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ABSTRACT

Visual counterfactual explanations (VCEs) have recently gained immense popu-
larity as a tool for clarifying the decision-making process of image classifiers. This
trend is largely motivated by what these explanations promise to deliver – indicate
semantically meaningful factors that change the classifier’s decision. However, we
argue that current state-of-the-art approaches lack a crucial component – the re-
gion constraint – whose absence prevents from drawing explicit conclusions, and
may even lead to faulty reasoning due to phenomenons like confirmation bias. To
address the issue of previous methods, which modify images in a very entangled
and widely dispersed manner, we propose region-constrained VCEs (RVCEs),
which assume that only a predefined image region can be modified to influence
the model’s prediction. To effectively sample from this subclass of VCEs, we pro-
pose Region-Constrained Counterfactual Schrödinger Bridges (RCSB), an adap-
tation of a tractable subclass of Schrödinger Bridges to the problem of conditional
inpainting, where the conditioning signal originates from the classifier of interest.
In addition to setting a new state-of-the-art by a large margin, we extend RCSB
to allow for exact counterfactual reasoning, where the predefined region contains
only the factor of interest, and incorporating the user to actively interact with the
RVCE by predefining the regions manually.

1 INTRODUCTION

Figure 1: Previous methods create VCEs with un-
constrained changes, making it virtually impossi-
ble to understand the decision-making process of
a model. We propose region-constrained VCEs,
establishing a new paradigm for comprehensible
and actionable explanatory process.

Visual counterfactual explanations (VCEs) aim
at explaining the decision-making process of an
image classifier by modifying the input image
in a semantically meaningful and minimal way
so that its decision changes. Over time, they
have become an independent research direction
with the latest methods presenting impressive
and visually appealing results. Nevertheless, in
this work we show that they possess a funda-
mental flaw at a conceptual level – the lack of
region constraint and its proper utilization.

Consider the image x⇤ in Fig. 1, which the clas-
sifier f correctly predicts to be a jay. In essence,
VCEs focus on semantically editing x

⇤ so that
the prediction of f changes to some target class
– bulbul in this case – hence providing an an-
swer to a specific what-if question, through
which the model’s reasoning is explained. Con-
sider now an example VCE for x

⇤, denoted
as xVCE, obtained with a recent state-of-the-art
(SOTA) method. While xVCE is successful at
changing the prediction of f and can be consid-
ered both realistic and semantically close to x

⇤, answering why f now predicts it as a bulbul is close
to impossible. The algorithm simultaneously modifies the bird’s head and feathers, changes the
texture of the branch and even modifies the copyright caption. The entanglement and dispersion of
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introduced changes hence leaves the question unanswered. We argue that to circumvent these fun-
damental difficulties, VCEs should be synthesized with a hard constraint on the region, where the
changes are allowed to appear, while leaving the rest of the image unchanged. For example, consider
the image x⇤

R with regions of the bird’s head (R1) and body (R2) overlayed. Constraining the VCEs
to introduce changes only to predetermined regions leads to two distinct explanations, xR1 and xR2 ,
of why the decision changes to bulbul. By isolating the modified factors, the explanatory process
greatly simplifies – one can now state with certainty that f ’s new prediction is based either on the
modified feathers (xR2 ) or the changed characteristics of its head (xR1 ). Region-constrained VCEs
(RVCEs) allow, therefore, to reason about the model’s thought process in a causal and principled
manner, mitigating the potential confirmation bias and clarifying the explanatory process.

By putting RVCEs in the spotlight, our work establishes new frontiers in the field of VCE genera-
tion. First, we define the objective of finding RVCEs as solving a conditional inpainting task. By
building on top of the Image-to-Image Schrödinger Bridge (I2SB, Liu et al. (2023a)) approach and
adapting it to the classifier guidance scheme, we develop an efficient algorithm which synthesizes
RVCEs with extreme realism, sparsity and closeness to the original image. Specifically, we set a
new quantitative state-of-the-art (SOTA) on ImageNet (Deng et al., 2009) with up to 4 times better
scores in FID and 3 times better sFID (realism), up to 2 times higher COUT (sparsity), and match or
exceed S3 (similarity) and Flip Rate (efficiency) achieved by previous methods. Through large-scale
experiments, we demonstrate that, besides a fully automated way of synthesizing meaningful and
highly interpretable RVCEs, our approach, Region-constrained Counterfactual Schrödinger Bridge
(RCSB), allows to infer causally about the model’s change in prediction and enables the user to
actively interact with the explanatory process by manually defining the region of interest. More-
over, our results highlight the importance of RVCEs in future research, indicating potential pitfalls
of unconstrained methods that could lead to drawing misleading conclusions.

