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ABSTRACT

Articulated object manipulation is a critical capability for robots to perform various
tasks in real-world scenarios. Composed of multiple parts connected by joints, ar-
ticulated objects are endowed with diverse functional mechanisms through complex
relative motions. For example, a safe consists of a door, a handle, and a lock, where
the door can only be opened when the latch is unlocked. The internal structure, such
as the state of a lock or joint angle constraints, cannot be directly observed from
visual observation. Consequently, successful manipulation of these objects requires
adaptive adjustment based on trial and error rather than a one-time visual inference.
However, previous datasets and simulation environments for articulated objects
have primarily focused on simple manipulation mechanisms where the complete
manipulation process can be inferred from the object’s appearance. To enhance
the diversity and complexity of adaptive manipulation mechanisms, we build a
novel articulated object manipulation environment and equip it with 9 categories
of articulated objects. Based on the environment and objects, we further propose
an adaptive demonstration collection pipeline and a 3D visual diffusion-based
imitation learning that learns the adaptive manipulation policy. The effectiveness
of our designs and proposed method are validated through both simulation and
real-world experiments.

1 INTRODUCTION

Among the various categories of objects in our daily life, articulated objects are highly significant as
they are common in our surroundings (such as cabinets, doors, and laptops) and complicated for the
parts with rich and diverse geometries, semantics, articulations, and functions. Therefore, learning
articulated object representation (Du et al., 2023; Wei et al., 2022; Heppert et al., 2023; Lei et al.,
2024) and manipulation (Xu et al., 2022; Wu et al., 2022) are essential while challenging for future
robots in home-assistant tasks.

Among articulated object manipulation tasks, door manipulation (Urakami et al., 2019) is first and
most thoroughly studied, as doors are most common and useful in our daily lives. Afterwards, with
the release of diverse articulated object manipulation datasets and environments (Mo et al., 2019;
Xiang et al., 2020; Liu et al., 2022; Geng et al., 2023b), various manipulation tasks (like opening,
sliding, rotating, and further language-guided manipulation) on many categories of articulated objects
(such as pots, lamps, and cabinets) have been studied.

While previous covered various aspects of articulated object manipulation, one of the most essential
features of articulated objects, the mechanisms of different parts and articulations for accomplishing
the final manipulation goal, has yet to be explored. For example, a safe can be directly opened by
pulling the door in previous environments, while in the real world, the robot may first turn the key
to unlock the door, and then pull open the door. While UniDoorManip (Li et al., 2024b) proposes
an environment with the corresponding dataset that can simulate the mechanisms of doors, the
mechanisms of various types of articulated objects could be much more diverse and complicated.
Therefore, we build an environment that can simulate the above-described complex mechanisms of
articulated object manipulation, equipping this environment with 9 categories of different objects
covering 5 types of adaptive mechanisms (details described in Section 3).

The different mechanisms of articulated objects call for two core capabilities of the policy: (1)
multi-modal action proposal and (2) adaptive manipulation from history actions. For an observed
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Figure 1: Example comparison between Static and Adaptive Policies. The safe can be directly
opened if unlocked; otherwise, the key must be turned to unlock the latch before opening the door.
However, it is impossible to figure out the lock state from pure visual observations. Static Policy: The
demonstrations for training the static policy are optimal trajectories under full observation, including
both locked and unlocked states. Consequently, the learned policy is a bimodal distribution based on
visual observation alone. If the robot samples the "unlocked trajectory" and fails to open the locked
door, it will be out of distribution. Adaptive Policy: The demonstrations for training the adaptive
policy include recovery from the failed door opening. Therefore, the policy learns to first pull the
door to check the lock state and updates the policy distribution accordingly based on the feedback.

object, the manipulation policy contains multiple modes, which may include different manipulation
methods. For example, when observing the safe with its door closed (Bottom-Left in Figure 1), to
achieve the goal of opening the door, the policy could be either directly pulling the door (when the
door is unlocked) or turning the key and then pulling the door (when the door is locked), and the
method should be able to model these modalities from the same visual observation (Bottom-Middle
in Figure 1).

