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Abstract

In this work, we introduce a novel evaluation001
paradigm for Large Language Models, one that002
challenges them to engage in meta-reasoning.003
This approach addresses critical shortcomings004
in existing math problem-solving benchmarks,005
traditionally used to evaluate the cognitive capa-006
bilities of agents. Our paradigm shifts the focus007
from result-oriented assessments, which often008
overlook the reasoning process, to a more holis-009
tic evaluation that effectively differentiates the010
cognitive capabilities among models. For ex-011
ample, in our benchmark, GPT-4 demonstrates012
a performance five times better than GPT3.5.013
The significance of this new paradigm lies in014
its ability to reveal potential cognitive deficien-015
cies in LLMs that current benchmarks, such016
as GSM8K, fail to uncover due to their satura-017
tion and lack of effective differentiation among018
varying reasoning abilities. Our comprehen-019
sive analysis includes several state-of-the-art020
math models from both open-source and closed-021
source communities, uncovering fundamental022
deficiencies in their training and evaluation ap-023
proaches.024

1 Introduction025

Pretrained on trillions of tokens and possessed026

with billions of parameters, today’s large language027

model (OpenAI, 2023; Anthropic, 2023; Touvron028

et al., 2023) is capable of generating coherent texts029

and achieved super-human performances in many030

tasks (Bubeck et al., 2023; Hendrycks et al., 2021).031

With the hope of differentiating different model’s032

cognitive ability, math questions are often selected033

as a proxy evaluation task. However, despite the034

complexity and diversity of these math problems,035

recent SOTA LLMs (OpenAI, 2023; Yu et al., 2023;036

Gou et al., 2023) have been able to achieve accu-037

racy rates exceeding 80% (Luo et al., 2023) on038

multi-step math reasoning datasets like GSM8K039

(Cobbe et al., 2021).040

Upon a detailed examination of the design prin- 041

ciples and objectives of current math datasets, we 042

identified several key shortcomings. Firstly, the 043

majority of these datasets focus on result-oriented 044

metrics, scoring accuracy based solely on the final 045

answer, without considering the underlying reason- 046

ing process. With the chain of thought methodol- 047

ogy (Wei et al., 2022) and its derivative techniques 048

(Chen et al., 2022; Yao et al., 2023) emerged as the 049

de facto standard for reasoning processes, we argue 050

that the result-driven evaluation method may be 051

insufficient for a comprehensive assessment of the 052

intended cognitive and reasoning capabilities. Sec- 053

ondly, as a recent study (Paster, 2023) suggests that 054

some LLMs who achieved SOTA performances 055

in GSM8K and MATH (Hendrycks et al., 2021) 056

benchmarks have unexpectedly low performance 057

when facing newly released Hungarian high school 058

exams. This raises concerns about the data contam- 059

ination and potential overfitting to the benchmarks. 060

It also challenges the efficacy of these benchmarks 061

in differentiating model capabilities. 062

In response to these identified limitations, we in- 063

troduced a novel meta-reasoning paradigm, namely 064

challenging LLMs to reason about different reason- 065

ing. Under this paradigm (as illustrated in Figure- 066

2), LLMs (e.g. GPT4 in the figure) are tasked 067

to adopt a role akin to that of a teacher, assess- 068

ing solutions by determining correctness, identi- 069

fying potential initial errors, and providing rea- 070

sons for these errors. Following this design princi- 071

ple, we have developed a novel benchmark named 072

Meta-Reasoning-GSM8k (e.g.MR-GSM8k) and 073

proposed a corresponding novel metric called MR- 074

Score. Our benchmark, characterized by instances 075

manually labeled by experts and rigorously re- 076

viewed, serves as a robust tool for a qualitative and 077

quantitative assessment of language models. Our 078

findings indicate that most SOTA models demon- 079

strate a significant performance decline in this more 080

nuanced assessment. As demonstrated in Figure-1, 081
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Evaluation Results of SOTA LLMs on GSM8K and MR-GSM8K
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Figure 1: Comparative Performance in GSM8K and
MR-GSM8k: This graph illustrates the performance of
GPT-4, Claude2, and GPT3.5 in the standard GSM8K
benchmark versus our novel MR-GSM8k benchmark.
While these models show similar performance levels in
GSM8K, a marked variance is observed in MR-GSM8k,
highlighting the differentiating power of our benchmark
in evaluating deeper reasoning capabilities.

although SOTA models exhibit comparable perfor-082

mance in GSM8K, there is a considerable variance083

in their effectiveness on our benchmark, with dis-084

crepancies up to fivefold.085

We argue that our evaluation paradigm does not086

only provide a more differentiating metric that fo-087

cuses on the reasoning process over mere compu-088

tational outcomes, but also sheds light on funda-089

mental deficiencies within the current evaluation090

and training approaches. As unveiled by our experi-091

ments in Section-4, the SOTA math models we eval-092

uated demonstrated a few undesired properties that093

are otherwise undetected such as sycophancy, over-094

fitting, lack of ontological understanding etc. In095

Section-5, we will demonstrate that this paradigm096

provides an effective transformation method that097

expands any existing evaluation benchmark to be098

more holistic and differentiating. This is partic-099

ularly relevant given the non-transparency of the100

pretraining data of popular LLMs and potential101

data contamination (Balloccu et al., 2024; Yang102

et al., 2023).103

In conclusion, our paper contributes significantly104

to the field in the following ways:105

• Introduction of a novel evaluation principle,106

the accompanying open-source benchmark107

MR-GSM8k and metric MR-Score.108

• Demonstration of effective transformation of109

an existing benchmark (e.g. GSM8K) and110

how such modification can lead to robust eval- 111

uation against potential overfitting and data 112

contamination. 113

• Comprehensive experiments on several SOTA 114

models using the MR-GSM8k benchmark and 115

critical shortcomings in the current training 116

and evaluation paradigms are highlighted. 117

• Through analysis on the cognitive levels and 118

examinations of holistic coverage on the solu- 119

tion space, the need for benchmarks that go be- 120

yond surface-level evaluations is emphasized, 121

fostering more sophisticated and nuanced AI 122

development. 123

2 Related Works 124

Complex reasoning tasks like math problems have 125

long been widely accepted as a great proxy to 126

fathom the cognitive ability in language models 127

(Sharples et al., 1989; Koncel-Kedziorski et al., 128

2016; Szegedy, 2020; Polu and Sutskever, 2020; 129

Miao et al., 2020; Hendrycks et al., 2021; Cobbe 130

et al., 2021). It demands the ability to understand 131

the symbols and texts behind the problems, to dis- 132

sect the problems into logically connected sub- 133

ones, then combine and arrange results into final 134

solutions. It touches on the cognitive abilities to 135

induce patterns out of problems, to recall corre- 136

sponding formulae, apply the rules deductively and 137

reason in abstract symbolic way. 138

GSM8K (Cobbe et al., 2021) and MATH 139

(Hendrycks et al., 2021) have been two popular 140

benchmarks to evaluate the math reasoning capa- 141

bilities of LLMs in the past few years. Wei et al., 142

2022 proposed chain of thought to approach the 143

multi-step reasoning tasks in a step by step manner. 144

Stanford Alpaca (Taori et al., 2023) popularized 145

the knowledge distillation method of cloning corre- 146

sponding abilities from ChatGPT (OpenAI, 2022) 147

by asking it to generate related QA pairs. Wizard- 148

Math (Luo et al., 2023) enhanced the distillation by 149

specifying the QA difficulties in the generation pro- 150

cess. Mammoth (Yue et al., 2023) combined chain 151

of thought and program of thought, and finetunes 152

its models with the answer generated by GPT-4 153

(OpenAI, 2023) that are either in natural language 154

or code language. MetaMath (Yu et al., 2023) ex- 155

panded the generated question types by introducing 156

the forward/backward reasoning variations. 157

Despite the remarkable progress made in math 158

reasoning, there are some evidence that shows large 159

2



### Instruction:

• An electronics seller bought 5 phones 
for $700 each and gives the seller 
$4000 in dollar bills. How much will the 
seller give back in change? Let's write a 
program.

