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ABSTRACT

When tackling forecasting problems that involve multiple time-series features,
existing methods for capturing inter-feature information typically fall into three
categories: complete-multivariate, partial-multivariate, and univariate. Complete-
multivariate methods compute relationships among the entire set of features,
whereas univariate cases ignore inter-feature information altogether. In contrast
to these two, partial-multivariate methods group features into clusters and cap-
ture inter-feature relationships within each cluster. However, existing partial-
multivariate methods deal only with specific cases where there is a single way of
grouping so once the grouping way is selected, it remains unchanged. Therefore,
we introduce a generalized version of partial-multivariate methods where grouping
ways are sampled stochastically (called stochastic partial-multivariate methods),
which can incorporate the deterministic cases using Dirac delta distributions. We
propose SPMformer, a Transformer-based stochastic partial-multivariate model,
with its training algorithm. We demonstrate that SPMformer outperforms various
complete-multivariate, deterministic partial-multivariate, and univariate models
in various forecasting tasks (long-term, short-term, and probabilistic forecasting),
providing a theoretical rationale and empirical analysis for its superiority. Addi-
tionally, by proposing an inference method leveraging the inherent stochasticity
in SPMformer, the forecasting accuracy is further enhanced. Finally, we highlight
other advantages of SPMformer: efficiency and robustness under missing features.

1 INTRODUCTION

Time-series forecasting is a fundamental machine learning task that aims to predict future events
based on past observations, requiring to capture temporal dynamics. A forecasting problem often
includes interrelated multiple variables (e.g., multiple market values in stock price forecasting). For
decades, the forecasting task with multiple time-series features has been of great importance in various
applications such as health care (Nguyen et al., 2021; Jones et al., 2009), meteorology (Sanhudo
et al., 2021; Angryk et al., 2020), and finance (Qiu et al., 2020; Mehtab & Sen, 2021).

For this problem, there have been developed a number of methods, including linear models (Chen
et al., 2023; Zeng et al., 2022), state-space models (Liang et al., 2024; Gu et al., 2022), recurrent neural
networks (RNNs) (Lin et al., 2023; Du et al., 2021), convolution neural networks (CNNs) (Wang
et al., 2023; Liu et al., 2022a), and Transformers (Zhou et al., 2021; Liu et al., 2022b). These methods
are typically categorized based on how they capture inter-feature information, falling into three
types: (i) univariate, (ii) partial-multivariate, and (iii) complete-multivariate methods. Univariate
methods capture only temporal dependencies, while complete-multivariate methods incorporate
additional modules to account for complete dependencies among all the given features. In contrast,
partial-multivariate methods divide the feature set into multiple subsets and capture dependencies
within each subset. The differences between the three methods are illustrated in Figure 1.

Partial-multivariate methods, which focus on relationships among mutually significant features, can
enhance performance by excluding insignificant features that may act as noise. However, these
methods often face limitations due to their deterministic approach to grouping (Aguiar et al., 2022;
Pathak et al., 2021). Once optimal clusters are determined through some specific procedures, they
remain fixed throughout training and inference. This rigidity fails to accommodate more complex
scenarios where features may be grouped in various ways. For instance, stock prices might be

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Complete-Multivariate Partial-Multivariate (𝑺=3) Univariate

Time-Series 
Features

Single Input 
Instance

Module to capture 
inter-feature relationships

Forecasting 
Model

Forward 
Path

Data 
Pre-Processing

D
et

er
m

in
is

tic
 S

am
pl

in
g 

/
St

oc
ha

st
ic

Sa
m

pl
in

g

Figure 1: Visualization of three types of methods where S is the size of each cluster (subset) in
partial-multivariate methods. In partial-multivariate methods, traditional approaches adhere to a
single grouping strategy throughout training and inference. In contrast, we propose to introduce
variability by stochastically sampling from all possible grouping configurations.

categorized by different criteria such as market capitalization (e.g., inclusion in the S&P 500),
industry sectors (like financials, healthcare, or energy), or geographic regions.

To address this limitation, we introduce a generalized version of partial-multivariate methods called
Stochastic Partial-Multivariate methods. In this approach, a grouping way is not fixed but sampled
stochastically—note that deterministic methods can be included by setting the sampling distributions
of the grouping strategies to distributions such as Dirac delta. To implement this concept, we propose
Stochastic Partial-Multivariate Transformer, SPMformer. Inspired by Nie et al. (2023), SPMformer is
capable of capturing any partial relationship through a shared Transformer by individually tokenizing
features and computing attention maps for selected features. Additionally, we introduce a basic form
of training algorithms for SPMformer that are based on random sampling, under a usual assumption
that the prior knowledge on how to group features into subsets is unavailable.

In experiments, we demonstrate that SPMformer outperforms existing complete-multivariate, (de-
terministic) partial-multivariate, or univariate models in various forecasting tasks including long-
term, short-term, and probabilistic forecasting. To explain the superiority of our stochastic
partial-multivariate method against the other methods, we provide a theoretical analysis based
on McAllester’s bound on generalization errors (McAllester, 1999) with supporting empirical anal-
yses. To further enhance forecasting performance, we introduce a simple inference technique that
leverages the inherent stochasticity of stochastic partial-multivariate methods. Finally, we show
other useful properties of SPMformer: efficient inter-feature attention costs against other Transform-
ers including inter-feature attention modules, and robustness under missing features compared to
complete-multivariate models. To sum up, our contributions are summarized as follows:

• We introduce the novel concept of Stochastic Partial-Multivariate methods in the realm of time-
series forecasting, generalizing existing forecasting models. To realize this concept, we develop
the Transformer-based SPMformer along with its training algorithm.

• Our extensive experimental results demonstrate that SPMformer outperforms recent baselines
across various forecasting tasks, including long-term, short-term, and probabilistic forecasting.
We also provide a theoretical analysis to substantiate the superiority of our model, supported by
empirical evidence.

• We propose an inference technique for SPMformer that further enhances forecasting accuracy by
leveraging the inherent stochasticity of stochastic partial-multivariate methods. Additionally, we
identify several advantageous properties of SPMformer compared to complete-multivariate models,
including efficient inter-feature attention costs and robustness in scenarios with missing features.

2 RELATED WORKS

Complete-multivariate and univariate methods. To solve the forecasting problem with multiple
features, it is important to discover not only temporal but also inter-feature relationships. As for inter-
feature relationships, some existing studies often aim to capture full dependencies among a complete
set of features, which we call complete-multivariate methods. For example, some approaches
encode all features into a single hidden vector, which is then decoded back into feature spaces after
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Figure 2: Architecture of Stochastic Partial-Multivariate Transformer (SPMformer). To emphasize
row-wise attention operations, we enclose each row within bold frames before feeding them into the
attention modules. In this figure, the subset size S is 3.

some processes. This technique has been applied to various architectures, including RNNs (Che
et al., 2016), CNNs (Bai et al., 2018), state-space models (Gu et al., 2022), and Transformers (Wu
et al., 2022). Conversely, other complete-multivariate studies have developed modules to explicitly
capture these relationships. For instance, Zhang & Yan (2023) computes D ×D attention matrices
among D features by encoding each feature into a separate token, while Wu et al. (2020) utilizes
graph neural networks with graphs of inter-feature relationships. Additionally, Chen et al. (2023)
parameterizes a weight matrix W ∈ RD×D, where each element in the i-th row and j-th column
represents the relationship between the i-th and j-th features. Unlike complete-multivariate methods
which fully employ inter-feature information, new methods have recently been developed: univariate
methods. (Zeng et al., 2022; Xu et al., 2024; Nie et al., 2023; Wang et al., 2024; Lee et al., 2024)
These methods capture temporal dynamics but ignore the inter-feature information by processing
each of D features separately as independent inputs.

Deterministic partial-multivariate methods. Unlike complete-multivariate and univariate methods,
partial-multivariate methods aim to capture partial relationships among features by grouping them
into various subgroups and computing relationships within these subgroups. Traditional partial-
multivariate methods typically search for a single optimal grouping method, which is then applied
consistently throughout all training or inference stages; these are referred to as deterministic methods.
For instance, in Pathak et al. (2021), the optimal grouping is determined using truncated SVD and
K-means clustering, with different autoregressive models assigned to each cluster. Conversely, Aguiar
et al. (2022) introduced training-based methods that simultaneously tackle prediction and clustering
tasks to identify an optimal grouping. In contrast to these approaches, we propose a fundamentally
different method for capturing partial relationships among features: we maintain the grouping method
as stochastic rather than fixed, offering a more flexible modeling strategy.

