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Abstract
Despite the recent success of language models
(LMs) in natural language understanding (NLU),
there are growing concerns about LMs’ lack of log-
ical reasoning abilities resulting in poor generaliza-
tion and robustness. Facing these concerns, neuro-
symbolic integration may be a solution, which
guides neural networks to understand the whole
reasoning process by symbolic reasoners. In this
paper, we propose a generative-symbolic model to
benefit the logical reasoning in natural language
understanding. The experiment on the CLUTRR
dataset shows that this neural-symbolic model per-
forms better than the corresponding neural model.

1 Introduction
Language models (LMs), such as BERT [Devlin et al., 2019]
and RoBERTa [Liu et al., 2019], have achieved success in
many natural language understanding (NLU) tasks. How-
ever, there are growing concerns that these LMs cannot per-
form true reasoning based on logic [Ribeiro et al., 2019;
Sen and Saffari, 2020; Sugawara et al., 2020]. An expected
solution is the neuro-symbolic integration, which combines
the extraordinary perception of neural networks and the sta-
ble reasoning ability of symbolic systems [Dai et al., 2019].
However, it is still challenging for adopting available neuro-
symbolic frameworks to NLU directly because of two rea-
sons: 1) many NLU tasks cannot be described through sim-
ple rules, making it difficult to establish the rule system; 2)
the symbolic system cannot backpropagate gradients to the
neural network directly.

Inspired by [Li et al., 2020], we propose a generative-
symbolic model (GSM) to solve the logical reasoning prob-
lem defined on the CLUTRR dataset [Sinha et al., 2019].
This dataset is a pure dataset to benchmark logical reason-
ing ability only in the field of kinship. Therefore, we can
provide rule system with the simple form of rel1(x, y) ∧
rel2(y, z) → rel3(x, z). For the example shown in Fig-
ure 1, the reasoning process can be described by a rule:
Mother(Carol,Kristin) ∧Mother(Kristin, Justin)→
Grandmother(Carol, Justin).

∗Corresponding Authors

Context: Kristin and her son Justin went to visit 
her mother Carol on a nice Sunday afternoon. They 
went out for a movie together and had a good time.
Question: How is Carol related to Justin?
Answer: Grandmother. 

Figure 1: An example of the logical reasoning problem.

Based on such the rule system, our proposed GSM first
includes a generative neural model to perceive information
from contexts and build the reasoning process composed of
a sequence of rules. According to pre-defined rules, GSM
could make logical reasoning directly. To train the genera-
tive model without the supervision of the reasoning process,
we adopt a Metropolis-Hastings sampler to sample pseudo la-
bels to supervise the learning process [Li et al., 2020]. The
experiment shows that GSM has better generalization and ro-
bustness than end-to-end neural models as it can capture the
correct logic to make the decision.

In conclusion, our contributions include:
• We propose a neuro-symbolic model, GSM, which can

be adopted to the logical reasoning in NLU.
• The experiment on the CLUTRR dataset helps us to ana-

lyze the pros and cons of neural-symbolic integration in
the field of natural language understanding.

2 Related Work
2.1 Logical Reasoning in NLU
Logical reasoning is one of the most widely used rea-
soning forms in NLU. Most classical natural language in-
ference tasks, such as SNLI [Bowman et al., 2015] and
MNLI[Williams et al., 2018], are strongly related to the log-
ical reasoning form. With the great success of LMs on these
datasets, logical reasoning is considered a solved problem.
However, some recent question-answering studies have re-
vealed that state-of-the-art LMs still lack the logical rea-
soning ability. Evaluations on LogiQA [Liu et al., 2020]
and ReClor [Yu et al., 2020] have exposed that such mod-
els cannot truly understand the logical rules and perform
deduction. Meanwhile, experiments on CLUTRR [Sinha
et al., 2019] show neural models’ lack of robustness and
generalization ability when making logical reasoning, as



they tend to capture spurious correlations rather than un-
derstand the reasoning process [Kaushik and Lipton, 2018;
Sugawara et al., 2020].

