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Abstract: We present a framework for specifying tasks involving spatial relations
between objects using only ∼5-10 demonstrations and then executing such tasks
given point cloud observations of a novel pair of objects in arbitrary initial poses.
Our approach structures these rearrangement tasks by assigning a consistent local
coordinate frame to the task-relevant object parts, localizing the corresponding
coordinate frame on unseen object instances, and executing an action that brings
these frames into alignment. We propose an optimization method that uses multiple
Neural Descriptor Fields (NDFs) and a single annotated 3D keypoint to assign
a set of consistent coordinate frames to the task-relevant object parts. We also
propose an energy-based learning scheme to model the joint configuration of the
objects that satisfies a desired relational task. We validate our pipeline on three
multi-object rearrangement tasks in simulation and on a real robot. Results show
that our method can infer relative transformations that satisfy the desired relation
between novel objects in unseen initial poses using just a few demonstrations.
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1 Introduction
Many tasks we want robots to perform – e.g., stacking bowls and plates to declutter a table, putting
objects together to build an assembly, and hanging mugs on a rack with hooks – involve rearranging
objects relative to one another. Such tasks can be described in terms of spatial relations between part
features of a set of objects, where a local coordinate frame is attached to the task-relevant part of the
object, and the relation is achieved by transforming the objects to bring these coordinate frames into
a specified alignment. For example, hanging a mug on a rack is a relation between the mug’s handle
and the rack’s hook, while stacking a bowl on a mug involves aligning the bottom of the bowl with
the top of the mug (see Fig. 1).

Specifying and solving tasks in this way requires the ability to (i) assign a consistent local coordinate
frame to the task-relevant object parts, and (ii) detect the corresponding coordinate frames on
new object instances. Prior works have demonstrated these capabilities using techniques such as
supervised keypoint detection [1, 2], but the use of large task-specific datasets labeled by humans
limits easy deployment for a wide diversity of tasks. Neural Descriptor Fields (NDFs) [3] have also
been used to perform these abilities, with the added benefit of requiring just a small set (∼ 5-10) of
task demonstrations. They achieve this by combining task-agnostic self-supervised pretraining and
a few labeled examples of objects with consistent coordinate frames attached to their task-relevant
parts, effectively performing few-shot learning for task-relevant part localization on new instances.

Despite these benefits, it can be tedious to label the relevant part of each demonstration object with a
consistent pose (e.g., label the “handle” of each mug with a consistent orientation). Prior work [3]
reduced this burden by permitting the user to label a single coordinate frame near the task-relevant part
of a known secondary object, and use the demonstrations to associate the frame with the task-relevant
part of each unknown object (e.g., label a frame on the “hook” of a known rack once, and associate
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Figure 1: Given a point cloud of a pair of unseen objects in aritrary initial configurations (top left), Relational
Neural Descriptor Fields (R-NDFs) obtain relative transformations that satisfy a relational task objective, such as
“placing the mug upright on the table” (middle) and “stacking the bowl upright on top of the mug” (right). Our
framework obtains these transformations by inferring the 6D pose of local coordinate frames at the task-relevant
parts of the objects using just a small handful (∼5-10) of demonstrations of each relational task.

this frame with each mug’s “handle” based on the final mug placements). This labeled frame also
specifies the alignment target for test-time objects once their relevant parts are localized. While this
enables generalization to unseen objects in diverse poses [3], assuming a known secondary object is
limiting – for the hanging example, the system generalizes to scenarios with unseen mugs, but fails
with both an unseen mug and a rack with a new shape. In this paper, we address this limitation. In
particular, we present Relational Neural Descriptor Fields (R-NDFs), a framework, using ∼ 5-10
demonstrations, that takes as input 3D point clouds of a pair of unseen objects in arbitrary initial
poses and outputs a relative transformation between them that satisfies a relational task objective.

