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Abstract

In dance performances, choreographers define the visual expression of movement,
while cinematographers shape its final presentation through camera work. Conse-
quently, the synthesis of camera movements informed by both music and dance
has garnered increasing research interest. While recent advancements have led to
notable progress in this area, existing methods predominantly operate in an offline
manner—that is, they require access to the entire dance sequence before gener-
ating corresponding camera motions. This constraint renders them impractical
for real-time applications, particularly in live stage performances, where imme-
diate responsiveness is essential. To address this limitation, we introduce a more
practical yet challenging task: online camera movement synthesis, in which cam-
era trajectories must be generated using only the current and preceding segments
of dance and music. In this paper, we propose TemMEGA (Temporal Masked
Generative Modeling), a unified framework capable of handling both online and
offline camera movement generation. TemMEGA consists of three key components.
First, a discrete camera tokenizer encodes camera motions as discrete tokens via
a discrete quantization scheme. Second, a consecutive memory encoder captures
historical context by jointly modeling long- and short-term temporal dependen-
cies across dance and music sequences. Finally, a temporal conditional masked
transformer is employed to predict future camera motions by leveraging masked
token prediction. Extensive experimental evaluations demonstrate the effectiveness
of our TemMEGA, highlighting its superiority in both online and offline camera
movement synthesis.

1 Introduction

Recent advances in image generation have significantly enhanced visual storytelling in performance
arts [26; 43; 42]. In dance performances, camera work is pivotal in shaping the audience’s perception
and interpretation of the choreography [28; 30; 39; 3; 46]. By employing multiple camera angles
and transitions, producers can better capture key dance movements, offering a more immersive
storytelling experience. Additionally, creative techniques such as quick cuts, slow motion, and dolly
shots enhance visual impact and introduce novelty, thereby increasing the performance’s overall
appeal. However, the movement of the camera is influenced by several factors, including the music
and the choreography itself. Moreover, effective dance cinematography requires a variety of shot
types and a focus on human-centered elements. As a result, the automatic generation of camera
movements based on music and dance remains a compelling yet complex challenge.
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(a) Offline Camera Movement Generation (b) Real-Time Camera Movement Generation

Figure 1: Illustration of the traditional offline camera movement generation task and our
proposed real-time camera movement synthesis. (a) Offline Camera movement generation: The
entire dance video with music is available to synthesize the corresponding camera movements; (b)
Online camera movement generation: Camera movements are generated frame by frame. For the
current frame, we employ the previous and current segments of dance and music as input to synthesize
the corresponding camera movement.

Previously, significant attention had been given to camera planning and control [27; 45], primarily in
gaming and film scenes. Recently, several methods have aimed to tackle the more challenging task of
dance camera synthesis. Among these, DanceCamera3D [37] introduced the first 3D dance-camera-
music dataset (DCM) and demonstrated the feasibility of synthesizing camera movements driven
by music and dance. Additionally, Cine-AI [40] simplifies the problem by reducing it from 3D to
2D, excluding the camera’s roll and pitch orientation. This simplification significantly diminishes
the expressiveness of the camera movements and reduces the complexity of the task. Moreover,
DanceCamAnimator [38] integrates human animation knowledge into the problem of music- and
dance-driven camera synthesis, employing this knowledge to generate 3D camera movements by
following animators’ hierarchical camera-making procedures.

Although significant progress [7; 9; 12; 14; 15; 18; 19; 4] has been achieved in camera movement
synthesis, a major limitation persists in the real-world application of these offline methods due to
their reliance on having access to the entire dance video as input, as shown in Figure 1(a). In practice,
online requirements must be met in the camera movement generation process, meaning that camera
movements need to be swiftly generated during live stage performances, where the complete dance
video is not available; instead, only prior segments of the performance are accessible. Consequently,
we focus on a more practical yet challenging task, namely, online camera movement synthesis
illustrated in Figure 1(b).

