
Research and Summary on Various Mapping
Methods in FTL

Author Name
School of Computer Science and Technology

Xi’an JiaoTong University
Xi’an, China

author@stu.xjtu.edu.cn

Abstract—The Flash Translation Layer (FTL) is a core com-
ponent of the controller in flash-based devices such as Solid
State Drives (SSDs). Its main functions include managing the
mapping of logical addresses to physical addresses, implementing
garbage collection, and performing wear leveling. Different FTL
mapping schemes have a significant impact on the performance,
lifespan, and cost of flash devices. The most commonly used
mapping schemes today include block-level mapping, page-level
mapping, and hybrid mapping. This paper provides a system-
atic review of the common mapping strategies in FTL layers,
delving into the basic principles, advantages, disadvantages, and
applicable scenarios of each mapping method. By comparing the
performance in areas such as performance optimization, write
amplification control, garbage collection efficiency, and wear
leveling optimization, this paper summarizes the challenges faced
by existing public technologies. The aim of this paper is to provide
a comprehensive summary of FTL knowledge for newcomers
to the flash domain, helping them get started faster and more
effectively.

Index Terms—Flash Memory, Flash Translation Layer, Map-
ping Method, Garbage Collection, Well Levelling

I. INTRODUCTION

Flash memory has been widely adopted in storage devices
due to its non-volatile storage characteristics, but its phys-
ical properties present unique challenges: mandatory erase-
before-update operations, block-level erase granularity, and
limited program/erase cycles. These inherent characteristics
make direct application of traditional storage management
methods infeasible, thus necessitating the Flash Translation
Layer (FTL) as a core control architecture. Serving as the
central component of flash device controllers, FTL establishes
dynamic balance among device performance, lifespan, and
storage costs through address mapping management, garbage
collection mechanisms, and wear-leveling algorithms.

The mainstream FTL mapping strategies currently include
block-level mapping, page-level mapping, and their hybrid
architectures, with different schemes demonstrating significant
variations in mapping granularity, metadata overhead, and
write performance. This paper systematically reviews the evo-
lutionary trajectory of address mapping mechanisms in FTL
layers, thoroughly analyzes the operational principles of var-
ious mapping strategies, and establishes a multi-dimensional
evaluation framework to compare their effectiveness in perfor-
mance optimization, write amplification suppression, garbage
collection efficiency, and wear leveling. By revealing common

challenges existing technical solutions face in metadata man-
agement efficiency, random write performance optimization,
and compatibility with emerging storage media, this research
aims to construct a systematic knowledge framework for flash
storage researchers and provide technical references for next-
generation FTL design.

Please note that sections II–III below briefly introduce
FLASH memory and FTL respectively. Section IV presents
the early-stage FTL designs for NOR-based devices, while
sections V–VI elaborate on block-level mapping schemes and
hybrid mapping schemes respectively.

II. FLASH MEMORY OVERVIEW

Contemporary flash memory architectures are primarily
categorized into NOR and NAND types. NOR flash employs
separate address and data buses, enabling byte-addressable
random access operations. This architectural characteristic
facilitates execute-in-place (XIP) functionality for direct code
execution in embedded systems and firmware storage, es-
tablishing NOR as an optimal replacement for conventional
ROM. However, its substantial write/erase latencies impose
limitations on storage performance. In contrast, NAND flash
utilizes a shared I/O interface for address and data trans-
mission, exclusively supporting page-level block operations.
The compact cell structure of NAND achieves superior stor-
age density, making it the preferred solution for secondary
storage media (this study primarily focuses on NAND flash
technology). These two architectures exhibit complementary
characteristics: NOR demonstrates advantages in read speed,
while NAND excels in write/erase efficiency.

A. Structural Hierarchy in NAND Flash Packaging

NAND Flash Packaging Architecture The NAND flash
package comprises multiple independently operable dies that
share a common I/O bus (as shown in Fig.1). Each die
contains multiple parallel planes, with each plane featuring
dedicated data registers. The hierarchical structure consists
of planes organized into fixed numbers of blocks, which are
further subdivided into predetermined quantities of pages -
the fundamental unit for read/write operations. Contemporary
NAND designs incorporate a reserved spare area at the end of
each page for storing Out-of-Band (OOB) metadata, including:



Logical Page Number (LPN), Error Correction Code (ECC),
and page status flags.

