated in Figure 1, we generate mixed classes that combine features from two or more
source classes while preserving their distinct identities. We choose face recognition (FR) as our
primary benchmark due to its unique difficulty, as it requires distinguishing between hundreds of
thousands of identities within a highly structured input space. Moreover, FR is a privacy-sensitive
task where responsible labeled data are scarce, making it an ideal setting for studying augmentation.
Finally, it benefits from a range of well-established benchmarks that enable consistent and meaningful
evaluation. To enhance the effect of margin-based losses used by state-of-the-art discriminators in FR
systems, given a dataset of {(X,y)}, where X is an image and y is its corresponding label, we train
a generative model, p(X | y), and a discriminator, p(y | X), on the same real dataset from scratch.
We then introduce a simple yet novel sampling strategy to synthesize new examples. Empirically,
we demonstrate that augmenting real data with these carefully generated synthetic samples leads to
substantial improvements in the discriminator’s performance. Our main contribution is to validate
this hypothesis in the context of face recognition (FR):

H1: A generative model can boost the performance of a downstream discriminator with an
appropriate informed sampling, and augmenting the resulting data with the original data that was
used for training the generative and discriminative models.

Our contributions are summarized as follows:

• We propose a simple yet effective sampling technique that strategically conditions a generative
model to produce beneficial samples, enhancing the discriminator’s training process (Subsec-
tion 3.1) without relying on any auxiliary models/data.

• We show that mixing our AugGen data with real samples often surpasses even architectural-
level improvements, underscoring that synthetic dataset generation can be as impactful as
architectural advances (Section 4).
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• We demonstrate that AugGen training can be as effective as adding up to 1.7× real samples,
reducing the need for more face images while preserving performance (Subsection 4.3).

• We show that current generative metrics (e.g., FD, KD) are poorly correlated with downstream
discriminative performance, emphasizing the need for improved proxy metrics (Appendix F).

To the best of our knowledge, this is the first demonstration of generative image models effectively
enhancing augmentation at this scale without relying on auxiliary models or external datasets.

2 Related Work

Synthetic Data in Computer Vision. For a smaller number of class variations, (e.g., 2 or 3 classes
for classification target), authors in [11] train separate generative models. This approach is not
scalable for a higher number of classes and variations of our target (e.g., we have thousands of
classes for training an FR system). In [2], the authors fine-tuned pre-trained diffusion models on
ImageNet classes after training on large text-image datasets, demonstrating improved performance
on this benchmark through the synthesis of new samples. Authors in [54] leveraged 3D rendering
engines and computer graphics. Here as they have access to the underlying 3D Morphable Face
Model (3DMM) [4] and closed-form back projection to the image plane, the authors introduced a
Face Dataset for landmark detection, localization and also semantic segmentation task. By design, as
the method has access to accurate labels in such 3D rendered datasets authors demonstrated a slight
advantage on the models trained on their proposed dataset when it is evaluated against real-world
datasets.

Synthetic Data for Face Recognition. SynFace [37] employs DiscoFaceGAN [9] for controllable
identity mixup [57], training with a FR network on MS-Celeb1M [14], 3DMM, keypoint matching,
and other priors. DCFace [25] uses dual-condition latent diffusion models (LDMs)—one for style
and one for identity—trained on CASIA-WebFace [56], then filters generated images with auxiliary
demographic classifiers and a strong FR system. In [45], a StyleGAN2-ADA [23] is pre-trained
on a large, unlabeled, multi-ethnic dataset, and an encoder transfers latent-space mappings to an
FR network to mitigate bias. GANDiffFace [32] combines StyleGAN3 [20] and Stable Diffusion
[39] (trained on LAION-5B [43]), along with DreamBooth [40], for increased intra-class variation.
IDiff-face [5] conditions a latent diffusion model on FR embeddings from a network trained on
MS1Mv2 [8]. ID3 [55] similarly conditions a diffusion model on face attributes and an FR network
trained on MS1Mv2, using both CASIA-WebFace and FFHQ [22] for training. Unlike DCFace’s
post-processing, ID3 incorporates identity/attribute information directly into the generation process.
Note that using MS1Mv2 yields higher FR performance than CASIA-WebFace [8]. DigiFace1M [3]
generates diverse 3D-rendered faces with varied poses, expressions, and lighting. In [38], off-the-shelf
image-to-image translation [51, 60] further boosts DigiFace1M’s performance despite lacking explicit
identity information. Additional prior work is discussed in Appendix A.

3 Methodology

Figure 3 illustrates our approach, where a discriminator Morig and a generator G are trained on the
same dataset. By strategically sampling from G, we generate synthetic images forming new classes,
augmenting the original dataset. We first define the problem for the discriminator and generator
in Section 3 and Section 3, then introduce our key contribution: generating new classes (Finding
Weights, Figure 3(c)) to complement real datasets with synthetic images.

Discriminatior. Assume a dataset Dorig = {(Xi, yi)}k−1
i=0 , where each Xi ∈ RH×W×3 and yi ∈

{0, . . . , l − 1} (l < k). The goal is to learn a discriminative model fθdis : X → y that estimates
p(y|X) (e.g., on ImageNet [41] or CASIA-WebFace [56]). Typically, similar images have closer
features under a measure m (e.g., cosine distance). We train fθdis via empirical risk minimization:

θ∗dis = argmin
θdis∈Θdis

E(X,y)∼Dorig

[
Ldis(fθdis(X),y)

]
, (1)

where Ldis is typically cross-entropy, and hdis denotes hyperparameters (e.g., learning rates). The
resulting model Morig = fθ∗

dis
is shown in Figure 3(a).

Generative Model. Generative models seek to learn the data distribution, enabling the generation
of new samples. We use diffusion models [47, 1], which progressively add noise to data and train a
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denoiser S. Following [19, 21], S is learned in two stages. First, for a given noise level σ, we add
noise N to EVAE(X) (or X directly in pixel-based diffusion) and remove it via:

L(Sθden ;σ) = E(X,y)∼Dorig,N∼N (0,σI)[
∥Sθden(EVAE(X) + N; c(y), σ)− X∥22

]
,

(2)

where c(y) denotes the class condition, and EVAE(·) and DVAE(·) are optional VAE encoder and
decoder. In the second stage, we sample different noise levels and minimize:

θ∗den = argmin
θden∈Θden

Eσ∼N (µ,σ2)

[
λσ L(Sθden ;σ)

]
, (3)

where λσ weights each noise scale. Latent diffusion [39] conducts denoising in a compressed latent
space, reducing computational cost for high-resolution data.

3.1 Class Mixing

Figure 3: Overview diagram of AugGen: (a) A labeled
dataset, Dorig, is used to train a class-conditional gener-
ator, G(Z, c), and a discriminative model, Morig. (b,d)
Reproduced dataset, Drepro, closely mimics Dorig under
the original conditions. (c) We find new condition vectors,
C∗, to generate an augmented dataset, Daug, using the
generator. (f) Augmenting Dorig with Daug boosts Morig
performance without auxiliary datasets or models.

In our formulation, c is one-hot encoded
for each label in Dorig, then mapped to
the denoiser’s condition space. After
training the conditional denoiser Sθden
(Figure 3, (c)) via Equation 3, we can
sample from the generator in two ways:

1. Use the same one-hot vectors as in
training, producing samples similar
to Dorig. As an example, when pass-
ing the one-hot vector for the first
class, the generator synthesizes sam-
ples that resemble this class (Figure 3,
(d)), collectively forming Drepro.