In this paper, we introduce TemMEGA, a novel Temporal Masked Generative Modeling framework
for both online and offline camera movement synthesis. Our approach is built upon three key
components. First, the discrete camera tokenizer (DCT) is trained using the vector quantized
variational autoencoder (VQ-VAE). The DCT transforms and quantizes raw camera movement data
into a sequence of discrete motion tokens in latent space, based on a camera codebook. To more
effectively capture the temporal context of dance and music segments, we introduce the consecutive
memory encoder (CME), which provides a more accurate history summary by jointly modeling long-
and short-term temporal memories. Specifically, long- and short-term segments of dance motions
and music are encoded into fixed tokens. Finally, we mask the tokens to be predicted and employ a
conditional masked transformer (CMT) to predict the masked tokens in real-time, conditioned on
both the unmasked tokens and the long- and short-term memory. Extensive comparative and ablation
studies on public datasets validate the effectiveness of our framework.

In summary, our main contributions include:
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• We introduce the practical task of online camera movement synthesis, with the potential to
significantly expand applications of camera movement generation, particularly in live stage
performances.

• We propose a novel temporal masked generative modeling framework, TemMEGA for
smooth and flexible generate camera movement synthesis in both online and offline man-
ner. Our TemMEGA consists of three main components, i.e. discrete camera tokenizer,
consecutive memory encoder, and conditional masked transformer.

• Comprehensive experiments on public datasets demonstrate that our method achieves state-
of-the-art performance, confirming its effectiveness.

2 Related Work

2.1 Camera Control and Planning

Automatic cinematography has gained significant attention due to the expertise and labor required
for manually producing film-like videos, despite the importance of artistic video content in media,
entertainment, and gaming industries. Jiang et al. [18] propose extracting camera behaviors from
film clips for re-application in virtual environments. Similarly, Rao et al. [28] generate dynamic
storyboards from story and camera scripts, while Wu et al. [39] develop a GAN-based controller
to produce actor-driven camera movements considering spatial, emotional, and aesthetic factors.
Rucks et al. [30] introduce CamerAI to replicate chase camera techniques in third-person games,
and Evin et al. [7] present Cine-AI to simulate movie directors’ cinematographic techniques for
enhancing game cutscenes. In the domain of aerial cinematography, studies [14; 16; 13; 10] focus on
automating drone camera movements based on artistic principles. However, controlling cameras for
dance sequences is more complex due to the need to synchronize with music and dance motions.

To address this, Wang et al. [37] introduced the 3D dance-camera-music dataset DCM and developed
DanceCamera3D, a transformer-based diffusion model for dance camera synthesis. Nonetheless, it
overlooks the mix of continuous shots and abrupt transitions in dance cinematography. DanceCamAn-
imator [38] improves on this by integrating animator knowledge into a three-stage process—keyframe
detection, keyframe synthesis, and tween function prediction—offering precise control over variable-
length sequences.

2.2 Dance Synthesis

Music-conditioned 3D dance generation merges dance and machine learning, producing dance
sequences that align with music’s melody and rhythm. Existing approaches are split into two types:
retrieval-based and direct generation methods. Retrieval-based approaches [24; 8] segment dances
into fixed-length pieces to match the music structure, but are limited by BPM and fixed segment
lengths, making synchronization challenging. Direct generation methods [1; 32; 33; 41] address these
limitations by generating dance movements from scratch.

Recent advances in deep learning have led to the rise of diffusion-based and discrete generation
techniques. Diffusion models, known for their noise-refinement process, generate coherent dance
sequences aligned with musical cues. For instance, EDGE [33] employs conditional diffusion models
to create dance movements using Jukebox [6] for audio feature extraction. Discrete generation follows
a two-stage process. First, VQ-VAE [35] transforms dance movements into compact, discrete features.
Next, natural language processing techniques, such as autoregressive and mask modeling, generate
and reconstruct dance sequences, ensuring temporal coherence and fluidity while synchronizing with
the music.