### Instruction:

• An electronics seller bought 5 phones 
for $700 each and gives the seller 
$4000 in dollar bills. How much will the 
seller give back in change? 

### Instruction:

• An electronics seller bought 5 phones for 
$700 each and gives the seller $X in dollar 
bills. How much will the seller give back in 
change? If we know the answer to the 
above question is 500, what is the value of 
unknown variable 'X'?

Input 
Question

Output
Solution

GPT4-Grading 
Output

### Response:

• "Step 1: total_amount_paid = 5 * 700",
• "Step 2: total_amount_given = 4000",
• "Step 3: change = total_amount_given - 

total_amount_paid",
• "Step 4: print(change)"

### Response:

• "Step 1: The seller bought 5 phones for 
5*700 = $<<5*700=3500>>3500.",

• "Step 2: …….",
• "Step 3:……",
• "Step 4: The seller will give back $3500-

$4000 = $<<3500-4000=500>>500 in 
change."

### Response:

• "Step 1: The seller bought 5 phones for 
$700 each, so…….",

• "Step 2: The seller gives the seller $X in 
dollar bills, so ……",

• "Step 3: ……",
• "Step 4: Solving for X, we get: X = 4000.",
• "Step 5: The value of X is 4000.",

• Final Judgement: Wrong
• First Error Step: Step 3
• Error Analysis: The student has 

misunderstood the concept of 
calculating change. It is not possible to 
get a negative change. Instead, the 
student should have checked if the 
total amount given was less than the 
total amount required and then 
calculated the additional amount 
required.

• Final Judgement: Correct
• First Error Step: N/A
• Error Analysis: N/A

• Final Judgement: Correct
• First Error Step: N/A
• Error Analysis: N/A

Original GSM8KPOT GSM8K REVERSED GSM8K

Figure 2: This figure illustrates the structure of the MR-GSM8k benchmark, which incorporates math problems
from GSM8K (Cobbe et al., 2021) and introduces two additional variations: Program of Thought (POT) (Yue et al.,
2023) and reversed reasoning (Yu et al., 2023). These variations serve as sophisticated proxy challenges to assess
whether language models possess the ability to "reason about reasoning". Each question-solution pair within the
benchmark demands that the evaluated model not only determines the solution’s correctness but also identifies the
first erroneous step and articulates the underlying error rationale. Note despite the simplicity of the problem, GPT4
fails to predict the correctness of the solution of original GSM8K problem and its POT variation (highlighted in red
in the grading outputs).

language models might not have really mastered160

the reasoning and even not understanding what it161

generated. For example, Dziri et al., 2023 evaluated162

a few compositional reasoning problems and found163

that LLMs fail to generalize to questions with dif-164

ferent complexity than the questions the model was165

trained on. Arkoudas, 2023 used a collection of166

21 reasoning tasks to systematically demonstrated167

that, despite occasional flashes of analytical bril-168

liance, GPT4 is still severely limited when it comes169

to reasoning. Huang et al., 2023a and Yen and Hsu,170

2023 also found that ChatGPT is very limited in171

judging the solution correctness of math problems,172

however our work focuses on the construction of a173

qualitative and quantitative evaluation framework174

and focus on the discussion of the evaluation prin-175

ciple and deficiencies of current training paradigm.176

3 Evaluation Framework 177

3.1 Dataset Construction 178

As illustrated in Figure-2, given a GSM8K question 179

and its solution (e.g. the upper light blue part in 180

the figure), the evaluated model (e.g. the lower 181

white part) is tasked to predict the correctness of 182

the solution. If the solution is incorrect, the model 183

is expected to further locate the first-error-step and 184

elucidate the error-reason. 185

Note that each test problem is combined with 186

two variations which requires code solution (Yue 187

et al., 2023) and reversed reasoning (Yu et al., 188

2023). The variations types are chosen specifically 189

due to their significance in expanding the reason- 190

ing methodologies in LLMs. The "Program of 191

Thought"(e.g. code solution), a concept proposed 192

by Madaan et al., 2022 and empirically proven ef- 193
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Question Types Correct Incorrect Total
Original 692 726 1418
POT 113 109 222
Reverse 622 738 1360
Total 1427 1573 3000

Table 1: This table presents the composition of the MR-
GSM8k benchmark. It categorizes questions into "Orig-
inal" (based on GSM8K), "POT" (Program of Thought),
and "Reverse" types, with counts for both correct and
incorrect reasoning processes. Due to the difficulties of
labelling coding solutions, the POT types of problems
are labelled by the author manually therefore smaller in
size.

fective in math reasoning by Yue et al., 2023; Gou194

et al., 2023, represents a robust reasoning frame-195

work. The reasoning process in code language is196

inherently more structured and hierarchically ab-197

stracted. Its reasoning process is also less prone198

to error types such as calculation error. Reversed199

reasoning, on the other hand, is recently brought200

under spotlight with discussions on if language201

models are able to learn backward relations effec-202

tively (Berglund et al., 2023).203

For each problem collected, we utilized204

MetaMath-7B (Yu et al., 2023) with a temperature205

setting of 1 to generate step by step solutions. A206

panel of selected annotators were then recruited to207

review each question-solution pair on its reasoning208

process and decide the solution-correctness, first-209

error-step and error-reason. Table 1 shows the210

statistics about the evaluation benchmark we cu-211

rated. For more details regarding the definitions of212

the annotation fields, process design and annotation213

challenges please refer to Appendix-A.214

3.2 Evaluation Metric215

For each question-solution pair annotated, the eval-216

uated model are supposed to decide the correctness217

of the solution and report the first-error-step and218

error-reason if any. The solution-correctness and219

first-error-step is scored automatically based on the220

manual annotation result. Only when the evaluated221

model correctly identified the incorrect solution222

and first-error-step will its error-reason be further223

examined manually or automatically by models.224

Therefore in order to provide a unified and normal-225

ized score to reflect the overall competence of the226

evaluated model, we hereby propose a novel metric227

named MR-Score consisting of three sub-metrics.228

The first one is the Matthews Correlation Coeffi-229

cient (a.k.a MCC, Matthews, 1975) for the binary230

classification of solution-correctness. 231

MCC =
TP × TN − FP × FN√
(TP + FP )× (TP + FN)