Further, to figure out and execute the accurate action from the multi-modal manipulation action
candidates require adapting the manipulation policy from the history actions with their corresponding
results. For example, when pulling the door and finding the door unmoved, the policy should adapt
from proposing multi-modal actions (either pulling the door or turning the key) to single-modal action
(turning the key) (Bottom-Right in Figure 1).

To support multi-modal action proposals, we take advantage of the designs of diffusion policy (Chi
et al., 2023) and its following studies (Ze et al., 2024; Yan et al., 2024), which have demonstrated
modeling multi-modal distributions from only a few successful demonstrations. To empower the
policy with adaptive manipulation abilities, while previous studies only employ optimal success
trajectories (without any failures during the manipulation) for training, we introduce trajectories,
including failure actions and the recovery and adaptation actions from failures for training, as the
failure actions help in revealing the accurate mechanisms and manipulation policy. Figure 1 showcases
the superiority of our proposed adaptive policy learning method. The pure visual observation could
not tell whether the door was locked or not. The static policy that only takes the passive one-frame
visual input will randomly propose one of the multi-modal trajectory candidates. On the contrary, the
adaptive policy will first try pulling the door, and then adapt the policy distribution from multi-modal
to single-model accordingly, as its training data include the failure of a direct pulling trial on the
locked safe door, and then adaptively turning the key to open the safe after the failure successfully.

Based on our proposed novel environment, we have conducted extensive experiments on 9 categories
of 277 different objects, covering 5 types of mechanisms, showcasing the necessity of the proposed
environment and dataset, and the effectiveness of the proposed policy learning framework in efficiently
and intelligently adapting the manipulation.
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In summary, our contributions include:

• We study the novel problem of adaptively manipulating articulated objects with diverse
mechanisms and build an environment with various categories of objects and mechanisms.

• We propose a novel framework that learns the adaptive manipulation policy for various
mechanisms from diverse demonstrations.

• Extensive experiments have demonstrated the significance of our proposed environment,
and the effectiveness of the proposed adaptive policy learning framework.

2 RELATED WORK

2.1 ARTICULATED OBJECT ENVIRONMENTS AND DATASETS

To facilitate the study of representation and manipulation of diverse and complex articulated ob-
jects, DoorGym (Urakami et al., 2019), the door manipulation environment is first introduced with
diverse doors. UniDoorManip (Li et al., 2024b) further empowers door environments with different
mechanisms. PartNet-Mobility dataset first introduces multiple categories of articulated objects from
PartNet (Mo et al., 2019; Chang et al., 2015), equipped by the sapien environment (Xiang et al.,
2020; Mu et al., 2021; Gu et al., 2023) to support various articulated object manipulation tasks.
Further, GAPartNet (Geng et al., 2023b) provides fine-grained part annotations, AKB-48 (Liu et al.,
2022) provides real-world articulated object models, and Arnold (Gong et al., 2023) provides the
environment for language-guided manipulation.

2.2 ARTICULATED OBJECT MANIPULATION

There have been a series of studies studying articulated object manipulation. Where2Act (Mo et al.,
2021) first studies the point-level affordance for short-term manipulation, with affordance-based (Wu
et al., 2022), flow-based (Eisner et al., 2022; Zhang et al., 2023), part-based (Geng et al., 2023a) and
rl-based (Geng et al., 2023c) methods study the long-horizon manipulation. Environment-Aware
Affordance (Wu et al., 2023a; Li et al., 2024a) further studies the manipulation with environment
constraints. Where2Explore (Ning et al., 2023) and AdaAfford (Wang et al., 2022) further convert
passive visual priors to manipulation posteriors using the few-shot interactions, respectively, tackle
the problem of exploring novel articulated object categories with novel geometries and parts, and
manipulation on ambiguous kinematics and dynamics. Besides, coarse-to-fine method (Ling et al.,
2024) studies the sim2real framework for real-world manipulation, and language-guided methods (Xu
et al., 2024; Gong et al., 2023) study the manipulation with language guidance. While these works
usually only studied the manipulation with simple mechanisms (such as directly opening a door or
safe), in our work, we further study the policy for manipulating articulated objects with diverse and
complex mechanisms, with a novel proposed environment supporting such objects.