3 Method

3.1 Problem Formulation

The existing music-dance-to-camera synthesis methods [37; 38] take a dance video with T frames of
music features A = {a1,a2, · · · ,aT } and dance motions M = {m1,m2, · · · ,mT } as input condi-
tions, to generate camera movement sequence C = {c1, c2, · · · , cT }, which is a offline paradigm.
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Figure 2: The framework of our proposed TemMEGA. Our method can be mainly divided in
three components, i.e. discrete camera tokenizer (DCT), consecutive memory encoder (CME) and
conditional masked transformer (CMT).

Considering the more practical setting, i.e. online music-dance-to-camera synthesis as illustrated in
Figure 1(b), we generate the current camera movement ct by taking the current and previous t frames
of music features At = {a1,a2, · · · ,at} and dance motions Mt = {m1,m2, · · · ,mt}.

Specifically, we follow FACT [21] to extract music features, denoted as mt ∈ R35, using Librosa [23].
For dance motions and camera movements, we adopt the approach of DanceCamera3D [37], using
the global positions of 60 human joints, represented as mi ∈ R60×3, and MMD format camera
representation in polar coordinates, denoted as ci ∈ R3+3+1+1. This includes the global position of
the reference point, the camera’s rotation and distance relative to the reference point, and the camera’s
field of view (FOV).

3.2 Temporal Masked Generative Modeling

Our objective is to develop a unfied solution for both offline and online music-dance-to-camera
synthesis that efficiently generates camera movements in real time by utilizing previous and current
dance and music segments. To accomplish this, we propose a novel temporal masked generative
modeling (TemMEGA) framework to replace previous diffusion-based methods, which are limited to
offline operation, i.e., relying on the entire dance video as input to generate the corresponding camera
movement sequence.

As illustrated in Figure 2, our framework consists of three key components. First, the Discrete
Camera Tokenizer (DCT) is designed to transform camera movements into a sequence of discrete
camera tokens while preserving rich correlated information about the camera movements. Second,
the Consecutive Memory Encoder (CME) enhances the conditional information (previous and current
music and dance motion) and provides a more accurate history summary of the temporal condition
by compressing long- and short-term memory in a segment-based manner. Finally, the Temporal
Conditional Masked Transformer (CMT) is trained to predict masked current camera tokens based on
the pre-computed long- and short-term memories of both music and dance motion.

Discrete Camera Tokenizer. To effectively facilitate the synthesis of camera movements, we
pre-train a discrete camera tokenizer (DCT). This is achieved using the Vector Quantized Variational
Autoencoder (VQ-VAE) architecture [35; 41], which enables the generation of discrete representations
of camera shot data through the quantization of encoder outputs into discrete tokens, mapped to
entries or codes from a learned codebook via vector quantization. Our DCT framework comprises a
camera encoder E and a camera decoder D. The objective of vector quantization is defined as follows:

LV Q = ||sg[E(ci)]− ν̂i||22 + β||E(ci)− sg[ν̂i]||22. (1)
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Figure 3: Architecture of the masked transformer. The model is a multi-layer transformer with
a bidirectional attention structure. It takes as input the masked camera tokens, along with the long-
and short-term memories of music and dance motion, to predict the camera tokens. The long- and
short-term memories of music and dance motion are integrated into the network at various stages
through self-attention layers and AdaIN layers, respectively.

Here, for the i-th latent feature νi, the estimated embedding ν̂i can be found by searching the nearest
embedding in the codebook X through the quantization process Q(·):

ν̂i = Q(ci) := arg
xk∈X

min ∥νi − xk∥2. (2)

Based on the estimation latent representation V̂ = [ν̂1, ν̂2, · · · , ν̂T ], the reconstructed camera
movements can be produced by the decoder D(·), i.e., X̃ = D(V̂ ).