2. Apply novel condition vectors c∗ dif-
ferent from those used during train-
ing.

We explore combining known condi-
tions to synthesize entirely new classes,
aiming to increase inter-class separation
and feature compactness as presented
in Figure 1. By leveraging the previ-
ously trained Morig, these additional sam-
ples can make Mmix (i.e., discriminator
trained on the mix of real and generated
data) better across diverse benchmarks.
Given two classes i and j with one-hot vectors ci and cj, we construct a new class condition via

c∗ = αci + βcj, (4)

We denote the trained denoiser’s generation process by G, so Xi = G(Z, ci) uses noise Z ∼ N (0, I)
and condition c to iteratively denoise the input. To find suitable α and β, we formulate the problem
as a grid search, aiming for dissimilarity to classes i and j while preserving class coherence for
repeated samples from G(Z, c∗). We set the α and β to some possible combinations in a linear space
of the values between 0.1 to 1.1. Intuitively, the larger either α or β, the more the generator will
reflect the attributes of the corresponding class (i.e., class i and j respectively). For example, possible
combinations would be α = 0.3, β = 0.5 or α = 1.1, β = 0.4. We denote W, the set which contains
possible values of α and β. We also select some subset of L and call it Ls, for the set to contain
some specific classes. Then we randomly select two values from the Ls, namely i and j. Later for
each (α, β) ∈ W we apply the Equation 4, to get the c∗. We generate three types of images. The
first two is the reproduction dataset, Drepro as before by setting the conditions to ci and cj , to get
Xi = G(Z, ci) and Xj = G(Z, cj). Finally the third one is X∗ = G(Z, c∗). By passing the generated
images to the fθdis∗ (i.e., our discriminator which was trained on the Dorig) we get the features, ei,
ej and e∗ respectively. We seek to maximize the dissimilarity between generated images so that we
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can treat the new sample X∗ as a new class. For this, we use a dissimilarity measure, md which the
higher the absolute value it produces the more dissimilar the inputs are. We calculate this measure for
each of the reproduced images of the existing classes with respect to the new class, di = md(e

i, e∗)
and dj = md(e

j , e∗), and we define the total dissimilarity between the reproduced classes and the
newly generated class as mtotal

d = |di|+ |dj |. We repeat this process K times, this means that we
get K different X∗ for the same ci) and cj). We also want each K X∗ to be as similar as possible to
each other so we can assign the same label/class to them for a fixed α and β. To this end, we also
calculate a similarity measure, ms, in which the higher the absolute output of this measure is the the
more similar their input is. We define the total similarity between the K generated X∗ as mtotal

s . We
hypothesize and verify later with our experiments that the good candidates for α and β are the ones
that have a high value of the mtotal = mtotal

s +mtotal
d . This search for α and β is outlined in the

algorithm 1.

Algorithm 1: Grid search for α and β

Require: Search range for α, β ∈ [0.1, 1.1],Ls ⊆ L, K: Number
of iterations.

Require: G(., .): Class-conditional Generator trained on Dorig

Require: fθ∗
dis

: Discriminator trained on Dorig

Output: α∗ and β∗

Create set W = {(α, β) | α, β ∈ [0.1, 1.1]};
Randomly select two values i and j from Ls, M = {} ;
for each (α, β) ∈ W do

c∗ = αci + βcj, M = {} ;
for k = 1, . . . ,K do

Get Repro Images: Xi = G(Z, ci),Xj = G(Z, cj);
Get Interpolated Images: X∗ = G(Z, c∗);
Get Repro Features: ei, ej = fθdis∗ (X

i), fθdis∗ (X
j);

Get Interpolated Feature: e∗ = fθdis∗ (X
∗);

Add e∗ to F;
Dissimilarities : di = md(e

i, e∗), dj = md(e
j , e∗);

Total dissimilarity: mtotal
d = |di|+ |dj |;

end
mtotal

s = 0;
∀p, q ∈ F|p ̸= q Calculate ms(e

p, eq) and add it to mtotal
s ;

Final measure: mtotal = mtotal
s +mtotal

d and add it to M;
end
Return α∗ and β∗ that the mtotal, in M is high;

Algorithm 2: Generating Daug

Require: α∗ and β∗ from
algorithm 1, Ls ⊆ L, C:
Number of mixed
classes, N : Number of
samples per class.

Require: G(., .):
Class-conditional
Generator trained on
Dorig

Output: Daug

Create empty set Daug;
for n = 1, . . . , C do

Randomly select two values i
and j from Ls;

c∗ = α∗ci + β∗cj;
Create empty set T ;
for n samples = 1, . . . , N do

X∗ = G(Z, c∗);
Add X∗ to T ;

end
Add T to Daug;

end
Return Daug;

After finding candidate values for α and β, by randomly selecting classes from L, and calculating c∗,
we can generate images that represent a hypothetically new class. The output of this process is what
we call generated augmentations of the Dorig, or Daug as depicted in the Figure 3 (e) and presented
in algorithm 2. As shown in Figure 1, the newly generated classes are similar within themselves
but distinct from their mixed classes, retaining source-class cues to aid discrimination by design.
Training with the mix of Dorig and Daug (Figure 3(f)) benefits the discriminator, as demonstrated in
Section 4.

4 Experiments
We demonstrate the effectiveness of our proposed augmentation method for the problem of Face
Recognition (FR). Large datasets are usually required for modern FR systems, so improving perfor-
mance with limited data is crucial.

4.1 Experimental Setup
Training Data. We evaluate our approach using two real-world datasets, Dorig: CASIA-WebFace
[56] and a subset of WebFace4M [61]. The WebFace4M subset, referred in this work to as Web-
Face160K, was selected to include approximately 10,000 identities (i.e., like CASIA-WebFace), each
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represented by 11 to 24 samples, resulting in a total of 160K face images. More details about the
datasets are presented in the Appendix B.

Discriminative Model. To ensure a fair comparison across different methods during the training
of the discriminator, we adopted a standardized baseline. This baseline employed an FR system
consisting of an IR50 backbone, modified according to the ArcFace’s implementation [8], paired
with the AdaFace head [24] to incorporate margin loss. Furthermore, when analyzing architectural
improvements at the network level, we explored training solely with real data versus mixed data. For
this analysis, we used IR101 due to its increased parameterization, which is expected to enhance
its ability to generalize. Each real or mixed dataset was trained multiple times with identical hyper-
parameters but different seed values. More details are outlined in Appendix C. For comparisons,
we repeated these procedures using several synthetic datasets from the literature: the original Digi-
Face1M (3D graphics), its RealDigiFace translations [38] (Hybrid, 3D, and post-processed), and two
diffusion-based datasets, DCFace [25] and IDiff-Face [5]. Additionally, standard augmentations for
face recognition tasks were applied to all models. These augmentations included photometric trans-
formations, cropping, and low-resolution adjustments to simulate common variations encountered in
real-world scenarios.

Generative Model. To train our generative model, we used a variant of the diffusion formulation
[19, 21]. For the Dorig CASIA-WebFace we used the latent-based formulation in which, as depicted
in Equation 2 we employed a VAE to encode the image to a compressed space and decode it back to
the image space. For WebFace160K we used the pixel space variant for better coverage of different
diffusion models. Furthermore, we set the one-hot condition vectors c∼10K , have a size of ∼10,000,
corresponding to the number of classes in Dorig. We train two versions of the latent diffusion model
(LDM) from scratch, labeled small and medium, to analyze the impact of network size and training
iterations on the final performance, following the size presets outlined in the original papers [21, 19].
For the pixel-space diffusion model, we mainly used the small variant. Details, including generator
design choices are presented in Appendix C.