3 METHOD

3.1 STOCHASTIC PARTIAL-MULTIVARIATE FORECASTING MODEL

In this section, we provide the formulation of the stochastic partial-multivariate forecasting model.
To simplify a notation, we denote the set of integers from N to M (inclusive of N and exclusive of
M ) as [N : M ] (i.e., [N : M ] := {N,N + 1, . . . ,M − 1}). Also, when the collection of numbers is
given as indices for vectors or matrices, it indicates selecting all indices within the collection. (e.g.,
xt=[0,T ],d=[0,D] := {{xt,d}t∈[0:T ]}d∈[0:D]). Let xt,d ∈ R the t-th observation of the d-th feature,
and x[0:T ],d and x[T :T+τ ],d the d-th feature’s historical inputs and ground truth of future outputs
with T and τ indicating the length of past and future time steps, respectively. Assuming D denotes
the number of features, then a stochastic partial-multivariate forecasting model f is formulated as
follows:

x̂[T :T+τ ],F = f(x[0:T ],F,F), F ∼ P(F) where Ω = {F|F ⊂ [0 : D], |F| = S}, (1)

where Ω represents the sample space of distribution P . After sampling a subset F of size S from P ,
a model f uses the feature indices in F and their historical observations x[0:T ],F to forecast the future
values of the selected features x̂[T :T+τ ],F. It is worth noting that this formulation generalizes other
forecasting models. Specifically, when S = 1, it represents a univariate model; when 1 < S < D, it
corresponds to a partial-multivariate model; and when S = D, it describes a complete-multivariate
model. Additionally, in partial-multivariate scenarios, when P is constrained to assign probabilities
only to specific subsets within Ω, like Dirac delta distributions, the model becomes deterministic.
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3.2 STOCHASTIC PARTIAL-MULTIVARIATE TRANSFORMER (SPMFORMER)

For deterministic partial-multivariate or complete-multivariate cases, the architectures are required
to capture perpetually unchanging (i.e., static) relationships among features. In other words, F
in equation 1 is always the same throughout training or inference. However, for stochastic partial-
multivariate cases, F can vary when re-sampled, requiring to ability to deal with dynamic relationships.
Therefore, inspired by recent Transformer-based models using segmentation (Nie et al., 2023; Zhang
& Yan, 2023), we devise SPMformer which addresses this problem by encoding each feature into
individual tokens and calculating attention maps only with the feature tokens in F. The overall
architecture is illustrated in Figure 2.

After sampling F in equation 1, the historical observations of selected features x[0:T ],F ∈ RT×S are
encoded into latent tokens h(0) ∈ RNS×S×dh via a segmentation process where NS is the number of
segments and dh is hidden size. The segmentation process is formulated as follows:

h
(0)
b,i = Linear(x

[ bT
NS

:
(b+1)T

NS
],Fi

) + eTime
b + eFeat

Fi
, b ∈ [0, NS ], i ∈ [0, S], (2)

where Fi denotes the i-th element in F. A single linear layer maps observations into latent space with
learnable time-wise and feature-wise positional embeddings, eTime ∈ RNS×dh and eFeat ∈ RD×dh .
In most scenarios, we can reasonably assume the input time span T to be divisible by NS by adjusting
T during data pre-processing or padding with zeros as in Zhang & Yan (2023) and Nie et al. (2023).

Subsequently, h(0) is processed through L SPMformer blocks. Each block is formulated as follows:

h̄(ℓ−1) = h(ℓ−1) + Feature-Attention(h(ℓ−1), Temporal-Attention(h(ℓ−1))), (3)

h(ℓ) = h̄(ℓ−1) + MLP(h̄(ℓ−1)), ℓ = 1, . . . , L. (4)

MLP in equation 4 operates both feature-wise and time-wise, resembling the feed-forward networks
found in the original Transformer (Vaswani et al., 2017). As shown in equation 3, there are two types
of attention modules:

∀i ∈ [0 : S], Temporal-Attention(h)[0:NS ],i = MHSA(h[0:NS ],i,h[0:NS ],i,h[0:NS ],i), (5)

∀b ∈ [0 : NS ], Feature-Attention(h,v)b,[0:S] = MHSA(hb,[0:S],hb,[0:S],vb,[0:S]). (6)

MHSA(Q,K,V) denotes the multi-head self-attention layer like in Vaswani et al. (2017) where Q,K,
and V are queries, keys and values. While temporal attention is responsible for capturing temporal
dependencies, feature attention mixes representations among features in F.

Starting with initial representations h(0), SPMformer encoder with L blocks generates final represen-
tations h(L). These representations are then passed through a decoder to forecast future observations.
Similar to Nie et al. (2023), the concatenated representations h(L)

[0:NS ],i are mapped to future observa-
tions x[T,T+τ ],Fi

via a single linear layer. For probabilistic forecasting, we replace this decoder with
a decoder in Salinas et al. (2019) which takes h(L)

[0:NS ],i as input and outputs the mean and variance of
output distributions.

3.3 TRAINING ALGORITHM FOR SPMFORMER

To train SPMformer, the process to sample F from P is necessary. Ideally, P should assign higher
probabilities to subsets of features that are highly correlated. However, prior knowledge about the
relationships between features is usually unavailable. Therefore, we propose a basic form of training
algorithm for SPMformer where P is non-informative (i.e., uniform distribution).1 In each iteration
of training, NU subsets are sampled from the uniform distribution and SPMformer processes them
separately. However, this training algorithm may result in redundancy or omission of some features in
each iteration, as some features might be selected multiple times while others might never be chosen
across the NU trials.

1Despite the lack of prior knowledge, it is advantageous to tailor P to the dataset using training or other
algorithms. However, we propose non-informative cases for two main reasons: (i) Since stochastic methods
are relatively unexplored, it is essential to first investigate the simplest form of training algorithm using non-
informative distributions, and (ii) our SPMformer achieves the best performance even with this non-informative
distributions. We leave it to future work to find or train optimal distribution P .
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Algorithm 1: Training Algorithm
Input: # of features D, # of subsets NU , Past

obs. x[0:D], Future obs. y[0:D]

1 while is_converge do
2 Sample all Fg with random partition;
3 for g ← 0 to NU − 1 do
4 F = Fg;
5 ŷF = SPMformer(xF,F);
6 Lossg = Loss(ŷF,yF);

// For-loop is processed in
parallel with masked attn.

7 Loss =
∑

g∈[0:NU ] Lossg/NU ;
8 Train SPMformer with Loss;

9 return Trained SPMformer

To address this issue, we propose a training al-
gorithm based on random partitioning (see Al-
gorithm 1) — note that for-loop in while-loop
can be dealt with in parallel with attention mask-
ing techniques. In this algorithm, D features
are partitioned into NU = D/S disjoint sub-
sets {Fg}g∈[0:NU ] where Fg ⊂ [0 : D], |Fg| =
S,

⋂
g∈[0:NU ] F

g = ϕ,
⋃

g∈[0:NU ] F
g = [0 : D]

— we assume that D is divisible by S. If not,
we can handle such cases by repeating some fea-
tures, as explained in Appendix B. This scheme
can minimize the redundancy and omission of
features in each iteration. We adopt the training
algorithm based on random partitioning as our
main training algorithm. Appendix E provides a
comparison of these two algorithms in empirical experiments.

3.4 INFERENCE TECHNIQUE FOR SPMFORMER

After training SPMformer, we can measure inference score using Algorithm 1 without line 8. During
inference time, leveraging stochasticity of SPMformer, we sample {Fg}g∈[0:NU ] randomly NI times,
and repeat the inference process NI times with these sampled subsets, averaging NI outputs to obtain
the final outcomes. In Section 4.3, we observe that this inference technique enhances forecasting
performance as NI increases. It is worth noting that without any additional computation cost (i.e
NI = 1), SPMformer still achieves state-of-the-art performance against baselines in Appendix F.

Under the assumption that sampling subsets of highly correlated features improves performance, we
offer our conjecture on why our inference technique enhances forecasting accuracy. Let P(F∗) = p
be the probability that we sample a specific subset F∗. Then, the probability of sampling F∗ at
least once out of NI trials is 1− (1− p)NI . Given that 0 ≤ p ≤ 1, 1− (1− p)NI increases as NI

increases. By treating a specific subset F∗ as one that includes mutually significant features, our
inference technique with a large NI increases the likelihood of selecting a subset including highly
correlated features at least once, thereby improving forecasting performance.