Additionally, we incorporate moving averages during codebook updates and reset inactive codebooks,
techniques commonly used to improve codebook utilization in VQ-VAE. These strategies enable the
robust and efficient transformation of camera movements into a sequence of discrete camera tokens.

Consecutive Memory Encoder. To more effectively handle the previous conditional information,
we draw inspiration from some existing works [44; 36] and introduce a Consecutive Memory Encoder
(CME) to separate the long- and short-term memories of the preceding music and dance motion
segments. This allows for modeling short-term context while extracting meaningful correlations from
the long-term history. By doing so, we compress the long-term history without losing important
fine-grained details.

As illustrated in Figure 2(b), we explicitly divide the previous music and dance motion segments
into long- and short-term memories. Specifically, for the prediction of the t-th frame, the short-
term memory retains only a limited number of recent frames of music and dance motion, denoted
as As

t = {ai}ti=t−Ls+1 and Ms
t = {mi}ti=t−Ls+1, respectively. Here, Ls represents the length

of the short-term memory. The other memory, referred to as long-term memory, stores features
from frames further removed from the current time. It is defined as Al

t = {ai}t−Ls

i=t−Ls−Ll+1

and Ml
t = {mi}t−Ls

i=t−Ls−Ll+1, where Ll denotes the length of the long-term memory, which is
significantly longer than the short-term memory.

To further improve the quality of the compressed long-term memory and enhance the short-term
memory, we compress and abstract the long-term memory into a fixed-length latent representation,
which is then integrated into the short-term memory. Specifically, we first divide Al

t and Ml
t into

non-overlapping memory segments. Next, we apply a weight-shared transformer decoder block with
K learnable tokens as the long-term memory queries to query each segment. Through this process,
the memory segments are transformed into K segment-level abstract features. Each feature is then
average-pooled into a single vector, and these vectors are concatenated to form the compressed
long-term segmented memory. Finally, we input the concatenated vectors into two transformer
encoder blocks to obtain the final compressed long-term memories, Ãl

t and M̃l
t.

To further enhance the short-term memory As
t and Ms

t , we utilize it as a query to retrieve relevant
context from the compressed long-term memory. A transformer causal decoder block is employed to
aggregate the compressed long-term memory into the short-term memory Ãs

t and M̃s
t . The resulting

compressed long-term memory, along with the enhanced short-term memory, is then fed into the
subsequent Temporal Conditional Masked Transformer (CMT) as conditional input.

Temporal Conditional Masked Transformer. As shown in Figure 2(c), we design a bidirectional
masked transformer Fθ, parameterized by θ, to model the camera tokens. Inspired by MAGE [22],
the camera tokens Y are first obtained by passing the encoder output through a vector quantizer
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Table 1: Quantitative results on the DCM dataset in the online setting. The best results are indicated
as Bold, and the second ones are indicated as Underline. - denotes that the self-comparison is
meaningless. ∗ denotes that we retrain and retest the method in the online setting.

Method Quality Diversity Dancer Fidelity User Study

FIDk ↓ FIDs ↓ Distk ↑ Dists ↑ DMR ↓ LCD ↓ TemMEGA WinRate ↑
GT - - 3.275 1.731 0.00142 - 32.15%±3.07%

DanceCamera3D∗ [37] 4.634 0.761 1.488 1.109 0.0066 0.197 83.43%±2.36%
TemMEGA w/o Ãl

t&M̃l
t 4.367 0.618 1.525 1.64 0.0045 0.180 61.36%±1.96%

TemMEGA 4.025 0.599 1.589 1.187 0.0035 0.177 -

Table 2: Quantitative results on the DCM dataset in the offline setting. The best results are indicated
as Bold, and the second ones are indicated as Underline. - denotes that the self-comparison is
meaningless.