Grid Search. As presented in the algorithm 1 we need to find an appropriate α and β for generating
useful augmentations based on the generator trained in the previous section. For the Dorig , CASIA-
WebFace which has the long-tail distribution of samples per class, we set the Ls to the classes from
the generator that are presented more than the median number of samples per class. Naturally, we
empirically observed that these classes are better reproduced when we were generating Drepro. For
the case of WebFace160K the Ls is all the classes. Later we set the W to {0.1, 0.2, . . . , 1.0, 1.1} for
searching α and β to calculate the new condition vector c∗. Closely related to how the FR models are
being trained, especially the usage of the margin loss (i.e., AdaFace [24] or ArcFace [8]), we set the
measure for dissimilarity between the features of the two sample images, X1 and X2, using cosine
similarity to md = 1− | e1.e2

||e1||||e2|| |. Note that the es were calculated using a discriminator that was
trained solely on the Dorig. We treat the values of the measure in such a way that the higher the output
of the measure the more it reflects its functionality (i.e., the larger the measure for dissimilarity is the
more dissimilar the inputs are). Accordingly, we set the similarity measure to ms =

e1.e2

||e1||||e2|| , which
again reflects that the inputs are more similar if the output of this measure is closer to 1. We iterate
multiple choices of the i and j and average our mtotal for each of the choices. A sample of the output
of this process is depicted in Figure 5. Here we observe that by increasing the α and β from (0.1, 0.1)
to between (0.7, 0.7) and (0.8, 0.8) the measure increases and after that, it will decrease when we
go toward (1.1, 1.1), specifically, we are interested in the α = β line as we do not want to include
any bias regarding the classes that we randomly choose. We consider three sets of values for (α, β),
(0.5, 0.5), (0.7, 0.7) and (1.0, 1.0) corresponding to the mtotal of 1.48, 1.58 and 1.53 respectively.
Then the (α∗, β∗) respectively from the algorithm 1 for CASIA-WebFace is (0.7, 0.7).

Based on our observations, for the WebFace160K dataset, we performed a coarser parameter search
with a higher concentration in the range of 0.5 to 0.9. The total metric value, mtotal, for WebFace160K
is illustrated in the lower part of Figure 5. Using this approach, we evaluated mtotal for the parameter
pairs (α, β) at specific points: (0.5, 0.5), (0.7, 0.7), (0.8, 0.8), and (1.0, 1.0). The corresponding
mtotal values were 0.6068, 0.7256, 0.7390, and 0.7230, respectively. Based on these results, the
(α∗, β∗) pair for WebFace160K was determined to be (0.8, 0.8), as it achieved the highest mtotal

value of 0.7390. In Appendix G we quantitatively demonstrated the effectiveness of this measure in
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Figure 4: Randomly sampled images. From left
to right: The first column shows variations of
a randomly selected identity (ID 1) from Dorig.
The second column presents the reproduction of
the same ID using the generator, conditioned on
the corresponding one-hot vector G(Z, c1). The
third and fourth columns follow the same pro-
cess for a different ID, with the middle column
representing a newly synthesized identity gener-
ated by conditioning the generator on G(Z, c∗).
The samples above the red line are from CASIA-
WebFace, while the lower part corresponds to
WebFace160K.

Figure 5: The value of the proposed measure
mtotal for setting the candidate values of α (x
axis) and β (y axis). Here for each α and β and
our 100 combination of Ls we calculated the
mtotal by setting the K in algorithm 1 to 10.

the final performance of the discriminator when we trained it on the synthetically generated dataset
using various α and β.

Computational Complexity. The search is computationally efficient, requiring fewer than 2
GPU-days on a single consumer-grade GPU (i.e., RTX 3090 Ti in our case), with 1000 mixes
(5 samples/class) per grid point. Most compute was spent on repeated training runs for reliable
mean/variance reporting. See Subsection C.6 for a detailed compute complexity breakdown.

Synthetic Dataset. For generating the reproduction dataset Drepro, we set the condition for each
of the ∼10,000 classes in the original CASIA-WebFace and WebFace160K dataset to the generator.
The number of samples per class is 20 unless mentioned otherwise. For generating Daug we
randomly sampled 10, 000− 50, 000 combinations of the Ls,

(
Card(Ls)

2

)
, (samples with more than

the median number of sample/class in case of CASIA-WebFace as the Dorig), and fixed them for
all the experiments. Later by setting the α and β to candidate values found in the previous section,
(i.e., like (0.7, 0.7) for CASIA), we generated 10 to 50 sample per mixed of selected classes. In
Figure 4, some samples of the generated images are shown, where the first and last columns depict
examples of the two classes in the Dorig . The second and 4-th columns are the reproduction of the
same identities from the first and last column, respectively, Drepro. Each line is generated using the
same seed (source of randomness in the generator), and finally, the middle column (3rd from left)
is the Daug which is generated by X∗ = G(Z, c∗) when we calculate the c∗ by optimum α and β.
We can observe that the middle column’s identity is slightly different from the source classes while
being coherent when we generate multiple examples of this new identity. By design, these classes
can be considered as hard examples for the discriminator. This subtle difference is one of the
reasons why our augmentation is improving the final performance. In the Appendix I more samples
are presented.
4.2 Face Recognition Benchmarks

We show that our synthetic augmentation is boosting the performance of a model trained with the real
dataset in all of the studied public FR benchmarks. For this purpose, we evaluated against two sets of
FR benchmarks. The first set consists of LFW [18], CFPFP [44], CPLFW [58], CALFW [59], AgeDB
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[33], which includes mainly high-quality images with various lighting, poses, and ages the average of
these benchmarks presented in Table 1 as Avg-H. The second set involves benchmarks consisting of
medium to low-quality images from a realistic and more challenging FR scenario (NIST IJB-B/C)
[31, 53] and TinyFace [7]. For evaluation, we report verification accuracy (i.e., True Acceptance Rate
(TAR)), where the thresholds are set using cross-validation in the high-quality benchmarks, and TARs
at different thresholds determined by fixed False Match Rates (FMR) in IJB-B/C. Specifically for
the latter, we are mainly interested in the verification accuracy for two thresholds that are usually
used in real-world scenarios when the FR systems are being deployed, namely TAR@FPR=1-e-06
and TAR@FPR=1e-05 for both IJB-B and IJB-C. In the Table 1 the Aux column depicts that if the
method under study used any auxiliary model for the generation of the dataset other than the Dorig.
The ideal value for this column is N which refers to not using any auxiliary model/datasets. The ns

and nr depict the number of synthetic and real images used for training the discriminative model.

The final values for the benchmarks are reported as the mean and std of the observed numbers
when we are changing only the seed as discussed before. Details about the benchmarks, including
High-Quality benchmarks and TAR at additional thresholds, are provided in Appendix D. Table 1
is divided into two sections, separated by a triple horizontal line. The upper section compares
AugGen, using the CASIA-WebFace dataset as the source, and the lower part is when we set the
Dorig to WebFace160K. For each, we considered fully synthetic face recognition, FRsyn , data,
and a combination of synthetic and real data, (distinguished by a double horizontal line) FRmix