Fig. 1. SSD internal architecture.

B. Differences Between NAND and HDD

The fundamental distinctions between SSDs and HDDs
originate from their storage medium characteristics. Unlike
traditional storage media capable of in-place updates, flash
memory devices are governed by physical write constraints:
bit states in programmed pages only permit unidirectional
transitions (1→0), requiring block-level erase operations to
restore all-1 states. This erase granularity, significantly coarser
than page-level read/write operations, necessitates full block
migration during single-page updates—temporarily relocating
valid pages to cache, performing block erasure, and rewrit-
ing data. This mechanism not only accelerates storage cell
degradation but also introduces write amplification and po-
tential data consistency issues. Consequently, modern flash
controllers universally adopt out-of-place update strategies,
directing data modifications to blank physical pages while
maintaining logical address mapping.

Cell endurance represents another critical divergence. Each
flash memory block experiences irreversible oxide layer degra-
dation through electron tunneling effects after approximately
1,000 to 100,000 program/erase cycles. Manufacturers imple-
ment bad block replacement using pre-configured spare blocks,
yet rely on wear-leveling algorithms to dynamically distribute
erase operations, maintaining near-uniform wear across all
physical blocks to extend device longevity.

Structural elimination of mechanical components funda-
mentally eradicates addressing latency. Without requiring
physical actuator movement or rotational latency inherent to
HDDs, SSDs achieve random access performance improve-
ments spanning multiple orders of magnitude.

Finally, inherent charge manipulation characteristics cre-
ate asymmetric read/write speeds. Write operations involv-
ing high-voltage-driven electron injection into floating gates
demand substantially more time than read operations that
merely detect charge states. This physical dichotomy remains
universally observable across flash memory technologies.

C. Programming constraints

Programming constraints stem from physical characteristics
of storage mediums. Single-Level Cell (SLC) permits arbitrary

programming sequence within blocks, which is crucial for
address mapping strategies in FTL layers requiring physical
location alignment with logical addresses. In contrast, Multi-
Level Cell (MLC) mandates strict sequential programming to
prevent charge interference between adjacent pages caused by
repeated writes. This restriction enforces programming oper-
ations to follow monotonically increasing page numbering,
ensuring each page undergoes only a single programming
cycle.

III. FTL OVERVIEW

FTL is a software abstraction layer built upon raw flash
memory, primarily responsible for address translation, garbage
collection, and wear leveling. It masks the inherent limitation
of flash devices lacking in-place updates by presenting a stan-
dard block device interface. FTL implementations generally
adopt two architectural paradigms:

• Embedded Integration Designed for resource-
constrained environments, FTL is implemented as
part of the file system that shares CPU resources with
user applications. This approach eliminates independent
mapping tables, requiring the file system to directly
manage data migration processes;

• Firmware-based Implementation FTL resides in de-
vice firmware accessible through standardized interfaces.
The firmware architecture comprises three core com-
ponents: read-only memory (ROM) storing FTL code,
static random-access memory (SRAM) maintaining run-
time data and partial mapping tables, and a dedicated
controller executing FTL logic.

In this section, we focus on presenting the core data
structures of FTL, common performance metrics, and their
preliminary categorization.

A. Core Data Structures of FTL

The FTL layer implements address translation through for-
ward and reverse mapping tables. The forward mapping table
converts Logical Block Numbers (LBN) to Physical Block
Numbers (PBN), forming the core data infrastructure of FTL.
Implementations may adopt search tree structures or simple
arrays, typically residing in SRAM or flash memory.

The reverse mapping table consists of physical page/block
identifiers persistently stored in flash media. Sequential scan-
ning of physical pages/blocks reveals their corresponding
logical addresses, a mechanism primarily designed for valid
data identification during garbage collection and FTL state
recovery after system failures.

It should be noted that direct mapping is not univer-
sally adopted across FTL implementations. Different designs
employ varying storage strategies for mapping tables, with
some systems retaining only critical mapping information in
permanent storage.

B. Performance Evaluation Metrics

The performance metrics of FTL encompass five key di-
mensions:



• Address Translation Efficiency This metric is influenced
by data structure design and storage medium character-
istics. Typical implementations include: direct mapping
with random lookup tables and hierarchical queries using
B-tree structures. When mapping table size permits, full
residency in SRAM enables rapid access; beyond storage
capacity limits, flash I/O operations are required for
address translation.

