Under review as a conference paper at ICLR 2025

AGENT Q: ADVANCED REASONING AND LEARNING
FOR AUTONOMOUS AI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities in natural lan-
guage tasks requiring complex reasoning, yet their application in agentic, multi-step
reasoning within interactive environments remains a difficult challenge. Traditional
supervised pre-training on static datasets falls short in enabling autonomous agent
capabilities needed to perform complex decision-making in dynamic settings like
web navigation. Previous attempts to bridge this gap through supervised fine-
tuning on curated expert demonstrations often suffer from compounding errors and
limited exploration data, resulting in sub-optimal policy outcomes. To overcome
these challenges, we propose a framework that combines guided Monte Carlo Tree
Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on
agent interactions using an off-policy variant of the Direct Preference Optimization
(DPO) algorithm. Our method allows LLM agents to learn effectively from both
successful and unsuccessful trajectories, thereby improving their generalization in
complex, multi-step reasoning tasks. We validate our approach in the WebShop
environment, a simulated e-commerce platform—where it consistently outperforms
behavior cloning and reinforced fine-tuning baseline, and beats average human
performance when equipped with the capability to do online search. In real-world
booking scenarios, our methodology boosts Llama-3 70B model’s zero-shot per-
formance from 18.6% to 81.7 % success rate (a 340% relative increase) after a
single day of data collection and further to 95.4% with online search. We believe
this represents a substantial leap forward in the capabilities of autonomous agents,
paving the way for more sophisticated and reliable decision-making in real-world
settings.

1 INTRODUCTION

The recent advances in Large Language Models (LLMs) represent a significant leap in artificial
intelligence. Frontier models like ChatGPT (,), Gemini (,),
Opus (,), and LLaMA-3 (,) demonstrate promising reasoning
capabilities that approach average human performance in a number of domains. These breakthroughs
have extended the utility of LLMs from traditional chat and text-based applications to more dynamic,
agentic roles, in which they do not just generate text but can take actions autonomously in a number
of environments 1nc1ud1ng code and software engineering (s ; s ;
s ,), device control(s ; s ;

,) and Web applications (; ;

; ,) among others. However desplte these advancements 51gn1ﬁcant challenges
persist: LLMs still struggle to generalize effectively in interactive, multi-step environments, since
they are not natively trained for such applications . This is true, even for some of the strongest models
of the current generation, such as GPT-4 (,).

A growing literature on agentic formulation seeks to address these issues; however these works
mostly focus on building frameworks around prompt-based learning on existing models or limited
fine-tuning on static datasets, and are thus limited by the base models’ reasoning and decision making
capabilities. Reasoning and planning have indeed been highlighted as core challenges for current
LLMs. Since the seminal work on chain-of- thought reasoning (,), signiﬁcant efforts
have been made to improve these capabilities via prompt-based strategies (

, ; s ; s). While successful, these approaches are stlll bounded

Under review as a conference paper at ICLR 2025

by the base model’s performance. Another direction of research has explored fine-tuning approaches

(; ,), and more recently combining them with inference-time

search prompting (,) to produce fine-grained feedback. Concurrent works (,

; ,) utilize the traces produced by search

algorlthms and combme them with optlmlzatlon approaches (, ,

) to achieve significant boost in capabilities, especially in mathematics problem solving and
code generation.

In this work we explore improving planning and reasoning capabilities of a web agent, which interacts
with a real world website. Our goal is to des1gn an approach that allows the agent to 1mprove with
autonomous experience and 11m1ted supervision. Indeed, prior works (,

,) have shown strong reasoning to be critical for
performance of autonomous agents where challenges are even greater than during text generation,
as the model needs to further understand how its actions affect its environment. Towards this goal,
we introduce Agent Q—a novel approach that combines several key concepts in reasoning, search,
self-critique and reinforcement learning. Our method takes inspiration from Sutton’s The Bitter
Lesson on the power of general purpose methods that continue to scale with increased computation,
showing the significant benefits of combining search and learning.

Inspired by the success of search based methods in prior game-playing settrngs (, ;
,) and mathematical reasoning (, ;

,), we deploy a Monte Carlo Tree Search (MCTS) based search routine over web pages to
guide agent exploration. Given the complexity of the environment, we use a base LLM for sampling
possible rationales and web actions to explore. While this simple search-strategy shows a meaningful
improvement in the success rate, it still struggles on long horizon tasks due to sparsity of environment
rewards. Indeed even a small mistake across the trajectory can cause the final agent output to be
wrong, creating significant credit assignment problems. To overcome this, we use Al feedback (

,) and self-criticism (,) to further prompt the LLM to provide self-evaluation
feedback at each node, which serves as intermediate reward and helps guide the search steps. This
meaningfully improves the final agent success rate, but requires significant online interactions and
moreover the capability to rollback actions, which is not always possible in online realistic settings.
Such online autonomous search with little supervision on the web can result in a weak or unsafe
agent which can make many errors, resulting in risky behaviors in sensitive online settings like bank
transfers and sensitive information sharing.

