
Under review as submission to TMLR

Sparsified State-Space Models are
Efficient Highway Networks

Anonymous authors
Paper under double-blind review

Abstract

State-space models (SSMs) offer a promising architecture for sequence modeling, providing an
alternative to Transformers by replacing expensive self-attention with linear recurrences. In
this paper, we propose a simple yet effective trick to enhance SSMs within given computational
budgets by sparsifying them. Our intuition is that tokens in SSMs are highly redundant due
to gradual recurrent updates, and dense recurrence operations block the delivery of past
information. In particular, we observe that upper layers of SSMs tend to be more redundant
as they encode global information, while lower layers encode local information. Motivated
by this, we introduce Simba, a hierarchical sparsification method for SSMs based on token
pruning. Simba sparsifies upper layers more than lower layers, encouraging the upper layers
to behave like highways. To achieve this, we propose a novel token pruning criterion for
SSMs, measuring the global impact of tokens on the final output by accumulating local
recurrences. We demonstrate that Simba outperforms the baseline model, Mamba, with
the same FLOPS in various natural language tasks. Moreover, we illustrate the effect of
highways, showing that Simba not only enhances efficiency but also improves the information
flow across long sequences.

1 Introduction

State-space models (SSMs) (Gu et al., 2022b; Gu & Dao, 2023) offer a promising architecture for sequence
modeling, efficiently handling sequences using linear recurrence structures. Thanks to this efficiency, SSMs
have shown potential as an alternative to Transformers (Vaswani et al., 2017), which use the self-attention
mechanism, incurring high computational costs for long sequences. In particular, Mamba (Gu & Dao, 2023)
has recently demonstrated that SSMs can scale up to billions of parameters and show comparable performance
with Transformers in various domains (Zhu et al., 2024; Li et al., 2024a;b).

After their success, numerous works have aimed to enhance SSMs and Mamba further. One popular approach
involves hybrid models combining Transformers and SSMs (Lieber et al., 2024; Poli et al., 2024). This approach
assists the models in retaining past information through the global memory of Transformers (Vardasbi et al.,
2023; Jelassi et al., 2024). However, this compromises the efficiency of SSMs by reintroducing expensive self-
attention. Instead of sacrificing efficiency, we explore an alternative direction to improve SSMs by comparing
models on a fixed computational budget. Specifically, we investigate sparsification of large pre-trained SSMs,
known to yield better models than training small ones from scratch (Frankle & Carbin, 20189).

To this end, we first analyze the behavior of tokens in pre-trained SSMs. We observe that tokens in SSMs are
highly redundant, as they are gradually updated over sequences. This redundancy tends to be more severe in
the upper layers, which encode global information, while lower layers encode local information. Furthermore,
dense recurrence operations over the redundant tokens block the delivery of past information, potentially
harming the contextual understanding of SSMs.

Inspired by this, we propose Simba, a simple yet effective method to sparsify SSMs through token pruning
(i.e., it is training-free). Our core idea is to sparsify SSMs into a hierarchical form, enforcing more sparsity
in upper layers than in lower layers. As a result, the upper layers behave as highways to transmit past

1

Under review as submission to TMLR

x1 x2 x3 x4 x5 x6

Layer 1

Layer 2

Layer 3

Inputs

Layer Highway
connection

SSM
blockNetwork

Layers
Pruned
block

(a) Conceptual illustration of Simba

54.94

58.82

62.51

Pythia Mamba Simba (ours)

Accuracy (↑ is better)

2.46

2.35

2.30

Pythia Mamba Simba (ours)

Perplexity (↓ is better)

(b) Performance highlights

Figure 1: Simba: hierarchical sparsification of SSMs via token pruning. (a) We found that tokens
in state-space models (SSMs) are highly redundant, especially in the upper layers. Motivated by this
observation, we propose hierarchically sparsifying pre-trained SSMs by progressively pruning tokens across
layers. This results in models with a trapezoidal shape, featuring sparse upper layers that act like highways,
enhancing efficiency and information flow of the original SSM. (b) We highlight results comparing Simba-2.8b
with Mamba and Pythia, all with the same number of FLOPS. We report the mean accuracy over 6 NLP
benchmarks and perplexity on the PG-19 dataset with 2k context, following the setups in Section 4. Simba
outperforms both models in accuracy and perplexity.

information, enhancing efficiency and facilitating the information flow across long sequences. Figure 1a
illustrates the visual concept of our approach, obtaining a trapezoidal-shaped sparsified network.

To implement this, we propose a novel token pruning criterion for SSMs. Specifically, our score measures
the global influence of each token on the final output by reformulating SSM equations to accumulate the
effect from local recurrences. This approach can also be viewed as an SSM extension of attention-based token
pruning criteria used for Transformers (Goyal et al., 2020). We found that our criterion outperforms intuitive
baselines, such as uniform pruning of tokens with even intervals.

Our experiments show that Simba, obtained by sparsifying Mamba without any fine-tuning, significantly
outperforms Mamba using the same number of FLOPS in various tasks. For instance, Simba consistently
achieves better FLOPS-accuracy curves on 6 NLP benchmarks, including Lambada (Paperno et al., 2016),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-Challenge (Clark et al., 2018), ARC-
Easy (Clark et al., 2018), and WinoGrande (Sakaguchi et al., 2021). Here, Simba obtained from Mamba-2.8b
performs on par with the original Mamba-2.8b, despite using similar FLOPS to Mamba-1.4b, as highlighted
in Figure 1b. For example, it achieves an average accuracy of 62.5% for 6 downstream NLP tasks, improving
58.8% of Mamba-1.4b.