3.5 THEORETICAL ANALYSIS ON SPMFORMER

In this section, we provide theoretical reasons for superiority of our stochastic partial-multivariate
models over univariate, complete-multivariate, and deterministic partial-multivariate ones, based on
PAC-Bayes framework, similar to other works (Woo et al., 2023; Amit & Meir, 2019; Valle-Pérez &
Louis, 2020). Let a neural network f be a stochastic partial-multivariate model which samples subsets
F of S size as defined in equation 1. Also, T is a training dataset which consists of m instances
sampled from the true data distribution. H denotes the hypothesis class of f with P(h) and Q(h)
representing the prior and posterior distributions over the hypotheses h, respectively. Then, based
on McAllester (1999), the generalization bound of f is given by:

Theorem 1. Under some assumptions, with probability at least 1− δ over the selection of the sample
T , we have the following for generalized loss l(Q) under posterior distributions Q.

l(Q) ≤

√
−H(Q) + log 1

δ + 5
2 logm+ 8 + C

2m− 1
, (7)

where H(Q) is the entropy of Q, (i.e., H(Q) = Eh∼Q[− logQ(h)]) and C is a constant.

In equation 7, the upper bound depends on m and −H(Q), both of which are related to S. Selecting
subsets of S size from D features leads to

(
D
S

)
possible cases, affecting m (i.e., m ∝

(
D
S

)
). This is

because each subset is regarded as a separate instance as in Figure 1. Also, the following theorem
reveals relationships between S and −H(Q):

Theorem 2. Let H(QS) be the entropy of a posterior distribution QS with subset size S. For S+

and S− satisfying S+ > S−. H(QS+) ≤ H(QS−).
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Theorem 2 is intuitively connected to the fact that capturing dependencies within large subsets of size
S+ is usually harder tasks than the case of small S−, because more relationships are captured in the
case of S+. As such, the region of hypotheses that satisfies conditions for such hard tasks would be
smaller than the one that meets the conditions for a simple task. In other words, probabilities of a
posterior distribution QS+

might be centered on a smaller region of hypotheses than QS− , leading to
decreasing the entropy of QS+

. Refer to Appendix A for full proofs.

Given the unveiled impacts of S on m and −H(Q), we can estimate S∗ which is S leading to the
lowest upper-bound. When considering only the influence of m, S∗ is D/2, resulting in the largest(
D
S

)
. On the other hand, considering only that of −H(Q), S∗ is 1, because −H(Q) decrease as S

decreases. Therefore, considering both effects simultaneously, we can think 1 < S∗ < D/2, which
means stochastic partial-multivariate models (1 < S < D) are better than univariate models (S = 1)
and complete-multivariate (S = D) and the best S∗ is between 1 and D/2. Furthermore, when
comparing stochastic and deterministic partial-multivariate models, stochastic models exhibit a lower
generalization bound. This is because stochastic models sample from all

(
D
S

)
possible subsets, while

deterministic models are limited to a few predefined subsets, resulting in a lower m compared to the
stochastic approach. This analysis is supported by our empirical experimental results in Section 4.3.
As of now, since we do not evaluate H(Q) exactly, we cannot compare the magnitudes of effects by
m and −H(Q), leaving it for future work. Nevertheless, our analysis from the sign of correlations
between S and two factors in the upper-bound still is of importance in that it aligns with our empirical
observations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For long-term and probabilistic forecasting, we use the seven real-world datasets: (i-iv)
ETTh1, ETTh2, ETTm1, and ETTm2 (D = 7), (v) Weather (D = 21), (vi) Electricity (D = 321),
and (vii) Traffic (D = 862), similar to previous works (Zhou et al., 2021; Salinas et al., 2019). For
each dataset, four settings are constructed with different forecasting lengths τ , which is in {96, 192,
336, 720} with historical length T = 512. Also, for short-term forecasting, we use M5 (Makridakis
et al., 2022), selecting 100 items randomly in the same store(i.e., D = 100) with T = 256 and
τ = 28 (4 weeks).

Baselines. For both long-term and short-term forecasting, we include a variety of models in our base-
lines. For complete-multivariate baselines, we use Crossformer (Zhang & Yan, 2023), TimesNet (Wu
et al., 2023), TSMixer (Chen et al., 2023), DeepTime (Woo et al., 2023), iTransformer (Liu et al.,
2024), RLinear (Li et al., 2023), and ModernTCN (donghao & wang xue, 2024). On the univariate
side, the baselines include PatchTST (Nie et al., 2023), FITS (Xu et al., 2024), and TimeMixer (Wang
et al., 2024). For deterministic partial-multivariate models, we use CAMELOT (Aguiar et al., 2022)
as a baseline. In the case of probabilistic forecasting, we include DeepAR (Salinas et al., 2019),
ForecasterQR (Wen et al., 2018), and TSDiff (Kollovieh et al., 2023). To further strengthen our
baseline set, we also include the top 8 models in long-term forecasting by attaching DeepAR decoders
to their last hidden layer.

Other settings. For long-term and short-term forecasting, SPMformer is trained with mean squared
error (MSE) between ground truth and outputs, whereas we use negative log-likelihood for proba-
bilistic forecasting like Salinas et al. (2019). As evaluation metrics, we report MSE for long-term
forecasting, MSE and root mean squared scaled error (RMSSE) for short-term forecasting, and
0.5-risk for probabilistic forecasting, following Zhou et al. (2021); Makridakis et al. (2022); Salinas
et al. (2019). For the subset size S, we use S = 3 for ETT datasets, S = 7 for Weather, S = 30 for
Electricity, S = 20 for Traffic, S = 25 for M5, satisfying 1 < S < D/2. Also, for the inference
technique of SPMformer, we set NI to 3. A detailed description of experimental settings is in
Appendix C.

4.2 FORECASTING RESULT

Table 1, Table 2, and Table 3 show evaluation metrics of representative baselines along with the
SPMformer for each task. SPMformer outperforms all baselines in 13 out of 15 cases and achieves
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Table 1: MSE in long-term forecasting tasks. For each dataset, scores are averaged over τ ∈
{96, 192, 336, 720}. The best score in each experimental setting is in boldface and the second best is
underlined.

Data Partial-Multivariate Univariate Complete-Multivariate
SPMformer CAMELOT PatchTST FITS TimeMixer Crossformer TimesNet TSMixer DeepTime iTransformer RLinear ModernTCN

ETTh1 0.392 0.405 0.413 0.406 0.411 0.570 0.487 0.412 0.423 0.479 0.409 0.404
ETTh2 0.322 0.324 0.331 0.333 0.316 1.618 0.383 0.355 0.434 0.383 0.328 0.322
ETTm1 0.343 0.356 0.353 0.358 0.348 0.427 0.422 0.347 0.354 0.407 0.359 0.351
ETTm2 0.248 0.253 0.256 0.254 0.256 1.001 0.331 0.267 0.259 0.291 0.253 0.253
Weather 0.217 0.233 0.226 0.221 0.222 0.231 0.258 0.225 0.238 0.244 0.243 0.224

Electricity 0.149 0.164 0.159 0.165 0.156 0.173 0.209 0.160 0.166 0.162 0.164 0.156
Traffic 0.382 0.413 0.391 0.418 0.388 0.527 0.621 0.407 0.425 0.382 0.418 0.396

Avg.Rank 1.143 5.571 5.571 6.286 3.571 11.000 11.143 6.000 9.000 8.286 7.000 3.143

Table 2: RMSSE and MSE in short-term forecasting tasks in M5 when τ = 28 (4 weeks).

Score Partial-Multivariate Univariate Complete-Multivariate
SPMformer CAMELOT PatchTST FITS TimeMixer Crossformer TimesNet TSMixer DeepTime iTransformer RLinear ModernTCN

MSE 7.418 7.481 8.695 8.327 7.529 7.676 8.157 7.995 8.186 7.421 8.176 7.518
RMSSE 0.803 0.811 0.879 0.869 0.814 0.837 0.851 0.847 0.854 0.810 0.848 0.809

Avg.Rank 1.000 3.500 12.000 11.000 5.000 6.000 8.500 7.000 10.000 2.500 8.500 3.000

Table 3: 0.5-risk in probabilistic forecasting tasks. For each dataset, scores are averaged over
τ ∈ {96, 192, 336, 720}.