2 BACKGROUND & RELATED WORK

In this section, we introduce the necessary background knowledge connected with score-based gen-
erative models (SGMs) and I2SB, which forms the foundation of our method. We then present an
overview of recent methods for VCE generation based on SGMs. For an extended literature review
and detailed description of the theoretical basis, please refer to the Appendix.

SGM. Following the work of Song et al. (2021), SGMs can be constructed through the framework
of stochastic differential equations (SDEs), where samples from a complex distribution p0 (e.g.,
natural images) are mapped to a Gaussian distribution p1, while the model is trained to reverse this
mapping. Formally, converting data to noise is performed by following the forward SDE (Eq. (1a)),
while denoising happens through the reverse SDE (Eq. (1b), Anderson (1982)):

dxt = Ft(xt)dt+
p
�tdw, (1a)

dxt = (Ft(xt)� �trxt log p(xt, t))dt+
p
�tdw̄, (1b)

where xt is the noisy version of a clean image x 2 Rn for some n 2 N at timestep t 2 [0, 1] ,
w and w̄ denote the Wiener process and its reversed (in time) counterpart, Ft(xt) : Rn ! Rn is
the drift coefficient, �t 2 R is the diffusion coefficient and rxt log p(xt, t) is the score function.
An SGM s✓ , where ✓ denotes the model’s parameters, is trained to approximate the score, i.e.,
s✓(xt, t) ⇡ rxt log p(xt, t). During sampling, denoising begins from pure noise x1 ⇠ p1 and
follows some discretized version of Eq. (1b) with the approximate score s✓ .

SGMs can also be adapted to conditional generation, where y represents the conditioning variable.
In this case, the score rxt log p(xt, t) is replaced by rxt log p(xt, t | y), which can be decomposed
with Bayes’ Theorem into rxt log p(xt, t | y) = rxt log p(xt, t) + rxt log p(y | xt, t). While
rxt log p(xt, t) can be approximated with an already trained s✓ , rxt log p(y | xt, t) must be mod-
eled additionally. For y representing class labels, p(y | xt, t) can be approximated with an auxiliary
time-dependent classifier p�(y | xt, t) trained on noisy images {xt}t2[0,1]. Incorporating p� into
the sampling process is termed as classifier guidance (CG), and can be strengthened (or weakened)
with guidance scale s through rxt log p(xt, t)+s·rxt log p(xt, t | y). Therefore, class-conditional
sampling in SGMs amounts to additionally maximizing the likelihood p�(y | xt, t) of the classi-
fier throughout the generative process to arrive at images from the data manifold, which resemble
(according to p�) instances of a specific class. We emphasize this fact here for further reference.
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Figure 2: Generative trajectories of I2SB and SGM. Inter-
mediate images of I2SB are much closer to the data mani-
fold.

I2SB. The framework of I2SB ex-
tends SGMs to p1 representing an
arbitrary data distribution. For
training, I2SB requires paired data,
e.g., in the form of clean and par-
tially masked samples for inpainting,
where it learns to infill the miss-
ing parts. While SGMs can also
be adapted to solve inverse prob-
lems like inpainting, I2SB maps these
samples directly (see Fig. 2 for a
comparison of their generative tra-
jectories). Therefore, I2SB follows
the same theoretical paradigm, where
sampling is achieved by discretizing Eq. (1b) and using a score approximator s , but the generative
process begins from a corrupted (e.g., masked) image instead of pure noise. Hence, I2SB can also
be adapted to conditional generation in the same manner as SGMs, especially for class-conditioning
with an auxiliary classifier. Importantly, a special case of I2SB follows an optimal transport ordinary
differential equation (OT-ODE) when �t ! 0, eliminating stochasticity beyond the initial sampling
step (see Appendix). We utilize the OT-ODE version of I2SB in our implementation.