× 1√
(TN + FP )× (TN + FN)

(1) 232

where TP, TN, FP, FN stand for true positive, true 233

negative, false positive and false negative. The 234

MCC score ranges from -1 to +1 with -1 means 235

total disagreement between prediction and obser- 236

vation, 0 indicates near random performance and 237

+1 represents perfect prediction. In the context of 238

this paper, we interpret negative values as no better 239

than random guess and set 0 as cut-off threshold 240

for normalization purpose. 241

The second metric is the ratio between numbers 242

of solutions with correct first-error-step predicted 243

and the total number of incorrect solutions. 244

ACCstep =
Ncorrect_first_error_step

Nincorrect_sols
(2) 245

The third metrics is likewise the ratio between 246

number of solutions with correct first-error-step 247

plus correct error-reason predicted and the total 248

number of incorrect solutions. 249

ACCreason =
Ncorrect_error_reason

Nincorrect_sols
(3) 250

MR-Score is then a weighted combination of 251

three metrics, given by 252

MR-Score = w1 ∗max(0,MCC)

+ w2 ∗ACCstep + w3 ∗ACCreason
(4) 253

For the weights w1, w2 and w3, they are chosen 254

empirically to be 0.2, 0.3 and 0.5 by considering 255

the difficulties of binary solution-correctness clas- 256

sification task, multi-class first-error-step predic- 257

tions and free-form error-reason explanations. For 258

extended discussion on the design of MR-Score, 259

please check out Appendix-B. 260

4 Experiments 261

In this section, we will give individual analysis on 262

closed-source commercial language models and 263

open-source SOTA math models as they exhibit 264

very different patterns and properties. To demon- 265

strate the difficulties of our benchmark, we also 266

evaluated the performance of a 70B llama2 model 267

finetuned on in-domain training data. 268

4



4.1 Commercial LLMs Evaluation269

For this study, we specifically evaluated GPT3.5-270

turbo-0613, Claude2.0, GPT4-0613. Given that271

these models have demonstrated over 80% accu-272

racy in single-pass settings (Luo et al., 2023), our273

interest lies in assessing their performance under274

zero-shot conditions in the MR-GSM8k bench-275

mark.276

In line with findings from Orca-2 (Mitra et al.,277

2023) and other researchers, we recognized that278

task performance is significantly influenced by279

system-instruction design. Thus, we conducted280

empirical experiments with various instruction tem-281

plates, selecting the most effective one from our val-282

idation set for use across all models (see Appendix-283

D for more details). Another key aspect of our ex-284

perimental setup involves the sampling temperature.285

Unlike the greedy sampling method used in the286

aforementioned single-pass experiments, we found287

that greedy decoding substantially diminishes gen-288

eration quality and diagnostic performance in MR-289

GSM8k. Consequently, after several iterations of290

testing on our validation set, we set the sampling291

temperature empirically to be 0.5 for all models.292

Table-2 presents the evaluation results for the293

three selected models. It’s evident that GPT3.5294

trails behind both Claude2 and GPT4 across most295

metrics. For instance, in binary correctness predic-296

tion, GPT3.5 achieves an MCC score of only 0.198,297

while Claude2 and GPT4 score 0.345 and 0.614,298

respectively. Figure-3 offers a visual representa-299

tion of the incorrect solutions within MR-GSM8k,300

elucidating the progressively complex nature of the301

tasks – identifying incorrect solutions, locating the302

first-error-step, and articulating the error’s rationale.303

The graph reveals a downward trend in accuracy304

for these successive tasks. Notably, GPT3.5 shows305

a mere 4.64% success rate in identifying the first-306

error-step and explaining the reason behind it.307

Further scrutiny of False Positive Rate and False308

Negative Rate made by the models, as illustrated309

in Figure-4, uncovers distinct tendencies in each310

model’s performance. Claude2 exhibits an impres-311

sively balanced distribution between false positives312

and false negatives. In contrast, GPT4 is prone to313

committing false negatives at a rate approximately314

three times higher than false positives, indicating315

a tendency to label correct solutions as incorrect.316

Conversely, GPT3.5 displays an opposite trend to317

GPT4, with a high false positive rate of 60.52%.318

This suggests that GPT3.5 is more inclined to un-319

critically accept the given solutions, irrespective of 320

their actual correctness, as compared to the other 321

two models. Possible interpretation could be made 322

by observing the low accuracy of GPT3.5 in deter- 323

mining the error reasons. The overall uncertainty 324

towards a solution combined with the potentially 325

insufficient calibration of RLHF lead to the syco- 326

phancy behavior (Sharma et al., 2023). 327

Despite the fact that all three evaluated mod- 328

els exhibit relatively similar pass@1 rates on the 329

GSM8K dataset (e.g., GPT4 surpassing Claude2 by 330

only 4 percent in accuracy as per Luo et al., 2023), 331

the performance disparity becomes stark in the con- 332

text of our MR-GSM8k benchmark. GPT4 demon- 333

strates a significantly higher proficiency, being ap- 334

proximately 5 times more effective than GPT3.5 335

and 2.5 times more so than Claude2 measured by 336

MR-Score. This pronounced variance in evaluation 337

metrics highlights the limitations inherent in the 338

current design of benchmark datasets, reinforcing 339

the argument presented in Section-1 for the neces- 340

sity of a new paradigm to comprehensively evaluate 341

the reasoning abilities of contemporary LLMs. 342

TNR TN+Step TN+Step+Reason

GPT4 0.9059 0.5232 0.4304

Claude2 0.6713 0.2104 0.1176

GPT3-5 0.3948 0.1138 0.0464

0

0.1

0.2
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0.7
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Performance on Incorrect MR-GSM8K Solutions

Figure 3: Performance Visualization on Incorrect MR-
GSM8k Solutions: This graph depicts the performance
of Claude2, GPT3.5, and GPT4 in identifying incor-
rect solutions in MR-GSM8k. ’TNR’ denotes the True
Negative Rate. ’TN+Step’ refers to the ratio where
models correctly identified an incorrect solution and
located the first-error-step. ’TN+Step+Reason’ repre-
sents the frequency of models correctly determining
solution-correctness, identifying the first-error-step, and
providing an accurate error-reason.

4.2 Open-sourced LLMs Evaluation 343

In this section, we selected several state-of-the- 344

art open-source models fine-tuned on the 70B 345

llama architecture (Touvron et al., 2023). Namely, 346

they are WizardMath-70B (Luo et al., 2023), 347
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Model Eval Method TPR TNR MCC ACC-S ACC-R MR-Score
Claude2 0-shot 67.41% 67.13% 0.345 21.04% 11.76% 0.191
GPT3.5 0-shot 78.84% 39.48% 0.198 11.38% 4.64% 0.097
GPT4 0-shot 69.03% 90.59% 0.614 52.32% 43.04% 0.495
WizardMath-70B 3-shot 82.41% 2.73% -0.250 0.38% 0.06% 0.001
Mammoth-70B 3-shot 98.81% 2.73% 0.055 0.25% 0.06% 0.012
MetaMath-70B 3-shot 91.45% 10.55% 0.034 1.40% 0.38% 0.013
llama2-70B-diag 0-shot 31.74% 73.49% 0.058 20.79% 6.29% 0.105

Table 2: Evaluation Results of Models on MR-GSM8k: This table presents a detailed breakdown of each model’s
performance, including True Positive Rate (TPR), True Negative Rate (TNR) and Matthews Correlation Coefficient.
The ACC-S, ACC-R and MR-Score columns represent the ACCstep, ACCreason and MR-Score metrics defined
in Section-3. The MR-Score here is calculated based on the manual labelling of error-reasons. Note that MCC is
originally not range between 0 and 1 and MR-Score is inherently absolute, thus both are not expressed in percentage.