Data Partial-Multivariate Univariate Complete-Multivariate
SPMformer CAMELOT PatchTST FITS TimeMixer TSDiff TSMixer iTransformer RLinear ModernTCN DeepAR ForecasterQR

ETTh1 0.657 1.184 1.225 0.971 0.985 1.053 0.911 0.828 0.858 0.847 1.220 1.002
ETTh2 0.348 0.683 0.706 0.547 0.633 0.861 0.678 0.477 0.506 0.401 1.253 0.943
ETTm1 0.552 1.182 1.191 0.898 0.709 0.924 0.760 0.675 0.757 0.645 1.001 0.882
ETTm2 0.273 0.664 0.666 0.497 0.460 0.716 0.459 0.345 0.400 0.317 0.791 0.713
Weather 0.723 1.562 1.563 1.247 1.626 0.987 0.828 1.161 1.152 0.861 0.919 0.606

Electricity 0.391 1.035 1.034 0.831 0.495 1.313 0.491 0.510 0.516 0.518 0.621 0.482
Traffic 0.442 1.128 1.119 0.979 0.602 1.168 0.731 0.598 0.599 0.582 0.692 0.520

Avg.Rank 1.143 9.857 10.429 7.571 6.429 9.857 5.286 4.000 5.000 3.286 9.286 5.857

the second place in the remaining two. We also provide visualizations of long-term forecasting results
of SPMformer and some baselines in Appendix G.2, which shows the superiority of SPMformer. The
scores are measured with NI = 3, and in Appendix F, we provide another long-term forecasting
result which shows that our SPMformer still outperforms other baselines even with NI = 1. We refer
the readers to Appendix G.1 for full results in each τ .

4.3 ANALYSIS

In this section, we provide some analysis on our SPMformer. We refer the readers to Appendix G for
additional experimental results.

Empirical result supporting the theoretical analysis. In Section 3.5, we think that S∗ leading to
the best forecasting performance is between 1 and D/2. To validate this analysis, we provide Table 4,
which shows that partial-multivariate settings (1 < S < D) outperform others with S = 1 or D, in
most cases. On top of that, our analysis is further supported by the U-shaped plots in Figure 3 where
the best MSE is achieved when 1 < S < D/2 and the worst one is in S ∈ {1, D}.

On top of that, to demonstrate that stochastic partial-multivariate models outperform deterministic
ones by not being restricted to a few predefined subsets, we conduct an additional experiment,
shown in Figure 4, where we vary the size of the subset pool Fall while keeping S fixed. In
the original training of SPMformer, the subset pool includes all possible cases, resulting in

(
D
S

)
possible subsets. However, in this experiment, we reduce the pool size to |Fall| = α × NU by
randomly removing some subsets, where NU is the number of subsets sampled in each iteration
and α ∈ {1, 400, 1600, 6400,Max}. The ‘Max’ condition corresponds to α yielding the full set of(
D
S

)
subsets. As shown in Figure 4, the forecasting performance improves as the size of α increases.

These experimental results align with our theoretical analyses that stochastic partial-multivariate
models achieve better performance by not being constrained to a limited number of predefined cases.
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Table 4: Comparison among three types of models by adjusting S in SPMformer. For each dataset of
long-term and probabilistic forecasting, scores are averaged over τ ∈ {96, 192, 336, 720}.

SPMformer Variants Long-Term Forecasting (MSE) Short-Term Forecasting (RMSSE) Probabilistic Forecasting (0.5-Risk)
ETTh1 ETTm1 Weather Elec. Traffic M5 ETTh1 ETTm1 Weather Elec. Traffic

S = 1 0.395 0.350 0.218 0.160 0.400 0.805 0.838 0.692 0.943 0.495 0.572
1 < S < D 0.392 0.343 0.217 0.149 0.382 0.803 0.657 0.552 0.723 0.391 0.442
S = D 0.393 0.361 0.222 0.161 0.395 0.821 0.805 0.661 0.947 0.512 0.577
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Figure 3: Test MSE by changing S.
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Figure 4: Test MSE by changing |Fall|, fixing S.
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(b) Changes in the effect of NI when S increases

Figure 5: The effect of NI on test MSE when (a) S is fixed to the selected hyperparame-
ter and (b) S changes. For (b), the y axis shows the difference of test MSE between when
NI ∈ {1, 2, 4, 8, 16, 32, 64, 128} and NI = 128.

Table 5: MSE of SPMformer with various inference techniques in long-term forecasting — note
that all variants of SPMformer are trained with the same algorithms as ours. To identify relevance
(significance) of features to others, we utilize attention scores after training SPMformer.

Inference Technique Electricity (D = 321) Traffic (D = 862)
τ=96 192 336 720 96 192 336 720

Proposed Technique with NI = 3 (Ours) 0.125 0.142 0.154 0.176 0.345 0.370 0.385 0.426
Sampling A Subset of Mutually Significant Features 0.132 0.148 0.174 0.205 0.352 0.372 0.386 0.428

Sampling A Subset of Mutually Insignificant Features 0.135 0.167 0.178 0.235 0.377 0.410 0.410 0.444

Analysis on the inference technique. In Section 3.4, we introduce an inference technique that
leverages the inherent stochasticity of SPMformer, where the inference process is repeated NI times,
averaging NI outputs. Figure 5(a) shows the forecasting performance as NI varies. We observe that
Test MSE monotonically decreases as NI gets large. In Figure 5(b), we investigate relationships
between the feature subset size S and NI by measuring performance gain by increasing NI in various
S. This figure shows that the effect of increasing NI tends to be smaller, as S increases. We think this
is because a single subset F with large S can contain a number of features, so mutually significant
features can be included in such large subsets at least once only with few repetitions.

Besides the inference technique based on random selection, we explore another technique which
samples subsets of mutually important features by selecting some keys with the highest attention
scores per query. We compare this technique to the counterpart which selects keys based on the lowest
attention score. In Table 5, we provide the forecasting MSE of each inference technique. — note that
only the inference method is different while the training algorithm remains the same as the original
one in Algorithm 1. In that an inference technique utilizing the highest attention scores outperforms
one with the lowest ones, attention scores are helpful in identifying relationships between features to
some extent. Therefore, we think this information will be helpful for approximating true P .
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Other advantages of SPMformer. In the real world, some features in time series are often missing.
Inspired by the works that address irregular time series where observations at some time steps (Che
et al., 2016; Kidger et al., 2020) are missing, we randomly drop some features of input time series in
the inference stage and measure the increasing rate of test MSE in undropped features. For comparison,
we use the original SPMformer and a complete-multivariate version of SPMformer (CMformer) by
setting S to D. SPMformer can address the missingness by simply excluding missing features in the
random sampling process, while CMformer has no choice but to pad dropped features with zeros. In
Figure 6, unlike the other case, SPMformer maintains its forecasting performance, regardless of the
drop rate of the features. This robust characteristic gives SPMformer more applicability in real-world
situations where some features are not available.

For Transformers with inter-feature attention modules, we compare the costs of their inter-feature
modules using floating point operations (FLOPs) in Figure 7. When naïvely computing inter-feature
attention (CMformer), the attention cost is O(D2) where D is the number of features. In contrast,
due to capturing only partial relationships, the attention cost of SPMformer is reduced to O(SD)
where S is the size of each subset. In Appendix D, we elaborate on the details of the reason why the
inter-feature module in SPMformer achieves O(SD). Given that small S is enough to generate good
forecasting performance (e.g., S = 20∼30 for 100∼800 features), the attention cost is empirically
efficient. As a result, SPMformer achieves the lowest FLOPs compared to others, as shown in
Figure 7. Although Crossformer achieves O(RD) complexities with low-rank approximations where
R is the rank, our SPMformer shows quite efficient costs, compared to them.

5 CONCLUSION

We introduce a new class of multivariate forecasting methods, called stochastic partial-multivariate
methods, which generalize existing approaches such as univariate, deterministic partial-multivariate,
and complete-multivariate methods. As part of this, we develop the SPMformer model. SPMformer
first samples clusters (subsets) of a complete feature set from given distributions and captures
dependencies only within clusters using a single inter-feature attention module shared by all clusters.
Under usual situations without prior knowledge on clustering, we propose a basic form of training
algorithm for SPMformer with non-informative clustering distributions. Extensive experiments show
that SPMformer outperforms baseline models in long-term, short-term, and probabilistic forecasting
tasks. To explain SPMformer’s superior performance, we theoretically analyze the upper-bound on
generalization errors of SPMformer compared to univariate, deterministic partial-multivariate, and
complete-multivariate ones, and provide empirical results supporting the results of the theoretical
analysis. Additionally, we enhance forecasting accuracy by introducing a simple inference technique
for SPMformer. Finally, we highlight SPMformer’s useful characteristics in terms of the efficiency of
inter-feature attention and robustness under missing features against complete-multivariate models.