3 ADAPTIVE MANIPULATION ENVIRONMENT

Previous datasets and simulation environments for articulated objects often lack diversity and realistic
manipulation mechanisms (Urakami et al., 2019; Li et al., 2024b; Geng et al., 2023b; Xiang et al.,
2020; Geng et al., 2023a). To address this issue, we developed a new environment to explore complex
mechanisms in articulated object manipulation better and learn adaptive manipulation policies. Based
on IsaacGym (Makoviychuk et al., 2021), this environment simulates these mechanisms and includes
9 categories of objects (Section 3.1) with 5 types of adaptive mechanisms (Section 3.2).

3.1 ARTICULATED OBJECT DATASET

In recent years, several works have proposed datasets for articulated object manipulation. PartNet-
Mobility (Xiang et al., 2020) and AKB-48 (Liu et al., 2022) offer diverse datasets for articulated
objects but focus on cross-category geometry diversity, neglecting the mechanisms of different parts
and articulations needed to achieve the final manipulation goal. For instance, PartNet-Mobility
includes the safe category, but the door can be directly opened without rotating the knob to unlock
the latch. GAPartNet (Geng et al., 2023b) provides fine-grained part annotations but still fails

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Table 1: Statistics of our adaptive articulated object dataset, including 9 categories of 277 different
instances. CM. PC. respectively denote Coffee Maker and Pressure Cooker.

Category Bottle Pen CM. Window Door Lamp Microwave Safe PC.
Instance 32 36 18 30 57 25 37 36 6

Table 2: Adaptive manipulation mechanism comparison between our environment and others.
Environment Lock ±Clockwise Rotate&Slide Push/Rotate Switch Contact

GAPartNet ✗ ✗ ✗ ✗ ✗
PartManip ✓ ✗ ✗ ✗ ✗
DoorGym ✓ ✗ ✗ ✗ ✗

UniDoorManip ✓ ✓ ✗ ✗ ✗
Ours ✓ ✓ ✓ ✓ ✓

to model complex manipulation mechanisms. DoorGym (Urakami et al., 2019) claims a large-
scale, scalable dataset specifically for door manipulation, considering the latch mechanism of doors.
UniDoorManip (Li et al., 2024b) enriches the diversity of door geometry by composing instances.
However, both DoorGym and UniDoorManip are limited to door manipulation and do not cover more
diverse and long-term mechanisms.

To investigate real-world articulated object manipulation, we introduce a new dataset that encom-
passes more realistic adaptive manipulation mechanisms. Our dataset includes 9 categories of 277
objects: Bottle, Pen, Coffee Maker, Window, Pressure Cooker, Lamp, Door, Safe, and Mi-
crowave. Table 1 provides detailed statistics of our dataset, and Figure 2 visualizes instances of each
category. The object assets in our dataset are handcrafted from materials primarily obtained from 3D
Warehouse (Trimble). More details can be found in Appendix B.

3.2 ADAPTIVE MANIPULATION MECHANISM

Most existing articulated object environments focus primarily on geometric diversity across different
categories of objects. While these objects may contain multiple parts, manipulating one part typically
does not impact other parts’ state or joint limits, resulting in simplified manipulation mechanisms.
Common actions in these environments include pushing or pulling a part, such as opening a drawer
or pressing a button, which can be deduced purely from visual observation. However, real-world
manipulation often depends on internal joint states that are not visible externally, necessitating
adaptive manipulation policies based on feedback.

To better simulate real-world articulated object manipulation as well as corresponding mechanisms,
we have identified five adaptive mechanisms that enhance the fidelity of our environment:

Lock Mechanism: Common in everyday objects like doors or safes, the lock mechanism requires an
initial action such as rotating a key or knob or pressing a button to unlock the object before it can
be opened. This mechanism tracks the key part’s joint state during manipulation and updates the
lock state accordingly. If the lock state transitions to "unlock," the door joint limit is lifted to allow
opening; otherwise, the door remains locked. Since the lock state cannot be inferred visually, the
robot must interact with the object to determine the lock state and adapt its policy accordingly.

Random Rotation Direction: When rotating a knob, cap, or handle, the direction (i.e., clockwise
or counterclockwise) is determined by the internal revolute joint limit. Our environment randomly
assigns the rotation direction upon initialization, preventing visual inference of the direction. The
robot must attempt one direction and switch if unsuccessful.