GPT4 Claude2 GPT3-5

TPR 0.6903 0.6741 0.7884

TNR 0.9059 0.6713 0.3948

FPR 0.0941 0.3287 0.6052

FNR 0.3097 0.3259 0.2116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classification Performance on MR-GSM8k

Figure 4: Error Rate Analysis of Closed-Source Models
on MR-GSM8k: This figure illustrates the True Positive
Rate (TPR), True Negative Rate (TNR), False Positive
Rate (FPR), and False Negative Rate (FNR) of closed-
source models evaluated on MR-GSM8k, offering in-
sights into their accuracy in various aspects of solution
evaluation.

Mammonth-70B (Yue et al., 2023) and MetaMath-348

70B (Yu et al., 2023). WizardMath-70B under-349

went training on augmented problems of varying350

difficulty levels and was further refined through a351

process-oriented reinforcement learning procedure.352

Mammoth-70B received training on a diverse range353

of STEM-related problems, including those from354

the GSM8K dataset, which were augmented with355

GPT4-generated code solutions. MetaMath-70B’s356

training encompassed a substantial volume of aug-357

mented data, including rephrased and backward-358

transformed problems from the GSM8K set. Given359

that these models are specialized and not fine-tuned360

for general instructions, we employed three-shot361

in-context learning examples during inference to362

guide the models in adhering to the desired format363

and reasoning logic.364

As demonstrated in Table-2, despite having ex- 365

posure to similar training data, all three models 366

failed miserably in the MR-GSM8k benchmark. 367

This outcome highlights their lack of generaliza- 368

tion capabilities when faced with problems sim- 369

ilar to their training data but presented in differ- 370

ent formats. Among these models, MetaMath dis- 371

played the most commendable performance, which 372

is not entirely unexpected. Over half of its train- 373

ing dataset (approximately 240k instances) is de- 374

rived directly from the GSM8K dataset, including 375

a balanced mix of answer augmentations, ques- 376

tion rephrasings, and backward transformations of 377

questions. Despite having a training dataset with 378

question types akin to those in MR-GSM8k (e.g., 379

original and POT questions), the Mammoth model 380

failed to demonstrate a deeper meta-understanding 381

of the data, correctly answering only one out of 382

1573 incorrect solutions. WizardMath, trained us- 383

ing the Proximal Policy Optimization algorithm 384

(Schulman et al., 2017) to optimize the joint reward 385

of instruction adherence and solution process, also 386

underperformed on our benchmark. It is notewor- 387

thy that despite given a few in-context examples, 388

these models still occasionally fails to follow the de- 389

sired format but outputs the special answer format 390

of GSM8K, which is likely caused by overfitting 391

on the evaluated benchmarks. 392

4.3 In Domain Finetuning 393

Given the challenges posed by the novel "reason 394

about reasoning" task paradigm, a pertinent ques- 395

tion arises: How much can targeted task-specific 396

training data enhance the performance of current 397

state-of-the-art (SOTA) models on this task? To 398

investigate this, we considered augmenting the 399

GSM8K training set with diagnostics data in a sim- 400
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Original
65%

POT
12%

Backward
23%

Problem Types of Solutions Llama2-70B Correctly 
Identified

Original POT Backward

Figure 5: Problem types of incorrect solutions that
llama2-70B-MR models has successfully found error
step and error reason. Note the training set only includes
solutions from original problem.