. This comparison evaluates their performance relative to the original source dataset (i.e., fully
real, FRreal ) and relevant works, including synthetic data from three approaches: the proposed
AugGen, DCFace [25], and IDiffFace [5]. The triple horizontal line segmentation is primarily due
to the use of CASIA-WebFace and among other data/models in the latter two methods’ generation
pipelines. For each part of the table, bold and underline numbers are presenting best and second best
respectively. In the second part, in case augmentation with the real CASIA-WebFace is performing
better than solely training with the CASIA-WebFace (i.e., middle part of both tables) the cell is
shaded in gray . We are observing inconsistencies in different benchmarks for other methods. For
instance, for IJB-B/C DCFace is not performing better than CASIA-WebFace alone and IDiffface
is not outperforming FRreal in thresholds set to low FPRs (i.e., TAR@FPR=1e-6). In the case of
FRreal training, we additionally used the IR101 network depicted as †. This is done to demonstrate
the introduced augmentation samples can be as important as architectural-level improvements.
As in most cases the less parametrized network (i.e., IR50) trained with the AugGen samples is
outperforming the more parametrized network, IR101, solely trained on the original samples, Dorig .
This is in conjunction with the fact that in most cases using the IR101 FRreal training outperforms the
simpler IR50 model. Additionally, in case our augmentations also perform better than architectural
improvements we shade the corresponding cell to green . For the less challenging benchmarks
presented by Avg-H in Table 1, we observe that although our method consists of a smaller number
of samples and does not use any auxiliary model/data we are performing competitively with other
state-of-the-art (SOTA) methods/datasets. In the second part of this table we are observing mainly all
the methods that we combined with the CASIA-WebFace are boosting the discriminator which is
solely trained on the CASIA-WebFace. For IJB/C we demonstrate better performance being the best
in most FPRs although our datasets were generated for augmentation by design. By observing the
results after the augmentation (second part of the table), AugGen is the only method that consistently
performs better than the baseline. One interesting finding was the performance drop of the model
when it was combined with the CASIA-WebFace. But we are observing that consistently in all of the
benchmarks, our augmentation methodology is boosting the baseline. We demonstrate that although
we did not use any auxiliary model/data our synthetic dataset performed competitively with other
state-of-the-art methods or even outperformed them in some cases.

The lower part of the triple horizontal line reports results with AugGen samples using our Web-
Face160K as the Dorig . The observations remain the same, as in most cases, we are performing even
better than architectural improvements.

As shown in Figure 1, the discriminator’s feature space exhibits reduced intra-class variation and
increased inter-class separation, with further details in Appendix H.
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Table 1: Comparison of the FRsyn training (upper part), FRreal training (middle), and FRmix training
(bottom) using CASIA-WebFace/WebFace160K, when the models are evaluated in terms of accuracy
against standard FR benchmarks. Avg-H depicts the average accuracy of all high-quality benchmarks
including, LFW, CFP-FP, CPLFW, AgeDB, and CALFW. Here ns and nr depict the number of
Synthetic and Real Images respectively and Aux depicts whether the method for generating the
dataset uses an auxiliary information network for generating their datasets (Y) or not (N). the †
denotes network trained on IR101 if not the model trained using the IR50. The numbers under
columns labeled like C/B-1e-6 indicate TAR for IJB-C/B at FPR of 1e-6. TR1 depicts the rank-1
accuracy for the TinyFace benchmark.

Method/Data Aux ns nr B-1e-6 B-1e-5 C-1e-6 C-1e-5 TR1 Avg-H

DigiFace1M N/A 1.22M 0 15.31±0.42 29.59±0.82 26.06±0.77 36.34±0.89 32.30±0.21 78.97±0.44
RealDigiFace Y 1.20M 0 21.37±0.59 39.14±0.40 36.18±0.19 45.55±0.55 42.64±1.70 81.34±0.02
IDiff-face Y 1.2M 0 26.84±2.03 50.08±0.48 41.75±1.04 51.93±0.89 45.98±0.61 84.68±0.05
DCFace Y 1.2M 0 22.48±4.35 47.84±6.10 35.27±10.78 58.22±7.50 45.94±0.01 91.56±0.09
Daug (Ours) N 0.6M 0 29.40±1.36 54.54±0.59 45.15±1.04 61.52±0.47 52.33±0.03 88.78±0.06
Drepro (Ours) N 0.6M 0 15.71±3.12 45.97±4.64 31.54±6.65 58.61±3.89 53.61±0.47 90.64±0.07

CASIA-WebFace N/A 0 0.5M 1.02±0.26 5.06±1.70 0.73±0.19 5.37±1.41 58.12±0.31 94.21±0.09
CASIA-WebFace † N/A 0 0.5M 0.74±0.31 3.94±1.62 0.38±0.13 3.92±1.96 59.64±0.49 94.84±0.07

IDiff-face Y 1.2M 0.5M 0.89±0.07 5.80±0.63 0.70±0.11 7.46±2.08 59.32±0.34 94.86±0.02
DCFace Y 0.5M 0.5M 0.26±0.11 1.59±0.51 0.18±0.07 1.54±0.59 56.60±0.41 94.72±0.09
Daug (Ours) N 0.6M 0.5M 2.61±0.91 15.74±3.20 4.36±1.41 18.58±3.99 59.82±0.13 94.66±0.03

WebFace160K N/A 0 0.16M 32.13±1.87 72.18±0.18 70.37±0.75 78.81±0.32 61.51±0.16 92.50±0.02
WebFace160K † N/A 0 0.16M 34.84±0.49 74.10±0.24 72.56±0.02 81.26±0.14 62.59±0.01 93.32±0.12

Daug (Ours) N 0.6M 0.16M 36.62±0.77 78.32±0.33 78.58±0.15 85.02±0.15 61.60±0.38 94.17±0.08

Table 2: Effect of adding more real samples from WebFace4M to WebFace160K in comparison to
adding more synthetic images. The backbone for all models is IR50. Here Avg-H depicts the average
accuracy of all high-quality benchmarks including, LFW, CFP-FP, CPLFW, AgeDB, and CALFW.
Ratio depicts the ratio number of real samples used over the number of samples in WebFace160K.
The numbers under columns labeled like C/B-1e-6 indicate TAR for IJB-C/B at FPR of 1e-6.

Syn #Class × #Sample nr ns B-1e-6 B-1e-5 C-1e-6 C-1e-5 Avg-H Ratio

0 160K 0 32.13±1.87 72.18±0.18 70.37±0.75 78.81±0.32 92.50±0.02 1

(10K x 20 ) 160K 200K 34.93±0.50 76.15±0.20 75.18±0.22 83.06±0.11 93.77±0.04 1
(20K x 20 ) 160K 400K 36.54±1.27 78.00±0.23 78.48±0.55 84.40±0.07 93.96±0.01 1
(25K x 20 ) 160K 500K 36.35±0.70 77.87±0.52 78.61±0.42 84.49±0.01 94.10±0.08 1
(30K x 20 ) 160K 600K 36.62±0.77 78.32±0.33 78.58±0.15 85.02±0.15 94.17±0.08 1
0 160K + 80K 0 33.78±1.11 77.29±0.12 77.38±0.10 83.50±0.04 93.85±0.02 1.5
0 160K + 110K 0 33.53±1.47 78.26±0.05 78.49±0.54 85.02±0.01 94.19±0.01 1.69

0 800K 0 38.12±0.00 87.68±0.00 87.11±0.00 92.27±0.00 96.46±0.00 5.0

4.3 Gains over Additional Real Data

In this section, we aim to address a critical question: How much additional real (non-generated) data
would it take to achieve the same performance improvement as our synthetic augmentation? This
experiment is vital because the primary goal is to maximize the accuracy of the face recognition (FR)
system using the existing dataset. To evaluate this, we used our WebFace160K subset as a baseline and
incrementally added data from the WebFace4M dataset. This process allows us to determine how the
performance boost achieved through AugGen compares to the addition of real data, providing a clear
measure of its effectiveness. In Table 2, the Ratio represents the proportion of additional real samples
added to WebFace160K (e.g., 160K + 110K with a Ratio of 1.69). Remarkably, adding approximately
600K AugGen samples delivers performance gains comparable to including 110K real images. This
highlights that AugGen achieves equivalent performance improvements with significantly fewer real
images.