2.2 Neuro-Symbolic Integration
Neuro-symbolic integration is a concept that combines con-
nectionism and symbolism to make machines have better per-
ception and reasoning abilities [Kim et al., 2020]. Implicit
integration methods include constructing logical neural archi-
tectures [Saralajew et al., 2019; Chen et al., 2020] and map-
ping symbolic rules to the feature spaces [Xu et al., 2018;
Li and Srikumar, 2019]. These methods provide logical con-
straints, but they are not fully capable of supervising mod-
els learning logical reasoning. Explicit methods are to com-
plete the perception and reasoning processes in two spaces
and interact through specific methods, such as logic program-
ming [Dai et al., 2019] and reinforcement learning [Liang et
al., 2018].

3 Problem Setting
In the logical reasoning problem, the final objective is to find
a model F that maps contexts x and a set of pre-defined rules
R to the ground truth y [Dai et al., 2019]. Therefore, the
expected model should satisfy the condition in Eq 1.

∀(x, y) ∈ D(F (x,R) |= y) (1)

However, it is hard to directly find a neural model F that
can effectively model x ∪R→ y because the reasoning pro-
cess withR is non-differentiable. Neuro-symbolic integration
provides a novel solution to solve the problem by introduc-
ing a mediator z to decouple the model F to a neural model
nn and a symbolic reasoner (represented by the ruleset R).
Therefore, the Eq 1 can be rewritten as Eq 2,where |= stands
for logical entailment.

∀(x, y) ∈ D(z = nn(x,R), z ∪R |= y) (2)

4 Methodology
Based on the above definition, GSM includes the perceptual
neural network, symbolic reasoner (a set of rules R), and the
training module that end-to-end train the whole models.

4.1 Neural Encoder
Based on the analysis on CLUTRR, z can be defined as
the reasoning process consisting of a sequence of rules.
Therefore, the GSM adopts an LSTM-based encoder-decoder
framework to generate z. To compare with the neural net-
works, we take three baselines of CLUTRR (BiLSTM, fixed
BERT, and fixed RoBERTa) as the encoder and a modified
LSTM-based decoder.

4.2 Semi-Supervised Training Module
Based on the Eq 2, the final objective is to maximize the prob-
ability pθ(y|x,R), where θ represents parameters to be opti-
mized. To calculate the objective probability by the mediator
z, we can marginalize over z based on the independent condi-
tion (x ⊥ y|z), shown in Eq 3, where p(y|z,R) is generated

by R without parameters, and pθ(z|x,R) is generated by the
neural network with parameters θ.

p(y|x,R) =
∑
z

p(y, z|x,R)

=
∑
z

p(y|z,R)pθ(z|x,R) (x ⊥ y|z)
(3)

Based on the maximum likelihood estimation, the deriva-
tion of the likelihood is shown in Eq 4.

∇θL = ∇θ log p(y|x,R) =
∇θp(y|x,R)
p(y|x,R)

=
∑
z

p(z|x, y,R)∇θ log pθ(z|x,R)

= Ez∼p(z|x,y,R)[∇θ log pθ(z|x,R)]

(4)

Based on Eq 4, the key point is to model the objective
distribution of z ∼ p(z|x, y,R). Actually, this posterior
distribution can be simplified as Eq 5, because the effec-
tive reasoning processes should match the rules R and model
y. To avoid the computational complexity of the summa-
tion

∑
z∈{z|z∪R|=y} pθ(z|x), an alternative solution is to sam-

ple z from the posterior distribution p(z|x, y,R) through
Metropolis-Hastings (M-H) sampler.

p(z|x, y,R) =


0, , z ∪R 2 y

pθ(z|x)∑
z′ pθ(z

′|x)
, z ∪R � y

(5)

Metropolis-Hastings Sampler. To achieve M-H sampling,
we regard π(z) = p(z|x,R)∑

z′ p(z
′|x,R) as the desired stationary dis-

tribution, and design a distributionQ as the proposal distribu-
tion. Therefore, when given the current state zi and the sam-
pled state zj , the acceptance ratio can be calculated by Eq 6,
and p(z|x,R) is the probability calculated by the outputs of
the neural network. To ensure the convergence of the desired
distribution, the sampling process will iterateN times. As the
neural network is difficult to generate the correct z once, we
always accept the sample for the first iteration. The algorithm
is shown in Alg 1. Based such a sampler, we will introduce
how to sample s fromQ and calculate the probability pnn and
the acceptance ratio α.