• SRAM Resource Utilization Storage capacity and archi-
tectural design jointly determine mapping table storage
strategies: small-capacity devices or optimized architec-
tures can store complete mapping tables in SRAM; large-
capacity devices generally adopt tiered storage, retaining
only frequently accessed metadata in SRAM while stor-
ing the remainder in flash. The latter’s efficiency heavily
depends on data access locality patterns.

• Block Space Utilization Defined as the average num-
ber of programmed pages before block erasure. This
parameter directly determines erase operation frequency,
consequently affecting overall device performance and
endurance.

• Garbage Collection Effectiveness The garbage collec-
tion process involves valid page migration. Architec-
tures employing hot-cold data separation strategies gain
advantages by reducing cold data migration frequency.
Collection efficiency shows significant correlation with
storage medium wear-leveling characteristics.

• Fault Tolerance Capability Power failure resilience
requires state recovery mechanisms: SRAM volatility
introduces data loss risks. Primary solutions include re-
constructing mapping tables during initialization, or im-
plementing state recovery through flash-stored mapping
table snapshots combined with incremental logs.

C. Classification of FTL Architectures

Early flash storage devices predominantly utilized NOR ar-
chitecture, with FTL designs specifically developed for NOR’s
byte-addressable characteristics. This architectural foundation
proved fundamentally incompatible with subsequent NAND
flash technologies that became mainstream. The FTL schemes
discussed in this study exclusively pertain to modern NAND
flash controllers optimized for high-capacity storage devices
such as SSDs.

FTL architectures are classified by address mapping gran-
ularity into five categories: page-level mapping, block-level
mapping, hybrid mapping, log-structured hybrid mapping, and
adaptive granularity mapping. While both NOR and NAND
media support the first two basic schemes, advanced com-
posite mechanisms (including log-structured optimization and
variable-granularity designs) constitute exclusive technological
advancements for NAND media.

1) Page-Level Mapping: The page mapping scheme
achieves page-level address translation by establishing precise
mapping relationships between logical page numbers (LPN)
and physical page numbers (PPN). This approach maintains

independent mapping entries for each logical page, recording
address correspondences and metadata.

The core advantage lies in its hot/cold data separation strat-
egy. Leveraging SSD’s out-place update mechanism, modified
data writes to new physical pages while marking original pages
as invalid. During garbage collection (GC), blocks containing
numerous invalid pages (hot data) exhibit low valid page
ratios, enabling rapid recycling with minimal data migration.
Conversely, blocks with concentrated valid pages (cold data)
demonstrate high stability, allowing delayed recycling to ex-
tend lifespan. This dynamic separation mechanism reduces
erase cycles while effectively mitigating write amplification.

The primary limitation stems from SRAM resource con-
sumption. For a 1TB SSD with 4KB page size, both LPN and
PPN require 28-bit address space, resulting in a 228 × 4B =
1GB mapping table. Combined with data migration buffers,
SRAM consumption significantly impacts power and cost
efficiency. Some optimized implementations store complete
mapping tables in flash memory, employing dynamic loading
of frequently accessed entries into SRAM as a compromise
solution.

2) Block-Level Mapping: The block mapping scheme em-
ploys a structured address translation mechanism that de-
composes logical page numbers (LPN) into logical block
numbers (LBN) and intra-block offsets. Its core workflow
involves two-stage address translation: initially mapping LBN
to physical block numbers (PBN), followed by locating spe-
cific page addresses within target physical blocks and their
associated replacement block groups through a replacement
block management mechanism. While demonstrating notable
resource efficiency advantages, this scheme exhibits weak
data temperature awareness capabilities, making it difficult to
implement effective hot/cold data separation strategies.

3) Hybrid Mapping: Hybrid mapping FTL strategically
integrates page-level and block-level mapping mechanisms to
leverage their complementary advantages. This architecture
primarily manifests in two implementation paradigms: The
first employs dual-granularity parallel management, dynam-
ically selecting mapping granularity based on data access
patterns (such as frequency or locality). The second establishes
hierarchical storage structures, utilizing fine-grained mapping
zones as update buffers for coarse-grained regions (typically
implemented through log-structured designs), with periodic
consolidation of modified data from fine-grained to coarse-
grained areas. In log-structured implementations, page-mapped
log block regions capture real-time updates while block-
mapped data block regions maintain baseline data versions.