Rotate & Slide Mechanism: This mechanism requires a part to be rotated to a specific angle before
it can be lifted or pulled out, such as lifting the lid of a pressure cooker. The required rotation angle is
not visually discernible, necessitating the robot to rotate the part incrementally and attempt to slide it
to determine if the correct angle is reached. We randomize the revolute joint limit and initially set the
prismatic joint limit to zero, lifting it once the correct angle is achieved.

Push/Rotate Mechanism: Due to the similar appearance of buttons and knobs, it is unclear whether
a part should be pushed or rotated. For example, a lamp might be turned on by pushing a button in
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Articulated Object Datasets with Diverse Adaptive Mechanisms and Geometries

Open Bottle Open Pressure Cooker

Open Window Open MicrowaveSelected Mechanisms

Figure 2: Adaptive manipulation dataset and environments. Bottle and Pressure Cooker feature the
Rotate & Slide mechanism, requiring continued rotation after a failed lift. The window includes the
Lock and Random Rotation Direction mechanisms, necessitating exploration of the correct rotation
direction to unlock the latch. Microwave incorporates the Lock and Switch Contact mechanisms,
where the robot must first pull the handle to check the lock state and press the button if locked.

some instances and rotating a knob in others. Our environment includes both revolute and prismatic
joints for the same part in the URDF file and randomly determines whether the part should be pushed
or rotated, adjusting the joint limit accordingly.

Switch Contact Mechanism: Based on the lock mechanism, this requires the robot to manipulate
different key parts, such as a handle and a knob, if they are separate. For instance, in a safe, the robot
must switch contact points during manipulation due to the lock state ambiguity, preventing it from
determining the sequence of contact points at the outset.

Table 2 compares the richness and diversity of mechanisms between our environment and others. We
selectively visualize the adaptive manipulation mechanisms of four categories in Figure 2. We defer
details of the remaining categories to Appendix D.

4 METHOD

As illustrated in Figure 3, we propose a novel framework that learns an adaptive manipulation policy
for various mechanisms from collected adaptive demonstrations. To achieve this, we leverage the
annotated part poses in our dataset to generate expert manipulation trajectories in the environments,
considering invisible internal states to ensure the trajectories are adaptive. Next, to model the expert
trajectory distribution with high multi-modality, we employ 3D visual diffusion-based imitation
learning (Ze et al., 2024; Chi et al., 2023), which learns the gradient of the action score function to
generate actions.

4.1 ADAPTIVE DEMONSTRATION COLLECTION

Our goal is to generate adaptive demonstrations that are optimal under partial observation. For
instance, when opening a microwave, the expert adaptive policy initially pulls the handle to check the
lock state. If the latch is locked, the policy will push the button before opening the door. If the latch
is not locked, the policy continues pulling the handle to open the door. In contrast, a static policy
with full observation would know the lock state in advance and could directly open the door or push
the button without first trying to pull the handle.
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Figure 3: Adaptive demonstration collection: Given the uncertain lock state of a microwave, we
instruct the robot to first pull the door to check if it is locked, and then follow two different trajectories
based on the result. Diffusion-based 3D adaptive manipulation policy: Conditioning on the history
of 3D visual features, proprioceptions, and actions, the policy denoises Gaussian noise into the
trajectory distribution. Initially, the policy captures the bimodal distribution in the demonstration
based on the initial observation. As the observed lock state is determined, the policy distribution
adaptively shifts to an unimodal distribution.

We design rule-based expert adaptive policies to gather adaptive demonstrations in our simulation
environments. We start by computing the bounding box of the part mesh and annotating the part
pose through an interactive script. Using these annotations, we label the sequences of parts and
manipulation actions for each category, ensuring optimal trajectories under partial observation. For
example, the manipulation sequence for a locked safe is grasping the handle, pulling the door,
grasping the knob, rotating the knob, grasping the handle, and opening the door. Note that the
recorded trajectories are end effector poses instead of the high-level action labels. More details are
provided in Appendix C. With these policies, we collect adaptive demonstrations of robot motion
trajectories for all 9 categories of objects.