α(zi, zj) = min{π(zj)Q(zi|zj)
π(zi)Q(zj |zi)

, 1}

=


1, zi ∪R 2 y

min{p(zj |x,R)Q(zi|zj)
p(zi|x,R)Q(zj |zi)

, 1}, zi ∪R � y

(6)

One-Step Sampler. To sample z, we introduce a search
method. As mentioned above, each z consists of a sequence
of rules. when given the rule’s head (rel3 of rel1 ∧ rel2 →
rel3 in CLUTRR), we can randomly search the rule’s body
(rel1 and rel2) based on R. Therefore, the one-step sampling
can be executed by back adjusting the rule sequence from the
end to the beginning. Based on such the sampler, although



Algorithm 1: M-H Sampler.
Input: Probability pnn(·|x,R); Step N ; Q(·|z).
Output: Sampled z∗

1 Sample z(0) ∼ pnn(·|x,R);
2 for t = 1 to N do
3 Sample z ∼ Q(·|z(t));
4 if t == 1 then
5 z(t+1) = z
6 else
7 Sample u ∼ U(0, 1);
8 α = min{ pnn(z|x,R)Q(z(t)|z)

pnn(z(t)|x,R)Q(z|z(t)) , 1};
9 if u ≤ α then

10 z(t+1) = z
11 else
12 z(t+1) = z(t)

13 end
14 end
15 end
16 return z∗ = z(N)

Q cannot be given, Q(zi|zj)
Q(zj |zi) can be calculated directly. When

given a rule’s head r, we define a function G(r,R) to repre-
sent how many rules in R will imply r. For two mediators zi
and zj , their sequences of rule’s head can be extracted as rki
and rkj . Then Q(zi|zj)

Q(zj |zi) can be calculated by Eq 7.

Q(zi|zj)
Q(zj |zi)

=

∏
r∈{rkj |rkj 6=rki }

G(r,R)∏
r′∈{rki |rki 6=rkj }

G(r′, R)
(7)

4.3 Loss Function
The sampled z∗ is regarded as the pseudo label to train GSM.
The loss function can be computed by the cross-entropy loss
L = CE(z, z∗). Based on this method, our neuro-symbolic
network can be optimized in a semi-supervised manner that
only takes advantage of the final label y and logical rules R.

5 Experiment
5.1 Dataset and Baselines
We experiment on CLUTRR [Sinha et al., 2019], which is a
logical benchmark dataset [Gontier et al., 2020]. The origi-
nal dataset provides contexts (including stories and questions)
and labels (kinships) as input-output pairs (x, y). The logical
reasoning process z can be simplified as a sequence of rules
of kinships, such as Grandmother : −Mother,Mother.
To evaluate GSM, we select two baselines from [Sinha et al.,
2019], Bi-LSTM, and BERT as encoders to establish GSM.
Although GAT [Velickovic et al., ] and CTP [Minervini et al.,
2020] can perform better on CLUTRR, they attempts learn
from the structural triplets but not from the raw texts. Be-
sides, DeepProbLog [Manhaeve et al., 2018] also provides
the baseline for CLUTRR, it adopts different experimental
settings from the original work [Manhaeve et al., 2021].

Figure 2: Generalization results of Bi-LSTM, BERT, and their cor-
responding GSMs.