We also demonstrate the language modeling ability of Simba by measuring perplexity on the PG-19 dataset (Rae
et al., 2019) across different context lengths. Like the NLP benchmarks, Simba achieves better perplexity than
Mamba using the same number of FLOPS. More importantly, Simba performs robustly over long sequences
exceeding the pre-trained context length, such as twice longer than the trained length, unlike Mamba, which
significantly deteriorates with length extrapolation. This supports the idea that the highway structures in
Simba facilitate long sequence modeling.

We further investigate the effect of highways in Simba. Somewhat unexpectedly, we found that Simba
performed better than its original unpruned Mamba in some of our experiments, potentially benefiting from
the highways created at the upper layers. To further investigate the positive effect of highways, we examine
the information flow across layers by assessing the influence of the sequence tokens on the final output. We
observe that Mamba relies on tokens near the end across all layers, while Simba also focuses on earlier tokens
at the upper layers, showcasing the role of highways.

2

Under review as submission to TMLR

2 Related work

State-space models (SSMs) are a powerful architecture for sequence modeling, integrating concepts from
classic control theory (Kalman, 1960) with recurrent neural networks (Elman, 1990). The key idea of SSMs is
to employ linear recurrence (Katharopoulos et al., 2020; Gu et al., 2022b;a; Mehta et al., 2023; Smith et al.,
2023; Fu et al., 2023; Orvieto et al., 2023; Poli et al., 2023; Peng et al., 2023; Sun et al., 2023; De et al., 2024),
enabling efficient parallel inference and effective training, unlike Transformers using self-attention (Vaswani
et al., 2017), which requires quadratic computation over the sequence length. As a result, SSMs have shown
success in handling long sequences (Tay et al., 2021). Recently, Mamba (Gu & Dao, 2023) further scaled
up SSMs through a selection mechanism and hardware-aware algorithm, showing the potential of SSMs in
challenging tasks such as language, audio, and video (Zhu et al., 2024; Li et al., 2024a;b). We aim to further
improve Mamba through network sparsification, efficiently utilizing a fixed computational budget.

Sparsifying networks have been widely studied, primarily for training efficient models (Han et al., 2016).
Most prior work focused on weight pruning, which removes unnecessary edges in weight matrices (Zhu &
Gupta, 2017; Gale et al., 2019; Park et al., 2020; Lee et al., 2021). However, while weight pruning reduces
model size, it does not enhance inference speed due to the batch computation nature of GPUs. To address
this, structured pruning removes entire blocks at once, such as channels in CNNs (Li et al., 2017) or attention
heads in Transformers (Michel et al., 2019). On the other hand, some works focused on the performance
benefits of sparsified networks, suggesting that sparsifying large networks yields better models than training
small models from scratch, known as lottery tickets (Frankle & Carbin, 20189; Li et al., 2020). Our work
relates to structured pruning, as removing tokens speeds up computation and reduces memory usage, and to
lottery tickets, as it also improves performance.

Token pruning (or merging) is widely applied in Transformers to reduce heavy computation over long
sequences (Goyal et al., 2020; Kim et al., 2022; Liu et al., 2022; Bolya et al., 2023; Ke et al., 2024; Shang et al.,
2024). In particular, HOMER (Song et al., 2024) has shown that hierarchical token pruning not only reduces
computation but also enhances long context understanding by condensing global information into sparse
tokens in the upper layers. Our work shares a similar spirit with HOMER but has notable differences. First,
we explore token pruning for SSMs, unlike prior works focused on Transformers. To this end, we propose
a novel token pruning criterion based on the global importance of tokens to the final output, derived from
reformulating SSM equations to accumulate local recurrences. Second, by targeting SSMs, our hierarchical
pruning scheme offers a novel interpretation of highway networks, connecting SSMs with classical recurrent
networks with long-term memory. As a result, our token pruning approach enhances both the efficiency and
information flow of SSMs.

Highway networks have been proposed to bypass information loss from dense computation through local
residuals (He et al., 2016) or long skip connections (Srivastava et al., 2015; Zilly et al., 2017; Huang et al.,
2017; Ronneberger et al., 2015). Highways, also termed long-term memory, were used as a standard approach
for sequence modeling before global computation methods like self-attention gained popularity (Hochreiter &
Schmidhuber, 1997; Chung et al., 2014; Feichtenhofer et al., 2019). However, integrating highways with SSMs
proved challenging due to the linear recurrence structure of SSMs, not easily combined with skip connections.
Instead of explicitly using such modules in SSM architectures, we introduce a simple and effective way to
integrate highways by pruning dense token connections from the upper layers.

Tree RNNs have been explored for processing hierarchical data structures, such as word, sentence, and
paragraph hierarchies in language (Hihi & Bengio, 1995; Wang et al., 2019). Despite aligning with human
intuition, most methods were unsuccessful due to complex architectures, while simple linear sequence modeling
demonstrates its power (Achiam et al., 2023). Our token pruning naturally incorporates this hierarchical
structure into SSMs, while favoring the success and scalability of linear sequence modeling.

3 Simba: Hierarchical sparsification for state-space models

In Section 3.1, we review the mathematical formula of state-space models (SSMs) and discuss observations
on the token redundancy of Mamba. In Section 3.2, we describe our proposed hierarchical sparsification
approach for SSMs and explain the token pruning criteria.