To correct this, we use the traces generated by the search process to improve capabilities of the
model by learning from both the successful and unsuccessful trajectories with offline reinforcement
learning, utilizing the Direct Preference Optimization (DPO) algorithm. We create preferences over
different branches at the node level, which are scored using a mixture of the Al process feedback
rewards and the final success rate of the explored branch. We evaluate our approach on the simulated
‘WebShop benchmark (,)—a simulated e-commerce platform—as well as a real-world
reservations booking website. We utilize LLaMa 3-70B as the base model in our experiments. In the
WebShop environment, our approach consistently outperforms behavior cloning and reinforcement
learning fine-tuned baselines, and beats average human performance when equipped with the
capability to do online search.

In our real-world booking experiments, using our Agent Q framework we improve the model zero-
shot absolute success rate from 18.6% to 81.7% (a 340 % relative increase), outperforming GPT-4’s
performance after a single day of autonomous data collection. When we equip Agent Q with online
search capability, our absolute success further improves to 95.4%. We believe that our approach
represents a significant step forward in the development of autonomous web agents through it’s search
and self-critique capabilities, setting a new benchmark for reliable multi-step decision-making in
interactive settings.

2 RELATED WORK

Our work touches on a large number of research directions around agent design, self-improvement,
reasoning and reinforcement learning. We include a short overview of related works from those
various fields below.

Under review as a conference paper at ICLR 2025

2.1 GUIDED SEARCH FOR REASONING AND PLANNING

The latest generation of Large Language Models (LLMs) have demonstrated promising emerging
properties around reasonmg and planning. Moreover such behaviours can be directly elicited from
strong models only using simple prompting techniques (; , ;

,). These have also become an integral part of agentic des1gn (;

,), which we also utilize for our approach. Another emerging research direction is based
around step-by-step verifiers or “Process Reward Models” (s s),
specifically for mathematical reasoning. These have shown to improve performance beyond purely
outcome-based training, however they require a large amount of human effort to label individual steps.
Some recent approaches have proposed self-supervised methods for step-level supervision (

, ; s ,). A number of concurrent works (s

MY ,) have further explored tree-based search approaches (,) in
combination with DPO (,) training for math-based reasoning. These algorithms
optimize actions at the node level, using different branches produced by the search algorithm to create
preference pairs. Our approach shares similarities to the self-supervised search proposed in (

s) with a combination of Al-based feedback (s ; s) to guide
intermediate search steps, but we are the first to scale this a realistic agent setting. Similar approaches
were proposed in (R), and other works (

,); however these works only use the base model s zero-shot capability to search and do
not train it further. Moreover they are only evaluated on simulated environments. Beyond the search
stage, our work further adopts the training methodology of (, ; , ;

,), which significantly boosts our agent’s zero-shot capabilities.

2.2 WEB AGENTS

The strength and capabilities of recent pretrained Large Language (Vision) Models LL(V)Ms has
significantly boosted progress in developing autonomous web-agents. Improved code understanding
and long context have allowed agents to represent environment state and action space with document
object model (DOM) allowing for deployment in complex and realistic domains. Moreover strong
reasoning (s) and planning (s ; s) capabilities have also
led to the development of a number of promlsmg agents (

,). Beyond using LL(V)Ms as plug- and play
planners/policies recent works have sought to improve agentic-specific performance. Examples

include online exploration (R), planning (R) error-correction
(s), and self- (R) or Al-critique ().
However, with small exceptions (,) (which is still limited in scope) these agents

mostly provide a framework around a strong pre-existing model like GPT4-V or deploy limited
fine-tuning and adaptation. In this work we show that model training is crucial for continuous
improvement. We combine a planning and reasoning agent with MCTS inference-time search and Al
self-critique for self-supervised data collection, which we then use for RL type training.