The central difficulty in applying NDFs to scenarios with changing pairs of objects is to assign a set
of consistent local coordinate frames to the task-relevant parts of the objects in the demonstrations,
which may be both unaligned and differently shaped. We propose an optimization method that uses
two NDFs (one per object) and a single 3D keypoint label in just one of the demonstrations, to assign
a set of local coordinate frames that are consistently posed relative to the task-relevant parts of the
objects. We then apply NDFs to localize the corresponding coordinate frames for unseen pairs of
objects presented in arbitrary initial poses, and solve for the relative transformation between them that
satisfies the desired relation. However, errors can accumulate when inferring a relative transformation
based on a pair of coordinate frames that have been independently localized. To mitigate this effect,
we also propose a learning approach that directly models the joint configuration of the pair of objects
and helps refine the transformation for satisfying the relation.

We validate R-NDFs on three relational rearrangement tasks in both simulation and the real world.
Our simulation results show that R-NDFs outperform a set of baseline approaches, and our proposed
optimization and learning-based refinement schemes benefit overall task success. Finally, our real
world results exhibit the effectiveness of R-NDFs on pairs of diverse real world objects in tabletop
pick-and-place, and highlight the potential for applying our approach to multi-step tasks.

2 Background: Neural Descriptor Fields
A Neural Descriptor Field (NDF) [3] represents an object using a function f that maps a 3D coordinate
x ∈ R3 and an object point cloud P ∈ R3×N to a spatial descriptor in Rd:

f(x|P) : R3 × R3×N → Rd. (1)
The function f is parameterized as a neural network constructed to be SE(3)-equivariant, such that if
an object is subject to a rigid body transform T ∈ SE(3) its spatial descriptors transform accordingly*:

f(x|P) ≡ f(Tx|TP). (2)
This enables NDFs to behave consistently for the same object, regardless of the underlying pose.
NDFs are also trained to learn correspondence over objects in the same category, so that points
near similar geometric features of different instances (e.g., a point near the handle of two different
mugs) are mapped to similar descriptor values. The equivariance property is obtained by using
SO(3)-equivariant neural network layers [4] and mean-centered point clouds, while the category-level
correspondence is obtained by training f on a category-level 3D reconstruction task [3, 5].

*We use homogeneous coordinates for ease of notation, i.e., Tx denotes Rx+t where T = (R, t) ∈ SE(3).
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NDFs can also be redefined to model a field over full SE(3) poses, rather than individual points. This
is achieved by concatenating the descriptors of the individual points in a rigid set of query points
X ∈ R3×Nq , i.e., a set of three or more non-collinear points xi, i = 1...Nq, that are constrained to
transform together rigidly. This construction allows NDFs to represent an SE(3) pose T via its action
on X , i.e., via the coordinates of the transformed query point cloud TX :

Z = F (T|P) =
⊕
xi∈X

f(Txi|P) (3)

Thus, F maps a point cloud P and an SE(3) pose T to a category-level pose descriptor Z ∈ Rd×Nq ,
where F inherits the same SE(3)-equivariance from f .

3 General Problem Setup and Preliminaries

Our high level goal is to enable a user to specify a task involving a geometric relationship between a
pair of rigid objects, and enable a robot to perform this task on unseen object instances presented in
arbitrary initial poses. Examples of relations we consider include “mug hanging on a rack”, “bowl
stacked upright on a mug”, and “bottle placed upright on a tray”.

Concretely, our goal is to build a system that takes as input two (nearly complete) 3D point clouds
PA and PB (each segmented out from the overall scene) of objects OA and OB , and outputs an
SE(3) transformation TB for transforming OB into a configuration that satisfies a desired relation
between OA and OB . We represent the relation as an alignment between a pair of local coordinate
frames attached to task-relevant geometric features of the objects, and break down the problem of
obtaining TB into (i) assigning a set of consistent coordinate frames to the task-relevant local object
parts and (ii) localizing these coordinate frames on the relevant parts of the new objects.