5.2 Metrics
Generalization and robustness are two metrics defined on
CLUTRR [Sinha et al., 2019]. Generalization is the metric to
measure how models generalize to more-hop reasoning prob-
lems. We train models on 2, 3, and 4-hop instances and test on
an up-to-10-hop set. Robustness is the metric to how models
perform in different scenarios. CLUTRR provides four kinds
of datasets: (1) Clean Data; (2) Supporting Data containing
contexts with evidence to support the answer; (3) Irrelevant
Data whose contexts provide noisy expressions irrelevant to
the answer; (4) Disconnected Data with contexts that provide
noisy expressions disconnected with the query entities. In re-
ality, irrelevant datasets contain more information than clean
sets, while the latter two datasets provide more noise.

5.3 Hyper-Parameters
Hyper-parameters are shown in Table 1. For generalization,
we adopt the hyper-parameters from the original experiments
on CLUTRR [Sinha et al., 2019]. For robustness, we seach
the learning rate from [1e− 6, 1e− 5, 1e− 4, 1e− 3], while
we search L2 coefficient from [1e− 3, 1e− 4, 1e− 5].

Parameter Generalization Robustness

LR 1e-3 1e-5
L2 0 1e-3

Dropout 0 0.5
LR Decay 0 0

Epochs 100 100
ES 20 50

Optimizer ADAM ADAM

Table 1: Hyper-parameters. LR: learning rate; L2: L2 coefficient;
ES: early stop.

5.4 Results of Generalization
Results of generalization are shown in Figure 2. From Fig-
ure 2, GSM performs better than their corresponding base-
lines on in-domain sets (up to 4 hops). However, GSM not
always performs better than Bi-LSTM, especially on higher-
hop reasoning problems (7 to 9-hop reasoning). Based on our
analysis, one of the reasons is that the neural generator cannot
effectively determine when to stop reasoning. Nevertheless,
the overall performance of GSM is better than the two base-
lines’ because GSM introduces the reasoning process to avoid
the spurious reasoning process.



Case 1: Positive Case

Story: Patricia was excited because today she was going to the zoo with her uncle Daniel. 

Marguerite took her son Kyle to the state fair. Daniel gave his wife, Marguerite tickets so 

that they could get in. Ethel planned a trip to the zoo for her brother, Michael. They had a 

great time. Kyle played basketball with his brother Michael. Paul went to the game with his 

sister Patricia. Gayle and her son, Paul, went to the park, and had a wonderful time.

Question: What is the relationship between Ethel and Gayle?

Answer: Niece

Prediction: Niece

Case 2: Negative Case

Story: Daniel's mother, Madonna, helped him raise his daughter, Ethel. Carlos bought 

tickets for him to see the game with his nephew, Jerry. Kyle was playing checkers with his 

brother Jerry. Kyle's sister Ethel was waiting to play. Carlos took his daughter Patricia to the 

baseball game. Patricia's brother Paul hates baseball and stayed home. 

Question: What is the relationship between Paul and Madonna?

Answer: Grandson

Prediction: Nephew

Figure 3: Case study with a positive case and a negative case.

Train Test Bi-LSTM BERT
Base GSM Base GSM

Clean

Clean 99.1 68.5 29.6 33.3
Supporting 45.5 66.3 26.7 26.7
Irrelevant 49.0 77.0 29.0 44.0
Disconnected 21.0 36.0 28.0 30.0

Supporting

Clean 67.3 53.5 19.8 28.7
Supporting 67.5 48.6 32.5 43.9
Irrelevant 66.6 47.4 18.8 24.8
Disconnected 48.8 51.0 24.2 18.0

Irrelevant

Clean 51.6 63.0 14.1 28.0
Supporting 55.5 64.7 28.9 19.0
Irrelevant 51.8 62.9 15.3 68.6
Disconnected 42.0 68.3 23.3 28.7

Disconnected

Clean 35.2 63.0 13.3 56.0
Supporting 53.1 67.0 21.9 40.0
Irrelevant 43.1 53.5 27.2 29.7
Disconnected 33.3 52.8 26.1 57.5

Table 2: Robustness results.