Method Quality Diversity Dancer Fidelity User Study

FIDk ↓ FIDs ↓ Distk ↑ Dists ↑ DMR ↓ LCD ↓ TemMEGA WinRate ↑
GT - - 3.275 1.731 0.00142 - 40.35%±2.62%

DanceRevolution [17] 10.267 2.368 1.491 1.118 0.0062 0.154 88.14%±2.05%
FACT [21] 5.205 0.960 1.505 1.007 0.0899 0.310 85.64%±1.61%
DanceCamera3D [37] 3.749 0.280 1.631 1.326 0.0025 0.147 73.64%±2.67%
DanceCamAnimator [38] 3.453 0.268 3.140 1.293 0.0022 0.152 65.64%±4.54%
TemMEGA 3.237 0.255 1.961 1.347 0.0020 0.141 -

during training. We then randomly mask out a varying fraction of the sequence elements, replacing
the tokens with a special [MASK] token. The masked camera token sequence Ŷ, along with the long-
and short-term memories of music and dance motion Ãl

t, M̃
l
t, Ã

s
t , M̃

s
t , serve as the inputs for our

bidirectional masked transformer Fθ. Mathematically, the masked transformer Fθ is optimized by
minimizing the negative log-likelihood of the target predictions:

LCMT =
∑

− logFθ(Ỹ|Ŷ, Ãl
t, M̃

l
t, Ã

s
t , M̃

s
t ). (3)

To effectively integrate the conditional input, we carefully design the masked transformer, as depicted
in Figure 3. Following GestureDiffuCLIP [2], in our masked transformer, we extract long-term
memory features by compressing and enhancing them, obtaining a fixed-length token representation.
These long-term (historical) features capture macro-level information such as the overall style of
the music. To incorporate this non-sequential macro-level information into the generation process,
we leverage the style transfer capability of the adaptive instance normalization (AdaIN). In contrast,
short-term memory features maintain a direct temporal correspondence with the sequence to be
generated. Therefore, to ensure the generated sequence aligns temporally with the input short-term
information, it is crucial to establish strong temporal interactions between the short-term memory
and the generated sequence. To achieve this, we employ a cross-attention mechanism. Moreover, the
bidirectional self-attention mechanism enables the prediction of masked tokens by leveraging context
from both directions.

Inference. During the inference phase in the online setting, we predict only the result at the current
time step t. Specifically, we append a [MASK] token following the corresponding camera tokens of
the short-term memory and utilize both the long- and short-term memories as conditional inputs to
predict the masked token. Finally, the predicted tokens are decoded and projected back to camera
sequences through the VQ-VAE decoder. During both training and testing, we apply the [MASK]
token operation solely to the position corresponding to time t and directly use the model’s output at
this position as the predicted result for t. Consequently, our model does not involve concepts such as
masking ratio or the number of inference steps.

4 Experiments

In this section, we evaluate our proposed TemMEGA and analyze its essential characteristics.
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Figure 4: Visualization of the generated results utilizing our TemMEGA.

4.1 Datasets and Implementation Details

Experimental Implementation. We train our models on 4 NVIDIA A6000 48 GB with a batch
size of 512. Discrete Camera Tokenizer (DCT) architecture incorporates residual blocks within its
encoder and decoder components, featuring a spatial downscaling factor of 4, which consists of 4
quantization layers, each covering a codebook comprising 2048 vectors of 32-dimensional entities.
The quantization dropout ratio is set to 0.2. For Consecutive Memory Encoder (CME), we use two
transformer encoder blocks to compress long-term memories with 2 layers, and we enhance the
short-term memories with two transformer decoder blocks with 4 layers. we set Ll ,Ls and K to 256,
32 and 8. The number of masked transformer blocks, heads, and dimensions is set to 6, 8, and 512 in
the Temporal Conditional Masked Transformer (CMT). We train the models by Adam optimizer [20]
with the same hyperparameters (learning rate, β1, and β2 are set as 0.002, 0, and 0.99, respectively)
as previous works.