SGM-based VCEs. The initial approach of adapting SGMs to VCE generation, DiME (Jeanneret
et al., 2022), obtains the classifier’s gradient by mapping the noised image to its clean version at
each step through the reverse process. Augustin et al. (2022) incorporate the gradient of a robust
classifier and a cone projection scheme. Jeanneret et al. (2023) decompose the VCE generation into
pre-explanation construction and refinement using RePaint (Lugmayr et al., 2022). Jeanneret et al.
(2024) utilize a foundation model, Stable Diffusion (SD, Rombach et al. (2022)), to generate VCEs
in a black-box scenario. Farid et al. (2023) and Motzkus et al. (2024) utilize Latent Diffusion Models
(LDMs), including SD, in a white-box context. Weng et al. (2024) propose FastDiME to accelerate
the generation process in a shortcut learning scenario. Also in black-box context, Sobieski & Biecek
(2024) utilize a Diffusion Autoencoder (Preechakul et al., 2022) to find semantic latent directions
that globally flip the classifier’s decision. Finally, Augustin et al. (2024) also make use of SD in
various contexts, including classifier disagreement and neuron activation besides VCEs.

3 METHOD

In this section, we describe the details of our approach, beginning with the formulation of RVCEs
as solutions to conditional inpainting task. Next, we motivate the use of I2SB as an effective prior
for synthesizing meaningful RVCEs and follow with a series of steps that better align the gradients
of a standard classifier w.r.t corrupted images from its generative trajectory. We conclude with a
description of the automated region extraction method, forming the basis of our algorithm.

RVCEs through conditional inpainting. We define the problem of finding RVCEs for the classifier
f from a given image x

⇤, a region R and target class label y, where argmaxy0 f(y0 | x⇤) 6= y, as
the task of sampling from

p(x | argmax
y0

f(y0 | x) = y, (1�R)� x = (1�R)� x
⇤), (2)

where R is a binary mask with 1 indicating the region. Intuitively, sampling from Eq. (2) means
obtaining x with the complement of R unchanged and the content of R modified in a way that
changes the decision of f to y, i.e., performing inpainting with additional condition coming from
the classifier f .

Synthesizing meaningful RVCEs. Looking at Eq. (2), one quickly realizes that obtaining seman-
tically meaningful RVCEs requires maximizing the likelihood f(y | x) of the classifier while in-
painting R with content that keeps x in the data manifold. These conditions greatly resemble the
CG scheme in the context of I2SB, since the score estimate s serves as an effective prior for gen-
erating in-manifold infills, while the likelihood p�(y | x) of an auxiliary classifier is maximized
to ensure that p� predicts them as instances of y. Moreover, I2SB maps masked images directly to
clean samples, leaving the content outside R unchanged in the final image.

3
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Trajectory
truncation

Adaptive
normalization

Tweedie's
estimate

ADAM
stabilizationFactual NaiveRegion + + + +

46.4 27.5 (-18.9) 23.1 (-4.4) 20.2 (-2.9) 16.1 (-4.1)
Figure 3: Series of proposed improvements to better align the gradient’s of the classifier of interest
with the generative trajectory. Changes to the factual image are constrained to the indicated region.
Subsequent images illustrate the influence of each new adaptation. Numbers below images corre-
spond to FID (#) values obtained in a larger-scale experiment (for details, see Appendix).

The above arguments suggest that inserting f in place of p� should function as an effective mech-
anism for sampling meaningful RVCEs. However, a fundamental drawback of this naive approach
is that, throughout the generative process, f ’s gradients originate from evaluating it on images with
highly noised infills inside R (see Fig. 2). Such corrupted images are far from what f observed
during training, hence leading to a misalignment of its gradients with the correct trajectory and
generation of out-of-manifold samples. Similar issue has been identified by previously mentioned
SGM-based methods for VCEs, which can be generally unified as attempts to replace the auxiliary
classifier p� with f in the CG scheme in SGMs and correct f ’s gradients. Following Fig. 2, one
should expect the misalignment in these methods to be of great extent, as the generative trajectory
consists of highly noised images, leaving no meaningful content for f to provide accurate gradients.
There, as shown in Fig. 2, I2SB provides a crucial advantage, which stems from its generative tra-
jectory being much closer to the data manifold. Moreover, by using I2SB, f is able to effectively
utilize the readily available context outside R. Hence, in the following, we focus on reducing the
misalignment problem caused by the noised content inside R, in the end arriving at a highly effective
algorithm for meaningful RVCEs.