ilar format. However, due to the labor-intensive401

nature of manually annotation, we opted for a more402

feasible approach. Using an expert-designed pro-403

cedure (as detailed in Appendix-E), we employed404

GPT-4 to generate the training data based solely405

on the original GSM8K problems, without incorpo-406

rating any Program of Thought (POT) or reversed407

transformations.408

For our base model, we utilized llama-2-70B-409

base, aligning with the approach of other open-410

source SOTA math models. We merged the411

GSM8K training set with the GPT-4 generated di-412

agnostic data that composed of 5k incorrect solu-413

tions and 4k correct solutions. For fine-tuning, we414

adopted the Qlora method (Dettmers et al., 2023),415

maintaining the same hyperparameters as used for416

MetaMath-70B. The outcomes of this approach are417

detailed in the last row of Table-2. Remarkably,418

despite the zero-shot setting and a considerably419

smaller training set, the fine-tuned llama2 model420

outperformed all open-source models and even sur-421

passed GPT3.5 in MR-Score.422

Notably, the fine-tuned llama2 model demon-423

strated a tendency distinct from that of GPT3.5 and424

other open-source models; it was less inclined to425

accept solutions but to over reject solutions regard-426

less of the correctness. As depicted in Figure-5,427

of the 99 questions where the model accurately428

predicted both correctness and the first error step,429

a significant portion involved questions with POT430

and reversed reasoning types. This is particularly431

noteworthy given that the model was trained exclu-432

sively on original questions.433

Caution is necessary when interpreting the out-434

comes of in-domain fine-tuning. Although the 435

fine-tuned model achieved results comparable to 436

GPT3.5 post-fine-tuning, it’s important to note that 437

the overall number of correct diagnoses for incor- 438

rect solutions remains relatively low (e.g. 6.29%). 439

This underscores the challenging nature of our 440

MR-GSM8k benchmark, where effective diagno- 441

sis across diverse solution spaces requires a com- 442

prehensive understanding of the problem. Conse- 443

quently, simple fine-tuning strategies may not yield 444

substantial improvements in performance. 445

5 Discussion 446

5.1 What Is the Significance of Reason About 447

Reasoning? 448

In this paper, we have shown that it is not sufficient 449

to unveil the cognitive depth of the evaluated model 450

by only looking at the computation results. What 451

becomes equally important is the validity and logic 452

of the reasoning process employed by the evaluated 453

model. For the evaluated model to successfully 454

diagnose the solution correctness, it is necessary 455

for the model to be able to infer the correct result 456

and also be able to counterfactually reasons along 457

different reasoning paths and actively examines 458

the conditions and assumptions made on different 459

steps. It is unlikely to succeed in this paradigm 460

without a holistic understanding and robust mastery 461

of the underlying concepts. Therefore, the "reason 462

about reasoning" paradigm emerges as a vital meta- 463

evaluative tool. 464

Another key significance of this paradigm lies 465

in its capability to transform any existing bench- 466

mark to be more robust and holistic. As show- 467

cased by Balloccu et al., 2024 and Yang et al., 2023, 468

data contamination issues is becoming more and 469

more prevalent while elusive to detect. Other than 470

relying on collecting fresh and unseen new data, 471

our paradigm allows easy modification on exist- 472

ing benchmarks and our experiments on the wide 473

arrays of SOTA LLMs demonstrate its robustness 474

against the potential data contamination issue. 475

5.2 What Insights does Reason About 476

Reasoning Bring? 477

As visualized by Figure-6, we observe that re- 478

cent SOTA models—regardless of whether they 479

are trained on datasets that augment the respective 480

benchmarks in terms of difficulty (Luo et al., 2023), 481

coverage (Lee et al., 2023; Yue et al., 2023), rea- 482

soning types (Yu et al., 2023; Yue et al., 2023), so- 483
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Figure 6: Analysis of Training Sets and Reasoning Path Mastery: The left side of the figure demonstrates the
typical inclusion of correct reasoning paths in current math reasoning training sets, despite variations focusing
on aspects such as reasoning types (e.g. program of thought) or solution diversity. The right side depicts the
limitations of models trained exclusively on correct reasoning paths, showing their inability to assess the validity of
alternative reasoning paths for the same problem. This highlights a critical gap in the training paradigm, where
models demonstrate basic imitation skills but lack a deep understanding of the underlying logical rules, leading to a
superficial grasp of reasoning processes.

lution diversities (Yuan et al., 2023), solution types484

(Gou et al., 2023; Yue et al., 2023), or through485

reinforcement learning (Uesato et al., 2022; Luo486

et al., 2023), are essentially trained by teaching487

the language models to output a few solution paths488

within a large search space. Although these mod-489

els can generate seemingly correct solutions, their490

grasp of underlying rationale and principles is of-491

ten superficial and unsophisticated. This is evi-492

denced by issues such as unit inconsistency during493

calculations (Toh et al., 2023) which highlights494

a lack of fundamental ontological understanding,495

and the inability to discern nuanced differences496

between various reasoning paths for the same prob-497

lems it was trained on. These core cognitive under-498

standing abilities, vital for benchmarks to assess,499

have been overlooked due to the prevalent result-500

oriented metrics and evaluation paradigms. The501

meta-reasoning paradigm arguably opens up a win-502

dow for the researchers to examine the "alignment"503

and "grounding" levels of the evaluated model. In504

subjects of natural science, we would expect an505

intelligent agent that aligns epistemically with hu-506

mans to ground its logic on the rules and principles507

that closely matches the physical world we live in.508

For downstream applications, particularly in educa-509

tion and consulting, the critical factor for success510

lies in the capability to rigorously analyze differ-511

ent plausible solutions, offering a comprehensive512

and well-rounded exploration of the solution space.513

The inefficiencies unveiled by our paper poses an514

unneglectable question on the adoption of current 515

LLMs on downstream applications and urges for a 516

reconsideration on our current training paradigm 517

and its limitations. 518

6 Conclusion 519

Throughout this paper, we have delved into the 520

inadequacies of prevalent math reasoning bench- 521

marks and introduced a pioneering evaluation 522

paradigm that compels models to engage in meta- 523

reasoning. Our empirical findings showcase 524

that the benchmark, developed under this novel 525

paradigm, stands out in its ability to differentiate 526

between models and uncover their various defi- 527

ciencies. This has been particularly evident in 528

the struggles of state-of-the-art language models, 529

which, when confronted with our benchmark, have 530

exposed significant shortcomings inherent in the 531

current training methodologies. These revelations 532

advocate a critical reevaluation of existing train- 533

ing and evaluation practices in the realm of large 534

language models. 535

In advocating for the widespread adoption of our 536

’reason about reasoning’ evaluation paradigm, we 537

urge researchers to adapt and broaden other reason- 538

ing benchmarks in a similar vein. Such transforma- 539

tion is vital not only for a more rigorous assessment 540

of LLMs but also for fostering a deeper and more 541

holistic understanding of these models’ capabili- 542

ties. 543
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7 Limitations544

Limitations of the Reason About Reasoning545

Evaluation Paradigm and MR-GSM8k Dataset546

Reflecting on Goodhart’s law, which states that547

’When a measure becomes a target, it ceases to548

be a good measure,’ it’s evident that the ’reason549

about reasoning’ paradigm is not immune to this550

phenomenon. This paradigm, like any other, can be551

targeted for optimization, as illustrated in Section-552

4.3. This is particularly pertinent for static bench-553

marks where in-domain augmentation and overfit-554

ting are feasible. Nonetheless, we contend that our555

evaluation paradigm presents a greater challenge556

to overfitting compared to others, owing to its de-557

mand for a comprehensive understanding of the558

problem within a broad error space. While we did559

not observe significant differences by using solu-560

tions sampled from different models, the current561

MR-GSM8k benchmark is constructed solely from562

incorrect solutions generated by the MetaMath-7B563

model. Future versions could incorporate solutions564

from humans, various models, and even across dif-565

ferent languages, enriching its complexity and util-566

ity.567

Does MR-GSM8k Mandates Human La-568

belling?569

For the sake of rigorousness, every error rea-570

son from evaluated models with correct first error571

step predicted is examined manually in this work.572

However, this does not imply that MR-GSM8K ne-573

cessitates a manual labelling for every evaluation.574

We would like to emphasize that MR-Score is con-575

sist of three sub-metrics and error reason is (only)576

one of the evaluation criteria. Similar to the trans-577

lation tasks where one expression in one language578

might corresponds to many variations in another579

language, it is likewise difficult to come up with580

an automatic evaluator that scores the error reason581

perfectly. Nonetheless, this would not undermine582

the arguments we contend, nor would it affect the583

cognitive deficiencies unveiled by this metrics. To584

the best of our knowledge, GPT4 has been the585

most popular choice for being an automatic eval-586

uator across different metrics (Zheng et al., 2023;587

Liu et al., 2023). In Appendix-B we empirically588

demonstrated that GPT4 is able to serve as a de-589

cent automatic evaluator that the final MR-Score590

calculated based on its labelling results is close to591

that of the manual labelling results.592

Does Improvement on MR-GSM8k Necessar-593

ily Leads to Improvement on GSM8K?594

Models GSM8k MR-Score
GPT4 92.0% 0.495
Claude2 88.0% 0.191
llama2-70B-MR 74.3% 0.105
GPT3.5 80.8% 0.097
MetaMath-70B 82.3% 0.013
Mammoth-70B 76.7% 0.012
WizardMath-70B 81.6% 0.001
llama2-70B-GSM8k 74.9% N/A

Table 3: Comparison of the performances of SOTA
models on GSM8K and MR-GSM8k. The GSM8K re-
sults are retrieved from corresponding paper (Luo et al.,
2023; Yue et al., 2023; Yu et al., 2023). llama2-70B-
GSM8K are llama2-70B model finetuned on the training
set of GSM8k only. llama2-70B-MR are llama2-70B
model finetuned on the GSM8k training set and its meta-
reasoning augmentation by GPT4. The MR-Scores are
calculated from manual labelling results.