Datasets. In this work, we use DCM [37], a dataset consisting of 108 pieces of animator-designed
paired dance-camera-music data including camera keyframe information. To ensure the fairness of
the experiment, we follow the previous works and re-use the train and test splits provided by the
original dataset. For the training of our framework, in the training set, we stitch the data pieces that
are adjacent to the original data so that we acquire more training data with history.

4.2 Evaluation Metrics

Kinetic Feature Evaluation. Following prior works [21; 31; 37], we evaluate generated camera
movement using Fréchet Inception Distance (FID) [11] for quality and average Euclidean distance
(Dist) in the feature space for diversity. For kinetic evaluation, we use a kinetic feature extractor [25]
following existing works [17; 21; 31]. Since this feature extractor calculates average velocity and
acceleration, we compute kinetic features on split 2.5-second data to ensure the density of feature
distribution which is similar to settings in AIST++ [21]. Thus, we have got FIDk for kinetic quality
and Distk for kinetic diversity.

Shot Feature Evaluation. Shot features play a crucial role in dance camera synthesis. However,
existing approaches [5; 29; 34] are confined to 2D classification with a limited number of predefined
shot types. Therefore, we use a novel shot feature extractor designed for 3D scenes, incorporating
cinematographic knowledge. We follow [37; 38] and calculate shot features as:

Featuresshot = (S3/S1, S3/S2) . (4)

7



Table 3: Ablation studies on the codebook: (Left) number of code; (Right) code dimension.

(a) Number of code
noc FIDk Distk DMR LCD

256 4.302 1.498 0.0042 0.182
512 4.168 1.521 0.0040 0.179
1024 4.088 1.563 0.0038 0.177
2048 4.025 1.589 0.0035 0.177
4096 4.035 1.590 0.0037 0.179
8192 4.125 1.568 0.0042 0.183

(b) Code dimension
cd FIDk Distk DMR LCD

16 4.091 1.561 0.0038 0.178
32 4.025 1.589 0.0035 0.177
64 4.019 1.595 0.0034 0.176

128 4.015 1.605 0.0034 0.178
256 4.010 1.598 0.0035 0.176

where S1 and S3 represent the camera plane projection areas of the dancer’s full body and body parts,
respectively, within the camera view, and S2 is the total area of the camera screen. The term S3/S1

indicates the percentage of the body within the camera view, while S3/S2 reflects the proportion of
the camera screen occupied by the dancer. We then compute the Fréchet Inception Distance (FID)
and distance (Dist) for Featuresshot and its velocity to obtain FIDs and Dists, which measure shot
quality and diversity. To account for the differences between shot and kinetic features, we calculate
shot metrics on a frame-by-frame basis to maintain the accuracy of shot classification.

Dancer Fidelity Evaluation. Dancer fidelity means camera movement should try to capture sig-
nificant body parts against the dancer’s poses and avoid the long time absence of the dancer in the
camera view. We follow [37; 38] to evaluate dancer fidelity with the following two metrics: 1) Dancer
Missing Rate (DMR): DMR represents the ratio of frames in which the dancer is not in the view of
the camera, and 2) Limbs Capture Difference (LCD): LCD denotes the difference of body parts inside
and outside camera view between synthesized results and ground truth. Lower values of DMR and
LCD indicate better dancer fidelity, as they correspond to fewer instances where the dancer is missing
from the view and greater similarity between the synthesized results and the carefully adjusted ground
truth.

User Study. For qualitative evaluation, we conduct a user study to compare our method with
alternative approaches and the ground truth. In this study, we first randomly select 10 dance-camera
input sequences from the test set, each lasting between 17 and 35 seconds. For each sequence, we
sample the outputs from our method as well as from baseline methods. This process produces 40
pairs of dance videos, with each pair consisting of the output from our method and one from a
baseline method. We then invite 21 participants to view these 30 video pairs in a randomized order
and respond to the question, "Which camera movement better highlights the dance and music?" for
each pair. The participants include dancers, animators, filmmakers, and individuals with minimal
experience in camera work and dance.