3

Under review as submission to TMLR

3.1 Motivation: Hierarchy in SSM token redundancy

Structured state-space model (S4) (Gu et al., 2022b) is a family of recently proposed SSMs. In its
continuous form, the SSM updates the state h(t) using the input x(t) and produces the output y(t) according
to Eq. (1) where A, B, and C refer to the parameters of SSMs. It discretizes the update rules for discrete
sequences, as shown in Eq. (2).

h′(t) = Ah(t) + Bx(t), y(t) = Ch(t) (1)

ht = Āht−1 + B̄xt, yt = Cht (2)

Mamba (Gu & Dao, 2023) further improves this formulation using an input selectivity mechanism, creating
the matrices Ā, B̄, and C dependent on the input xt. Thus, the state update equation can be rewritten as
follows, where Āt, B̄t, and Ct denote the input-dependent matrices created using xt.

ht = Ātht−1 + B̄txt, yt = Ctht (3)

0.2

0.4

0.6
La

ye
rs

0

10

20

30

40

50

60

Token Position
0 1000 2000

Figure 2: Token redundancy of SSMs has a hier-
archical structure. We measure the cosine similarity
between adjacent tokens of the Mamba-2.8b model
across layers, averaged over documents from the PG-19
test dataset. The tokens are highly redundant, espe-
cially in the upper layers.

Hierarchy in token redundancy. As the state up-
date depends solely on the input and the immediate
previous states, the model must compress all previ-
ous information into the state of each token. Thus,
the states of SSM tokens are likely highly redundant,
as states at similar positions would compress a sim-
ilar set of information. To verify this, we visualize
the token redundancy of Mamba in Figure 2 by mea-
suring the cosine similarity between adjacent tokens
across the network layers.

Our analysis indicates that tokens in the upper lay-
ers tend to exhibit more redundancy than those in
the lower layers. One possible explanation is that
SSMs process information in a hierarchical manner:
lower layers focus on local information, while upper
layers focus on global information. This aligns with
findings from attention visualizations of Mamba mod-
els Ali et al. (2024), where lower layers emphasize
diagonal elements in the attention map, while up-
per layers highlight lower-triangular elements. Since
upper layer states encapsulate global information,
states at similar positions contain similar informa-
tion, resulting in higher redundancy.

3.2 Hierarchical sparsification for SSMs

We introduce Simba, a simple yet effective sparsification approach that can be directly applied to any
pre-trained state-space models (SSMs) in a plug-and-play manner. This introduces an efficient highway for
effective sequential modeling. Based on prior motivation, Simba sparsifies the full SSM in a hierarchical
manner: it sparsifies redundant tokens in upper layers while preserving the local information captured in
lower layers, guided by our novel token importance criteria.

Hierarchical sparsification through token pruning. To achieve sparsity in SSMs in a hierarchical
manner, we propose token pruning at each layer with a specified rate. Implementing this pruning technique at
a particular layer automatically decreases the computational burden on subsequent layers, as pruned tokens
are no longer propagated to the next layer. Consequently, by sequentially applying token pruning from lower
to upper layers, the pruning ratio consistently increases during propagation, thereby introducing hierarchical
sparsification to SSMs.

4

Under review as submission to TMLR

Token pruning criterion. We propose a novel token importance score for SSMs to prune the least important
token from each layer. To achieve this, we leverage the influence function, which measures the change in the
estimator when removing the target input. This calculation is straightforward due to the linear recurrence
property of SSMs. Formally, for a given token sequence (x1, · · · , xT) of length T and the final token output
yT of the layer, we estimate the influence of token xt at position t by considering the updated output y

(t)
T

(obtained by removing xt from yT), as follows:

∆yT (t) := yT − y
(t)
T

=
T∑

r=1
CT

(
T∏

k=r+1
Āk

)
B̄rxr −

T∑
r=1,r 6=t

CT

(
T∏

k=r+1
Āk

)
B̄rxr

= CT

(
T∏

k=t+1
Āk

)
B̄txt.

(4)

Here, we found that the influence measure ∆yT (t) aggregated with the max pooling (along with `2 norm)
serves as an effective pruning criterion, denoted as s(t) := max(∆yT (t)); we use max pooling throughout
the paper as it was slightly better than `2 norm. Based on the proposed score s(t), we prune each layer by
removing the tokens with the lowest scores to obtain a sparsified SSM.

Pruning schedule. The pruning schedule aims to balance the trade-off between efficiency and performance.
Upper layers, with their ability to model global context, are better equipped to identify important tokens.
Conversely, pruning tokens at earlier layers offers more significant computational savings. Therefore, we
propose a linear pruning schedule, inspired by prior work on Transformers (Bolya et al., 2023), where the
number of active tokens is linearly reduced across all layers, resulting in a trapezoidal-shaped network after
sparsification.

Highways in sparsified SSMs. Long-term dependency is a well-known challenge for recurrent mod-
els (Hochreiter & Schmidhuber, 1997). Dense recurrence operations tend to attenuate previous information,
restricting the information flow across distant tokens. Our sparsification scheme addresses this issue by
reducing the number of recurrence operations. As unimportant tokens are pruned during sparsification, upper
layers can selectively focus on processing more important information without being burdened by dense
recurrence operations on redundant tokens. This highway effect enables our pruning scheme to not only
enhance efficiency but also facilitate the information flow across distant tokens (Section 4.3).

4 Experiments

In this section, we demonstrate the performance of Simba on diverse tasks. In Section 4.1, we evaluate its
performance on 6 NLP benchmarks, consistently showing superior performance compared to dense models
with equivalent computational resources. In Section 4.2, we assess the language modeling ability of Simba
by measuring perplexity conditioned on various context lengths. In Section 4.3, we further investigate the
highway effects of Simba. Finally in Section 4.4, we perform ablation studies on token pruning criteria and
different pruning ratios, along with a simple fine-tuning experiment.