Aligning the gradients. We propose to adapt the gradients of f to properly align with the generative
trajectory of I2SB through a series of incremental steps. To provide the intuition standing behind the
introduction of each consecutive improvement, Fig. 3 provides an example RVCE task, where the
factual image depicts a zebra correctly predicted by the model (ResNet50 (He et al., 2016)), and the
goal is to change the decision to ‘sorrel’. We set the region constraint to include the entire animal to
make the task challenging enough and verify the improvements quantitatively through a large-scale
experiment with around 2000 images. For each step, we compute FID between the RVCEs and
original images to assess their realism. For details on the experimental setup, see Appendix.

Naive. We first verify that naively plugging f in place of p� does not provide meaningful results.
Indeed, as shown in Fig. 3, the method struggles to include the information from f . The unrealistic
infill also suggests that the classifier’s signal negatively influences the score from I2SB.

Tweedie’s formula. To begin with closing the gap between the data manifold and the generative
trajectory, we refer to a classic result of Tweedie’s formula (Robbins, 1992; Chung et al., 2022),
which states that a denoised estimate of the final image at step t can be achieved by computing the
posterior expectation

x̂0(xt) := E[x0 | xt] = xt + �2
trxt log p(xt, t), (3)

where �2
t =

R t
0 �⌧d⌧ . For visual differences between xt and x̂0(xt), see Appendix. Crucially,

one has access to approximate x̂0(xt) at every step t by utilizing I2SB as the approximate score.
Replacing rxt log f(y | xt) with rxt log f(y | x̂0(xt)) brings the inputs of f much closer to what
it expects, improving the conditional inpainting process as indicated by Fig. 3, which now shows a
structure resembling a sorrel and a much smaller FID.

ADAM stabilization. Despite utilizing the Tweedie’s estimate, we observed the norms of f ’s gradi-
ents to have a very noisy tendency throughout the generation process, pointing out a possible cause
for visible artifacts and the missing parts of the animal. Hence, we propose to smooth out the gra-
dients by applying the ADAM update rule at each step (Vaeth et al., 2024; Kingma, 2019), to which
we simply refer as ADAM stabilization. Figure 3 indicates that this modification allows for filling
in the missing parts of the sorrel and further lowering FID.
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Adaptive normalization. Incorporating ADAM stabilization required greatly lowering the guid-
ance scale to values on the order of 1e�2, as using standard s = 1 led to extreme artifacts. This
phenomenon suggested that the step size could also be adjusted throughout the generation process.
While we initially experimented with various types of schedulers (see Appendix), using adaptive
normalization has empirically proven to be the most effective approach. Specifically, at the begin-
ning of the conditional inpainting process, we register the norm of the first encountered gradient
of the log-likelihood of f . We then use it as a normalizing constant for each subsequent gradient,
meaning that the generation begins with gradient of unit norm. This simple modification not only
further lowered FID, but also reduced the final visible artifacts and improved color balance (Fig. 3).

Trajectory truncation. Up until this point, we relied solely on the ability of I2SB and the clas-
sifier’s signal to correctly infill the missing regions with semantically meaningful content, with no
knowledge of the structure of the missing objects. Since a possible infill of the region is always
available from the original image, one can begin the inpainting process from some intermediate step
instead of the final one. This intervention allows for mixing the available information with the one
coming from the classifier, and gives direct control over the preservation of the original content.
As our approach does not bias the conditional score with signal from any additional losses (like
Learned Perceptual Image Patch Similarity (LPIPS Zhang et al. (2018)) or l2 in other works), we
can fully rely on the conceptual compression of I2SB, similarly to SGMs (Ho et al., 2020), which
decomposes the generation process into initial phases responsible for the overall structure of objects
and later ones responsible for small details. Figure 3 showcases the effect of using this trajectory
truncation (⌧ ) at the 0.4 level, meaning that the infilling process starts from t = ⌧ · T , where T
denotes the final timestep. Understandably, trajectory truncation greatly lowers the FID score, as
much more information is available from the very beginning of the process, and introduces much
more subtle changes to the image. We explore the effect of manipulating ⌧ further in the Appendix,
showing that it functions as a very interpretable mechanism for controlling the content preservation.

Figure 4: Example region obtained with our auto-
mated region extraction. Instead of directly bina-
rizing an attribution map (upper row), we amplify
the focus on semantic concepts (bottom row) with
a simple approach based on grid cells.