4.3 Evaluation Results

Quantitative Results. We compare our TemMEGA with the state-of-the-art camera generation
methods on the DCM dataset and report the experimental results in Table 1. Since DanceCamAnima-
tor [38] is a three-stage approach that requires a complete dance video to generate camera movements,
it cannot be applied to real-time generation in the real-time setting. The results indicate that the
performance of our proposed method considerably outperforms DanceCamera3D [37]. Notably, our
method remains effective even without utilizing long-term memory information. This suggests that
both the generation architecture and the proposed Consecutive Memory Encoder play a substantial
role in enhancing the quality of the generated results.

To further demonstrate the effectiveness and scalability of our method, we made simple modifications
to TemMEGA to enable training and testing in an offline setting. Specifically, we remove the compo-
nents involving long-term memory in TemMEGA and only use short-term memory as the condition
for camera generation. Details of these model modifications can be found in the supplementary
materials. We can see that TemMEGA consistently performs favorably against all the other existing
methods on all evaluations. The demonstrated superiority of our method across various camera quality
metrics indicates that it not only generates motions that are more lifelike compared to those produced
by baseline methods, but it also excels in choreographing these movements into coherent camera
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Table 4: Ablation studies on temporal receptive field: (Left) local window size Ll; (Right) stride Ls.

(a) Impact of Ll

Ll FIDk Distk DMR LCD

64 4.112 1.554 0.0039 0.179
128 4.068 1.575 0.0037 0.179
256 4.025 1.589 0.0035 0.177
512 4.017 1.593 0.0034 0.176
1024 4.002 1.599 0.0033 0.176

(b) Impact of Ls

Ls FIDk Distk DMR LCD

8 4.427 1.505 0.0054 0.192
16 4.167 1.519 0.0047 0.186
32 4.025 1.589 0.0035 0.177
64 4.012 1.597 0.0033 0.175

128 3.995 1.602 0.0032 0.174

sequences through the implementation of the proposed CMT, which helps us learn high-fidelity
camera.

Qualitative Results. To better comprehensively demonstrate the effectiveness of our TemMEGA,
we visualize the generated camera shots and corresponding rendered dance with diverse camera
movements in Figure 4. Our method demonstrates the ability to achieve smooth dance performances
with diverse shot transitions, underscoring the advantages of the TemMEGA framework, which
effectively synthesizes satisfactory dance camera movements without requiring the entire dance video.
More visual results can be found in the supplementary materials.

4.4 Ablation Studies

The impact for the number of code in the codebook. We conducted ablation experiments using
codebooks of various lengths. Table 3 shows that a codebook length of 2048 yields the best results.
When the number of codes in the codebook is reduced, the diversity of the generated outputs
diminishes. On the other hand, excessively increasing the number of codes leads to a rapid decline
in overall quality. This is because the size of the codebook determines the number of categories in
the subsequent CMT classification. When the number of categories becomes too large, it adversely
impacts CMT performance.

The impact of the code dimension of the codebook. We conducted ablation experiments on
codebooks with various dimensions to assess their impact on performance. As shown in Table 3,
the results indicate that the code dimension of 32 yields improved outcomes compared to other
dimensions. Our experimental analysis suggests that changes in the code dimension have only a
minor effect on the quality of generation, indicating relative stability across different dimensions.
However, due to the demands of the real-time setting, where high generation speed is essential, we
selected a dimension of 32 for the final experiments to balance performance quality with reduced
computational cost.

The choice of Ll and Ls We conducted ablation experiments to assess the effects of different Ll

and Ls values. As shown in Table 4, as Ll increases, the generation quality also improves, though
this improvement slows when Ls exceeds 256. Table 4 demonstrates that when Ls is smaller, the
generation quality increases more rapidly as Ls grows. Given that the real-time setting requires
faster generation speeds, we ultimately selected Ll and Ls values of 256 and 32, respectively, as the
experimental parameters.