Future research. Further theoretical analysis is needed to better explain partial-multivariate models,
including more precise calculations of the entropy of posterior distributions and the relaxation
of certain assumptions. Additionally, since we have only tested the case where P is a uniform
distribution, future work will focus on identifying the optimal P for SPMformer. We believe our
work could have a positive impact on those developing foundation models for time series due to the
following two reasons: (i) time series datasets often vary in the number of features, and our feature
sampling scheme, where the subset size is always S, can address this heterogeneity, and (ii) even in
cases with an extremely large number of features, our method enables efficient training. Therefore,
we plan to test our approach on these heterogeneous and extreme cases.
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A PROOF

A.1 PROOF FOR THEOREM 1

Starting from McAllester’s bound on generalization errors (McAllester, 1999), we derive general-
ization bound in Theorem 1. Before getting into the main part, we define some notations. Let a
neural network f be a stochastic partial-multivariate model which samples subsets F consisting of S
features from a complete set of D features as defined in equation 1. H denotes hypothesis class of f ,
and P(h) and Q(h) are a prior and posterior distribution over the hypotheses h, respectively. Also,
(x,y) is a input-output pair in an entire dataset and (xT ,yT ) is a pair in a training dataset T with m
instances sampled from the entire dataset. At last, ŷ = f(x) is the output value of a neural network
f , and l(Q) and l̂(Q, T ) are generalized and empirical training loss under posterior distributions Q
and training datasets T .

Subsequently, we list assumptions for proof:
Assumption 1. The maximum and minimum values of y are known and min-max normalization is
applied to y (i.e., 0 ≤ y ≤ 1).
Assumption 2. The output values of a neural network are assumed to be between 0 and 1, (i.e.,
0 ≤ ŷ ≤ 1).
Assumption 3. For posterior distributions Q, Q is pruned. In other words, we set Q(h) = 0 for
hypotheses h where Q(h) < P(h) and renormalize it.
Assumption 4. For any hypothesis h, P(h) > ω where ω is the minimum probabilities in P(h) and
ω > 0.
Assumption 5. For posterior distributions Q and training datasets T , l̂(Q, T ) ≈ 0.

Given that min-max normalization has been often used in time-series domains with empirical
minimum and maximum values (Bhanja & Das, 2019), Assumption 1 can be regarded as a reasonable
one. Also, by equipping the last layer with some activation functions such as Sigmoid or Tanh
(hyperbolic tangent) like Xu et al. (2019) and adequate post-processing, Assumption 2 can be
satisfied.2 As for Assumption 3, according to (McAllester, 1999), it might have very little effects
on Q. Finally, because Transformers can universally approximate any continuous sequence-to-
sequence function (Yun et al., 2020), (possibly, extended to general deep neural networks with the
universal approximation theorem (Cybenko, 1989)), any hypothesis h can be approximated with
proper parameters in f . Thus, we can assume P(h) > w > 0 for any h when sampling the initial
parameters of f from the whole real-number space (Assmuption 4). Also with proper training process
and this universal approximation theorem, l̂(Q, T ) might approximate to zero (Assumption 5). With
these assumptions, the proof for Theorem 1 is as follows:

Proof. Let MSE be a loss function l. Then, according to Assumption 1 and 2, 0 ≤ l(h, (x,y)) ≤ 1
for any data instance (x,y) and hypothesis h. Then, with probability at least 1− δ over the selection
of the sample T of size m, we have the following for Q (McAllester, 1999):

l(Q) ≤ l̂(Q, T ) +

√
D(Q∥P) + log 1

δ + 5
2 logm+ 8

2m− 1
, (8)

where D(Q∥P) denotes Kullback-Leibler divergence from distribution Q to P. Due to Assumption 5,
l̂(Q, T ) ≈ 0. Also, because E[log 1

P(h) ] < logE[ 1
P(h) ] < log 1

ω = C with Jensen’s inequality and

Assumption 4, D(Q∥P) = Eh∼Q[log Q(h)
P(h) ] = E[logQ(h)] + E[log 1

P(h) ] < E[logQ(h)] + C.

Therefore, we can derive Theorem 1 by substituting l̂(Q, T ) and D(Q∥P) with 0 and E[logQ(h)] +
C, respectively:

l(Q) ≤

√
Eh∼Q[logQ(h)] + log 1

δ + 5
2 logm+ 8 + C

2m− 1
. (9)

2Assumption 1 and 2 can be considered somewhat strong but should be satisfied to utilize McAllester’s
bound widely used for estimating generalization errors (Valle-Pérez & Louis, 2020; Amit & Meir, 2019). When
the conditions of McAllester’s bound are relaxed, we can also relax our assumptions.
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Based on this theorem, we provide a theoretical analysis which is the impact of S on m and −H(Q).
However, an additional assumption is required to make the rationale valid as follows:
Assumption 6. For the region of hypothesis h′ where Q(h′) > 0, the prior distribution satisfies
log 1

P(h′) ≤ Cmax where Cmax is small enough to be ignored in upper-bound.

It is possible that the upper-bound is dominated by C → ∞ when w → 0. As such, P (h) needs to
be distributed properly over the region of hypothesis h′ where Q(h′) > 0 not to result in C → ∞,
leading to Assumption 6. This assumption can be satisfied when the prior distribution is non-
informative which is natural in Bayesian statistics under the assumption that prior knowledge is
unknown (i.e. P (h) ∝ 1). For any countable set of all possible inputs {xi}Ni=1, probabilities of
each h can be represented as p(h) =

∏N
i=1 p(ŷ

h
i |xi) where ŷh

i = fh(xi) is the output of a function
fh under hypothesis h (Domingos, 2012). Because 0 ≤ ŷh

i ≤ 1 (Assumption 2) and p(ŷh
i |xi) is

a uniform distribution under the non-informative assumption, p(ŷh
i |xi) = 1. As such, the prior

distribution under the non-informative assumption is P(h) = 1, leading to Cmax = 0 which is
small enough not to dominate upper-bound. On top of that, we can indirectly solve this problem by
injecting appropriate inductive biases in the form of architectures or regularizers, which can help
to allocate more probability to each hypothesis (i.e., increase ω) by reducing the size of the whole
hypothesis space H.

A.2 PROOF FOR THEOREM 2

To provide a proof for Theorem 2, we first prove Lemma 1. For Lemma 1, we need the following
assumption:
Assumption 7. A neural network f models models p(y|x) where (x,y) is an input-output pair.

By regarding the output of a neural network ŷ as mean of normal or Student’s t-distribution like
in Rasul et al. (2024), Assumption 7 can be satisfied. Then, Lemma 1 and a proof are as follows:

Lemma 1. Let l̂(QS , TS) be a training loss with posterior distributions QS and a training dataset
TS when a subset size is S. Accordingly, l̂(QS , TS) < ϵ with small ϵ is a training objective. Then,
for S+ and S− where S+ > S−, QS+ satisfies both l̂(QS+ , TS+) < ϵ and l̂(QS+ , TS−) < ϵ. (On
the other hands, QS− is required to satisfy only l̂(QS− , TS−) < ϵ.)

Proof. Let S+ and S− be subset size where S+ > S−. FS− be any subset of S− size sampled from a
complete set of features, and FS+

is any subset of S+ size among ones that satisfy FS− ⊂ FS+
. FR

is the set of elements that are in FS+ but not in FS− (i.e., FR = FS+ −FS− ). l̂(QS , TS) is a training
loss value with posterior distributions QS and a training dataset TS when a subset size is S. Then, after
training process satisfying l̂(QS+

, TS+
) < ϵ where ϵ is a small value, we can say that f under QS+

outputs the true value of p(yFS+
|xFS+

), according to Assumption 7. In the following process, we
demonstrate that p(yFS−

|xFS−
) can be derived from p(yFS+

|xFS+
) = p(yFS−

,yFR
|xFS−

,xFR
):

∫
yFR

ExFR
|xFS−

[p(yFS−
,yFR

|xFS−
,xFR

)]dyFR
, (10)

=

∫
yFR

∫
xFR

p(yFS−
,yFR

|xFS−
,xFR

)p(xFR
|xFS−

)dxFR
dyFR

, (11)

= p(yFS−
|xFS−

), (12)

In that expectation can be approximated by an empirical mean with sufficient data and integral can be
addressed with discretization, we can think that p(yFS−

|xFS−
) can be derived from p(yFS+

|xFS+
).

According to this fact, f under Q+ should be able to output not only true p(yFS+
|xFS+

) but also

true p(yFS−
|xFS−

). Therefore, we conclude that Q+ have to satisfy both l̂(QS+
, TS+

) < ϵ and

l̂(QS+ , TS−) < ϵ.
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With Lemma 1, we provide a proof for Theorem 2:

Proof. Let h be a hypothesis on a space defined when a subset size is S. Then, we can denote a
posterior distribution which is trained to decrease l̂(QS , TS) as follows:

Q(hS) = p(hS |cS = 1), where cS =

{
1, l̂(h, TS) < ϵ,

0, otherwise,
(13)

According to Lemma 1, for S+ and S− where S+ > S−, the posterior distributions of two cases can
be represent as Q(hS+) = p(hS+ |cS+ = 1, cS− = 1) and Q(hS−) = p(hS− |cS− = 1), respectively.
With the following two assumptions, we can prove Theorem 2:

Assumption 8. hypotheses hS+ and hS− have similar distributions after training with TS− (i.e.,
p(hS+

|cS− = 1) ≈ p(hS−|cS− = 1)).