Common setups and baselines. We primarily apply our sparsification method to pre-trained Mamba
models of various scales. For our method, we implement a linear pruning schedule that preserves 10% of
the tokens at the final layer unless specified otherwise. The Simba models are generated by sparsifying
Mamba models without any fine-tuning, following a plug-and-play approach. We conduct performance
comparisons of Simba against Mamba (Gu & Dao, 2023) and Pythia (Biderman et al., 2023) models that
utilize a similar amount of computation. In NLP tasks consisting of a prompt and a label, we exclusively
apply sparsification to the prompts to ensure an accurate evaluation of the label logits. The final token of the
prompt remains unpruned, as its output is utilized for computing the label logits. Moreover, to accommodate
the task structure, the token importance score is computed with respect to the final token of the prompt. For
additional details, refer to Appendix A.

5

Under review as submission to TMLR

Pythia
Mamba
Simba (ours)

A
cc

ur
ac

y
(%

)

20

30

40

50

60

FLOPs (x1e12)
0 1 2

(a) Lambada

Pythia
Mamba
Simba (ours)

A
cc

ur
ac

y
(%

)

30

40

50

60

FLOPs (x1e12)
0 1 2 3 4

(b) HellaSwag

Pythia
Mamba
Simba (ours)

A
cc

ur
ac

y
(%

)

65

70

75

FLOPs (x1e12)
0 0.5 1.0

(c) PIQA

Pythia
Mamba
Simba (ours)

A
cc

ur
ac

y
(%

)

50

60

70

FLOPs (x1e12)
0 1 2 3 4

(d) Arc-Easy

Pythia
Mamba
Simba (ours)

A
cc

ur
ac

y
(%

)

25

30

35

40

FLOPs (x1e12)
0 1 2 3 4

(e) Arc-Challenge

Pythia
Mamba
Simba (ours)

A
cc

ur
ac

y
(%

)

50

55

60

FLOPs (x1e12)
0 0.25 0.50

(f) WinoGrande

Figure 3: Performance on NLP Benchmarks. We visualize the FLOPs-accuracy curve of Mamba, Pythia,
and Simba models of various scales on 6 NLP benchmarks. Across all benchmarks, Simba consistently
outperforms the baselines using the same number of FLOPs.

4.1 NLP benchmarks

In this section, we assess the language understanding capability of Simba by evaluating six downstream
NLP tasks. Specifically, we present the performance and computational efficiency of Simba on the Lambada
(Paperno et al., 2016), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-Challenge (Clark et al.,
2018), ARC-Easy (Clark et al., 2018), and WinoGrande (Sakaguchi et al., 2021) benchmarks. Consistent
with Mamba (Gu & Dao, 2023), we report accuracy normalized by sequence length for HellaSwag and
ARC-Challenge, and accuracy for the other datasets. All evaluations use the LM evaluation harness from
EleutherAI (Gao et al., 2021).

We report evaluation accuracy and computational cost for each benchmark in Figure 3. As evident from the
results, Simba provides the best accuracy-efficiency trade-off, consistently outperforming other models with
the same number of FLOPs. This demonstrates that Simba can successfully make dense Mamba models sparse,
advancing the frontier of the accuracy-efficiency trade-off. We provide the full results for all benchmarks in
Table 4 of the Appendix.

4.2 Language modeling

In this section, we evaluate the language modeling ability of Simba by measuring perplexity on long documents.
Specifically, we measure the perplexity of short document snippets sampled from PG-19 dataset (Rae et al.,
2019), conditioned on varying amounts of context. We keep the 100-token snippet fixed for all experiments to
ensure that all perplexity measurements are done on the same set of tokens.

6

Under review as submission to TMLR

Mamba
Simba (ours)

P
er

pl
ex

ity

2.6

2.7

2.8

2.9

3

3.1

Context Length
1024 2048 3072 4096

(a) Mamba-130m and Simba-370m

Mamba
Simba (ours)

P
er

pl
ex

ity

2.5

2.6

2.7

Context Length
1024 2048 3072 4096

(b) Mamba-370m and Simba-790m

Mamba
Simba (ours)

P
er

pl
ex

ity

2.40

2.45

2.50

Context Length
1024 2048 3072 4096

(c) Mamba-790m and Simba-1.4b

Mamba
Simba (ours)

P
er

pl
ex

ity

2.30

2.35

2.40

Context Length
1024 2048 3072 4096

(d) Mamba-1.4b and Simba-2.8b

Figure 4: Language modeling ability. We measure the FLOPs-perplexity curves on the PG-19 test
dataset. Simba models are compared against Mamba models that use similar computation. Simba not only
outperforms Mamba with the same computation but also shows decreasing perplexity after its pre-trained
context limit of 2k tokens.

We report perplexity values conditioned on varying contexts in Figure 4. The results show that Simba
consistently shows improved perplexity with similar computation, outperforming the dense Mamba models.
We provide the full results, including Pythia, in Table 4 of the Appendix.

Long context capability. An intriguing observation is that Simba, unlike Mamba models, exhibits
decreasing perplexity even after surpassing its pre-trained context limit of 2k tokens. Context limits, defining
the maximum number of tokens a model can handle, often result in catastrophic performance drop if
exceeded (Song et al., 2024). While SSMs are generally more resilient to this issue, the results indicate
increasing perplexity for Mamba models with longer contexts, suggesting ineffective utilization of additional
context. In contrast, Simba consistently demonstrates decreasing perplexity even with extended contexts,
highlighting its adeptness at leveraging extra information.