This technical framework also supports dynamic mapping
granularity adjustment. By creating variable-length mapping
units (which may cross traditional block boundaries) and
organizing mapping tables through search tree structures, it
enables intelligent storage resource allocation optimized for
real-time I/O patterns. However, this flexible design requires
sophisticated data localization algorithms for effective opera-
tion.



IV. FTL DESIGN FOR EARLY NOR DEVICES

A. SRAM-based FTL Implementation

For NOR devices characterized by low storage density and
limited capacity, systems predominantly employed flexible
page-level mapping schemes that stored address translation
tables in SRAM. While the SRAM storage overhead remained
within acceptable limits, these implementations faced SRAM
reliability challenges and volatility risks during power loss.
Early studies [1] developed two principal solutions: The first
integrated backup battery modules to ensure data migration
from SRAM to non-volatile flash during power outages. The
second reconstructed mapping tables through full-device page
scanning during system reboots. While this process introduced
boot latency, the compact capacity of NOR devices typically
maintained such delays within tolerable thresholds.

B. CAM-based FTL Implementation

This technical approach [2] employs non-volatile Content-
Addressable Memory (CAM) to store mapping tables, where
each entry consists of four fields: usage flag (used=1), validity
flag (invalid=1), logical page number (LPN), and physical page
number (PPN). During query operations, the usage and validity
flags are concatenated with the target LPN to form a composite
search key. When updating a page, the system writes address
information into a newly allocated mapping entry while in-
validating the original entry. This design inherently avoids the
write-in-place limitation associated with flash-stored mapping
tables.

The scheme exhibits two critical limitations: First, multiple
valid mapping entries may coexist for a single logical unit,
resulting in CAM storage requirements that scale linearly with
flash memory capacity. Second, the implementation demands
intricate parallel comparison circuits within CAM cells, sub-
stantially compromising chip integration density.

C. Standard NOR-based FTL Implementation

This architecture [3], [4] employs a two-level page table
structure where each logical page maintains independent map-
ping entries. The complete mapping table resides in NOR
flash, partitioned into mapping pages according to physical
page size. A secondary indexing structure in SRAM tracks
physical locations of mapping pages, with single index entries
associating multiple mapping pages to overcome flash’s write-
in-place limitation. Frequently accessed mapping pages are
cached in SRAM based on locality principles to accelerate
address translation.

The address translation involves two-phase operations: First,
quotient-remainder computation decomposes the logical page
number, using the quotient to retrieve mapping page’s physical
address from the secondary index. The intermediate address
is generated by combining this physical address with the
remainder. Subsequently, this intermediate address splits into
block number and page offset, completing final translation
through block-level mapping. This hierarchical design en-
hances scalability while enabling in-place migration of valid

pages during garbage collection - only block mapping requires
updates to maintain address validity.

A critical consistency challenge emerges when page updates
trigger mapping modifications. The coexistence of dirty map-
ping pages in SRAM and persistent versions in flash introduces
synchronization risks. Delayed write-back strategies risk data
loss during power failure, while immediate synchronization
causes write amplification factor (WAF) of 2 due to dual writes
(data page + mapping page).

The solution implements synchronous dual-write mecha-
nism: Leveraging NOR’s byte-addressable capability, update
operations create replacement page chains. Each mapping page
contains multiple replacement pages forming a linked-list,
with new entries written to the first available position. Chain
exhaustion triggers merge operations that consolidate valid
entries into new mapping pages. The design keeps the write
amplification factor at a low level while ensuring data integrity
in power loss scenarios.

Notably, this approach fundamentally relies on NOR’s
byte-addressable characteristics, making it non-transferable to
block-oriented NAND devices.

D. Block-level Mapping Scheme: In-block Logging

This design [5] implements an intra-block logging mecha-
nism by allocating dedicated log areas within each physical
block. When the log area reaches full capacity, it initiates a
consolidation process that migrates valid pages to a new block
through garbage collection cycle, reconstructing data place-
ment according to predefined offset rules. The FTL executes
two-stage address resolution: first-stage mapping converts log-
ical page numbers (LPN) to physical block numbers (PBN),
followed by second-stage validation that checks page validity
at corresponding intra-block offsets. If invalidated, subsequent
log area lookup completes the physical page addressing.