5 Conclusions

In this work, we introduced AugGen, a novel yet simple sampling approach that carefully conditions
a generator using a discriminative model, both trained on a single real dataset, to generate augmented
samples. By combining these synthetic samples with the original real dataset for training, we enhance
the performance of discriminative models without relying on auxiliary data or pre-trained networks.
Our proposed AugGen method significantly improves discriminative model performance across 8 FR
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benchmarks, consistently outperforming baseline models and, in many cases, exceeding architectural-
level enhancements—highlighting its potential to compete with architectural-level improvements.
We further demonstrate that training with AugGen-augmented datasets is as effective as using 1.7×
more real samples, emphasizing its impact on alleviating data collection challenges. Additionally, we
identify inconsistencies in CASIA-WebFace-based evaluations and recommend alternative datasets for
more reliable benchmarking on IJB-B/C. Our findings underscore the potential of augmentation-based
approaches for improving discriminative models.

Limitations. The principal limitation of our approach is its computational cost: to isolate the
impact of synthetic data, we train the generator from scratch on the target datasets. Nevertheless, by
conducting experiments under these controlled conditions, we establish the hypothesis that synthetic
samples generated via our sampling strategy boost the discriminator’s performance. Moreover, we
expect our method to extend to other architectures (e.g., other multi-step generators, autoregressive,
and flows), including pre-trained generators, offering broader practical applicability.

Future work. A promising research direction is reformulating margin losses in FR to be compatible
with soft labels. By establishing a correlation between target soft labels and c∗ (e.g., with α, β = 0.7
increasing mtotal, a natural choice for soft target labels would be 0.5, 0.5 for corresponding source
classes), future studies can explore whether treating a class as a soft-class or a new one yields better
performance. Also, it would be interesting to see whether the selection process of Ls will have
a major effect on the performance of the models, like mixing some classes will deliver a better
performance increase than others.

Acknowledgment. This research is based on work conducted in the SAFER project and supported
by the Hasler Foundation’s Responsible AI program.
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Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.
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problems of privacy and fairness.
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3. Theory assumptions and proofs
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complete (and correct) proof?
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Justification: The results are mainly empirical. We are reporting improvements using 8 bench-
marks. For each, we are also reporting confidence intervals.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Additionally, all the code, models and synthetic datasets will be publicly available
for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: All the code, models and synthetic datasets will become publicly available,
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Most important hyperparameters are presented in the Appendix, also as mentioned
previously, all the code and models will become publicly available upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: For each experiment and other baselines, we run the experiments multiple times
based on the observed variacnes
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: Details about hardware and an estimate of the total computational capacity used are
provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are obliging to the Neurips Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: Yes, in the appendix, we highlighted the potential positive and negative societal
impacts of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: Yes, we acknowledge all the code, dataset, and algorithms used through this paper
with their original contributors as citation or direct mention.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, as mentioned before all the code, models, and synthetic datasets will be made
publicly available upon publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: We did not perform any crowd sourced experiment with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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Appendix

A Summary of SOTA methods

Table 3 summarized recent methodologies for synthetic FR dataset generation. Here the Generation
Methodology refers to which of the main methods (i.e., Diffusion, GAN, 3DMM, ... ) were used to
generate synthetic data. Auxiliary Networks (Aux) refers to the use of additional models (e.g., age
estimators, face parsers) or datasets during synthetic data generation. The last column, FR, indicates
whether a strong pre-trained FR backbone, separate from the dataset used for training, was employed
or not.

Method Year Generation Methodology Aux FR

SynFace [37] 2021 3DMM & GAN Y Y
DigiFace1M [3] 2023 3D-Rendering Y N
DCFace [25] 2023 Diffusion Y Y
IDiffFace [5] 2023 Diffusion N Y
GANDiffFace [32] 2023 GAN/Diffusion Y Y
RealDigiFace [38] 2024 GAN/Diffusion Y N
ID3[55] 2024 Diffusion Y Y
CemiFace [49] 2024 Diffusion N Y

Ours - Diffusion N N
Table 3: State-of-the-art Synthetic Face Recognition (SFR) dataset generation methods are compared
based on two criteria: the use of Auxiliary Networks (Aux) and External Face Recognition (FR)
Systems. Aux indicates whether auxiliary networks are utilized, with Y representing ”Yes” and N
representing ”No.” Similarly, FR highlights the use of external face recognition systems beyond those
trained solely on the methodology’s dataset, using the same Y/N notation.

B Original Datasets Dorig

Table 4 summarizes the key statistics of CASIA-WebFace, WebFace160K, and the original Web-
Face4M dataset. Notably, WebFace160K was curated to avoid a long-tail distribution in the number
of samples per identity, aligning its statistics more closely to equal presentation while differing from
the CASIA-WebFace.

Name n IDs nr Min 25% 50% 75% Max

CASIA-WebFace ∼10.5K ∼490K 2 18 27 48 802
WebFace160K ∼10K ∼160K 11 13 16 19 24

WebFace4M ∼206K ∼4,235K 1 6 11 24 1497

Table 4: The middle part of the table presents the datasets used in this paper as Dorig, n IDs and
nr representing the number of IDs and real images. The Min and Max present the minimum and
maximum number of samples per identity for the corresponding dataset. The number of samples like
25%, 50%, and 75% percentiles is also provided.

C Experiment Details

C.1 Discriminator Training

In the Table 5, the most important parameters for training our discriminative models are presented.

C.2 Generator Design Choices

Here we try to answer why we are using Diffusion Models and not different types of generators like
GANs[15, 23] or VAEs. Theoretically, both VAEs and Diffusion Models train a generator with a max-
imum likelihood (ML) or ELBO objective; for a detailed derivation, please see [26]. We chose to use
a diffusion model primarily because the methodology is more mature, and there are stable empirical
procedures for both training (e.g., SNR-based weighting for high-resolution images) and inference
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(e.g., faster samplers like DPM-v3). The same can be said for Flow Matching [30]. More specifically,
methods like Gaussian Flow Matching (used in Flux and SD3[10]) can be directly formulated as a
diffusion model under a v-prediction parameterization. The main difference lies with GANs, whose
objective is not formulated as an ELBO or ML. During our experimentation, we attempted to train a
StyleGAN-based from scratch on our datasets (CASIA-WebFace and WebFace160K), as no publicly
available models were trained on these specific FR datasets, and we aimed to avoid any information
leakage from external data like FFHQ. However, as it is well known, GANs are very difficult to
train, and our training runs were divergent despite using the settings provided by the original authors.
Furthermore, a primary concern with GANs is mode collapse. This makes them an unfavorable
choice for our goal, which is to explore out-of-distribution generation. This is especially important
for long-tailed datasets like CASIA-WebFace, where modes in the tail would likely not be recovered
by a GAN-based generator.

C.3 Why Grid Search?

C.4 Generator and Its Training

We trained two sizes of generator, namely small and medium as in [21]. The training of the small-
sized generator took about 1 NVIDIA H100 GPU day for the generator to see 805M images in
different noise levels with a batch size of 2048. For reaching the same number of training images for
the medium-sized generator, took about 2 days with a batch size of 1024. We used an Exponential
Moving Average (EMA) length of 10%. As observed in literature [35], the EMA of model weights
plays a crucial role in the output quality of the Image Generators.

For sampling our models we did not employ any Classifier Free Guidance (CFG) [16].

C.5 Table Details

For the Table 11 we conditioned a medium-sized generator which trained till it saw 805M images in
different noise levels (∼1500 Epochs). The conditions were set according to the four sets of values
of the α and β. This is done for a fixed identity combination from the Ls for all of them. Later
for each of these new conditions c∗ we generated 50 images. All other tables were reported from a
medium-sized generator when they saw 335M training samples.