As indicated in Table-3, the Claude2 and GPT4 595

models, which are stronger in MR-GSM8K, indeed 596

perform better than GPT3.5 in GSM8K. However, 597

despite llama2-70B-MR outperforms GPT3.5 in 598

MR-GSM8k, its accuracy on the GSM8K test-set 599

still trails behind that of GPT3.5. One interpreta- 600

tion is that those closed-source models have been 601

through more sophisticated alignment and compre- 602

hensive instruction tuning, but our naive in-domain 603

fine-tuning process may have only enabled our 604

model to replicate diagnostic behaviors (Gudibande 605

et al., 2023). This approach does not seem to en- 606

hance the model’s fundamental comprehension of 607

mathematical reasoning thus not boosting its test 608

performance. Besides, the overall MR-Score af- 609

ter the finetuning remains relatively low, it would 610

be intriguing to explore how scaling up the diag- 611

nostic data or employing more sophisticated train- 612

ing methodologies might alter these outcomes and 613

observe improvements in both benchmarks in the 614

future. 615
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A Annotation Details for MR-GSM8k823

In this section we will give a more thorough de-824

scription of the dataset construction process. We825

will first present the annotation procedure adopted826

by our annotators and then describe the challenges827

faced during such process.828

A.1 Annotation Procedure829

Given a question and its ground truth solution, the830

annotator is supposed to first read the question831

and ground truth solution carefully and make sure832

he/she comprehend the question thoroughly. Then833

the annotator is tasked to label the following fields834

sequentially:835

Solution Correctness: Solutions that yield a fi-836

nal output differing from the established ground837

truth are automatically marked as incorrect. How-838

ever, in cases where the solution’s final output839

aligns with the ground truth, annotators are tasked840

with reviewing the entire reasoning path. Their841

objective is to ascertain whether the correct out-842

put is the result of a logical and sensible reasoning843

process.844

First Error Step: This attribute is applicable for845

solutions with either an unmatched final output or846

a matched final output underpinned by flawed rea-847

soning. Annotators identify the initial step in the848

reasoning process where the logic deviates from849

correctness. In line with the approach of Lightman850

et al., 2023, we dissected GSM8K solutions into851

discrete steps, each marked by a newline charac-852

ter, and indexed them accordingly. Each step is853

then categorized as positive, neutral, or negative.854

Positive and neutral steps represent stages in the855

reasoning process where the correct final output856

remains attainable, whereas negative steps indicate857

a divergence from the path leading to the correct858

solution.859

Error Analysis: Beyond identifying the first860

erroneous step, annotators are also responsible for861

conducting an in-depth analysis of the reasoning862

that led to the error. This involves an examination863

of the solution’s reasoning flow, focusing on the864

cause of the initial error and what the correct line of865

reasoning should have been at that juncture. This866

error analysis is subsequently compared against the867

reasoning errors identified by the evaluated models868

during testing, to assess their accuracy and validity.869

A.2 Annotation Challenges 870

The annotation task turns out to be more difficult 871

than we expect at the beginning. The challenge 872

comes from several sources: First, the language bar- 873

rier hinders the non-native speaker to understand 874

the meaning of the question. Second, the labelling 875

task requires the annotator to read the question, the 876

ground truth solution and the model solution before 877

judging the correctness of the reasoning process. If 878

the reasoning process is problematic, the annotator 879

is further required to find out the first error step and 880

reason about why the model made such mistake. 881

To reason along the path of the model solution and 882

figure out why the error occurred in the perspective 883

of the model and verbalize all the above in the error 884

reason is quite time-consuming and an exhausting 885

task. Third, some questions are ambiguous in its 886

wording and allows for multiple different interpre- 887

tations. The backward reasoning transformation of 888

the original problem exacerbated this problem. 889

To help lower the difficulty of labelling, we trans- 890

lated the problems and solutions into Chinese with 891

the help from ChatGPT (OpenAI, 2022). We no- 892

ticed that ChatGPT occasionally would made some 893

translation errors such as missing critical informa- 894

tion and misinterpret the original text, we therefore 895

enclosed both the original problem-solution pairs 896

and the translated ones for reference when in doubt 897

(See Figure-8 for a full example). The solution 898

correctness, first error step and error analysis are 899

then collected from the annotated dictionary and 900

translated back to English. 901

A.3 Annotation Quality Control 902

The annotators are selected based on their labelling 903

performance on a balanced small hold-out prob- 904

lems set consist of 50 questions. For every prob- 905

lems in the Mr-GSM8K, they have been through 906

several examinations before used in the evaluation 907

process: First, every question is labelled twice by 908

different annotators. Inconsistent questions will be 909

singled out to be labelled by the quality control la- 910

beller. Besides the double annotation, 50 percent of 911

the annotated problems are sampled out for quality 912

control in the second round of verification. During 913

the evaluation process, all the questions that has 914

a matching correctness prediction and error steps 915

are manually examined by the authors of this work 916

for its error reasons. Questions with incorrect error 917

steps or reasons are cleaned up in this final stage. 918
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Models Step Step+Reason/M Step+Reason/A MR-Score/M MR-Score/A
GPT4 823/1573 677/1573 732/1573 0.495 0.512
Claude2 331/1573 185/1573 224/1573 0.191 0.203
llama2-70B-MR 327/1573 99/1573 139/1573 0.105 0.118
GPT3.5 179/1573 73/1573 73/1573 0.097 0.097
MetaMath-70B 22/1573 6/1573 7/1573 0.013 0.013
Mammoth-70B 4/1573 1/1573 2/1573 0.012 0.012
WizardMath-70B 6/1573 1/1573 1/1573 0.001 0.001

Table 4: Comparison of the manual labelling results and GPT4-Turbo-1106 labelling results. Step column
shows the number that each evaluated models successfully located the first error steps among incorrect solutions.
Step+Reason/M stands for the manual labelling results of the error reasons where its first error step is correct.
Step+Reason/A corresponds to the labelling results of GPT4-Turbo-1106. llama2-70B-MR are llama2-70B model
finetuned on the GSM8k training set and its meta-reasoning augmentation by GPT4.

B Design thinking of MR-Score919

The MR-Score is consist of three sub-metrics corre-920

sponds to the three sequential reasoning sub-tasks.921

For the first solution correctness prediction, we922

empirically noticed that most of the evaluated lan-923

guage models tend to blindly classify the given924

solution as correct, exemplified by the low true-925

negative rate in Table-2. Therefore, we chose the926

MCC score instead of metrics like F1 or Balanced-927

Accuracy due to its value range. The models that928

have high true-positive rate but low true negative929

rate will have near zero score under the MCC met-930

ric. For the second and third tasks of locating first931

error step and elucidating error reason, we chose932

the simple accuracy metric. One of the reason is933

that locating the first error step is a multi-class clas-934

sification problem and it is difficult to have large935

prediction bias while at the same time scores high936

accuracy. Similarly, the explaining error reason937

task is a free-form generation task that requires938

substantial understanding and a simple accuracy939

metric is enough to categorize the model behavior.940

As to the weights given to the three metrics, they941

are crafted by considering the task complexity and942

the difference between manual labelling and auto943

labelling results of the error reason. As discussed944

in Section-5, we chose the GPT4-Turbo-1106 as945

our proxy evaluator and Table-4 is the results of946

auto-labelling vs our expert manual-labelling. It947

is clear that the final MR-Score calculated from948

manual labelling VS auto labelling are very close949

to each other, exhibiting the potential of GPT4 to950

serve as a delegate evaluator for our task.951

Table-5 displays the confusion matrix based on952

GPT4’s labelling of all the error reasons. Notably,953

GPT4 is able to achieve 82% of overall accuracy954

Pos Neg

Pred-Pos 960/1042 218/626

Pred-Neg 82/1042 408/626

Table 5: This confusion matrix represents the accuracy
of GPT4-Turbo-1106 in assessing 1668 incorrect solu-
tions that were correctly identified with the right error
step. The task for GPT4-Turbo-1106 was to evaluate the
correctness of the error reason provided by the evaluated
model, in comparison with the actual ground truth la-
belled by expert. ’Pos’ and ’Neg’ represent the ground
truth correctness of the provided explanation, while
’Pred-Pos’ and ’Pred-Neg’ indicate GPT4’s prediction
about the correctness.