Assumption 9. Prior distributions are nearly non-informative (i.e., P (h) ∝ 1).

Assumption 8 can be considered reasonable because we can make the training process of a model of
subset size S+ very similar to that of subset size S− with a minimal change in architecture such as
input and output masking. Also, as for Assumption 9, non-informative prior is usually used under
usual situations without prior knowledge in Bayesian statistics.

Q(hS) can be expanded as p(hS |cS) ∝ p(cS |hS)p(hS) ∝ p(cS |hS), according to Assumption 9.
Because we exactly know whether to satisfy l̂(h, TS) < ϵ given h, p(cS |hS) is 1 when a given hS

satisfies cS or 0, otherwise. Thus, Q(hS) are defined as follows:

Q(hS) = p(hS |cS = 1) =

{
ηS , cS = 1 given hS ,

0, otherwise,
(14)

Similarly, Q(hS+) and Q(hS−) can be expanded as p(hS+ |cS+ , cS−) ∝ p(cS+ , cS− |hS+)p(hS+) ∝
p(cS+ , cS− |hS+) and p(hS− |cS−) = p(hS+ |cS−) ∝ p(cS− |hS+)p(hS+) ∝ p(cS− |hS+), according
to Assumption 8 and 9. A region of hypothesis satisfying both cS+ = 1 and cS− = 1 is smaller than
that satisfying either of them. Because the probability of h in a region satisfying conditions has the
same value and

∫
h
p(h)dh = 1 is maintained, h in the small region is allocated higher probabilities

than h in the large one. Therefore, ηS+
> ηS− and the entropy H(QS−) is larger than H(QS+

):

So far, we have finished a proof for Theorem 2. We additionally provide Theorem 3 which is a
variant of Theorem 2 where Assumption 9 can be relaxed while proposing the relationships between
H(QS−) and H(QS+) in the expectation level:

Theorem 3. for S+ and S− satisfying S+ > S−, H(QS+
) ≤ H(QS−) in expectation over cS+

.

Proof. Let h̃S+ be the hS+ |cS− = 1 (i.e., Q(hS+) = p(hS+ |cS+ = 1, cS− = 1) = p(h̃S+ |cS+ =

1)). Then, H(h̃S+
|cS+

) can be expanded as follows:

H(p(h̃S+
|cS+

)), (15)

= H(p(cS+ |h̃S+)) +H(p(h̃S+))−H(p(cS+)),

(∵ Bayes’ rule for conditional entropy states),
(16)

= H(p(h̃S+
))−H(p(cS+

))

(∵ when h is given, we know whether to satisfy l̂(h, TS+) < ϵ. (i.e.,H(p(cS+ |h̃S+)) = 0),
(17)

From this expansion, we can derive H(p(h̃S+
|cS+

)) ≤ H(p(h̃S+
)) because entropy of p(cS+

) must
be larger than 0 (i.e., H(p(cS+

)) ≥ 0). By substituting H(QS−) for H(p(h̃S+
)) according to

Assumption 8 and EcS+
[H(QS+)] for H(p(h̃S+ |cS+)), we can derive Theorem 3.
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Also, based on Chebyshev’s inequality, we can calculate the least probabilities at which H(QS+
) <

H(QS−) are satisfied, given the variance σ2 = V arcS+
[H(p(h̃S+

|cS+
))]:

p
[
H(QS+

) < H(QS−)
]

≤ 1− σ2

(H(p(cS+
)))2

(18)

B HOW TO HANDLE NON-DIVISIBLE CASES OF SPMFORMER WITH RANDOM
PARTITIONING

In this section, we further elaborate on how to deal with the cases where the number of features D is
not divisible by the size of subsets S. We simply repeat some randomly chosen features and augment
them to the original input time series, in order to make the total number of features divisible by S.
After finishing the forecasting procedure with the augmented inputs, we drop augmented features
from outputs. The details are delineated in Algorithm 2.

Algorithm 2: How to handle non-divisible cases of SPMformer with random partitioning
Input: # of features D, Subset size S, Past obs. x[0:D]

1 V = {0, 1, ..., D − 1}; NU = ⌈D
S
⌉; R = D % S;

2 if R ̸= 0 then
3 Randomly split V into V+,V−, where |V+| = D −R, |V−| = R,V+ ∩V− = ϕ;
4 Get {Fg}g∈[0,NU−1] by randomly partitioning V+;
5 V++ = {vi|viis a random sample from V+ without replacement, i = [0, S −R]};
6 FNU−1 = V− ∪V++

7 else
8 Get {Fg}g∈[0,NU ] by randomly partitioning V;

9 for g ← 0 to NU − 1 do
10 ŷFg = SPMformer(xFg ,Fg);

11 if R ̸= 0 then
12 Remove features of V++ from ŷFNU−1 ;

13 Sort {ŷFg}g∈[0,NU ] by feature index and get ŷ[0:D];
14 return Predicted future observations ŷ[0:D];

C DETAILS OF EXPERIMENTAL ENVIRONMENTS

We conduct experiments on this software and hardware environments: PYTHON 3.7.12, PYTORCH
2.0.1, and NVIDIA GEFORCE RTX 3090.

C.1 DATASETS

We evaluate SPMformer on 8 benchmark datasets for time series forecasting with multiple variables.
The normalization and train/val/test splits are also the same with ModernTCN (donghao & wang xue,
2024) which is our main baseline. The information of each dataset is as follows:

• (1-2) ETTh1,23 (Electricity Transformer Temperature-hourly): They have 7 indicators in the
electric power long-term deployment, such as oil temperature and 6 power load features. This data
is collected for 2 years and the granularity is 1 hour. Different numbers denote different counties
in China. The number of time steps is 17,420.

• (3-4) ETTm1,2 (Electricity Transformer Temperature-minutely): This dataset is exactly the same
with ETTh1,2, except for granularity. The granularity of these cases is 15 minutes. The number of
time steps is 69,680.

3https://github.com/zhouhaoyi/ETDataset
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• (5) Weather4: It has 21 indicators of weather including temperature, humidity, precipitation, and
air pressure. It was recorded for 2020, and the granularity is 10 minutes. The number of time steps
is 52,696.

• (6) Electricity5: In this dataset, information about hourly energy consumption from 2012 to 2014
is collected. Each feature means the electricity consumption of one client, and there are 321 clients
in total. The number of time steps is 26,304.

• (7) Traffic6: Traffic dataset pertains to road occupancy rates. It encompasses hourly data collected
by 862 sensors deployed on San Francisco freeways during the period spanning from 2015 to 2016.
The number of time steps is 17,544.

• (8) M57: The M5 dataset is used in the M5 Forecasting Competition, which aims to evaluate and
compare different forecasting methods. The competition centers around predicting sales data for a
range of products, stores, and timeframes. We randomly select 100 items for our task. The number
of time steps is 1,907.

C.2 HYPERPARAMETERS

The details of hyperparameters used in the SPMformer are delineated in this section. For the number
of segments NS , we use NS = 32 for M5, 8 for Traffic, and 64 for others. The dropout ratio rdropout
is in {0.1, 0.2, 0.3, 0.4, 0.7}. The hidden dimension dh is in {32,64,128,256,512}. The number of
heads in self-attention nh is in {2,4,8,16} and the number of layers L is in {1,2,3}. dff is the hidden
size of feed-forward networks in each SPMformer layer and in {32,64,128,256,512}. Also, batch
size is 128, 128, 16, and 12 for ETT, Weather, Electricity, and Traffic datasets, respectively. Finally,
we set the learning rate and training epochs to 10−3 and 100, respectively. Finally, we use Adam
optimizer to train our model. The selected best hyperparameters of SPMformer are in Table 6.

D COMPLEXITY ANALYSIS OF INTER-FEATURE ATTENTION IN SPMFORMER

In this section, we elaborate on the reason why the theoretical complexity of inter-feature attention in
SPMformer is O(SD) where D is the number of features and S is the subset size. Attention cost in
each subset is O(S2). Because random partitioning generates NU ≈ D

S subsets, the final complexity
is NUO(S2) = D

S O(S2) = O(SD).