The scheme exhibits two critical limitations: It reduces
physical address space utilization efficiency by reserving block
capacity for logging purposes, and complicates address trans-
lation processes by invalidating straightforward LPN-to-offset
conversion through simple modular arithmetic operations.

E. Block-level Mapping Scheme: Migratory Block

This approach [6] optimizes for random update patterns
by automatically allocating replacement blocks upon detecting
page-level modifications within physical blocks. Each logical
block maintains a dedicated bitmap structure that dynamically
tracks valid page locations between original and replacement
blocks through binary flags. The architecture features an inte-
grated update pattern detection mechanism: when the dynamic
page update pattern detection module identifies random write
operations (characterized by multiple overwrites within the
same physical block), or when replacement block capacity
reaches predefined thresholds, the system initiates data migra-
tion. This process consolidates valid pages from the original
block into the replacement block, followed by original block
erasure.



F. Two-phase Translation Architecture

This architecture [7] implements hierarchical address trans-
lation through two distinct mapping phases. The first stage
establishes Logical Block Number (LBN) associations via
page mapping table lookups using Logical Page Numbers
(LPNs), while the second stage completes physical address
resolution through block mapping table access. Diverging from
conventional block mapping designs, LBN derivation relies on
table lookup rather than arithmetic computation. To resolve
potential offset collision issues where multiple LPNs map
to identical block offsets, each physical block contains an
allocation mapping table recording actual page offset-LPN
correlations.

The address resolution workflow comprises two critical
steps: initial LBN retrieval via page mapping table query,
followed by Physical Block Number (PBN) determination
through block mapping table access. Post physical block local-
ization, sequential scanning of the internal allocation mapping
table enables precise page positioning. During garbage collec-
tion cycles, only block mapping table updates are required, en-
suring page mapping table stability and significantly reducing
metadata maintenance overhead. Although employing page-
level mapping mechanisms, this scheme remains classified
as block-level mapping due to its dynamic intra-block page
allocation capability and block-granular metadata manage-
ment. The key distinction lies in address translation flexibility:
conventional schemes compute page positions through fixed
offset formulas, whereas this architecture enables dynamic
page placement via block-local mapping tables.

V. BLOCK-LEVEL MAPPING SCHEME

This section introduces NAND flash-oriented FTL designs,
collectively referred to as the NAND Flash Translation Layer
(NFTL), which encompasses multiple architectural variants
based on implementation specifics.

A. NFTL: Log Block Architecture

This FTL scheme [8], specifically designed for NAND flash
characteristics with page-level spare area support, has become
an industry-standard implementation. The core operational
mechanism comprises three critical processes:

During initial write operations, data is directly written to
pre-determined physical page offsets within the main data
block. When overwrite operations occur, the system dynami-
cally allocates new log blocks and sequentially writes updated
pages from the log block’s starting position.

The read request handling employs a reverse traversal mech-
anism: NFTL searches for target LPNs from the log block’s
end towards its start. If a match is found, the physical page
data is immediately returned; otherwise, the main data block is
queried. This reverse retrieval strategy leverages the sequential
write characteristics of flash memory, ensuring that higher-
offset pages always represent the latest versions while lower-
offset and main data block pages are automatically invalidated.

The log block maintenance mechanism achieves efficient
traversal through NAND’s spare area fast-indexing capability.

Consolidation operations are triggered under any of the follow-
ing conditions: (1) log block storage exhaustion, (2) garbage
collection selection as a victim block, or (3) wear-leveling
requirements. The consolidation process migrates valid pages
from both the log block and associated data block to a new
block, followed by erasure of the original blocks. Notably,
when all pages in the log block exhibit identical logical and
physical offsets, an optimized consolidation is performed by
simply updating the block mapping table entry to the log
block’s PBN and erasing only the original data block.

B. NFTL: Replacement Block Chain

This method addresses NAND devices lacking fast-search
spare areas by developing an enhanced lookup mechanism
that avoids full-block traversal during read operations. The
replacement block chain approach organizes spare blocks in
linked structures for each data block.

During initial page programming, data writes target primary
blocks. Update operations redirect modified pages to the first
available slot at matching offsets within the replacement chain.
Read operations retrieve the most recent valid page from the
chain’s tail position sharing the requested logical page number
(LPN)’s block offset.