Table 5: Details of the Discriminator and its Training
Parameter Name Discriminator Type 1 Discriminator Type 2
Network type ResNet 50 ResNet 50
Marin Loss AdaFace AdaFace

Batch Size 192 512
GPU Number 4 1
Gradient Acc Step 1 (For every training step ) N/A
GPU Type Nvidia RTX 3090 Ti Nvidia H100
Precision of Floating Point Operations High High
Matrix Multiplication Precision High High

Optimizer Type SGD SGD
Momentum 0.9 0.9
Weight Decay 0.0005 0.0005
Learning Rate 0.1 0.1
WarmUp Epoch 1 1
Number of Epochs 26 26
LR Scheduler Step Step
LR Milestones [12, 24, 26] [12, 24, 26]
LR Lambda 0.1 0.1

Input Dimension 112 × 112 112 ×112
Input Type RGB images RGB Images
Output Dimension 512 512

Seed 41,2048,10 (In some models) 41,2048

C.6 Training time breakdown

The proposed method adds a non-trivial one-time training cost, but this is amortized as it yields a
model that is both more accurate and more efficient at inference.

We present a cost breakdown below. Augmenting the data lets the smaller IR-50 backbone outperform
the much larger IR-101 model ( 1.9×FLOPs and 1.7×parameters) trained on the original data Table 1.
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Crucially, our final model retains the low inference cost of the IR50 backbone while outperforming
the IR101 model, which is vital for real-world deployment where cumulative inference costs quickly
surpass the one-time training expense.

Table 6: Training times of IR50/IR101 based discriminators on Dorig or Dorig +Daug datasets next to
generator’s training time

Train Generator Train IR50 on Dorig Train IR50 on Dorig + Daug (Ours) Train IR101 on Dorig

GPU type 1x H100 4x 3090Ti 4x 3090Ti 4x 3090Ti
Wall time (h) 42.2 2.54 4.1 5.6
Average perf N/A 27.42 ± 0.92 32.63 ± 2.20 27.24 ± 1.07

Variances are calculated as the pooled standard deviation from the results reported in Table 1. This
demonstrates a favorable trade-off: we accept a higher, fixed training cost to produce a superior
model that is cheaper to deploy.

D FR Benchmark Details

The full tables are presented in this section. Detailed results for the High-Quality benchmarks are
presented in Table 7. Results for more thresholds set by various FPRs for IJB-B/C are presented in
Table 8 and Table 8 respectively.

Table 7: Comparison of the FRsyn training (upper part), FRreal training (middle), and FRmix

training (bottom) using CASIA-WebFace and our WebFace160K, when the models are evaluated
in terms of accuracy against standard FR benchmarks, namely LFW, CFPFP, CPLFW, AgeDB and
CALFW with their corresponding protocols. Here ns and nr depict the number of Synthetic and Real
Images respectively and Aux depicts whether the method for generating the dataset uses an auxiliary
information network for generating their datasets (Y) or not (N). the † denotes network trained on
IR101 if not the model trained using the IR50.

Method/Data Aux ns nr LFW CFP-FP CPLFW AgeDB CALFW Avg

DigiFace1M N/A 1.22M 0 92.43±0.00 74.64±0.06 82.57±0.43 75.72±0.51 69.48±1.32 78.97±0.44

RealDigiFace Y 1.20M 0 93.88±0.19 76.95±0.17 85.47±0.06 77.57±0.07 72.82±0.59 81.34±0.02

IDiff-face Y 1.2M 0 97.45±0.05 77.07±0.34 80.48±0.63 87.26±0.05 81.15±0.61 84.68±0.05

DCFace Y 1.2M 0 98.77±0.12 84.13±0.35 91.19±0.01 92.52±0.07 91.21±0.06 91.56±0.09
Daug (Ours) N 0.6M 0 98.38±0.12 83.35±0.12 87.64±0.06 89.64±0.29 84.88±0.53 88.78±0.06

Drepro (Ours) N 0.6M 0 98.60±0.02 85.26±0.14 91.13±0.14 90.54±0.16 87.69±0.19 90.64±0.07

CASIA-WebFace N/A 0 0.5M 99.32±0.02 88.97±0.27 96.35±0.06 93.07±0.13 93.34±0.14 94.21±0.09

CASIA-WebFace † N/A 0 0.5M 99.45±0.05 89.92±0.12 97.06±0.06 93.54±0.02 94.33±0.13 94.86±0.07

IDiff-face Y 1.2M 0.5M 99.53±0.07 89.92±0.01 96.91±0.27 93.64±0.16 94.28±0.04 94.86±0.02
DCFace Y 0.5M 0.5M 99.43±0.08 89.44±0.42 96.67±0.16 93.82±0.04 94.24±0.15 94.72±0.09

Daug (Ours) N 0.5M 0.5M 99.47±0.07 89.96±0.07 96.71±0.05 93.40±0.22 93.74±0.02 94.66±0.03

WebFace160K N/A 0 0.16M 99.08±0.13 87.99±0.45 93.95±0.59 92.75±0.20 90.78±0.79 92.91±0.42

WebFace160K † N/A 0 0.16M 98.97±0.11 87.54±0.06 93.40±0.01 92.55±0.02 90.01±0.04 92.50±0.02

Daug (Ours) N 0.6M 0.16M 99.39±0.03 89.56±0.08 95.84±0.29 93.60±0.10 92.47±0.17 94.17±0.08

E Mixing Effect

In Table 10, by setting the original dataset to CASIA-WebFace, the effect of increasing the number
of samples in our augmented dataset using (α, β) = (0.7, 0.7) weights is shown. On average,
adding more classes (#Class) and samples per class (#Sample) improves the performance of the
final discriminative model. The performance eventually decreases as more samples are added per
class. We hypothesize that this is due to the similarity of images generated under the new conditions,
c, when sampling G(Z, c) multiple times. This reduces the intra-class variability necessary for
training an effective discriminator. We also observe that we should add an appropriate number of the
augmentation dataset (i.e., comparing 10k × 5 to without any augmentation) for the final performance
to be better than the discriminator trained on the original dataset.
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Table 8: Comparison of the FRsyn training, FRreal training, and FRmix training, when the models
are evaluated against IJB-B with thresholds set by various FPRs in terms of TAR. Here ns and nr

depict the number of Synthetic and Real Images respectively and Aux depicts whether the method for
generating the dataset uses an auxiliary information network for generating their datasets (Y) or not
(N). the † denotes network trained on IR101 if not the model trained with the IR50. The numbers
under columns labeled like B-1e-6 indicate TAR for IJB-B at FPR of 1e-6.

Method/Data Aux ns nr B-1e-6 B-1e-5 B-1e-4 B-1e-3 B-0.01 B-0.1 Avg

DigiFace1M N/A 1.22M 0 15.31±0.42 29.59±0.82 43.53±0.77 59.89±0.51 76.62±0.44 91.01±0.12 52.66±0.47

RealDigiFace Y 1.20M 0 21.37±0.59 39.14±0.40 52.61±0.70 67.68±0.73 81.30±0.56 93.15±0.17 59.21±0.52

IDiff-face Y 1.2M 0 26.84±2.03 50.08±0.48 64.58±0.32 77.19±0.41 88.27±0.15 95.94±0.05 67.15±0.50

DCFace Y 1.2M 0 22.48±4.35 47.84±6.10 73.20±2.53 86.11±0.59 93.55±0.16 97.56±0.06 70.12±2.28

Daug (Ours) N 0.6M 0 29.40±1.36 54.54±0.59 70.93±0.25 82.95±0.08 91.67±0.10 97.05±0.04 71.09±0.11
Drepro (Ours) N 0.6M 0 15.71±3.12 45.97±4.64 73.05±0.89 85.54±0.16 93.52±0.17 97.82±0.08 68.60±1.43