2.3 REINFORCEMENT LEARNING FOR LLMS AND AGENTS

Reinforcement Learning has become a significant component of training modern generative Al

systems (R ; s). Classical approaches have
deployed the PPO algorithm (,)—or similar policy-gradient based methods—
and have even been scaled to autonomous web search agents (s) as well as
embodied applications with vision-language models (,) (in simulation). However,

these algorithms are challenging due to their complexity and the need for a high number of online
samples from the model. This is especially prominent in potentially risky situations, such as
autonomous agentic models that could make a number of impactful mistakes during training. Implicit
Language Q-learning (,) and the Q-transformer (,) are offline RL
algorithms (,) designed for auto-regressive transformer models, and hence can be
safely trained on pre-collected datasets; however they have not been successfully scaled to modern
LLMs. While these methods represent a token-level MDP, (s) has shown success
formulating the RL problem at a step level and these ideas have recently been scaled to a general
device-control agent (,). However, these algorithms still have high complexity and
require auxiliary models, such as value functions, so instead in our approach we opt to use the Direct

Under review as a conference paper at ICLR 2025

Preference Optimization (DPO) algorithm (,) due to it’s simplicity and natural fit
for the branching nature of tree-search based data.

3 PRELIMINARIES

In this section we will outline the preliminaries of our agent training process. For a full description of
our agentic system formulation consider Appendix A. For training purposes at each time step ¢ the
agent receives a state h; and will produce actions a; ~ m(a|h;).

3.1 FINE-TUNING LANGUAGE MODELS FROM FEEDBACK

Classical approaches to RLHF in foundation models (, ; ,) use
the model as a policy 7y and optimize an objective of the form:
Earro(any[r(a, h)] = BDg [mo(alh)||mer(alh)] M

where s is some reference policy (usually the initial model). The goal of this formulation is to
optimize some target objective (expressed by the reward r(a, h)) while preventing out-of-distribution
drift. This objective can be extended to multi-step agentic problems, where the model interacts with
an external environment env such as in () which focuses on information retrieval
using web navigation. In this case we use an objective of the kind

Ergenv | Y 7(ar, hy) — BDgc [(as|hy)||meer(as hy)])

t

Classical RLHF has used policy gradient type of algorithms, such as PPO (,),
however, they are complex and require online data, which can be costly/dangerous to collect au-
tonomously in the agent setting. While PPO has shown some success in prior web agent applications
(,). The issues above largely make the approach not practical for general web tasks,
beyond information retrieval. In this work we utilize some recent alternatives, outlined below.

3.1.1 REINFORCED FINE-TUNING

Relnforced fine-tuning (RFT) algorlthms (;

,) have grown in popularity due to thelr simplicity and scalablhty These
methods aggregate data and filter out the sub-optimal samples based on some reward model or
a verifier to construct a growing dataset of high-quality trajectories D. Given this dataset and a
parameterized model 7y we can carry out standard supervised fine-tuning (SFT):

T
L(m9, D) = —Ep | Y _log ﬂg(at|ht)] 3)

t=1

In this objective the divergence penalty is only applied implicitly by limiting the number of training
rounds. While simple and relatively successful, emplrlcally these methods tend to under—perform
standard RL and alternatives (R) in the text
generation domain, particularly in reasomng We largely observe smnlar empirical results, and we
use these methods mostly as baselines to build intuition.

3.1.2 DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) (,) is an offline RL (,)
alternative to the classical RLHF optimization pipeline. It is a suitable algorithm for agent fine-tuning,
as it can use fully offline data and does not require online rollouts. The original formulation in the
pure text generation setting is based on the RL problem in Eq. 1 and considers feedback of pairwise
comparisons (h, a*, a'), where h is a single prompt and a* and a' are two responses with a* > a!
indicating that a¥ is preferred over a'. The DPO objective then minimizes the following loss:

Lppo(6; D) = —E(n aw al)op [logo ((6 log 779(a|h)> — <ﬁ log 71'9(a|h)>>} @)

Trer(a® |h®) met(al|ht)

4

Under review as a conference paper at ICLR 2025

WebShop Success Rates

60F 59.6%

50.0% 50.5%

Success Rate (%)

Qe’\ é@ k)
x‘“ \6‘.
& &
0° \3@

Figure 1: Success rate of different approaches on the WebShop tasks (Yao et al., 2022). All models
are based on XLAM-v0.1-r (Zhang et al., 2024c). RFT and DPO over XLAM-v0.1-r demonstrate
improvements in performance from 28.6% to 31.3% and 40.6% respectively. However, these methods
still lag behind average human performance of 50.0%. Our approach, Agent Q + MCTS achieves a
significant gain (76.57% relative improvement) over the base model, outperforming average human
performance on WebShop with a success rate of 50.5%.