Furthermore, we assume a user specifies the relational task by providing a small handful of K task
demonstrations {Di}Ki=1, such that it’s intuitive and efficient to specify a wide diversity of tasks with
minimal engineering effort. A demonstration D consists of point clouds P̂A and P̂B (of objects ÔA

and ÔB) and relation-satisfying transformation T̂B .
NDFs for Encoding Single Unknown Object Relations. Prior work on NDFs may be applied to
a simplified version of this task, where the geometry and state of OA is known. Given that OA is
known, we can initialize a set of query points XA near the task-relevant part of OA and use the query
points to encode the relative pose T̂B via Equation (3). Thus, a demonstration D is mapped to a
target pose descriptor Ẑ = F (T̂−1

B |P̂B) representing the (inverse of the) final pose of ÔB relative
to OA. In practice, pose descriptors from multiple demonstrations {Di}Ki=1 are averaged to obtain
an overall descriptor Ẑ = 1

K

∑K
i=1 Ẑi for the whole set, which has important implications in the

version of the task with two unknown objects (see Section 4.1 for further discussion).

Given a novel object instance represented by point cloud PB , we can compute a transformation TB

such that transforming OB by TB satisfies the demonstrated relation between OA and OB . This is
achieved by minimizing the L1 distance to the target pose descriptor Ẑ:

T−1
B = argmin

T
∥F (T|PB)− Ẑ∥. (4)

Intuitively, Equation (4) performs well across different objects due to the fact that NDFs are pretrained
to enable reconstruction across a large dataset of 3D shapes. As a result, shared descriptors are
discovered across different instances in a shape category. In contrast, training a model directly on the
few demonstrations (e.g., for regressing pose TB) would be more susceptible to overfitting.

4 Method

We now describe how we apply NDFs to infer relations between pairs of unknown objects. In
Section 4.1, we propose an iterative optimization method for assigning consistent task-relevant
coordinate frames to multiple objects. In Section 4.2, we discuss how we train a neural network on
top of NDF features to model the joint object configuration and refine an inferred transformation.
The system inputs consist of pretrained NDFs fA and fB for each object category, demonstra-
tions {Di}Ki=1 = {(P̂A, P̂B , T̂B)i}Ki=1, and a single labeled 3D coordinate xAB for one of the
demonstrations, indicating approximately where the respective demonstration objects interact.
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(A) (B) (D)(C)Demonstration: 
Pose descriptor encoding

Inference (Step 1): 
Object A part localization 

Execution: 
Transformed Object B

Inference (Step 2): 
Object B part localization 

Figure 2: Method Overview. (A) A demonstration (P̂A, P̂B , T̂B) of a relation is encoded into a pair of pose
descriptors by randomly sampling a set of query points XA at the origin and transforming it by T̂XA to be
near the task-relevant interaction point xAB . NDFs fA and fB are then used to obtain descriptors ẐA and ẐB

representing coordinate frames near the task-relevant local parts on the objects. (B) Given point cloud PA of
a novel object, NDF fA, and pose descriptor ẐA, pose TXA of the corresponding coordinate frame on PA is
found. (C). This procedure is then repeated with PB , fB , and ẐB to find pose T−1

B of the relevant parts of PB ,
relative to pose TXA found in the first inference step. (D) Transforming PB by TB satisfies the desired relation.

4.1 Multiple NDFs for Inferring Pairs of Task-Relevant Local Coordinate Frames

Consider a scenario where OA and OB have unknown underlying shapes and configurations. We
now show how NDFs can be used for inferring a pair of task-relevant local coordinate frames on both
objects and recovering a transformation TB that satisfies the relation. The key idea of our approach is
to formulate this problem as a bi-level optimization (illustrated in Figure 2), where we first optimize
to find a task-relevant portion of OA, and subsequently optimize a relative transform of a local part
of OB with respect to the local region of OA.

We begin with two pretrained NDFs, fA and fB , and query points XA in a canonical pose at
the world frame origin. We obtain XA by sampling Nq points from a zero-mean Gaussian
and scaling such that XA has scale similar to the salient object parts. We then use the key-
point xAB to transform XA near the task-relevant features in the demonstration associated with
xAB . Denote this transformation as T̂XA

. Finally, we encode world-frame pose T̂XA
into

a descriptor conditioned on P̂A, as ẐA = FA(T̂XA
|P̂A), and relative pose T̂−1

B as ẐB =

FB(T̂
−1
B T̂XA

|P̂B), conditioned on P̂B . At test-time, we optimize both the world-frame pose
of the query points TXA

and the (inverse of) pose TB relative to the initial pose found in the first step:

TXA
= argmin

T
∥FA(T|PA)− ẐA∥ (5) T−1

B = argmin
T

∥FB(TTXA
|PB)− ẐB∥ (6)

Figure 2 shows an example of this pipeline, where the resulting TB is applied to the point cloud PB

of OB to satisfy the “hanging” relation.