CASIA-WebFace N/A 0 0.5M 1.02±0.26 5.06±1.70 50.37±4.03 87.13±0.38 95.36±0.11 98.36±0.04 56.22±0.99

CASIA-WebFace † N/A 0 0.5M 0.74±0.31 3.94±1.62 49.30±5.75 88.42±0.69 95.78±0.16 98.44±0.09 56.10±1.42

IDiff-face Y 1.2M 0.5M 0.89±0.07 5.80±0.63 54.76±2.31 88.33±0.49 96.02±0.04 98.59±0.03 57.40±0.56

DCFace Y 0.5M 0.5M 0.26±0.11 1.59±0.51 35.62±7.89 84.30±3.52 95.10±0.46 98.36±0.08 52.54±2.08

Daug (Ours) N 0.5M 0.5M 2.61±0.91 15.74±3.20 63.67±1.68 89.19±0.28 95.78±0.02 98.51±0.05 60.92±1.02

WebFace160K N/A 0 0.16M 32.13±1.87 72.18±0.18 82.96±0.20 90.37±0.04 95.66±0.11 98.75±0.00 78.67±0.40

WebFace160K † N/A 0 0.16M 34.84±0.49 74.10±0.24 84.57±0.41 91.57±0.12 96.09±0.12 98.87±0.03 80.01±0.24

Daug (Ours) N 0.6M 0.16M 36.62±0.77 78.32±0.33 87.65±0.11 93.34±0.13 96.86±0.12 99.01±0.05 81.97±0.16

Table 9: Comparison of the FRsyn training, FRreal training, and FRmix training, when the models
are evaluated against IJB-C with thresholds set by various FPRs in terms of TAR. Here ns and nr

depict the number of Synthetic and Real Images respectively and Aux depicts whether the method for
generating the dataset uses an auxiliary information network for generating their datasets (Y) or not
(N). the † denotes network trained on IR101 if not the model trained with the IR50. The numbers
under columns labeled like B-1e-6 indicate TAR for IJB-C at FPR of 1e-6.

Method/Data Aux ns nr C-1e-6 C-1e-5 C-1e-4 C-1e-3 C-0.01 C-0.1 Avg

DigiFace1M N/A 1.22M 0 26.06±0.77 36.34±0.89 49.98±0.55 65.17±0.39 80.21±0.22 92.44±0.05 58.37±0.46

RealDigiFace Y 1.20M 0 36.18±0.19 45.55±0.55 58.63±0.59 72.06±0.90 84.77±0.59 94.57±0.19 65.29±0.50

IDiff-face Y 1.2M 0 41.75±1.04 51.93±0.89 65.01±0.63 78.25±0.39 89.41±0.19 96.55±0.05 70.48±0.47

DCFace Y 1.2M 0 35.27± 10.78 58.22±7.50 77.51±2.89 88.86±0.69 94.81±0.09 98.06±0.06 75.46±3.65

Daug (Ours) N 0.6M 0 45.15±1.04 61.52±0.47 74.12±0.33 85.09±0.20 93.01±0.17 97.64±0.04 76.09±0.38

Drepro (Ours) N 0.6M 0 31.54±6.65 58.61±3.89 78.11±0.51 88.51±0.04 94.79±0.09 98.17±0.04 74.96±1.82

CASIA-WebFace N/A 0 0.5M 0.73±0.19 5.37±1.41 56.76±2.73 89.44±0.35 96.16±0.07 98.61±0.02 57.84±0.75

CASIA-WebFace † N/A 0 0.5M 0.38±0.13 3.92±1.96 55.21±6.21 90.42±0.76 96.55±0.19 98.69±0.10 57.53±1.54

IDiff-face Y 1.2M 0.5M 0.70±0.11 7.46±2.08 57.43±4.17 89.89±0.71 96.63±0.08 98.77±0.01 58.48±1.19

DCFace Y 0.5M 0.5M 0.18±0.07 1.54±0.59 38.17±8.24 86.18±3.32 95.88±0.42 98.59±0.05 53.42±2.11

Daug (Ours) N 0.5M 0.5M 4.36±1.41 18.58±3.99 67.85±2.18 91.12±0.38 96.57±0.07 98.78±0.05 62.88±1.35

WebFace160K N/A 0 ∼0.16M 70.37±0.75 78.81±0.32 86.45±0.11 92.68±0.01 96.52±0.05 99.02±0.01 87.31±0.20

WebFace160K † N/A 0 ∼0.16M 72.56±0.02 81.26±0.14 88.27±0.23 93.55±0.07 97.02±0.07 99.12±0.00 88.63±0.08

Daug (Ours) N ∼0.6M ∼0.16M 78.58±0.15 85.02±0.15 90.87±0.09 94.98±0.09 97.55±0.05 99.23±0.01 91.04±0.04

Table 10: Effect of mixing different numbers of classes (#Class) and samples per class (#Sample)
with the original data, CASIA-WebFace. For TinyFace Rank-1 and Rank-5 verification accuracies are
presented as TR1 and TR5 respectively. The numbers under columns labeled like C/B-1e-6 indicate
TAR for IJB-C/B at FPR of 1e-6.

Syn #Class × #Sample nr B-1e-6 B-1e-5 C-1e-6 C-1e-5 TR1 TR5

0 0.5M 1.16±0.08 5.61±1.64 0.83±0.10 5.86±1.31 58.01±0.28 63.47±0.07

Ours (5k × 5 ) 0.5M 0.85±0.06 5.60±0.84 0.65±0.08 6.70±0.97 58.19±0.20 63.48±0.01

Ours (5k × 20) 0.5M 1.08±0.16 5.81±1.01 0.84±0.12 6.88±1.38 57.50±0.13 63.07±0.33

Ours (5k × 50) 0.5M 0.63±0.23 4.56±0.41 0.46±0.10 6.55±0.35 57.39±0.20 62.55±0.11

Ours (10K × 5) 0.5M 0.77±0.08 4.40±0.14 0.61±0.03 4.69±0.26 58.30±0.28 63.28±0.30

Ours (10K × 20) 0.5M 1.29±0.01 8.21±1.38 1.43±0.22 9.67±1.01 58.01±0.50 63.00±0.71

Ours (10K × 50) 0.5M 0.62±0.17 4.29±0.27 0.64±0.10 5.98±0.00 57.51±0.32 62.77±0.08

F Downstream Performance vs Metrics in Generative Models

In this section, we examine whether there is a correlation between common metrics for evaluating
generative models and the discriminator’s performance when trained on our augmented dataset. We
studied the FD [15] Precision/Recall [42, 28] and Coverage [34] which is usually used to quantify
the performance of the Generative Models. Calculation of these metrics requires the projection
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of the images into meaningful feature spaces. For feature extraction, we consider two backbones,
Inception-V3 [50] and DINOv2 [36] which the latter shown effective for evaluating diffusion models
[48]. Both these models were trained using the ImageNet [41] in a supervised and semi-supervised
manner respectively. Experiments were performed by randomly selecting 100, 000 images of both
CASIA-WebFace (as the source distribution) and our generated images by the value of α and β using
algorithm 1 (i.e., the same settings as presented in the Section 4). We are reporting four versions of
our generated augmentation using a medium-sized generator when it sees 184M, 335M, 603M, and
805M training samples in different noise scales of the original CASIA-WebFace (M for Million).
For each of the classes generated from these models, we selected 20 samples, based on the previous
observation in Table 10. Later by mixing the selected images with the original CASIA-WebFace
we train FR for each of them and report the average accuracies for different thresholds in the IJB-C
(i.e., similar to Avg column in the Table 9). Figure 6 and Figure 7 are showing mentioned metrics for
Inception-V3 and DINOv2 feature extractor respectively. We observe no clear correlation between
the metrics used to evaluate generative models and the performance of a downstream task. When
comparing Daug to Dorig for FD, a higher FD (i.e., distinguishable Daug images) should enhance
discriminator performance, but that wasn’t observed here. This holds when we are augmenting the
dataset for training the generator and discriminator with the Dorig . This highlights the need to
develop new evaluation metrics as a proxy.