This benefit is likely attributed to the highways formed in the upper layers due to extensive sparsification.
The performance drop with longer inputs typically results from a distribution shift in the training data, as
the model never saw the long input length during training. For dense models like Mamba, this shift affects
all network layers. Conversely, sparse models like Simba process significantly fewer tokens in the upper layers,
thanks to extensive sparsification. Consequently, the upper layers remain unaffected by distribution shifts in
input lengths, processing inputs more effectively.

In summary, our experiments demonstrate that Simba not only outperforms Mamba with the same computation
but also exhibits superior long-context handling abilities, suggesting the benefits of highways.

4.3 Sparsified SSMs as highway networks

In this section, we further investigate the highway effects of Simba. First, we identify some scenarios where
Simba models perform better than the original dense models despite using fewer FLOPs, potentially benefiting
from the highways. Second, we examine the information flow in the model, showing that highways assist in
obtaining information from earlier tokens, unlike dense SSMs, which over-rely on later tokens.

7

Under review as submission to TMLR

Table 1: Comparsion between same model scales. We compare Simba and Mamba on NLP benchmarks:
Lambada (Lbd.), HellaSwag (HS), PIQA, Arc-Easy (Arc-E), Arc-Challenge (Arc-C), and WinoGrande (WG).
We use a moderate pruning ratio for Simba, leaving 70% of the tokens at the final layer. Bold denotes the
best results, showing that Simba often improves Mamba while using fewer FLOPS.

Model Scale Model FLOPs Lbd. HS PIQA Arc-E Arc-C WG Avg.
Dim. (x1e12) acc. (↑) acc. (↑) acc. (↑) acc. (↑) acc. (↑) acc. (↑) acc. (↑)

Mamba 130m 768 0.48 31.84 34.88 64.36 50.76 23.72 49.80 42.56
Simba (ours) 130m 768 0.39 32.43 35.05 64.42 50.38 24.32 49.88 42.75

Mamba 370m 1024 1.38 46.61 46.46 69.59 59.05 27.47 55.80 50.83
Simba (ours) 370m 1024 1.15 47.09 46.69 69.64 59.51 27.65 55.49 51.01

Mamba 790m 1536 2.94 51.33 55.12 72.47 65.49 32.76 57.54 55.78
Simba (ours) 790m 1536 2.47 51.82 54.93 72.20 65.87 32.76 57.22 55.80

In
flu

en
ce

10−3

10−2

Relative Position
0.0 0.2 0.4 0.6 0.8

Mamba
Simba (ours)

(a) Layer 1

In
flu

en
ce

10−6

10−5

10−4

10−3

Relative Position
0.0 0.2 0.4 0.6 0.8

Mamba
Simba (ours)

(b) Layer 13
In

flu
en

ce

10−4

10−3

10−2

Relative Position
0.0 0.2 0.4 0.6 0.8

Mamba
Simba (ours)

(c) Layer 26

In
flu

en
ce

10−4

10−3

10−2

Relative Position
0.0 0.2 0.4 0.6 0.8

Mamba
Simba (ours)

(d) Layer 38

In
flu

en
ce

10−4

10−3

10−2

10−1

Relative Position
0.0 0.2 0.4 0.6 0.8

Mamba
Simba (ours)

(e) Layer 51

In
flu

en
ce

10−15

10−10

10−5

1

105

Relative Position
0.0 0.2 0.4 0.6 0.8

Mamba
Simba (ours)

(f) Layer 64

Figure 5: Information flow across layers. We visualize the information flow using the normalized token
influence score. We compare Mamba-2.8b and Simba-2.8b, averaging scores over the PG-19 test dataset
samples. The information flow of Simba flattens at the upper layers, indicating better information flow from
early tokens.

Comparison under same model sizes. In the previous experiments, we mainly compare models with the
same number of FLOPS. Here, we provide an additional comparison between the dense and sparse models
that have the same scale. Specifically, we evaluate Simba models with a more moderate pruning ratio, using
a linear pruning schedule with 70% of tokens remaining at the final layer. We benchmark Mamba and Simba
models using the 6 NLP benchmarks, following the setup in Section 4.1. We provide the evaluation results in
Table 1.

Somewhat unexpectedly, we found that Simba models sometimes perform even better than the original model,
indicating the possible benefits of highways created at the upper layers. The gain is more evident for smaller
models, possibly because dense recurrence operations are more harmful to smaller state sizes, so highways
provide more benefits.

8

Under review as submission to TMLR

Table 2: Fine-tuning results. We compare the language modeling perplexity on the test split of the PG-19
dataset, measured with different context lengths. The fine-tuned Simba model consistently outperforms its
training-free counterpart.

Model Scale FLOPs Within Context Extrapolation
(x1e12) 0.5k 1k 1.5k 2k 2.5k 3k 3.5k 4k

Mamba 130m 0.48 2.943 2.917 2.907 2.899 2.899 2.900 2.901 2.905
Simba (training-free) 370m 0.68 2.727 2.686 2.662 2.650 2.643 2.633 2.630 2.625
Simba (fine-tuned) 370m 0.68 2.723 2.678 2.658 2.645 2.637 2.630 2.626 2.621

Highways facilitate information flow from early tokens. We investigate how information flows through
the dense and sparse SSM layers. Specifically, we measure the influence of tokens at each position on the
final token, using our token importance score in Eq. (4) but normalized to equalize the contribution of each
input document, i.e., s(t)/||yT ||2. See Appendix A.2 for more details.

We illustrate the results in Figure 5. Mamba demonstrates a consistent information flow pattern across all
layers, with tokens near the end exerting more significant influence on the final token. Simba displays a
similar trend in the lower layers. However, the slope flattens in the upper layers, indicating that they function
as highways, facilitating the flow of information from early tokens.