Query points not aligned Query points alignedvs.

Demo 1

Demo 2

Figure 3: Demo alignment. We align
the query points by minimizing the variance
across the descriptor set before averaging.

Minimizing Descriptor Variance. In practice, solv-
ing Equations (5) and (6) works better if pose descrip-
tors {Ẑi}Ki=1 from multiple demonstrations are averaged
together to obtain an overall target descriptor Ẑ =
1
K

∑K
i=1 Ẑi (see Sec. 6.1 and [3]). The reason is that

a single demonstration underspecifies which object parts
are relevant for the task, allowing Ẑ to be sensitive to ob-
ject features which are not relevant to the desired relation.
Instead, a set of demonstrations using slightly different
objects (e.g., with different scales) reveals regions near lo-
cal interactions that are shared across the demonstrations,
which helps disambiguate between parts that are critical
vs. irrelevant for the specified relation.

However, to avoid the pitfalls of averaging across a potentially multimodal or disjoint set, we want
descriptors in the set {Ẑi}Ki=1 to be sensitive to nearby local geometry in a way that is consistent (i.e.,
unimodal) across the demos. This only occurs if the query points used to obtain the descriptors are
themselves consistently aligned relative to each respective object (see Figure 3). Therefore, we need
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to find a transformation T̂XA,i for each demonstration Di that transforms the canonical query points
XA into a configuration that leads the descriptors {Ẑi = FA(T̂XA,i|P̂A,i)}Ki=1 to be consistent with
each other. We address this by finding the set of transformations {T̂XA,i}Ki=1 that minimizes the
variance across the descriptor set {Ẑi = FA(T̂XA,i|P̂A,i)}Ki=1:

min
{T̂XA,i}K

i=1

Var({Ẑi}Ki=1) subject to Ẑi = FA(T̂XA,i|P̂A,i) for i = 1, ...,K (7)

where Var(·) denotes the sum of the per-element variance across a set of vectors. We perform this
minimization by applying NDFs in an alternating optimization procedure. Starting with an initial
reference pose (constructed using xAB) placing XA near the task-relevant object parts in one of the
demonstrations, we iteratively apply Equation (5) to obtain a descriptor for each demonstration that
matches the reference. At the outer level, we refit the reference descriptor using the mean of the most
recently obtained individual descriptors, and repeat. More details can be found in the Appendix.

4.2 Capturing Joint Descriptor Alignment through Learned Energy Functions

The method in Section 4.1 proposes to infer a desired relation by sequentially localizing independent
coordinate frames for each object. While this approach is generally effective, small errors can
accumulate and cause slight misalignments that lead to failure in the execution. We thus propose to
learn a neural network which directly captures the joint configuration of OA and OB that satisfies
the desired relation, and use this model to refine predictions made by the method in Section 4.1.
Pairwise Energy Functions. We train an Energy-Based Model (EBM) Eθ(·) [6] to parameterize a
learned energy landscape over NDF encodings of relative poses between OA and OB (i.e,. Eθ acts
as a learned analogue for the L1 distance in Section 4.1). The energy function Eθ(·) is trained so
that the ground truth transform of OB with respect to OA is recovered given NDFs fA and fB (note
that f corresponds to descriptor evaluation at single coordinate x while F is defined over sets of
coordinates). Explicitly, our energy function is trained so that:

TB = argmin
T

[Eθ(fB(·|TPB), fA(·|PA))] . (8)

Since each NDF is a continuous field, it is difficult to input them directly into our energy function
Eθ(·). We represent the energy function as the sum of the point-wise evaluation of each NDF on a
set of different query points XE sampled from transformed pointcloud TPB .

Eθ(fB(·|TPB), fA(·|PA)) =
∑

x∈XE

Eθ(fB(x|TPB), fA(x|PA)) (9)

At test-time, we use Equation (8) to refine the transformation obtained using Equations (5) and (6).