5.5 Results of Robustness
Table 2 shows the results of robustness experiments. In most
cases, the performance of GSM on the out-of-domain evalu-
ation is better than its corresponding baseline model, except
Bi-LSTM trained in the supporting scenarios. As mentioned
above, the supporting datasets provide more information than
the other three kinds of datasets, resulting in better robustness
of end-to-end Bi-LSTM. This means that end-to-end neural
models benefit from more evidence provided by the datasets.
On the contrary, GSM is more stable and robust than end-
to-end baselines when trained in the different scenarios as it
introduces the reasoning process to constrain the reasoning
result. This is evidence that the proposed reasoning process
benefits organizing relevant information and avoiding inter-
ference from irrelevant information.

5.6 Case Study
Based on the analysis of generalization and robustness, we
will further discuss the interpretability of GSM through two
typical cases. Figure 3 shows a positive case (Left) and a
negative one (right). The positive case shows that GSM can

completely capture the true reasoning process, which illus-
trates its interpretability. Although the negative case reflects
GSM cannot make the correct predictions to some degree, we
can also trace back why GSM mispredicts the “grandson” as
“nephew”. In reality, GSM fails to perceive both two kinships
in “Daniel’s mother, Madonna, helped him raise his daughter,
Ethel”, so that GSM incorrectly identifies the “daughter” as
the “sister”. Although the subsequent reasoning is correct, the
whole reasoning process is invalid. This case reflects a fea-
ture of GSM that GSM has strong reasoning ability but poor
perceptual ability because the supervision signals concentrate
more on the reasoning process.

5.7 Limitations
Based on the above analysis, the biggest challenge for GSM
is that it can only effectively constrain the reasoning process
but cannot effectively control the perceptual process, as there
are no ground-truth labels for the mediator’s generation. We
also summarize other limitations of GSM below.

• As a result of the lack of supervision, GSM cannot
quickly converge in the cold start setting. In reality, it
will bring further improvements when adopting neural
models with better perceptual abilities.

• It is challenging to automatically stop the generative
process, which leads to relatively insignificant improve-
ments in the generalization experiment.

• GSM cannot automatically distinguish different types of
reasoning forms, making it hard to apply in scenarios
where multiple reasoning forms are coupled in the con-
text.

6 Conclusion
In this paper, we propose a neuro-symbolic model, GSM, to
generate the reasoning process in a semi-supervised manner.
Results on CLUTRR show that GSM has better generaliza-
tion and robustness than end-to-end neural models, although
GSM has many limitations that hinder its application in more
general language scenarios. Also, this work motivates fu-
ture studies on 1) more general paradigms to describe diverse
reasoning forms in NLU tasks; 2) better neural encoders to
enhance the models’ perception ability; 3) more human-like
neuro-symbolic systems to complete complex NLU tasks.
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[Ribeiro et al., 2019] Marco Túlio Ribeiro, Carlos Guestrin,
and Sameer Singh. Are red roses red? evaluating consis-
tency of question-answering models. In ACL, pages 6174–
6184, 2019.

[Saralajew et al., 2019] Sascha Saralajew, Lars Holdijk,
Maike Rees, Ebubekir Asan, and Thomas Villmann.
Classification-by-components: Probabilistic modeling of
reasoning over a set of components. In NeurIPS, pages
2788–2799, 2019.

[Sen and Saffari, 2020] Priyanka Sen and Amir Saffari.
What do models learn from question answering datasets?
In EMNLP, pages 2429–2438, 2020.

[Sinha et al., 2019] Koustuv Sinha, Shagun Sodhani, Jin
Dong, Joelle Pineau, and William L. Hamilton. CLUTRR:
A diagnostic benchmark for inductive reasoning from text.
In EMNLP, pages 4505–4514, 2019.

[Sugawara et al., 2020] Saku Sugawara, Pontus Stenetorp,
Kentaro Inui, and Akiko Aizawa. Assessing the bench-
marking capacity of machine reading comprehension
datasets. In AAAI, pages 8918–8927, 2020.

[Velickovic et al., ] Petar Velickovic, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
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