4.2 3D DIFFUSION-BASED ADAPTIVE POLICY LEARNING

Given the collected demonstration dataset D = {(ot, at)}, we aim to learn a policy that models
the conditional distribution P (At|Ot, Ât). Here At refers to the predicted action sequence At =
(at, ..., at+Ta

), where Ta is the action horizon. Ot refers to the observation history, including 3D
point clouds and proprioception states, Ot = (ot−To , ..., ot), where To is the history horizon. Ât

refers to action history, Ât = (at−To−1, ..., at−1).

However, conducting imitation learning on D is challenging due to its multi-modal nature: The
ambiguity of the internal states of articulated objects results in multiple successful manipulation
trajectories under the same visual observation. Thanks to recent progress in diffusion-based meth-
ods (Chi et al., 2023; Ze et al., 2024; Ke et al., 2024), we can better fit the multi-modal distribution
by learning the action score function.

Following the Diffusion Policy (Chi et al., 2023), we utilize DDPM (Ho et al., 2020) to estimate the
conditional distribution P (At|Ot, Ât). The DDPM scheduler performs K iterations of denoising
steps to transform Gaussian noise AK

t into a noise-free action A0
t . This process adheres to Eq. 1,

where αk, γk, and σk are parameters determined by the scheduler. This reverse process conditions the
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action prediction on both observations and previous actions, differing from the vanilla implementation
of the diffusion policy.

Ak−1
t = αk

(
Ak

t − γkϵθ(A
k
t , Ot, Ât, k)

)
+N (0, σ2

kI) (1)

The noise prediction network ϵθ is trained by minimizing the loss function in Eq. 2, which effectively
minimizes the variational lower bound of the KL-divergence between the data distribution and the
sample distribution drawn from DDPM:

L(θ) = E k∼U(0,100),

ϵk∼N(0,σ2
k
I)

[∥∥∥ϵk − ϵθ(A
0
t + ϵk, Ot, Ât, k)

∥∥∥2
2

]
(2)

In practice, the observation ot consists of an observed third-view partial point cloud and the robot’s
proprioception state (e.g., end-effector pose, robot joint angles, and velocities). The point cloud is first
cropped and downsampled by Farthest Point Sampling (FPS) and then encoded by PointNet++ (Qi
et al., 2017). The action at is the next robot end-effector goal pose. Notably, we find that employing
a 6D rotation representation (Ke et al., 2024) for the end-effector pose action stabilizes the training
process. During execution, the policy only executes a sub-sequence of the predicted actions, as the
adaptive manipulation process requires high-frequency adjustments.

Lamp Pen & Coffee Machine

Door

Figure 4: Adaptive Environments and Qualitative Manipulation Results. This figure shows the
manipulation results of object categories apart from Figure 2.

5 EXPERIMENTS

5.1 SETTINGS AND METRIC

We conduct experiments in the category level covering all the 9 object categories, and collect 20
adaptive manipulation demonstrations for each object as the training data. For evaluation metric,
we use success rate of manipulations. To evaluate what kind of adaptive demonstrations is the most
beneficial to adaptive policy learning, we train adaptive policies on adaptive demonstrations with
different numbers of adaptive trials.
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Figure 5: Manipulation Trajectories Proposed by Our Method and Others. Our method can se-
quentially propose stable and accurate adaptive actions, while others have their respective drawbacks.

Table 3: Success Rates of Different Methods. Our method outperforms baseline methods and the
ablated version in all categories.

Task Adaptive Manipulation

Method

VAT-MART 41.43±17.44 45.00±12.04 38.33±18.33 71.43±14.29 1.25±0.88 6.00±5.10 13.75±6.73 15.00±12.24 34.29±19.38
AdaAfford 42.86±14.29 70.00±11.83 55.00±15.00 61.43±22.18 21.25±16.31 77.00±17.35 45.00±17.85 21.25±11.25 52.86±18.13
Sampling 17.37±9.72 24.00±11.14 26.67±16.99 38.57±16.96 15.71±11.87 25.00±10.25 18.57±12.86 11.25±8.75 28.75±13.75