4.3 Learning

NDF training. We represent NDFs fA and fB as two neural networks with identical architecture and
separate weights. Following [3], the architecture consists of a PointNet [7] point cloud encoder with
SO(3) equivariant Vector Neuron [4] layers, and a multi-layer perceptron (MLP) decoder. The NDF
is represented as a function mapping a 3D coordinate and a point cloud to the vector of concatenated
activations of the MLP. The models are trained end-to-end to reconstruct 3D shapes given object
point clouds. We use a dataset of ground truth 3D shapes and generate a corresponding set of 3D
point clouds in simulation. More architecture and training data details can be found in the Appendix.
Energy-Based Model Training. We supervise the EBM Eθ so that optimization over the learned
energy landscape recovers the relative transform between OA and OB . In particular, we follow
the training objective in [8] and train argminT[Eθ(·)] to match a target pose using the following
procedure. We first apply a small delta perturbation T∆ to T̂BP̂B (i.e., the point cloud of OB

in its final configuration) to obtain P̂B,∆ = T∆T̂BP̂B . We then train Eθ to iteratively refine
an initial random pose T0 with translation t0 and rotation R0 to undo the perturbation pose T∆.
We run n steps of optimization on t0 and R0, where an individual step is given by tk = tk−1 −
λ∇tEθ(fA(·|P̂A), fB(·|TP̂B,∆)) and Rk = Rk−1 − λ∇REθ(fc(·|P̂A), fB(·|TP̂B,∆)).

We may train the energy function so that Tn corresponds to the inverse of the perturbation pose T∆

using Ltrans = ∥tn − t−1
∆ ∥ and Lrot = ∥Rn −R−1

∆ ∥. However, with symmetric objects, there are
multiple different rotations Rn which may satisfy the desired relation (e.g., a bowl is still “on” a
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mug, regardless of the angle about its radial axis). To account for these symmetries, we implicitly
enforce consistency between an optimized transform Tn and T−1

∆ by enforcing that its application on
P̂B,∆ leads to a similar point cloud to T̂BP̂B . We achieve this by minimizing the Chamfer loss [9]
between the optimized transformed point cloud TnP̂B,∆ and the demonstration point cloud T̂BP̂B .

5 Application to Tabletop Manipulation

Robot and Environment Setup. We apply the method in Section 4 to the problem of tabletop object
rearrangement using a Franka Panda robotic arm with a Robotiq 2F140 parallel jaw gripper. The
arm is used to collect the demonstrations and to execute the inferred transformation at test-time. Our
environment consists of the arm on a table with four calibrated depth cameras.
Providing and Encoding Demonstrations. When collecting a demonstration, initial object point
clouds P̂A and P̂B of objects ÔA and ÔB are obtained by fusing a set of back projected depth
images. The demonstrator moves the gripper to a pose T̂grasp, grasps ÔB , and finally moves the
gripper to a pose T̂place that satisfies the desired relation between ÔA and ÔB . T̂B is obtained as
T̂placeT̂

−1
grasp. In one of the demonstrations, a 3D keypoint xAB is labeled near the parts of the objects

that interact with each other by moving the gripper to this region and recording its position.
Test-time Task Setup and Inference. At test time, we are given point clouds PA and PB of new
objects OA and OB . Equations (5), (6), and (8) are applied in sequence to obtain TB . TB is applied
to OB by transforming an initial grasp pose Tgrasp (obtained using a separate grasp generation
pipeline) by TB to obtain a placing pose Tplace = TBTgrasp, and off the shelf inverse kinematics and
motion planning is used to reach Tgrasp and Tplace.