G Effectiveness of Grid Search

We also study the effectiveness of our proposed method in algorithm 1 which tries to find the suitable
condition weights, α, and β. We compare with four sets of values:

• Rand: α and β were selected randomly for 10, 000 mixture of identities from the set of
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.1}.

• Half: α and β set to 0.5 for all 10, 000 random mixture of identities selected from Ls.
• Full: α and β set to 1 for all 10, 000 random mixture of identities selected from Ls.
• Half++: α and β set to 0.7 according to the algorithm 1 for the generator and discriminator

trained on CASIA-WebFace dataset. This is done for all 10, 000 random mixture of identities
selected from Ls

The results for this are shown in the Table 11. We observe on almost all of the benchmarks the Daug

generated using α and β values with higher mtotal are performing better.

Table 11: Effectiveness of our weighting procedure (W/ Half++) in comparison to (W/ Random) or
when putting the conditions to 0.5 (W/ Half) and when setting the condition signal to 1 (W/ Full). Best
in bold, second best, underlined. TR1 represents the Rank-1 accuracy for the TinyFace benchmark.
The numbers under columns labeled like C/B-1e-6 indicate TAR for IJB-C/B at FPR of 1e-6

C Weight Method ns nr B-1e-6 B-1e-5 C-1e-6 C-1e-5 TR1 mtotal

W/ Half ∼0.5M 0 8.52±5.61 27.74±6.87 11.59±4.26 35.69±5.23 46.42±0.60 1.48
W/ Full ∼0.5M 0 17.63±0.08 32.47±0.47 24.30±0.80 37.45±0.22 45.08±0.17 1.53
W/ Random ∼0.5M 0 24.47±1.23 39.83±1.08 30.79±1.39 44.33±0.88 49.34±0.31 N/A
W/ Half++ ∼0.5M 0 25.44±0.19 46.20±0.12 39.66±0.38 51.47±0.29 47.95±0.09 1.58

H Verifying the driving Hypothesis

As shown in Figure 1, introducing a new class using algorithm 2, aims to augment the original dataset
with a novel mix of source classes. This approach enforces the network to improve the compactness
and separability of class representations. By requiring the network to distinguish the mixed class from
its source classes, we strengthen its discriminative power. To validate this approach, we conducted
experiments on two models, fBaseline

θdis
and fAugGen

θdis
, trained before and after incorporating AugGen

samples, respectively, and evaluated their performance using the following metrics:

1. Mean absolute Inter-Class Similarity of samples across all mixed classes. After applying AugGen,
we expect that the average similarity of samples from different classes become lower, correspond-
ing to a higher θours in Figure 1.
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(a) FD (b) Recall

(c) Coverage (d) Precision
Figure 6: Correlation between the FD, Recall, Coverage, and Precision for the generated dataset by
comparing it with the features of CASIA-WebFace using the DINOv2 extractor.

2. Mean and standard deviation (i.e., std) of Intra-Class Similarity of samples of all mixed classes,
(i.e., M-Intra and S-Intra in Table 12). This should indicate if the generated samples for each
class, cause the model to boost its compactness.

These metrics are presented in the Table 12. After adding the AugGen samples, we are observing
lower M-Inter which reflects that the similarity of the samples between different classes decreased.
We are also observing the M-Intra increase reflecting that the networks perceive the images of the
same class as more similar.

Table 12: Comparison of models trained with and without AugGen samples: M-Inter represents
interclass similarity, indicating class separation, while M-Intra and S-Intra measure the mean and
standard deviation of intraclass similarity, reflecting class compactness.

Dataset/Method ns nr M-Inter(↓) M-Intra(↑) S-Intra(↓)

Baseline 0 0.16M 0.0672 0.49065 0.13499
AugGen 0.2M 0.16M 0.0664 0.54917 0.12807
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(a) FD (b) Recall

(c) Coverage (d) Precision
Figure 7: Correlation between the FD, Recall, Coverage, and Precision for the generated dataset by
comparing it with the features of CASIA-WebFace using Inception-v3 extractor.

I More Samples of Daug

In the following figures, you can find more examples of generated images for Small and Medium-
sized generators and also trained for more steps. By comparing Figure 8 (generated result from a
small-sized generator trained when it sees 335M images (∼ 700 Epochs), S335M, as the optimization
of score-function, involves multiple noise levels of images), Figure 9 (M335M) and Figure 13
(M805M) we generally observe that larger generators are producing better images, but training for
more steps does not necessarily translate to better image quality. This is especially important as we
are exploring the out-of-distribution generation capabilities of an image generator.

Reproducibility.

All code for the discriminative and generative models, along with the generated datasets and trained
models, will be publicly available for reproducibility.
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Figure 8: Small-sized generator trained till it sees 335M images in different noise levels (∼700
Epochs). From left to right, the first column is variations of a random ID, 1, in the, Dorig, the second
column is the recreation of the same ID in the first column using the generator when we set the
corresponding conditions to 1. The last two columns are the same but for different IDs and the middle
column representing the Daug sample.
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Figure 9: Medium-sized generator trained till it sees 335M images in different noise levels (∼700
Epochs). From left to right, the first column is variations of a random ID, 1, in the, Dorig, the second
column is the recreation of the same ID in the first column using the generator when we set the
corresponding conditions to 1. The last two columns are the same but for different IDs and the middle
column representing the Daug sample.
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Figure 10: Medium-sized generator trained till it sees 805M images in different noise levels (∼1500
Epochs). From left to right, the first column is variations of a random ID, 1, in the, Dorig, the second
column is the recreation of the same ID in the first column using the generator when we set the
corresponding conditions to 1. The last two columns are the same but for different IDs and the middle
column representing the Daug sample.
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Figure 11: Medium-sized generator trained for till it sees 335M images in different noise levels
(∼700 Epochs) for different IDs. From left to right, the first column is variations of a random ID,
1, in the, Dorig, the second column is the recreation of the same ID in the first column using the
generator when we set the corresponding conditions to 1. The last two columns are the same but for
different IDs and the middle column representing the Daug sample.
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(a) IDs 115 and 2668

(b) IDs 760 and 1297
Figure 12: Samples from a small-sized pixel space EDM generator trained on WebFace160K for
about 31M training steps (∼200 Epochs). From left to right, the first column is variations of a random
ID, 1, in the, Dorig, the second column is the recreation of the same ID in the first column using the
generator when we set the corresponding conditions to 1. The last two columns are the same but for
different IDs and the middle column represents the Daug sample.
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(a) IDs 2299 and 8574

(b) IDs 7858 and 8434
Figure 13: Samples from a small-sized pixel space EDM generator trained on WebFace160K for
about 31M training steps (∼200 Epochs). From left to right, the first column is variations of a random
ID, 1, in the, Dorig, the second column is the recreation of the same ID in the first column using the
generator when we set the corresponding conditions to 1. The last two columns are the same but for
different IDs and the middle column representing the Daug sample.
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Impact Statement

In our approach, we introduce a novel technique that leverages generative models to further im-
prove state-of-the-art (SOTA) facial recognition (FR) systems, as demonstrated on publicly available
medium-sized datasets. However, these same FR systems can inadvertently facilitate unauthorized
identity preservation in deepfakes and other forms of fraudulent media when attackers mimic individ-
uals without their consent.

While our primary objective is to address privacy concerns and informed consent in training FR
systems, the resulting performance gains could also enhance deepfake quality.
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