4.4 Ablation study and analysis

This section presents ablation studies on token pruning criteria and different pruning ratios. We also perform
a simple fine-tuning experiment to further improve the performance of Simba.

Dense
Uniform
Random
Influence

A
cc

ur
ac

y
(%

)

32

34

36

38

40

FLOPs (x1e12)
2.0 2.5 3.0 3.5 4.0 4.5

Figure 6: Ablation study on pruning criteria.
Performance of sparsified Mamba-2.8b models on
the Arc-Challenge dataset (Clark et al., 2018)
evaluated using different pruning criteria across
various pruning ratios. Our proposed token in-
fluence score in Eq. (4) performs the best, even
remaining robust under severe sparsification. We
also report the performance of the dense Mamba-
1.4b and Mamba-2.8b models for comparison.

Pruning criteria. We compare our proposed pruning
criteria in Eq. (4) with two baselines: “Random,” which
chooses tokens from random positions, and “Uniform,”
which chooses tokens from evenly distributed intervals. We
visualize the efficiency-performance trade-off of Mamba-
2.8b and Simba-2.8b models on the Arc-Challenge dataset
in Figure 6. Random pruning significantly hurts perfor-
mance, while Uniform pruning forms a strong baseline,
highlighting the necessity of proper token selection. Simba
further improves upon Uniform pruning by considering
token influence.

Pruning ratio. We compare the performance of Simba
using different sparsity levels, with linear pruning sched-
ules leaving 90%, 80%, 70%, 60%, 50%, 30%, and 10%
of tokens at the final layer. Figure 6 presents the per-
formance curves for different pruning criteria. Simba is
robust to extreme sparsity, retaining performance even
when pruning 90% of tokens at the final layer.

Fine-tuning. Although our method can be applied to
pre-trained SSMs without training, we investigate if the
performance can be improved with further fine-tuning.
To this end, we perform a simple fine-tuning experiment,
further training the Mamba-370m model with MiniPile
dataset (Kaddour, 2023), which is a subset of the pre-
training dataset (the Pile (Gao et al., 2020)) used for
training Mamba. We provide the detailed training config-
urations in Appendix A.3.

9

Under review as submission to TMLR

Following the setup in Section 4.2, we evaluate the language modeling perplexity of 100 tokens using the
PG-19 dataset, conditioned on varying amounts of context. We report the results in Table 2. For all context
lengths, the fine-tuned Simba model consistently outperforms the training-free Simba model, suggesting that
fine-tuning can further improve the performance of sparsified SSMs.

5 Conclusion

We propose Simba, which sparsifies pre-trained SSMs into a hierarchical form through token pruning. Simba
outperforms Mamba with the same number of FLOPS in both accuracy on downstream NLP benchmarks
and language modeling perplexity. Additionally, our pruning scheme creates highways in the upper layers,
enhancing length extrapolation for long sequences and facilitating the information flow across distant tokens.
We hope Simba inspires a broad community, including state-space models, sparse and efficient networks, and
classic recurrent networks with highways.

Limitations. Our paper mainly focused on applying Simba to the pre-trained Mamba without adjustment.
However, token pruning incurs distribution shifts from the original models, and further fine-tuning could
reduce this misalignment. We demonstrate that simple fine-tuning can improve the performance of small
models within a fixed computational budget in Section 4.4. However, a more sophisticated fine-tuning scheme
tailored for sparse SSMs could be investigated.

Broader Impact Statement Our paper studies sequence models, with broad applications such as language,
audio, and video generation. As our method enhances the efficiency and efficacy of these models, it holds the
potential to impact a broader audience in generative AI. Hence, users of our method and sequence models
should carefully read and follow the guidance from the community (Bai et al., 2022).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models. arXiv preprint
arXiv:2403.01590, 2024.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle OBrien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite
for analyzing large language models across training and scaling. In International Conference on Machine
Learning, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense
in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
7432–7439, 2020.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy Hoffman.
Token merging: Your vit but faster. International Conference on Learning Representations, 2023.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

10

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Under review as submission to TMLR

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert Gu,
Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing gated linear
recurrences with local attention for efficient language models. arXiv preprint arXiv:2402.19427, 2024.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video recognition.
In IEEE International Conference on Computer Vision, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. International Conference on Learning Representations, 20189.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré. Hungry hungry
hippos: Towards language modeling with state space models. In International Conference on Learning
Representations, 2023.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot language model evaluation.
Version v0. 0.1. Sept, pp. 8, 2021.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-vector elimination. In
International Conference on Machine Learning, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization of
diagonal state space models. In Advances in Neural Information Processing Systems, 2022a.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces.
In International Conference on Learning Representations, 2022b.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. International Conference on Learning Representations,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Salah Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term dependencies. Advances
in Neural Information Processing Systems, 1995.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional
networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

11

Under review as submission to TMLR

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Transformers are
better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Jean Kaddour. The minipile challenge for data-efficient language models. arXiv preprint arXiv:2304.08442,
2023.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In International Conference on Machine Learning, 2020.

Tsung-Wei Ke, Sangwoo Mo, and X Yu Stella. Learning hierarchical image segmentation for recognition and
by recognition. In International Conference on Learning Representations, 2024.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and Kurt Keutzer.
Learned token pruning for transformers. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2022.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for the
magnitude-based pruning. International Conference on Learning Representations, 2021.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. International Conference on Learning Representations, 2017.

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba: State
space model for efficient video understanding. arXiv preprint arXiv:2403.06977, 2024a.

Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for multi-
dimensional data. arXiv preprint arXiv:2402.05892, 2024b.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez. Train big,
then compress: Rethinking model size for efficient training and inference of transformers. In International
Conference on Machine Learning, 2020.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked
Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-mamba language
model. arXiv preprint arXiv:2403.19887, 2024.

Xiangcheng Liu, Tianyi Wu, and Guodong Guo. Adaptive sparse vit: Towards learnable adaptive token
pruning by fully exploiting self-attention. arXiv preprint arXiv:2209.13802, 2022.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling via
gated state spaces. In International Conference on Learning Representations, 2023.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in Neural
Information Processing Systems, 2019.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. Resurrecting recurrent neural networks for long sequences. In International Conference on
Machine Learning, 2023.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset: Word prediction
requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead: A far-sighted alternative of magnitude-
based pruning. International Conference on Learning Representations, 2020.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the transformer era. arXiv
preprint arXiv:2305.13048, 2023.

12

Under review as submission to TMLR

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. In
International Conference on Machine Learning, 2023.

Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, Kristian Kersting,
Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, et al. Mechanistic design and scaling of hybrid
architectures. arXiv preprint arXiv:2403.17844, 2024.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint, 2019. URL https://arxiv.org/abs/
1911.05507.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer Assisted Intervention, 2015.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token reduction
for efficient large multimodal models. arXiv preprint arXiv:2403.15388, 2024.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence
modeling. In International Conference on Learning Representations, 2023.

Woomin Song, Seunghyuk Oh, Sangwoo Mo, Jaehyung Kim, Sukmin Yun, Jung-Woo Ha, and Jinwoo
Shin. Hierarchical context merging: Better long context understanding for pre-trained llms. International
Conference on Learning Representations, 2024.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu Wei.
Retentive network: A successor to transformer for large language models. arXiv preprint arXiv:2307.08621,
2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient transformers. In
International Conference on Learning Representations, 2021.

Ali Vardasbi, Telmo Pessoa Pires, Robin M Schmidt, and Stephan Peitz. State spaces aren’t enough: Machine
translation needs attention. arXiv preprint arXiv:2304.12776, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Yau-Shian Wang, Hung-Yi Lee, and Yun-Nung Chen. Tree transformer: Integrating tree structures into
self-attention. Conference on Empirical Methods in Natural Language Processing, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnık, and Jürgen Schmidhuber. Recurrent highway
networks. In International Conference on Machine Learning, 2017.

13

https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507

Under review as submission to TMLR

A Detailed setups

A.1 NLP benchmarks

Here, we provide the details for downstream experiments in Section 4.1. The six benchmarks were chosen
according to the experiment setup of (Gu & Dao, 2023). The metrics are also selected accordingly, where we
measure answer perplexity and accuracy for Lambada, accuracy for PIQA, ARC-Easy, and Winogrande, and
normalized accuracy for HellaSwag and Arc-Challenge. All measurements use the LM evaluation harness
from EleutherAI (Gao et al., 2021).

Following the widely adopted practice (Beeching et al., 2023), we evaluate the model’s downstream performance
using few-shot prompts. Following the setup in the open LLM leaderboard (Beeching et al., 2023), we evaluate
the model with 10-shot prompts for HellaSwag, 25-shot prompts for ARC-Easy and Arc-Challenge, and 5-shot
prompts for WinoGrande. For benchmarks not considered in the leaderboard, we evaluate the models with
5-shot prompts.

For the visualization in Figure 3, we measure FLOPs separately for each benchmark and each model. First,
we measure each benchmark’s mean prompt and answer length, as shown in Table 3. Then, we measure
FLOPs by forwarding an input that matches the mean lengths.

Table 3: Downstream task details. We provide the details of our downstream evaluations in Section 4.1,
including the number of few-shot prompts, average prompt lengths, average answer lengths, and metrics used
for evaluation.

Dataset Few-shot Prompt Length Answer Length MetricsPrompts (avg.) (avg.)

Lambada (Paperno et al., 2016) 5 507.44 1.47 ppl./ acc.
HellaSwag (Zellers et al., 2019) 10 877.25 29.86 acc_norm
PIQA (Bisk et al., 2020) 5 229.53 22.82 acc.
ARC-Easy (Clark et al., 2018) 25 913.81 5.00 acc.
ARC-Challenge (Clark et al., 2018) 25 913.81 5.00 acc_norm
WinoGrande (Sakaguchi et al., 2021) 5 143.17 5.67 acc.

A.2 Information flow visualization

Here, we provide the details for our information flow visualization experiments in Figure 5. We measure the
normalized token influence score s(t)/||yT ||2 across all documents from the PG-19 test set, truncated at 1000
tokens. For all samples, we gather the influence score into five bins according to the position of the tokens.
We report the average influence scores for each bin.

A.3 Fine-tuning with Simba

We provide the details for our fine-tuning experiments in Section 4.4.

Loss design. The language modeling loss cannot be directly applied to sparsified models because the output
logit shape does not match the label shape due to pruning. We apply the language modeling loss only to the
available output logits, which are trained to predict the next token in the input sequence. We also add the
standard language modeling loss computed using dense forwarding for stable training.

Training. We train the model for 400 steps on the MiniPile dataset (Kaddour, 2023), a subset of the Pile
dataset (Gao et al., 2020) with similar data distribution. We use AdamW optimizer with a learning rate
of 5e-5. We schedule the learning rate with a linear warmup for 10% of the total training steps and cosine
learning rate decay for the remaining steps. We randomly select the pruning ratio between 0% and 90% for
each sample.