Automated region extraction. While the
introduced algorithmical improvements effec-
tively incorporate the classifier’s signal into the
inpainting process, they do not address the issue
of predetermining the region for the resulting
explanation. To this end, the optimal strategy
would be fully automated and focus on regions
that are both important to the classifier’s pre-
diction and point to semantically meaningful
concepts. This description closely resembles
the role of visual attribution methods, which
assign importance values to pixels based on
their relevance to the model’s output (Holzinger
et al., 2022). Figure 4 shows an example at-
tribution map obtained with Integrated Gradi-
ents (IG, Sundararajan et al. (2017)) method for
the squirrel prediction of a ResNet50 model.
Perceptually, highest attributions are focused
around the squirrel’s head. To extract a region
from such attributions, one can threshold them to cover a specific fraction a of the total image area.
However, after binarizing the attributions with a = 0.05, we observe that the resulting region is
highly scattered, losing focus from semantic concepts. To address this issue, we divide the image
into a grid of square cells of size c ⇥ c, where each cell receives the value equal to the sum of the
absolute pixel attributions inside it. Figure 4 shows that this postprocessing mechanism (here with
c = 16) greatly amplifies the focus of the resulting map. By thresholding it with a = 0.05, we
observe the extracted region to focus solely on the squirrel’s head. This leads to a fully automated
strategy for obtaining regions that are both aligned with semantically meaningful concepts and based
on pixels that are important for the classifier.

We term the final version of the algorithm which combines all of the aforementioned improvements
with the automated region extraction as RCSB. For the pseudocode of the entire procedure, see
Appendix. We include our implementation in the Supplementary Material.
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4 EXPERIMENTS

Following previous works for VCEs on ImageNet, we base the quantitative evaluation on 3 chal-
lenging main VCE generation tasks: Zebra – Sorrel, Cheetah – Cougar, Egyptian Cat – Persian
Cat, where each task requires creating VCEs for images from both classes and flipping the decision
to their counterparts. We treat it as a general benchmark for evaluating the effectiveness of RCSB
in various scenarios. We use FID (#) and sFID (#) to assess realism (Heusel et al., 2017), S3 (")
for representation similarity (Chen & He, 2021), COUT 2 [�1, 1](") (Khorram & Fuxin, 2022) for
sparsity and Flip Rate (FR) (") for efficiency. For qualitative examples, we extend the main tasks
with a large array of other tasks, which we show throughout the paper and the Appendix, where
more details regarding the experimental setup and the metrics description can be found.

Method FID sFID S3 COUT FR

Zebra – Sorrel

ACE l1 84.5 122.7 0.92 �0.45 47.0
ACE l2 67.7 98.4 0.90 �0.25 81.0

LDCE-cls 84.2 107.2 0.78 �0.06 88.0
LDCE-txt 82.4 107.2 0.71 �0.21 81.0

DVCE 33.1 43.9 0.62 �0.21 57.8
RCSBC 13.0 20.4 0.82 0.70 99.7
RCSBB 9.51 17.4 0.86 0.72 97.4
RCSBA 8.0 16.2 0.88 0.74 94.7

Cheetah – Cougar

ACE l1 70.2 100.5 0.91 0.02 77.0
ACE l2 74.1 102.5 0.88 0.12 95.0

LDCE-cls 71.0 91.8 0.62 0.51 100.0
LDCE-txt 91.2 117.0 0.59 0.34 98.0

DVCE 46.9 54.1 0.70 0.49 99.0
RCSBC 30.2 39.2 0.87 0.79 100.0
RCSBB 23.4 32.4 0.90 0.85 99.9
RCSBA 17.2 26.6 0.92 0.92 100.0

Egyptian Cat – Persian Cat

ACE l1 93.6 156.7 0.85 0.25 85.0
ACE l2 107.3 160.4 0.78 0.34 97.0

LDCE-cls 102.7 140.7 0.63 0.52 99.0
LDCE-txt 121.7 162.4 0.61 0.56 99.0

DVCE 46.6 59.2 0.59 0.60 98.5
RCSBC 41.1 56.3 0.79 0.82 100.0
RCSBB 31.3 48.1 0.84 0.87 100.0
RCSBA 23.0 40.0 0.87 0.92 100.0

Table 1: Quantitative comparison with SOTA.
RCSB outperforms previous methods by a large
margin across all metrics. The best results are ob-
tained with A(a = 0.1, c = 4, s = 3, ⌧ = 0.6),
but the superiority is clear for various configura-
tions, including B(a = 0.2, c = 4, s = 1.5, ⌧ =
0.6), C(a = 0.3, c = 4, s = 1.5, ⌧ = 0.6).