6 Experiments and Results
Our experiments are designed to evaluate R-NDFs in executing relational rearrangement tasks with
unseen objects using only a few demonstrations. We seek to answer three questions: (1) How well do
R-NDFs predict transformations that satisfy a relational task? (2) How important is each component
in R-NDFs? (3) Can R-NDFs be used to perform multi-object pick-and-place tasks in the real world?
Baselines. As existing rearrangement methods are not directly applicable with so few demonstrations,
we compare with two constructed baselines. The first is to train an MLP to directly regress the
relative transformation between objects (“Pose Regression”). The MLP takes as input the point
cloud encodings obtained from the same PointNet [7] encoder with Vector Neuron [4] layers used in
NDFs, and is trained directly on the demonstrations. The second method is based on 3D point cloud
registration (“Patch Match”). We use a state of the art registration method [10] to align the test-time
shapes to the demonstration shapes and then compute the resulting relative transformation.
Task Setup and Evaluation Metrics. We consider three relational rearrangement tasks for evaluation:
(1) Hanging a mug on the hook of a rack, (2) Stacking a bowl upright on top of a mug, and (3) Placing
a bottle upright inside of a box-shaped container. We provide 10 demonstrations of each task and
evaluate if each method, using the demonstrations, can infer a transformation that satisfies the desired
relation for unseen pairs of object instances with randomly sampled poses. Experiments are conducted
in both the real-world and in simulation using PyBullet [11]. In simulation, the transformation
obtained by each method is directly applied by resetting the simulator to the transformed object states.
To quantify performance, we report the success rate over 100 trials, where we use the ground truth
simulator state to compute success (objects must be in contact, have the correct relative orientation,
and not interpenetrate).

6.1 Simulation Results
We begin by evaluating how well R-NDFs can infer the desired transformations in simulation. We
consider two settings of varying difficulty. First, the pair of unseen objects are positioned randomly on
the table with a randomly sampled “upright” orientation (similar to those used in the demonstrations).
Second, the orientation of OB is randomly sampled from the full space of 3D rotations.

Results in Table 4a compare the performance of our approach to the baselines. We find that training
a model to directly regress the relative pose using the point cloud embeddings leads to substantial
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Bowl on Mug Mug on Rack Bottle in Container

Method Upright Arbitrary Upright Arbitrary Upright Arbitrary

Pose Regression 35.0 6.0 13.0 10.0 37.9 12.0
Patch Match 34.0 32.0 56.0 44.0 44.0 42.0
R-NDF 74.0 70.0 84.0 75.0 80.0 75.0
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Figure 4: (a) Relation inference success rates in simulation. R-NDF performs better than the baseline
approaches. (b) Example predictions. Representative predictions made by each method in simulation

Multiple Query Point EBM Upright Arbitrary
Demonstration Alignment Refinement Pose Pose

No No No 39.3 43.6
Yes No No 66.0 60.0
Yes Yes No 78.0 72.0
Yes Yes Yes 84.0 75.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Noise Standard Deviation (Normalized By Object Size)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

Success Rate vs. Interaction Point Estimation Noise
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Figure 5: (a) Ablations. R-NDF performance with different components ablated. Success rate is highest when
using multiple demonstrations, query point alignment, and EBM refinement. (b) Success vs. Keypoint Noise.
Success rate vs. magnitude of noise (normalized by object size) added to the single labeled 3D keypoint xAB .

overfitting and much lower success rates. On the other hand, the registration-based method can
sometimes find transformations that correctly align the unseen shapes to the demonstration objects,
and thus achieves higher success rates than pose regression. However, 3D registration is susceptible
to locally optimal results that align the task irrelevant parts of the objects. Common failure modes of
using 3D registration in the tasks we consider include aligning the body of the mug but ignoring the
handle, or aligning the racks to be upside down. Figure 4b illustrates the final simulator state after
applying some of the representative predictions of each method.

In contrast, R-NDFs more accurately localize the task-relevant object parts and assign coordinate
frames to these parts that are consistent with the demonstrations, leading to the highest success rates.
Consistent with [3], the performance gap between the “upright” and “arbitrary” pose settings is small,
which can be attributed to the built-in equivariance of the features used in R-NDF.

6.2 Ablations

Next, we analyze the importance of the individual components of R-NDFs. We investigate ablations
on the simulated “mug on rack” task, again considering both “upright” and “arbitrary” pose settings.