14

Under review as submission to TMLR

B Additional results

The tables below present the full values reported in our experiments.

B.1 Detailed results for downstream evaluations

Table 4: The full results table corresponding to Figure 3. Bold denotes the best results.

Model Scale FLOPs Lbd. Lbd. HS PIQA Arc-E Arc-C WG Avg.
(x1e12) perp. (↓) acc. (↑) acc. (↑) acc. (↑) acc. (↑) acc. (↑) acc. (↑) acc. (↑)

Simba (ours) 130m 0.23 31.63 36.28 35.29 64.64 49.12 24.66 49.96 43.32

Pythia 160m 0.66 > 102 22.21 30.42 62.46 45.29 22.95 50.36 38.95
Mamba 130m 0.53 35.81 31.84 34.88 64.36 50.76 23.72 49.80 42.56
Simba (ours) 370m 0.75 16.79 45.10 46.72 69.59 58.84 28.07 55.41 50.62

Pythia 410m 1.86 25.65 38.22 40.95 68.06 56.73 26.45 53.51 47.32
Mamba 370m 1.51 12.34 46.61 46.46 69.59 59.05 27.47 55.80 50.83
Simba (ours) 790m 1.67 10.10 51.84 54.82 72.25 65.40 32.42 58.17 55.82

Pythia 1b 4.27 16.01 42.27 47.92 71.44 60.65 29.61 52.88 50.80
Mamba 790m 3.24 9.44 51.33 55.12 72.47 65.49 32.76 57.54 55.78
Simba (ours) 1.4b 2.95 8.41 55.61 58.61 73.34 65.32 34.47 58.72 57.68

Pythia 1.4b 6.19 10.35 49.46 53.54 70.89 65.32 33.02 57.38 54.94
Mamba 1.4b 5.60 7.31 56.43 59.60 74.05 66.50 36.18 60.14 58.82
Simba (ours) 2.8b 6.07 6.29 60.06 65.70 75.46 71.21 38.99 63.61 62.51

Pythia 2.8b 12.21 7.69 54.93 60.85 74.37 68.10 36.26 60.93 59.24
Mamba 2.8b 11.31 5.80 60.85 66.73 76.12 71.97 39.93 63.69 63.21

B.2 Detailed results for perplexity evaluations

Table 5: The full results table corresponding to Figure 4. Bold denotes the best results.

Model Scale FLOPs Within Context Extrapolation
(x1e12) 0.5k 1k 1.5k 2k 2.5k 3k 3.5k 4k

Simba (ours) 130m 0.21 3.060 3.006 2.986 2.974 2.961 2.956 2.948 2.942

Pythia 160m 0.60 3.166 3.134 3.128 3.120 3.195 6.333 7.883 7.986
Mamba 130m 0.48 2.943 2.917 2.907 2.899 2.899 2.900 2.901 2.905
Simba (ours) 370m 0.68 2.727 2.686 2.662 2.650 2.643 2.633 2.630 2.625

Pythia 410m 1.69 2.750 2.713 2.702 2.691 2.923 7.611 8.918 9.314
Mamba 370m 1.38 2.645 2.616 2.607 2.600 2.599 2.601 2.604 2.617
Simba (ours) 790m 1.52 2.543 2.509 2.488 2.477 2.474 2.470 2.468 2.471

Pythia 1b 3.88 2.607 2.573 2.560 2.559 5.665 6.582 6.817 7.003
Mamba 790m 2.94 2.486 2.457 2.445 2.437 2.436 2.443 2.458 2.497
Simba (ours) 1.4b 2.68 2.495 2.466 2.443 2.422 2.413 2.404 2.396 2.394

Pythia 1.4b 5.63 2.513 2.474 2.465 2.456 3.003 6.696 7.321 7.775
Mamba 1.4b 5.09 2.389 2.363 2.354 2.348 2.347 2.352 2.358 2.372
Simba (ours) 2.8b 5.52 2.380 2.330 2.317 2.304 2.294 2.289 2.279 2.284

Pythia 2.8b 11.11 2.382 2.345 2.332 2.326 6.689 7.275 7.266 7.244
Mamba 2.8b 10.28 2.281 2.254 2.242 2.235 2.236 2.254 2.314 2.547

15

Under review as submission to TMLR

C Additional information

C.1 Compute resources

All experiments are done on RTX-3090 or RTX-2080 GPUs. All FLOPs reported in the paper indicate the
computation required for running a single forward pass, so the number of data samples must be multiplied to
calculate the amount of computation required for the full experiments. We further acknowledge that the
full research project required more computing than the experiments reported in the paper, including the
preliminary experiments and failed experiments.

C.2 License for existing assets

Here, we provide the license for all datasets and models used in our experiments. Apache 2.0 license is
applied for the pretrained Mamba models, Pythia models, PG-19 dataset, and WinoGrande dataset. CC
BY 4.0 license is applied for the Lambada dataset. CC BY-SA 4.0 license is applied for ARC-Challenge and
ARC-Easy datasets. MIT license is applied for the PIQA dataset, HellaSwag dataset, and MiniPile dataset.

16

	Introduction
	Related work
	Simba: Hierarchical sparsification for state-space models
	Motivation: Hierarchy in SSM token redundancy
	Hierarchical sparsification for SSMs

	Experiments
	NLP benchmarks
	Language modeling
	Sparsified SSMs as highway networks
	Ablation study and analysis

	Conclusion
	Detailed setups
	NLP benchmarks
	Information flow visualization
	Fine-tuning with Simba

	Additional results
	Detailed results for downstream evaluations
	Detailed results for perplexity evaluations

	Additional information
	Compute resources
	License for existing assets