despite a substantial higher false positive rate than 955

false negative rate. However, we still encourage 956

large tech companies, who have the resources to 957

bear manual labelling costs, to release open-source 958

manual labelling results when publishing findings 959

using MR-GSM8k for the best of rigorousness. 960

C Implications of In-Domain Fine-Tuning 961

As highlighted in Section-1, the prevalent train- 962

ing approach for complex reasoning tasks typically 963

adopts an inductive learning framework. Here, lan- 964

guage models are expected to mimic a vast array 965

of examples, discern patterns, and ideally, gener- 966

alize robustly to new problems. With the growing 967

acceptance of the scaling law, there’s been a be- 968

lief within the research community that increasing 969
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data scale and model size could lead to height-970

ened intelligence in models. The GPT-4 evalua-971

tion report even suggested that GPT-4 might have972

sparked a semblance of general artificial intelli-973

gence (Bubeck et al., 2023). However, GPT-4’s974

notable shortcomings in out-of-distribution tasks975

(Huang et al., 2023b; Wu et al., 2023; Arkoudas,976

2023; Dziri et al., 2023) cast doubt on the emer-977

gence of such intelligence through inductive means978

alone. Evidently, GPT-4 struggles with deductive979

reasoning tasks that require applying rules or prin-980

ciples it hasn’t explicitly learned.981

The implications of performance improvements982

observed post in-domain fine-tuning are manifold.983

Firstly, the potential for data contamination neces-984

sitates careful consideration, along with timely up-985

dates to benchmarks. Secondly, the limitations of986

the current training paradigm underscore the signif-987

icance of data quality. For instance, in educational988

applications of LLMs, while human-level under-989

standing might be lacking, a model trained on a990

substantial corpus of student errors and correct so-991

lutions could be sufficiently adept for grading and992

instructional purposes. Essentially, the model could993

present an illusion of comprehensive understanding994

and appear intelligent if the training data closely995

mirrors real-world use cases. Thirdly, the relative996

failure of mere scaling prompts us to reconsider997

the hype around it and reflect on the need for more998

fundamental changes in the training paradigm.999

D Prompts for Zero-Shot Scoring1000

Since the closed-source models such as ChatGPT1001

and Claude have all been through large amount of1002

diverse instruction tuning and human alignment,1003

we assume that they should be able to follow the1004

instruction and desired format in a zero-shot man-1005

ner. Figure-7 is the prompt we used for ChatGPT,1006

Claude and GPT4 and in-domain-finetuned llama2-1007

70B in zero-shot setting.1008

The key insight here is that even though Chain-1009

of-thought helps improving the diagnostic reason-1010

ing abilities, the expert tailored diagnosing pro-1011

cedure plays a crucial role. For instance, in the1012

prompt we chose, we did not explicitly ask the1013

model to solve the question first before diagnose1014

because when models were prompted to solve the1015

questions before contrasting their solutions with the1016

provided answers, we observed a bias towards the1017

provided solutions, adversely affecting diagnostic1018

accuracy.1019

E In Domain Training Data Generation 1020

As mentioned in Section-4, we created in-domain 1021

training data to see if in-domain finetune can boost 1022

the performance in the MR-GSM8k benchmark. 1023

This process involved presenting GPT-4 with a 1024

question and its correct solution, then instructing it 1025

to introduce an error at a randomly chosen step and 1026

complete the solution accordingly. The step-by- 1027

step analysis was subsequently generated, focusing 1028

on the fabricated error. Despite GPT-4’s modest 1029

40% accuracy in correctly identifying incorrect so- 1030

lutions in the test set, this procedure successfully 1031

generated accurate diagnostic training data with 1032

over 90 percent accuracy, as verified by expert an- 1033

notation on a sub-sampled set. This is largely due 1034

to the expert designed procedure (Figure-9) that 1035

greatly lowered the difficulties for instruction fol- 1036

lowing. Note, occasionally GPT4 will fail to fabri- 1037

cate a valid error due to the lack of true understand- 1038

ing of errors (e.g. switch the fraction 8/3 to 2 and 1039

2/3 then claims this is an error). 1040

F More Examples of Evaluated Models 1041

on MR-GSM8k 1042

While GPT4 shows a dominant performance in 1043

comparison to the other models, it’s important to 1044

note instances where either GPT3.5 or Claude2 1045

successfully identify errors or provide plausible ex- 1046

planations but GPT4 does not. This observation 1047

suggests that even the most advanced models have 1048

limitations and specific scenarios where their per- 1049

formance can be outmatched. 1050

Followings are more examples of evaluated mod- 1051

els on MR-GSM8k. Despite the low accuracy and 1052

naive errors most of the time, they occasionally 1053

displayed certain level of ingenuity that matches 1054

their problem solving abilities. We will attach both 1055

the positive and negative examples to help spread 1056

a balanced view on both their brilliance and their 1057

simple mistakes. 1058

Figure-10 contrasts GPT3.5 with GPT4 on a sim- 1059

ple question where GPT4 failed to correctly diag- 1060

nose while GPT3.5 did. Figure-11 provides an in- 1061

correct diagnosis example from GPT4. Figure-12 1062

shows a correct example from MetaMath. 1063
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Prompt for Zero-Shot Scoring 
Act as a grade school math teacher and score the following problem solution.

Question:
{data['question']}

Student Solution:
{sol_steps}

Your task involves three parts:
1. **Step-by-step Evaluation:** Go through the student solution carefully and identify 
key errors and potential misunderstandings that led to the incorrect solution.
2. **Final Judgement:** Provide an overall judgement on the correctness of the 
student's solution.
3. **First Error Step:** If the solution is incorrect, generate the step number where 
the first error occurs, otherwise generate N/A here
4. **Error Analysis:** If the solution is incorrect, analyse the cause and reasons for 
the first error step, otherwise generate N/A here 

Here's the format I want:
Step-by-step Evaluation: [Provide a step by step examination of the student solution and 
identify key errors and misunderstandings here.]
Final Judgement: [Insert only **correct** or **wrong** here]
First Error Step: [Insert either N/A or the step number where the first error occurs]
Error Analysis: [Insert either N/A or the analysis of error in the first error among 
solution steps]

Please follow this format without any additional introductory or concluding statements.