E THE EFFECT OF TRAINING SPMFORMER WITH RANDOM SAMPLING OR
PARTITIONING

In this section, we provide the experimental results where we train SPMformer using a training
algorithm with random sampling or partitioning. As shown in Table 7, these two ways are comparable
in terms of forecasting performance — note that we adopt the training algorithm based on random
partitioning for our main experiments.

F THE PERFORMANCE OF SPMFORMER WITH NI = 1

In Table 8, we conduct the main experiments including SPMformer with NI = 1 which is the number
of repeating an inference process. In this experiment, we include some baselines showing decent
forecasting performance. As Table 8 shows, despite NI = 1, SPMformer still gives better results
than baselines.

4https://www.bgc-jena.mpg.de/wetter/
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
6http://pems.dot.ca.gov
7https://www.kaggle.com/competitions/m5-forecasting-accuracy
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Table 6: Selected hyperparameters of SPMformer.
Data τ rdropout dh nh L dff

ETTh1

96 0.7 128 4 1 256
192 0.7 32 4 1 256
336 0.7 64 8 1 64
336 0.7 64 8 1 64

ETTh2

96 0.7 512 4 1 256
192 0.7 512 2 1 256
336 0.7 64 16 1 256
720 0.7 64 16 1 128

ETTm1

96 0.2 256 2 2 256
192 0.1 64 8 1 128
336 0.2 64 2 2 64
720 0.7 64 4 1 128

ETTm2

96 0.7 512 2 1 64
192 0.7 128 4 1 32
336 0.4 128 2 1 32
720 0.7 256 4 1 32

Weather

96 0.2 128 8 3 256
192 0.2 128 16 3 256
336 0.4 128 16 3 512
720 0.4 128 2 1 256

Electricity

96 0.3 256 8 1 256
192 0.2 256 4 2 256
336 0.2 128 4 3 256
720 0.2 256 4 3 256

Traffic

96 0.2 512 2 3 512
192 0.1 256 4 3 512
336 0.2 256 2 3 256
720 0.2 512 4 3 512

M5 0.0 128 8 2 128

Table 7: MSE of training SPMformer using a training algorithm with random sampling or partitioning

Training Algorithm ETTh1 (D = 7) ETTh2 (7) ETTm1 (7) ETTm2 (7)
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Random Partitioning 0.361 0.396 0.400 0.412 0.269 0.323 0.317 0.370 0.282 0.325 0.352 0.401 0.160 0.213 0.262 0.336
Random Sampling 0.362 0.397 0.400 0.412 0.273 0.323 0.317 0.371 0.283 0.325 0.352 0.403 0.162 0.214 0.263 0.337

Training Algorithm Weather (21) Electricity (321) Traffic (862) Avg. Rank96 192 336 720 96 192 336 720 96 192 336 720

Random Partitioning 0.142 0.185 0.235 0.305 0.125 0.142 0.154 0.176 0.345 0.370 0.385 0.426 1.071
Random Sampling 0.142 0.184 0.237 0.305 0.126 0.141 0.154 0.180 0.347 0.370 0.386 0.427 1.571

G ADDITIONAL EXPERIMENTS

G.1 ADDITIONAL EXPERIMENTAL RESULTS IN TABULAR FORMS

In this section, we provide full results for existing experiments. Table 9 and Table 10 are additional
results for Table 1 and Table 3, respectively. Also, both Table 11 and Table 12 are for Table 4.

G.2 ADDITIONAL VISUALIZATION

Like Appendix G.1, this section provides additional visualizations with other datasets or models for
existing ones. Figure 8 is for Figure 3, Figure 9 for Figure 4, Figure 10 for Figure 5(a), Figure 11
for Figure 5(b), and Figure 12 for Figure 6. Furthermore, Figure 13 shows the forecasting results
of SPMformer, PatchTST, and Crossformer. We select these baselines because they have similar
architecture to SPMformer, such as segmentation or inter-feature attention modules. Our method
captures temporal dynamics better than baselines.
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Table 8: MSE of main forecasting results including SPMformer wiht NI = 1.

Method ETTh1 (D = 7) ETTh2 (7) ETTm1 (7) ETTm2 (7)
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

SPMformer 0.361 0.393 0.404 0.412 0.270 0.328 0.321 0.371 0.286 0.328 0.354 0.418 0.165 0.219 0.271 0.357
CAMELOT 0.367 0.396 0.410 0.448 0.269 0.333 0.321 0.374 0.298 0.338 0.372 0.417 0.164 0.218 0.272 0.358
TimeMixer 0.361 0.409 0.430 0.445 0.271 0.317 0.332 0.342 0.291 0.327 0.360 0.415 0.164 0.223 0.279 0.359

ModernTCN 0.368 0.405 0.391 0.450 0.263 0.320 0.313 0.392 0.292 0.332 0.365 0.416 0.166 0.222 0.272 0.351

Method Weather (21) Electricity (321) Traffic (862) Avg. Rank96 192 336 720 96 192 336 720 96 192 336 720

SPMformer 0.142 0.185 0.235 0.305 0.125 0.142 0.154 0.176 0.345 0.370 0.385 0.426 1.607
CAMELOT 0.158 0.204 0.253 0.317 0.138 0.150 0.165 0.204 0.390 0.402 0.411 0.449 3.321
TimeMixer 0.147 0.189 0.241 0.310 0.129 0.140 0.161 0.194 0.360 0.375 0.385 0.430 2.321

ModernTCN 0.149 0.196 0.238 0.314 0.129 0.143 0.161 0.191 0.368 0.379 0.397 0.440 2.607

Table 9: MSE in long-term forecasting tasks. (Additional results for Table 1)

Data Partial-Multivariate Univariate Complete-Multivariate
SPMformer CAMELOT PatchTST FITS TimeMixer Crossformer TimesNet TSMixer DeepTime iTransformer RLinear ModernTCN

E
T

T
h1

96 0.361 0.367 0.370 0.372 0.361 0.427 0.465 0.361 0.372 0.396 0.364 0.368
192 0.396 0.396 0.413 0.405 0.409 0.537 0.493 0.404 0.405 0.425 0.402 0.405
336 0.400 0.410 0.422 0.420 0.430 0.651 0.456 0.420 0.437 0.459 0.419 0.391
720 0.412 0.448 0.447 0.426 0.445 0.664 0.533 0.463 0.477 0.638 0.451 0.450

E
T

T
h2

96 0.269 0.269 0.274 0.271 0.271 0.720 0.381 0.274 0.291 0.300 0.255 0.263
192 0.328 0.333 0.341 0.330 0.317 1.121 0.416 0.339 0.403 0.382 0.316 0.320
336 0.320 0.321 0.329 0.353 0.332 1.524 0.363 0.361 0.466 0.424 0.325 0.313
720 0.370 0.374 0.379 0.378 0.342 3.106 0.371 0.445 0.576 0.426 0.415 0.392

E
T

T
m

1 96 0.282 0.298 0.293 0.307 0.291 0.336 0.343 0.285 0.311 0.341 0.310 0.292
192 0.325 0.338 0.333 0.338 0.327 0.387 0.381 0.327 0.339 0.381 0.337 0.332
336 0.352 0.372 0.369 0.368 0.360 0.431 0.436 0.356 0.366 0.419 0.369 0.365
720 0.412 0.417 0.416 0.421 0.415 0.555 0.527 0.419 0.400 0.486 0.419 0.416

E
T

T
m

2 96 0.163 0.164 0.166 0.165 0.164 0.338 0.218 0.163 0.165 0.184 0.163 0.166
192 0.216 0.218 0.223 0.219 0.223 0.567 0.282 0.216 0.222 0.253 0.219 0.222
336 0.266 0.272 0.274 0.272 0.279 1.050 0.378 0.268 0.278 0.315 0.272 0.272
720 0.349 0.358 0.361 0.359 0.359 2.049 0.444 0.420 0.369 0.412 0.360 0.351

W
ea

th
er 96 0.142 0.158 0.149 0.144 0.147 0.150 0.179 0.145 0.169 0.171 0.171 0.149

192 0.185 0.204 0.194 0.188 0.189 0.200 0.230 0.191 0.211 0.212 0.216 0.196
336 0.235 0.253 0.245 0.239 0.241 0.263 0.276 0.242 0.255 0.260 0.261 0.238
720 0.305 0.317 0.314 0.312 0.310 0.310 0.347 0.320 0.318 0.334 0.323 0.314