Diverging from NOR-based FTL implementations, this de-
sign triggers new block allocation when no chain slots match
the required offset, appending blocks until either reaching
free block thresholds or experiencing chain-induced latency
degradation. Garbage collection activates when chain length
exceeds operational limits, migrating valid pages from victim
blocks to the chain terminal before erasure.

While incompatible with SSDs enforcing strict in-block
sequential programming due to non-linear offset patterns in re-
placement chains, this method adapts effectively through log-
structured modifications. By channeling all writes to dedicated
log blocks that maintain sequential compliance, the design
achieves compatibility with manufacturer-specific constraints.

C. State Transition FTL

STAFF (State Transition Applied Fast Flash Translation
Layer) [9] implements efficient management through five
block states: Free (F) for unused blocks; Main (M) for blocks
with aligned logical-physical offsets and remaining capacity;
Nested (N) for log blocks with offset misalignment; Sequential
(S) for fully programmed aligned blocks; Obsolete (O) for
erase-pending blocks. This scheme corresponds to replacement
blocks and log blocks in traditional NFTL as M-state and N-
state respectively.

• M-state: Main block where all pages reside at their
original offsets with remaining free space

• N-state: Non-sequential block containing pages not at
original offsets (used as log block)

• S-state: Sequential block with no free space
• O-state: Obsolete block requiring erasure
M-state blocks enable direct page addressing, while N-

state blocks require traversal searches. Newly allocated blocks
maintain M-state, with write operations prioritizing this state



preservation. Blocks transition to N-state when update writes
cause offset misalignment. The system reorganizes N-state
blocks through GC processes, still striving to maintain logical
offset alignment even in this state.

State transitions are governed by two merge mechanisms:
Swap operation allocates new M-state blocks when M-state
blocks reach full capacity (converting to S-state), and Smart
Merge reorganizes valid data from full N-state blocks into
new M/S-state blocks. Both merge operations are explicitly
triggered when free blocks fall below a threshold.

This FTL adopts a dual-PBN mapping mechanism per LBN,
typically maintaining M-S state pairs. When writes occur to an
LBN already mapped to an S-state block, the Swap operation
efficiently replaces the obsolete S-state block by converting
the original M-state block to the new S-state and allocating a
fresh M-state block, eliminating data migration overhead.

Fig. 2. STAFF state transition automaton.

D. Short Summary

Block mapping schemes effectively reduce SRAM utiliza-
tion but inherently mix cold and hot data within blocks. During
garbage collection, invalid pages generated by hot data trigger
frequent GC operations, while valid pages (cold data) in the
same block require compulsory migration to new blocks. This
forced data movement not only degrades GC efficiency but
also introduces redundant write operations, exacerbating write
amplification and accelerating storage wear-out.

VI. HYBRID MAPPING SCHEMES

Hybrid mapping schemes combine the low SRAM overhead
of block mapping with the operational flexibility of page
mapping. The primary research objective focuses on maintain-
ing the block mapping framework while achieving effective
segregation of hot and cold data.

A. Adaptive FTL

Adaptive FTL [10] partitions flash memory into two distinct
zones. A smaller zone employs page-level mapping with
complete metadata stored in SRAM for accelerated lookup
operations, while the remaining capacity utilizes NFTL-based
block-level mapping. Crucially, NFTL maintains full address
space coverage, whereas the page-level mapping table selec-
tively tracks specific addresses. This architecture necessitates

consulting the page-level mapping table first during logical
page number (LPN) accesses.

The zone switching mechanism operates as follows: When
an NFTL log block reaches capacity, AFTL reclassifies it as
hot data and migrates it to the page-mapped zone. Conversely,
page-mapped zone overflow triggers eviction of least-recently-
used pages back to NFTL-managed space. Since NFTL inher-
ently spans the entire address space, such evictions simplify
to standard page write operations.

B. HFTL

HFTL [11] implements hash-based hot data identification
through a three-stage workflow. Each write request undergoes
thermal detection via Bloom-filter-enhanced analysis. Con-
firmed hot pages route to page-mapped storage, while others
enter coarse-grained mapping zones.