The choice of K We performed ablation experiments to evaluate the impact of different levels of
long-term memory compression, denoted by K. As shown in Figure 5, the extent of compression
has minimal influence on the outcomes, whereas the inclusion of long-term memory significantly
affects performance. Considering the high-speed requirements of the real-time setting, we optimized
for a balance between computational efficiency and output quality, selecting K = 8 as an effective
compromise.

The impact of components in CME and CMT. In Table 5, we analyze the influence of different
components in CME and CMT. Cases 1–3 correspond to the ablation of CME. Removing the long-
term enhancement for short-term encoding (Case 1) increases FIDk and DMR, indicating that the
interaction between memories benefits visual quality and temporal consistency. When the causal mask
in short-term enhancement is removed (Case 2), performance slightly drops, showing that causal
modeling helps maintain motion continuity. Excluding the long-term memory as a conditioning
signal (Case 3) results in the largest degradation among CME variants, proving the importance of
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Figure 5: Ablation study for the impact of
the number K.

Table 5: Ablation results of the TemMEGA model on
CME and CMT components.

Case FIDk ↓ Distk ↑ DMR ↓ LCD ↓
Ours 4.025 1.589 0.0035 0.177
Case 1 4.238 1.552 0.0041 0.178
Case 2 4.126 1.577 0.0038 0.178
Case 3 4.367 1.525 0.0045 0.180
Case 4 4.151 1.580 0.0037 0.178
Case 5 4.851 1.425 0.0081 0.208
Case 6 4.061 1.593 0.0036 0.177

long-term context for stable camera synthesis. Cases 4–6 investigate CMT. Injecting both memories
through cross-attention (Case 4) achieves comparable but slightly worse performance than our design,
suggesting that our fusion strategy is more effective. Using AdaIN for feature injection (Case 5)
leads to a notable decline in all metrics, revealing that adaptive normalization is less suitable for
temporal-memory fusion. Sequentially injecting long-term and then short-term memory (Case 6)
performs close to the full model, demonstrating the robustness of the proposed memory arrangement.

5 Conclusion

In this paper, we introduce the TemMEGA framework, a novel approach for real-time camera move-
ment synthesis tailored specifically for live dance performances. Unlike previous methods that rely
on full-length dance videos, TemMEGA utilizes only current and past segments of dance and music,
making it feasible for real-time application. Our approach leverages discrete camera tokenization,
a consecutive memory encoder for capturing long- and short-term temporal dependencies, and a
conditional masked transformer to generate camera movements dynamically. Experimental results
on public datasets demonstrate that TemMEGA achieves state-of-the-art performance, validating its
robustness and effectiveness in addressing the complexities of real-time camera movement synthesis
for live dance contexts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. The main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope. They clearly outline the research objectives, methodology,
and the significance of the findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been discussed in the Supplementary Material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All the theorems, formulas, and proofs in the paper have been properly
numbered and cross-referenced, fulfilling the guidelines provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have detailed our model and experimental setup thoroughly in the Method-
ology and Experiments sections, providing all necessary information to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer:[No]
Justification: At this stage, we do not plan to release the code due to ongoing related research.
However, we provide detailed implementation and training settings in the paper to ensure
reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: To ensure full reproducibility, we provide a comprehensive description of the
experimental setup in the “Method” and “Experimental Implementation” sections, along
with additional details in the Supplementary Material. This includes clear specifications of
data partitions, hyperparameters, model selection criteria, and the optimization algorithms
employed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experimental results do not include confidence intervals or statistical
significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Appendix and Experimental Implementation provide detailed information
on the computational resources required to reproduce our experiments, including hardware
specifications, memory usage, and estimated execution time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to all ethical guidelines required by NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our research does not directly produce societal impacts as it focuses on
technical advancements in a specific field without direct societal applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in our paper are publicly available datasets, and we have
cited the respective literature for each dataset. Any researcher can download these datasets
from the provided sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets. We will make the code public after the
paper is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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