ACT 75.79±8.55 74.00±16.85 81.11±5.49 90.48±6.73 28.57±15.43 59.00±14.46 66.67±5.39 52.50±14.58 51.19±13.62
DP3 83.16±12.19 83.00±11.87 86.67±4.08 85.71±10.10 35.71±21.02 62.00±13.27 70.95±3.37 58.75±14.84 53.57±13.20

Ours w/o adaptive 87.14±14.91 80.00±10.00 85.00±8.90 91.42±11.42 38.75±20.50 58.00±38.16 74.77±2.81 56.25±13.98 54.29±20.00
Ours 95.07±9.70 99.05±0.81 98.33±4.99 97.14±5.71 61.25±33.28 100.00±0.0 94.33±2.38 88.75±10.38 82.53±14.72

5.2 BASELINES AND ABLATION

To demonstrate the superiority of our proposed method and its components in manipulating articulated
objects with different mechanisms, we compare it with state-of-the-art affordance-based methods,
offline imitation learning methods, a sampling-based method, and an ablation of our method.

• VAT-Mart (Wu et al., 2022), affordance-based (Zhao et al., 2022; Wu et al., 2023b) method
that predicts the open-loop trajectories from the one-frame passive observation.

• AdaAfford (Wang et al., 2022), adaptive method that adjusts the manipulation policy based
on history interactions using CVAE) (Sohn et al., 2015).

• Sampling, a planning-based method that samples a macro action from a discrete set at each
high-level time step and then plans to the sub-goal pose associated with the selected macro
action computed based on the object part pose annotation.

• ACT (Zhao et al., 2023), an imitation learning method that uses Action Chunking with
Transformers and CVAE.

• DP3 (Ze et al., 2024), Diffusion Policy extended with 3D visual representations.

• Ours w/o adaptive, replace the adaptive demonstration data with static demonstration data
that is optimal under full observation, maintaining the diffusion-based imitation learning.

8
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Table 4: Effects of Repeated Adaptive Trials in Adaptive Demonstration for Bottle. While
adaptive trials are necessary for learning the adaptive policy, repeated adaptive trials make it more
difficult to model the adaptive manipulation distribution.

Trials 0 1(ours) 2 3 4 5 6
Success Rate 0.8714 0.9364 0.7571 0.6571 0.5714 0.4143 0.4428

5.3 SIMULATION RESULTS

Table 3 and Figure 5 respectively show the success rates and manipulation trajectories of different
methods. Figure 4 further shows more manipulation trajectories proposed by our method. Our
method outperforms all other methods and demonstrates stable and accurate action trajectories for
adaptive manipulation. From the visualizations, we can observe that, for VAT-Mart, as an open-loop
method, it is difficult to fit the whole trajectory space and directly predict a manipulation trajectory
at a time, and the open-loop method does not support adapting the policy from previously executed
actions. Using the diffusion-based imitation method, our method can more accurately model the
poses of actions using the limited number of data (such advantage is also demonstrated in other
diffusion-based imitation studies (Chi et al., 2023; Ze et al., 2024)). In contrast, AdaAfford suffers
from the inferior multi-modal distribution modeling capability of CVAE and the increased training
data requirements associated with point-level affordance learning. The Sampling-based method
performs worse than AdaManip and other baselines because its sampling process because its sampling
process cannot efficiently leverage priors or posteriors learned from demonstrations. While ACT and
DP3 outperform affordance-based methods, they fall short of AdaManip due to the absence of an
adaptive demonstration collection pipeline. Additionally, ACT is further limited by its lack of the
robust multi-modality modeling capability provided by diffusion models.

Ours w/o adaptive is not trained from demonstrations with recovery actions from failure trials, so
the learned policy could not adapt from failure actions to finally achieve the goal. As illustrated in
Figure 5, when the safe is locked and Ours w/o adaptive attempts to open the door, it fails to switch
to rotating the knob and instead continues on the opening trajectory.

Table 4 shows the effects of repeated adaptive trials in adaptive demonstrations for training. When
only using optimal successful actions (i.e., 0 adaptive trials) under full observation, the model is
the same with Ours w/o adaptive and could not have the adaptation capability. When using more
than one adaptive trial at the same object state, these adaptive trials are redundant and increase
the complexity of distributions to model, while not increasing the scenarios the policy can handle.
Therefore, the performance decreases when the number of repeated adaptive trials increases from 1.
These results validate our demonstration collection design, which limits the manipulation sequence
to only one adaptive trial.