The thermal detection engine employs parallel hash func-
tions to map each LPN across multiple reference counters.
Each write operation increments corresponding counters, en-
abling real-time heat assessment by comparing counts against
dynamic thresholds. This multi-hash design intentionally in-
troduces controlled redundancy to minimize false positive
identifications.

As an optimization over conventional hybrid mapping sys-
tems, HFTL demonstrates efficiency under stable access pat-
terns with concentrated hot pages. However, dynamic work-
load fluctuations necessitate hot page evictions to coarse-
grained zones, incurring non-trivial metadata maintenance
overhead during access pattern transitions.

C. Log-Structured Hybrid Mapping Schemes

Log-structured hybrid mapping schemes partition flash
memory into two primary areas: the Data Block Area (DBA)
and Log Block Area (LBA). The DBA employs block-level
mapping and constitutes the majority of flash capacity, while
the LBA serves as a compact update buffer for DBA. Log
blocks in LBA periodically merge with corresponding DBA
blocks to free space for subsequent updates.

Three fundamental merge operations exist:
Full merge copies all valid data from both original data

blocks and log blocks sharing the same logical block number
into newly allocated blocks, subsequently erasing the original
blocks. This method incurs substantial overhead.

• Partial merge occurs when all pages in a log block
maintain correct offsets but the block remains partially
filled. This process transfers remaining valid pages from
the data block to the log block, then replaces the original
data block with the updated log block.

• Switch merge activates when a log block contains fully
sequential pages with correct offsets. The fully populated
log block directly replaces its corresponding data block
without data migration.

• Reducing merge operation overhead constitutes the prin-
cipal design challenge for efficient log-structured hybrid
mapping implementations.



D. Block-Associative Sector Translation

As the first log-structured hybrid FTL scheme, Block-
Associative Sector Translation (BAST) [12] achieves notable
read performance improvement by storing mapping informa-
tion in SRAM. However, this design exhibits inherent limita-
tions under random access patterns: hot pages with frequent
updates rapidly fill their dedicated log blocks, while the non-
sharable log block architecture intensifies this issue, triggering
frequent merge operations. The exclusive binding mechanism
leads to low utilization of cold data’s log blocks, resulting
in inefficient storage occupation and critical shortage of free
blocks. When hot data requires new log blocks, the system is
forced to reclaim partially filled log blocks and initiate cold
block merges, creating a vicious cycle of block thrashing that
degrades performance and accelerates flash wear-out.

The scheme’s sequential page allocation policy, which man-
dates writing to the first available page in log blocks, funda-
mentally prevents efficient implementation of switch merges
or partial merges, thereby exacerbating performance penalties.

E. Fully Associative Sector Translation

The Fully Associative Sector Translation (FAST) [13], [14]
fundamentally differs from BAST by permitting random up-
dates to populate any log block, with new blocks allocated
upon saturation. This design effectively eliminates the block
thrashing issue inherent to BAST.

While FAST enhances block utilization and reduces garbage
collection frequency, it substantially increases log block recy-
cling complexity. Since any data block can share log blocks,
recycling a single log block may involve as many data blocks
as pages contained within it, a characteristic termed the ”full
association” mechanism. The association degree, quantified by
page count within log blocks, directly determines recycling
overhead.

To leverage switch merge and partial merge mechanisms,
FAST employs dedicated sequential log blocks for ordered
updates. However, modern systems’ high parallelism induces
interleaved write streams from concurrent processes, over-
whelming single sequential log blocks.

Research proposes a ”second chance” strategy during
garbage collection: retaining valid pages from victim blocks
in LBA’s tail region (following FAST’s FIFO policy) instead
of immediate merging, anticipating subsequent updates to
invalidate them. This strategy’s efficacy depends on hot data
proportion within LBA - when random updates dominate, most
valid pages remain active, making tail migration counterpro-
ductive.

F. Superblock FTL

In traditional log-based FTL schemes, BAST suffers from
overly strict block associations leading to low log block
utilization, while FAST’s loose block associations result in
excessive GC overhead. Superblock FTL [15] optimizes block
association through balanced design.

This scheme employs block clustering, organizing N logi-
cally contiguous data blocks into D-Blocks groups that share K

update blocks (U-Blocks), collectively forming a superblock.
This structure effectively exploits spatial locality characteris-
tics, aligning with modern operating systems’ preference for
contiguous logical address allocation.