RCSB sets new SOTA for VCEs. We first ver-
ify that synthesizing RVCEs with RCSB leads
to new SOTA in VCE generation. Table 1 quan-
titatively compares RCSB with recent SOTA
approaches to VCEs on ImageNet. Our RVCEs
are much more realistic (at least 2 � 4⇥ de-
crease in FID and sFID), stay close to original
images (match or exceed best values of S3) and
almost always flip the model’s decision (FR ⇡
1.0). RCSB also solves a long-standing chal-
lenge of achieving extremely sparse explana-
tions on ImageNet, especially on Zebra – Sor-
rel task. While all other methods fail to achieve
nonnegative values, RCSB approaches the up-
per bound of COUT. Our method is clearly the
most balanced, as it does not struggle on any
specific metric like, e.g., DVCE on S3. In the
Appendix, we show that it is also the most com-
putationally efficient.

Figure 5 shows example explanations obtained
with RCSB, greatly highlighting the impor-
tance of synthesizing RVCEs instead of stan-
dard VCEs. Our region extraction approach is
able to precisely localize semantic concepts re-
sponsible for the model’s decision. For exam-
ple, in the Guacamole ! Cabbage task, RCSB
detects the guacamole bowl in the background
and, guided by the classifier, infills it with cab-
bage while leaving the rest of the image un-
changed. RCSB is capable of performing a
wide range of editing tasks with various levels
of difficulty, beginning with textural and color-
based edits (e.g., Tench ! Goldfish, Mashed
Potato ! Cauliflower) to partially changing the object’s structure (e.g., Limpkin ! Flamingo) to
infilling the region with new, realistically looking concepts (e.g., Cougar ! Lynx, Green Mamba
! Indian Cobra, Cougar ! Lynx). Most importantly, thanks to the region constraint, our RVCEs
allow for greatly limiting the potential factors that influenced the model’s decision, making the ex-
planations much more interpretable.

RCSB allows for causal inference about the model’s reasoning. Drawing definite conclusions
about the model’s reasoning from an unconstrained VCE is not possible, as one cannot be certain that
modifying potentially irrelevant factors did not in fact influence the prediction. RVCEs overcome
this limitation when constrained on the region connected with the sole factor of interest, e.g., the
body of an animal in a species prediction task. To adapt RCSB to such scenario, we replace the
automated region extraction method with a foundation text-to-object-segmentation model 1. Using

1Language Segment Anything (LangSAM) combines Segment Anything Model (Kirillov et al., 2023) with
GroundingDINO (Liu et al., 2023b) to allow object segmentation from text prompts.

6
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Figure 5: Qualitative examples obtained with RCSB using automated region extraction. Each task
of the form predicted class ! target class shows the factual image, the extracted region and the
RVCE obtained with RCSB.
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Metric FID sFID S3 COUT FR FID sFID S3 COUT FR FID sFID S3 COUT FR

Task Zebra – Sorrel Cheetah – Cougar Egyptian Cat – Persian Cat

A Exact regions obtained with LangSAM and prompts: zebra / horse, cheetah / cougar, cat respectively

Values 32.8 41.5 0.87 0.74 98.9 37.2 50.6 0.91 0.84 99.4 52.0 82.8 0.81 0.84 99.2

B Regions based on freeform masks with the area in the indicated range

10 � 20% 6.7 15.0 0.85 0.85 87.6 9.0 19.1 0.89 0.72 96.6 12.4 29.6 0.80 0.73 96.9
20 � 30% 7.8 15.8 0.84 0.53 92.2 11.6 21.3 0.88 0.71 99.6 17.7 34.0 0.78 0.74 99.3

C Ablation study with adaptations of other inpainting algorithms

RePaint 63.8 76.0 0.55 0.77 99.3 129.3 144.2 0.50 0.77 99.0 148.7 175.2 0.38 0.76 99.5
MCG 43.2 55.6 0.73 0.45 96.0 76.6 91.4 0.74 0.64 100.0 93.7 117.5 0.62 0.65 99.9
DDRM 42.5 49.4 0.69 0.72 99.6 60.5 68.4 0.72 0.76 100.0 59.2 73.0 0.63 0.76 100.0