Table 5: Real-world Evaluation Results.

Tasks Open Bottle Open Microwave Open Safe Open Pressure Cooker
Success 8/10 7/10 5/10 5/10

5.4 REAL-WORLD EXPERIMENTS

To validate the generalization of our adaptive diffusion policy to real-world scenarios, we conduct
experiments on various real-world objects like Pressure Cooker, Microwave, Bottle, and Safe. For the
real-world settings, we employ a Franka Emika Panda Robot Arm as our agent. To capture 3d visual
observation, we position an Azure Kinect DK camera adjacent to the robot arm. Our policy takes
the real-time point clouds from the depth camera, the robot state from the robot arm, and previous
actions as the input, and generates the corresponding end-effector action in a close-loop fashion.
We collected 35 adaptive expert demonstrations for each object by human teleoperation to train the
policies, and conducted 10 evaluation trials per object.

Table 5 presents the number of successful executions across four real-world tasks. The results in
Figure 6 demonstrate that our adaptive policy can be effectively applied to real-world scenarios. To
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better illustrate this adaptive behavior, we visualize different trajectories under different object states
in Figure 7. The red trajectory shows that the robot finds out that the microwave is locked after it
failed to pull the door and turned to push the button to unlock the door. Conversely, if the microwave
is initially unlocked, the robot will continue to open the door after it grasps the handle, as depicted by
the blue trajectory in sub-figure 2 of Figure 7. For more visualizations, please see Appendix D.

Open Pressure Cooker Open Microwave

Open Bottle Open Safe

Figure 6: Manipulation Trajectories of Real-World Scenarios.

Grasp Handle Locked: Pull Door Failure
Unlocked: Open Door 

Push Button 

Grasp HandlePull DoorOpen Door

Figure 7: Visualization of adaptive policy of Open Microwave in the real world. The trajectories vary
depending on the state of the microwave. The red trajectory represents the executed trajectory when
the microwave is locked. In subfigure 2, the blue trajectory illustrates the robot’s action when the
microwave is unlocked, prompting it to continue opening the door. The red trajectory shows that the
robot failed to pull the locked door and turned to push the button.

6 CONCLUSION

We study the problem of adaptive manipulation policy for manipulating articulated objects with
diverse and complex mechanisms, build environments with different categories of such objects that
support the various manipulation mechanisms, and propose a novel framework that learns the adaptive
manipulation policy for various mechanisms from diverse adaptive demonstrations based on diffusion
policy. The significance of our proposed environment and the effectiveness of the proposed adaptive
policy learning framework have been demonstrated by our experiments.

Our paper represents the initial study into the environment suitable for adaptive manipulation policy
learning. Currently, our dataset encompasses 9 categories with a total of 277 objects, which we
plan to expand by introducing more categories and instances to cover increasingly complex and
realistic mechanisms. Additionally, incorporating deformable object manipulation into adaptive tasks
represents a significant direction for future research. Moving forward, the AdaManip environment
will progressively include a broader spectrum of real adaptive manipulation tasks, making it a
comprehensive platform for both training and testing adaptive manipulation policies.
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Table 6: Parameters for training and diffusion model
Training Values

Hardware Configuration NVIDIA GeForce GTX 4090
Weight Decay 1e-6

Batch Size 64
Optimizer Adam

Learning Rate 1e-4
Epochs 500

Time Expense 3h
Model Values

Pointcloud Size 4096
Backbone Unet

Observation History Horizon 4
Prediction Horizon 4

Action Horizon 2
EMAModel True

Diffusion Timestep 100
Noise Scheduler squaredcos

Action Space absolute end-effector pose

A HYPER-PARAMETERS FOR EXPERIMENTS

Table 6 summarizes the hyperparameters for our diffusion policy model and training details.