Figure 7: This is the prompt we used for ChatGPT, Claude and GPT-4 under the zero-shot setting.
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Sample dictionary passed to annotators 
{
  "uuid": "3f3b593b-53e1-4808-afef-9453ba4eb6ab",
  "问题": "一个电子产品销售商以每部手机700美元的价格购买了5部手机，并给了销售商4000美元的纸币。销售商需要找回多少零钱
",
  "标准答案": "销售商以700美元 * 5 = 3500美元购买了5部手机。\n所以销售商找回的零钱为4000美元 - 3500美元 = 500美元。
\n#### 500",
  "待标注的解题过程": [
   "步骤1：销售商以每部手机700美元的价格购买了5部手机，所以手机的总成本为5 * 700美元 = 3500美元。",
   "步骤2：销售商给了销售商4000美元的纸币。",
   "步骤3：为了找零，我们需要从销售商给出的金额中减去手机的总成本。",
   "步骤4：所以，找零金额为4000美元 - 3500美元 = 500美元。",
   "步骤5：销售商将找回500美元的零钱。",
   "步骤6：#### 500",
   "步骤7：答案是：500"

],
  "待标注的最终答案正确性": "对",
  "待标注的解题过程正确性": "待标注",
  "待标注的解题过程第一个错误步骤数": "待标注",
  "待标注的解题过程第一个错误的错误原因": "待标注",
  "英文原题": "An electronics seller bought 5 phones for $700 each and gives the seller $4000 in dollar 
bills. How much will the seller give back in change?",
  "标准答案英文原文": "The seller bought the 5 phones for $700 * 5 = $<<700*5=3500>>3500.\nSo the seller 
gives back $4000-$3500 = $<<4000-3500=500>>500.\n#### 500",
  "解题过程英文原文": [
   "Step 1: The seller bought 5 phones for $700 each, so the total cost of the phones is 5 * $700 = $3500.",
   "Step 2: The seller gives the seller $4000 in dollar bills.",
   "Step 3: To find the change, we need to subtract the total cost of the phones from the amount of money 
given by the seller.",
   "Step 4: So, the change is $4000 - $3500 = $500.",
   "Step 5: The seller will give back $500 in change.",
   "Step 6: #### 500",
   "Step 7: The answer is: 500"
  ]
 }

Figure 8: To lower the requirements and difficulties for labelling, we used ChatGPT to translate the MR-GSM8k
problems into Chinese. In case for the potential translation errors (missing information and wrong translation) we
included the original English text for reference when in doubt.
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Prompt for creating DiagGSM8K training data by GPT4
Hi ChatGPT, I need your assistance in creating a math dataset that focuses on annotated incorrect 
solutions. The dataset is intended for grade school math.

Provided Information:
Question: {question}
Correct Solution Steps: {steps}

Procedure:
Understand the Question and Solution: Ensure you comprehend the question and the correct solution.
Fabricate Error Step and Reason: Randomly select a step and come up with an error that is both 
realistic and commonly observed among students such as calculation mistake, conceptual 
misunderstanding, or incorrect formula application etc.
Develop the Incorrect Solution: Base on the error step and error reason, rewrite the solution, 
ensuring they are internally consistent but incorrect due to the initial error. **Do not mention 
anything about incorrectness or deliberate error in the error step in your solution**.
Independent Analysis: Provide a step-by-step analysis of the solution, including the error, as if 
encountering the problem for the first time. Do not reference the fact that the error was 
intentionally created.
Summarize the Error: Based on your analysis, summarize the error reason for the first incorrect step.

Format:
Error Step: [Identify a step number where the first error in the correct solution should occur. Any 
step from either the beginning, middle or the end will work.]
Error Reason: [Describe the nature of the error]
Incorrect Solution: [Present the solution, starting correctly but deviating post error step. DO NOT 
MENTION ANYTHING ABOUT THE INCORRECTNESS.]
Independent Step-by-Step Analysis: [Analyse the solution independently, as if unaware of the 
intentional error]
Independent Error Reason: [Conclude with a summary of the perceived error reason]

Please adhere strictly to this format, avoiding any additional introductory or concluding remarks.

Figure 9: This is the prompt we used for GPT4 to create in-domain training data.
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Sample of GPT3-5/GPT4 evaluated results

"question": Trinity sells magazines at 11/8 of the price she bought the magazines. 
If she bought the magazines at $72, what is her profit?

"model_output_steps":[ 
   "Step 1: If Trinity bought the magazines at $72, then she sells them at 11/8 

* $72 = $90",
   "Step 2: Her profit is the selling price minus the buying price, so her 

profit is $90 - $72 = $18",
   "Step 3: #### 18"

]

Final Judgement by GPT3-5: wrong 
First Error Step by GPT3-5 : Step 1
Error Analysis by GPT3-5 : The student made an error in Step 1 by incorrectly 
calculating the selling price as $90 instead of $99. This error likely occurred due 
to a miscalculation or misunderstanding of multiplying fractions.

Final Judgement by GPT4: Correct 
First Error Step by GPT4: N/A
Error Analysis by by GPT4: N/A

Figure 10: Example of an easy problem where GPT4 fails to capture the calculation error but GPT3.5, with much
less diagnosis ability, successfully captures the calculation error.
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Sample of evaluated result of GPT4 from DiagGSM8K

"question": "Brett is 14 years old. In four years his sister Angela will be three 
times as old as he is now. How old is Angela right now?"

"model_output_steps":[ 
   "Step 1: In four years, Brett will be 14 + 4 = 18 years old.",
   "Step 2: At that time, Angela will be three times as old as Brett is now, so 

Angela will be 3 * 14 = 42 years old.",
   "Step 3: Therefore, Angela is currently 42 - 4 = 38 years old.",
   "Step 4: #### 38"

]

Final Judgement: wrong 

First Error Step: Step 2

Error Analysis: The student misunderstood the problem. They were supposed to 
calculate Angela's age as three times Brett's age four years from now, not Brett's 
current age. As a result, they multiplied the wrong number by 3.

Figure 11: Example of question where GPT4 got confused on the problem and claimed an error in the correct
solution with some hallucinated reason.
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Sample of MetaMath-70B evaluated results

"question": "Maggie's oven is malfunctioning. When she sets it to 450 the actual 
temperature is 468. If it's off by the same percentage for any recipe, what 
temperature should she set it at if her recipe calls for 520 degrees?"

"model_output_steps":[ 
   "Step 1: First, we need to find out how many degrees off the oven is. We do 

this by subtracting the actual temperature from the temperature it should be: 520 
degrees - 468 degrees = <<520-468=52>>52 degrees.",
   "Step 2: Now that we know the oven is off by 52 degrees, we divide that 

amount by the percentage of the oven that's off to find out what the actual 
temperature should be: 52 degrees / .052 = <<52/.052=1000>>1000 degrees.",
   "Step 3: #### 1000"

]

Final Judgement: wrong 

First Error Step: Step 1

Error Analysis: The student made a mistake in the first step by subtracting the 
actual temperature from the temperature it should be. The correct approach would 
be to find the percentage of the oven that's off.

Figure 12: Example of MetaMath-70B successfully diagnosed the correctness of a solution from MR-GSM8k and
outputted sensible error step and reason.
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