Table 2: Quantitative results from various experiments. A: regions extracted from LangSAM with
text prompt connected to the initial class name. B: regions based on freeform masks that cover the
fraction of the total area from the indicated range. C: automatically extracted regions used with
adaptations of other inpainting algorithms.

the class name from a given task as the text prompt allows us to obtain highly precise segmentation
masks of the relevant objects, enabling the identification of the cause behind the model’s prediction
change based solely on factors related to the object of interest.

We first quantitatively assess that RCSB is capable of utilizing regions provided by a generic object
detector at scale. Table 2(A) shows the results of this evaluation together with the used text prompt.
Here, the metrics are computed by first discarding images with a mask that covers area larger than
40%. Despite I2SB being trained on masks covering at most 30% of the image area, we observed that
it generalizes well beyond this threshold with 40% starting to pose a challenge. Crucially, despite
the regions being classifier-agnostic and hence not necessarily focused on the most influential pixels,
Table 2(A) indicates that RCSB is versatile enough to maintain most of the performance from the
automated approach. The efficiency, sparsity and representation similarity of the obtained RVCEs
remain very close to the values achieved by the closest configuration (in terms of hyperparameters)
from Table 1, as the region area is often close to or exceeds 30%. The slight increase in FID and
sFID stems mainly from the regions covering complex objects, whose modification may naturally
move RVCEs further from original data at a distribution level, and a lower number of images used
for these metrics’ computation (as both are sensitive to sample size) due to the rejection of samples
from the area constraint.

Regions that contain exactly the objects of interest provide novel insights about the model’s reason-
ing. For example, consider the Lemon ! Orange task from Fig. 6, where the lemons were correctly
identified by the ResNet50 model. One would require the VCE for this task to indicate the sole
determining factor of ’why lemons and not oranges’. However, with unconstrained VCEs, this iden-
tification process quickly becomes incomprehensible due to small changes added to each object in
the image, such as other fruits. By constraining VCEs to the region occupied by the lemons, the
reasoning process can be disentangled and simplified, as one can now look for this factor in the
modifications of the lemons only. In this case, RCSB allows for increasing trust in the model, as
making the lemons more orange correctly modifies its decision.

RVCEs also allow for clarifying the model’s decision-making when its reasoning is not initially
understandable. In the Volcano ! Seashore task, the image shows both objects, while the model
predicts it as the former. Applying RCSB to the exact region of the seashore results in a RVCE that
changes the model’s decision when the water’s color becomes more light blue and structures like
stones start to appear. Hence, one is able to better understand what the model actually identifies as a
seashore. In other examples, the method introduces class-specific characteristics when the changes
are constrained precisely and exclusively to the object of interest, ensuring the receiver about the
general cause of the model’s decision change. Such cases are also especially relevant when the
generative model used to synthesize explanations is prone to systematic errors like, e.g., SGMs
struggling with correctly generating hands. In the Night Snake ! Kingsnake task, this error can be
bypassed with the region constraint by not allowing the generative model to affect anything other
than the animal, hence alleviating the evaluation of the classifier on out-of-manifold samples.

Discovering complex patterns with interactive RVCEs. Despite the impressive capabilities of
deep models in object localization, the receiver of the explanation may be interested in testing the
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Figure 6: Qualitative examples obtained with RCSB using exact regions extracted from LangSAM
using text prompt of the predicted class. For each task of the form predicted class ! target class,
a factual image together with the used region and the resulting RVCE are shown. The used text
prompts are emphasized.

model for highly abstract and complex concepts that cannot be localized automatically and must
be provided manually by the user. We begin with verifying the capability of RCSB in generating
RVCEs based on user-defined regions by simulating such scenario at scale. Specifically, we ran-
domly match images from the main tasks with regions given by the 10% � 20% and 20% � 30%
freeform masks from the I2SB training data (Saharia et al., 2022). We argue that this serves as a very
challenging benchmark, since the algorithm’s access to the most influential pixels (for the classifier)
might often be very restricted.