The top row of Table 5a illustrates that R-NDF performs worse with a single demonstration. Since
there are multiple possible explanations for the alignment between two objects when given one
example of the desired relation, pose descriptors obtained from a single demonstration are more
sensitive to task irrelevant object features. The second row of Table 5a investigates the effect of
averaging descriptors across the set of demonstrations without first aligning the query points relative
to the objects in each demo. We modified the demonstrations to provide keypoints {xAB,i}Ki=1 near
the relevant region in each demonstration, and then transform the query points to this region without
aligning their orientations. Removing the query point alignment reduces the performance. The third
row of Table 5a shows that removing the EBM refinement also decreases the success rate.

We further examine the importance of accurately specifying the 3D keypoint xAB near the task-
relevant region on one of the demonstrations. We run the trials multiple times with Gaussian
distributed noise added to the labeled point. Figure 5b shows a plot of the success rate vs. the noise
magnitude normalized by the approximate size of the object. The plot indicates that with limited
noise perturbation, the success rate does not suffer significantly, though we observe a steep decline
with more substantial perturbations. These larger perturbations shift the query points to regions near
geometric features that are less relevant to the desired relation.
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Bowl on Mug Mug on Rack Bottle in Container

Figure 6: Real Execution Results. Example executions of relational tasks on unseen mugs, bowls, bottles,
racks, and containers in the real world. Our framework enables inferring the relative transformation between
pairs of unseen objects in arbitrary initial poses from a small handful of unaligned demonstrations of each task.

6.3 Real Results

Finally, we validate that R-NDFs can be used to perform pick-and-place on pairs of unseen objects in
the real world. Figure 6 shows the execution on our three tasks. Our method successfully infers a
tranformation between the objects that satisfies the relations, despite the objects being presented in a
challenging array of initial configurations. Figure 1 shows a multi-step rearrangement application
of R-NDFs for the “bowl on mug” task. First, a relation between the mug and the table is specified
and inferred for placing the mug upright. Then, the system executes the “stacking” relation between
the bowl and the upright mug. This highlights how R-NDFs can enable executing sequential chains
of relations to satisfy task objectives involving more than two objects. Please see our attached
supplemental video for additional real world results.

7 Related Work
Novel Object Rearrangement. Several methods exist for novel object rearrangement [1, 12–29],
many of which don’t consider multiple varying objects that interact. CatBC [30] uses dense correspon-
dence models to achieve impressive pick-and-place policy generalization from a single demonstration,
but assumes a known receptacle for placing. Neural shape mating [31], OmniHang [32], and kPAM
2.0 [2] generalize to pairs of unseen objects, but these approaches train on large task-specific datasets.
TransporterNets [33, 34] enables rearrangement with varying pick and place locations from a few
demonstrations, but focuses on top-down manipulation and struggles with out-of-plane reorientation.
In contrast, we focus on executing relations involving large 3D reorientations.
Neural Fields in Robotics. Neural fields use neural networks to parameterize functions over
continuous spatial or temporal coordinates [35]. They have been applied to model various signals and
scene properties, such as images [36], geometry [5, 37, 38], appearance [39, 40], tactile imprints [41],
and sound [42], with high fidelity and memory efficiency. Neural fields have been applied to represent
objects for manipulation [3, 43–46] and environment states for dynamics and policy learning [47–
49]. They have also been used for pose estimation [50, 51], SLAM [52, 53], and representing object
geometry without depth cameras [54, 55].

8 Limitations and Conclusion

Limitations. R-NDFs require a pretrained NDF for each category used in the task, which can be
nontrivial to obtain for novel object categories without existing 3D model datasets. Our approach
also requires an annotated keypoint to localize task-relevant object parts. Future work could explore
automated discovery of task-relevant regions directly from a set of demonstrations. Our system uses
depth cameras, which often struggle with noise and objects with thin and transparent features. An
RGB-only approach offering a similar level of generalization would be interesting to investigate.
Finally, we require segmented object point clouds. While object instance segmentation is quite
mature, pretrained segmentation models regularly struggle when objects are in diverse orientations.
Conclusion. This work presents an approach for learning from a limited number of demonstrations to
rearrange novel objects into configurations satisfying a relational task objective. We develop methods
that build upon prior applications of neural fields for representing objects and increase the scope
of tasks they can achieve. Our results illustrate the general applicability of our framework across a
diverse range of relational tasks involving pairs of novel objects in arbitrary initial poses.
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