Different from other hybrid FTLs, Superblock FTL imple-
ments a three-tiered mapping architecture: the primary block
mapping table resides in SRAM, while secondary and tertiary
page-level mapping information is stored in superblocks’ OOB
areas. Although this design enhances log block recycling
efficiency, the multi-layer mapping structure increases imple-
mentation complexity, and OOB storage mechanisms constrain
system flexibility.

VII. CONCLUSION

As an emerging storage medium, flash memory has gained
rapid market adoption due to its high bandwidth and low
latency, particularly for its significant improvements in random
access performance compared to HDDs. The inherent limita-
tion of in-place update prohibition necessitates flash translation
layer (FTL) as a core component embedded in firmware
or system software, which also handles critical functions
including wear leveling and garbage collection management.

Given that SSD technologies remain proprietary assets of
major semiconductor manufacturers, this paper systematically
summarizes fundamental research achievements from patents,
conference papers, and journal publications. The survey covers
three principal mapping architectures: page-level mapping
originating from NOR devices, block-level mapping widely
implemented in NAND flash, and hybrid mapping schemes.
This comprehensive review aims to provide foundational ref-
erences for researchers entering the field of flash memory
studies.

REFERENCES

[1] M. Wu and W. Zwaenepoel, “eNVy: a non-volatile, main memory
storage system,” ACM SIGOPS Operating Systems Review, vol. 28,
no. 5, pp. 86–97, 1994.

[2] M. Assar, S. Nemazie, and P. Estakhri, “Flash memory mass storage
architecture,” U.S. Patent No. 5,388,083, Feb. 1995.

[3] A. Ban, “Flash file system,” U.S. Patent No. 5,404,485, Apr. 1995.
[4] Intel Corporation, “Understanding the flash translation layer (FTL)

specification,” Santa Clara, CA: Intel Corporation, Technical Report:
AP-864, Dec. 1998.

[5] T. Shinohara, “Flash memory card with block memory address arrange-
ment,” U.S. Patent No. 5,905,993, May 1999.

[6] P. Estakhri and I. Berhanu, “Moving sequential sectors within a block of
information in a flash memory mass storage architecture,” U.S. Patent
No. 5,930,815, Jul. 1999.

[7] B.-S. Kim and G.-Y. Lee, “Method of driving remapping in flash
memory and flash memory architecture suitable therefor,” U.S. Patent
No. 6,381,176 B1, Apr. 2002.

[8] Micron Technology, Inc., “NAND flash translation layer (NFTL) 4.6.0.
NFTL User Guide Rev. L,” Boise, ID: Micron Technology, Inc., Feb.
2011.

[9] T.-S. Chung, S. Park, M.-J. Jung, et al., “STAFF: State transition
applied fast flash translation layer,” in Proc. Int. Conf. Architecture of
Computing Systems, Heidelberg, Germany, 2004, pp. 199–212.

[10] C.-H. Wu and T.-W. Kuo, “An adaptive two-level management for the
flash translation layer in embedded systems,” in Proc. 2006 IEEE/ACM
Int. Conf. Computer-Aided Design, San Jose, CA, 2006, pp. 601–606.

[11] H.-S. Lee, H.-S. Yun, and D.-H. Lee, “HFTL: Hybrid flash translation
layer based on hot data identification for flash memory,” IEEE Trans.
Consumer Electronics, vol. 55, no. 4, pp. 2005–2011, 2009.



[12] B.-S. Kim and G.-Y. Lee, “Method of driving remapping in flash
memory and flash memory architecture suitable therefor,” U.S. Patent
No. 6,381,176 B1, Apr. 2002.

[13] S.-W. Lee and B. Moon, “Design of flash-based DBMS: An in-page log-
ging approach,” in Proc. 2007 ACM SIGMOD Int. Conf. Management
of Data, Beijing, China, 2007, pp. 55–66.

[14] S.-W. Lee, D.-J. Park, T.-S. Chung, et al., “A log buffer based flash
translation layer using fully associative sector translation,” ACM Trans.
Embedded Comput. Syst., vol. 6, no. 3, 2007.

[15] J.-U. Kang, H. Jo, J.-S. Kim, et al., “A superblock-based flash translation
layer for NAND flash memory,” in Proc. 6th ACM & IEEE Int. Conf.
Embedded Software, San Francisco, CA, 2006, pp. 161–170.