Despite the task’s difficulty, quantitative results from Table 2(B) highlight the versatility of RCSB,
which is able to effectively utilize the restricted resources to influence the classifier’s prediction.
While S3, COUT and FR are not significantly different from previous results, we observe a decrease
in FID and sFID, indicating higher realism and closeness to the data distribution. This is largely
due to the fact that freeform masks are often not connected to entire complex objects and do not
contain the pixels most important to the classifier. Hence, RCSB may often leave large portions of
the regions unchanged, which boosts the realism evaluation.

To allow for true interaction of the user with the explanatory process, we implement a simple inter-
face that allows for manual image segmentation using a brush-like cursor. Figure 7 shows example
results, where we manually predefine the regions on different images. This exploration gives impor-
tant insights about the added value provided by RVCEs. In the Cat ! Tiger task, we discover that
the classifier’s decision can be flipped by independently modifying either the cat’s paws or snout,
in both cases introducing a tiger’s coloration. Similarly in the Arctic Fox ! Red Fox task, choos-
ing either the ears and muzzle or paws and stomach area allows for changing the model’s decision
with the features of a red fox. User-defined regions also allow to discover unusual reasoning pat-
terns of the model. In the Cucumber ! Zucchini task, the model’s decision can be influenced by
modifying only one of the cucumbers to zucchini, leaving the other unchanged. This observation
connects with recent positions on the topic of contextual and spatial understanding of predictive
models (Tomaszewska & Biecek, 2024), providing new rationale in further exploring how image
classifiers actually reason.

Ablating RCSB’s components. We empirically verified that combining our novel guidance mecha-
nism with the I2SB prior leads to highly effective RVCEs. To better understand the benefits provided
by each component of our framework, we perform an ablation study, where we adapt the proposed
improvements to SGM-based inpainters, aiming to assess the influence of the guidance scheme and
I2SB in isolation. Specifically, we pick RePaint (Lugmayr et al., 2022), one of the first adaptations
of SGMs to inpainting, MCG (Chung et al., 2022) and DDRM (Kawar et al., 2022), two different
adaptations of SGMs to linear inverse problems, which also include inpainting. We manually tune
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Figure 7: Qualitative examples obtained with RCSB from user-defined regions. For each task of the
form predicted class ! target class, a factual image together with the provided regions are shown.
Arrows point to RVCEs obtained by modifying only the indicated region.

our guidance scheme to each method on a small subset of images and repeat the same evaluation
protocol with the automated region extraction method (see Appendix for details of each adaptation).
As these methods are much less compute-efficient, we cap their computational budget on each task
to 24 A100 GPU hours.

Table 2(C) shows the results of the ablation study. Despite the fact that the used methods were never
explicitly trained for inpainting, combining them with our guidance mechanism and region extrac-
tion allows for matching or even exceeding previous SOTA. For example, all adaptations achieve
very high sparsity, almost always flip the classifier’s decision and keep the explanation close to the
original. This indicates the benefits of utilizing only the pixels from the extracted region and a proper
utilization of the classifier’s gradients without biasing them with additional components like LPIPS
or l2 loss. RCSB differentiates itself from the adaptations with a much higher realism of the obtained
RVCEs (significantly lower FID and sFID), more balanced results and much smaller computational
burden, e.g. 24⇥ less NFEs than RePaint. These benefits stem from the I2SB prior, which is trained
to map corrupted images directly to clean samples and the resulting trajectory being much closer to
the data manifold, allowing the classifier to more effectively influence the inpainting process.

For extended quantitative and qualitative results, including RVCEs obtained for another 5 non-
robust, 2 robust and a zero-shot CLIP classifier (Radford et al., 2021), and evaluation of 10 other
attribution methods, we refer to the Appendix.

5 CONCLUSIONS

Our work advances the SOTA in VCE generation by constraining the explanations to differ from
the factual image exclusively within a predetermined region. RCSB is not only very effective in
sampling such explanations, proven by new quantitative records, but also showcases the novel ca-
pabilities for explaining image classifiers enabled by RVCEs. Specifically, to properly reason about
the model’s decision-making process, one must ensure that the potential confounding factors are
limited to the greatest possible extent. RVCEs obtained with RCSB allow to do that in a wide range
of scenarios, ranging from a fully automated approach to incorporating the user directly into the
interactive explanation creation process. Our work establishes a new paradigm for explaining im-
age classifiers in a much more principled manner, allowing the receiver to infer causally about the
model’s reasoning.
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