B DATASET CONSTRUCTION

Apart from object assets collected from existing datasets (Xiang et al., 2020; Li et al., 2024b), most
of the object assets in our dataset are obtained from 3Dwarehouse (Trimble). We dedicate significant
time and effort to carefully selecting the available object meshes, segmenting them into distinct
parts, re-aligning the object mesh coordinate systems, and subsequently developing Python scripts to
facilitate the efficient synthesis of operational dataset instances. Similar to GAPartNet (Geng et al.,
2023b), we annotate the object assets with rich and comprehensive labels.

C DETAILED EXPERT POLICY DESIGN FOR ADAPTIVE DEMONSTRATION
COLLECTION

C.1 POSE ANNOTATION

To achieve precise part operation, we employ a pose labeling approach for the parts. Initially, we
roughly estimate the part pose through the bounding box of the part mesh calculated using the Python
library trimesh. Subsequently, we observe the pose annotation results in real-time through an online
interactive script to complete the precise annotation of the pose.

C.2 ADAPTIVE MANIPULATION SEQUENCE

Bottle Rotate Cap after a failed Lift Up. Randomly sample Rotate/Lift if the previous action is
Rotate.

Pen Same as Bottle.

Pressure Cooker Rotate Handle after a failed Lift Up. Randomly sample Rotate/Lift if the previous
action is Rotate.

Coffee Maker Rotate Portafilter after a failed Pull Down. Randomly sample Rotate/Pull if the
previous action is Rotate.
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Window Randomly choose a direction to Rotate Handle. If failed, choose the other direction. Rotate
Handle after a failed open trial. Randomly sample Rotate/Open if the previous action is Rotate.

Door Same as Window.

Lamp Randomly choose to Push/Clockwise Rotate/Counter Clockwise Rotate. Never choose a failed
action.

Safe Pull Door. If succeed, then continue opening the door. If failed, Rotate Knob. Randomly choose
a direction to Rotate and choose the other one if failed. Then Pull Door again to open it.

Microwave Pull Door. If succeed, then continue opening the door. If failed, Push Button. Then Pull
Door again to open it.

C.3 TRAJECTORY SPARSIFICATION

If the history consists of a dense trajectory of the robot’s end effector poses, the policy would require
a long history context length to capture previous failures. However, training a policy with a long
history context is challenging, as it requires more computing resources and is less robust. To mitigate
this issue, we chose to sparsify the trajectory. Only key frames of the demonstration trajectories
are saved for imitation learning, but the recorded actions are still 6D end effector poses instead of
high-level macro actions.

For example, in the open-safe task, the recorded history includes grasping poses and several ma-
nipulation poses while omitting most intermediate steps. The history condition for the policy is as
follows: [grasp the handle, pull the door and fail to open]. Other intermediate poses during execution
are excluded from the history. Based on this context, the robot predicts the next goal pose [unlock the
key]. Once the goal pose is predicted, we apply inverse kinematics (IK) to plan the path for execution.

Open Safe

Open Bottle

Open Pressure Cooker

Figure 8: Visualization of Open Safe/Bottle/Pressure Cooker Experiment in the real world. The red
trajectory represents the executed trajectory. The blue trajectory indicates the actions under other
object states.

D MECHANISM VISUALIZATION AND EXPERIMENTAL RESULTS

Figure 4 illustrates the operating mechanism of the remaining categories and the experimental results.
The mechanism of the lamp in the upper left corner is "Push/Rotate". which can be operated by
pressing/rotating the button/knob, but only one way is correct. The pen and coffee machine in the
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upper right corner fall under the "Rotate/Slide". To operate them, you need to rotate a specific part
to a certain angle to open the pen cap or the coffee machine handle. The door at the bottom belongs to
the "Random Rotation Direction" and "Lock", where the handle must be rotated either clockwise
or counterclockwise to open the door.

Figure 8 shows the visualizations of the other 3 experiments in real world apart from Open Microwave
shown in Figure 7. In these visualizations, the red trajectories represent the paths actually executed
by the robot, while the blue trajectories indicate potential paths under different object states. For
instance, in Sub-figure 3 of the Open Bottle experiment, the blue trajectory shows that if the cap is
rotated sufficiently, the robot can then lift the cap. This visualization helps illustrate the adaptability
of the robot’s actions based on the observed state of the objects involved.
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