E
le

ct
ri

ci
ty 96 0.125 0.138 0.129 0.137 0.129 0.135 0.186 0.131 0.139 0.132 0.136 0.129

192 0.142 0.150 0.147 0.151 0.140 0.158 0.208 0.151 0.154 0.152 0.150 0.143
336 0.154 0.165 0.163 0.167 0.161 0.177 0.210 0.161 0.169 0.170 0.166 0.161
720 0.176 0.204 0.197 0.206 0.194 0.222 0.231 0.197 0.201 0.192 0.206 0.191

Tr
af

fic

96 0.345 0.390 0.360 0.396 0.360 0.481 0.599 0.376 0.401 0.353 0.395 0.368
192 0.370 0.402 0.379 0.408 0.375 0.509 0.612 0.397 0.413 0.370 0.407 0.379
336 0.385 0.411 0.392 0.417 0.385 0.534 0.618 0.413 0.425 0.384 0.416 0.397
720 0.426 0.449 0.432 0.453 0.430 0.585 0.654 0.444 0.462 0.419 0.453 0.440

Avg.Rank 1.500 5.750 5.607 6.071 3.714 10.679 11.071 5.071 8.393 8.321 6.464 4.036
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Table 10: 0.5-risk in probabilistic forecasting tasks. (Additional results for Table 3)

Data Partial-Multivariate Univariate Complete-Multivariate
SPMformer CAMELOT PatchTST FITS TimeMixer TSDiff TSMixer iTransformer RLinear ModernTCN DeepAR ForecasterQR

E
T

T
h1

96 0.587 1.170 1.200 0.944 0.768 1.001 0.755 0.722 0.775 0.781 1.174 0.930
192 0.648 1.177 1.196 0.963 0.761 1.052 0.937 0.839 0.825 0.842 1.119 1.010
336 0.668 1.176 1.208 0.974 1.158 1.087 0.930 0.837 0.868 0.862 1.251 0.977
720 0.724 1.212 1.294 1.005 1.254 1.071 1.021 0.912 0.965 0.902 1.338 1.091

E
T

T
h2

96 0.297 0.665 0.675 0.530 0.572 0.789 0.617 0.396 0.438 0.354 1.343 1.026
192 0.326 0.680 0.707 0.540 0.974 0.926 0.702 0.391 0.482 0.395 1.435 0.888
336 0.349 0.683 0.708 0.547 0.419 0.874 0.639 0.482 0.542 0.429 1.114 1.007
720 0.419 0.704 0.736 0.571 0.569 0.853 0.756 0.639 0.562 0.426 1.121 0.850

E
T

T
m

1 96 0.483 1.176 1.191 0.852 0.626 0.861 0.658 0.545 0.697 0.559 0.840 0.797
192 0.546 1.189 1.189 0.889 0.711 0.939 0.742 0.676 0.736 0.597 1.007 0.844
336 0.561 1.178 1.187 0.914 0.704 0.914 0.799 0.703 0.773 0.603 1.033 0.932
720 0.620 1.184 1.198 0.936 0.796 0.979 0.841 0.775 0.821 0.821 1.125 0.957

E
T

T
m

2 96 0.215 0.644 0.647 0.444 0.302 0.553 0.347 0.288 0.315 0.309 0.573 0.417
192 0.260 0.654 0.658 0.488 0.457 0.688 0.414 0.316 0.372 0.306 0.744 0.674
336 0.290 0.667 0.670 0.514 0.592 0.697 0.509 0.366 0.422 0.313 0.733 0.800
720 0.327 0.689 0.688 0.540 0.489 0.927 0.564 0.411 0.493 0.338 1.113 0.962

W
ea

th
er 96 0.595 1.554 1.548 1.210 2.235 0.844 0.650 0.984 1.079 0.748 0.761 0.496

192 0.694 1.561 1.561 1.231 1.142 0.985 0.752 1.107 1.133 0.812 0.869 0.598
336 0.751 1.560 1.565 1.256 1.243 1.020 0.864 1.201 1.171 0.886 0.971 0.654
720 0.853 1.571 1.577 1.289 1.883 1.098 1.047 1.350 1.225 0.997 1.075 0.676

E
le

ct
ri

ci
ty 96 0.348 1.025 1.022 0.803 0.436 1.353 0.448 0.443 0.469 0.505 0.602 0.462

192 0.376 1.030 1.029 0.818 0.462 1.319 0.486 0.475 0.492 0.510 0.635 0.482
336 0.401 1.036 1.035 0.836 0.504 1.289 0.507 0.535 0.522 0.516 0.634 0.488
720 0.440 1.051 1.050 0.867 0.576 1.289 0.524 0.587 0.579 0.543 0.613 0.495

Tr
af

fic

96 0.426 1.131 1.120 0.965 0.602 1.171 0.663 0.555 0.586 0.575 0.630 0.531
192 0.439 1.126 1.116 0.967 0.556 1.173 0.728 0.590 0.590 0.581 0.703 0.453
336 0.446 1.125 1.115 0.976 0.629 1.173 0.760 0.619 0.597 0.575 0.709 0.441
720 0.459 1.132 1.125 1.006 0.621 1.156 0.773 0.626 0.625 0.596 0.728 0.653

Avg.Rank 1.179 10.036 10.321 7.643 5.536 9.643 5.607 4.179 5.071 3.500 9.143 6.071

Table 11: MSE of three types of models by adjusting S of SPMformer in long-term forecasting tasks.
(Additional results for Table 4)

SPMformer
Variants

ETTh1 (D = 7) ETTh2 (7) ETTm1 (7) ETTm2 (7)
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

S = 1 0.361 0.393 0.404 0.420 0.272 0.325 0.318 0.371 0.288 0.335 0.358 0.403 0.161 0.213 0.265 0.338
1 < S < D 0.361 0.396 0.400 0.412 0.269 0.323 0.317 0.370 0.282 0.325 0.352 0.401 0.160 0.213 0.262 0.336

S = D 0.361 0.395 0.401 0.413 0.269 0.325 0.318 0.371 0.299 0.350 0.377 0.402 0.161 0.213 0.265 0.338

SPMformer
Variants

Weather (21) Electricity (321) Traffic (862) Avg. Rank96 192 336 720 96 192 336 720 96 192 336 720

S = 1 0.141 0.186 0.237 0.308 0.128 0.146 0.163 0.204 0.368 0.388 0.404 0.441 2.286
1 < S < D 0.142 0.185 0.235 0.305 0.125 0.142 0.154 0.176 0.345 0.370 0.385 0.426 1.107

S = D 0.146 0.192 0.244 0.307 0.129 0.147 0.163 0.204 0.363 0.383 0.394 0.441 2.250

Table 12: 0.5-risk of three types of models by adjusting S of SPMformer in probabilistic forecasting
tasks. (Additional results for Table 4)

SPMformer
Variants

ETTh1 (D = 7) ETTh2 (7) ETTm1 (7) ETTm2 (7)
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

S = 1 0.750 0.815 0.847 0.939 0.387 0.385 0.438 0.572 0.580 0.685 0.718 0.783 0.269 0.337 0.388 0.431
1 < S < D 0.587 0.648 0.668 0.724 0.297 0.326 0.349 0.419 0.483 0.546 0.561 0.620 0.215 0.260 0.290 0.327

S = D 0.733 0.798 0.811 0.878 0.361 0.375 0.423 0.561 0.536 0.662 0.655 0.790 0.239 0.327 0.391 0.400

SPMformer
Variants

Weather (21) Electricity (321) Traffic (862) Avg. Rank96 192 336 720 96 192 336 720 96 192 336 720

S = 1 0.772 0.878 0.964 1.157 0.449 0.467 0.504 0.558 0.549 0.565 0.578 0.596 2.571
1 < S < D 0.595 0.694 0.751 0.853 0.348 0.376 0.401 0.440 0.426 0.439 0.446 0.459 1.000

S = D 0.775 0.902 0.966 1.144 0.456 0.488 0.526 0.580 0.553 0.565 0.578 0.611 2.429
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Figure 8: Sensitivity to S. (Additional results for Figure 3)
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Figure 9: Sensitivity to |Fall| = α×NU . (Additional results for Figure 4)
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Figure 10: Sensitivity to NI . (Additional results for Figure 5(a))
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Figure 11: Changes in the effect of NI on forecasting performance when S increases. (Additional
results for Figure 5(b))
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Figure 12: Increasing rate of test MSE by dropping n% features in SPMformer or Complete-
Multivariate Transformer (CMformer). (Additional results for Figure 6)
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Figure 13: Forecasting results of various segment-based transformers (Crossformer, PatchTST, and
SPMformer). Dotted lines and dotted-dashed lines denote baselines, dashed lines denote SPMformer,
and solid lines denote ground truth. τ denotes the length of time steps in future outputs and d denotes
a feature index.
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