While the algorithm was developed in a bandit setting, Hejna et al. (2024); Rafailov et al. (2024) have
extended it to the multi-turn setting in Eq. 2 with preferences over trajectories. In our setting, we can
directly utilize this objective as:

I ']

o’ at |h o at|h)
£ s ,D =-E TW,T!)~ 1 1
Tpp0 (705 D) (rw,r)~D 1080 Zﬂ Zﬂ 7Tref Trer(al|hl)

One bottleneck for the practical deployment of the algorithm is the need for a reference model 7t
during optimization, which requires more computational resources. Instead, in our settings, we
slightly modify the algorithm using an off-policy replay buffer, which aggregates trajectory data,
as well as likelihoods of the generated actions. During the optimization step, we sample trajectory
pairs (7%, 7!) where 7% = 7!, as well as the corresponding likelihoods under the data generation
(reference) density. This eliminates the need for a separate reference model while training.

4 PRELIMINARY APPROACH WITH OUTCOME SUPERVISION

In this section we will outline preliminary experimental results, which will build the base understand-
ing for our further experiments. We use the AgentOhana XLAM-v0.1-r model (Zhang et al., 2024c¢),
which is a fine-tune of a pre-trained Mixtral-8x7B-Instruct-v0.1 model (Jiang et al., 2024) on a mix of
agentic applications, including WebShop SFT data. We also incorporate the same agent configuration'
specified by AgentLite (Liu et al., 2024) to ensure a fair comparison between our fine-tuned model
and the xXLAM base model performance. We evaluate all approaches on the WebShop environment
(Yao et al., 2022), where the agent needs to find particular products by browsing a simulated web shop.
The environment comes with a set of 12,087 pre-defined tasks (corresponding to specific products
to find), which we split into a train set of 11,000 tasks, which we use for further agent fine-tuning
and a set of 1,087 held-out tasks, which we use for zero-shot evaluation. We show success rates
(exact product match) for different approaches in Figure 1. The base XLAM-v0.1-r model achieves
success rate of 28.6% on the test tasks. All other methods are based on outcome-based supervision

"https://github.com/Salesforce AIResearch/xLAM

Under review as a conference paper at ICLR 2025

only, depending on whether a particular attempt was successful or not. We see that further RFT
training, using a STaR-like algorithm (,) on the trajectory level, as outlined in
Sec. 3.1.1, achieves success rate of 31.3%, which is a small improvements of 2.7% over the initial
model. This is not surprising since the base model is already trained as an agent on the environment
with supervised fine-tuning on demonstrations. Our next experiment fine-tunes the base model using
the trajectory-level DPO algorithm, as outlined in Eq. 5 in Sec. 3.1.2 using successful trajectories as
preferred over failed ones. This approach also uses only outcome-level supervision, but unlike the
RFT baseline can utilize failed trajectories as well, which improves the agent performance by 9.3%
over RFT agent to 40.6% success rate. We also evaluate this model with beam search for the action
generation, which can be considered a form of planning the horizon of a single environment action
(which still consists of multiple simple actions) (R), but it only yields marginal
improvement over the base model. These findings match results on reasoning for math problems
(,) and some recent approaches that also apply DPO to agent applications (,

; ,).

Despite the additional reinforcement learning training, these agents are still not able to match the
average human performance on this environment. We identify that one of the core failure modes of
the DPO policy is that it executes a greedy search when looking for matches to the product query.
For example, for every search query, the WebShop environment yields a number of pages of results.
However, we find that the model nearly always greedily searches for the best matching item in the
first page of results rather than using the ”[NEXT]” and ”[PREV]” buttons to navigate between pages,
essentially deploying a weak exploration strategy.

5 AGENT SEARCH

As we discovered in the previous section, while training based on outcome supervision with DPO
yields meaningful improvement, the model is still not able to match human performance due to its
limited exploration. In this section we introduce AgentQ, which endows agent with additional search
and learning capabilities. The base AgentQ model uses MCTS Guided Direct Preference Optimization
to learn how to perform web agent tasks at the step-level. We also introduce AgentQ+MCTS, which
additionally uses inference time MCTS algorithm to further improve performance.

5.1 MONTE-CARLO TREE SEARCH OVER WEB-PAGES

The Monte Carlo Tree Search (MCTS) algorithm (,) employed in this
work follows closely the one in () and consists of four phases: selection, expansion,
simulation, and backpropagation. Each phase plays a critical role in balancing exploration and
exploitation while iteratively refining the policy.

We formulate the web agent execution as tree search over web-pages. The state is represented as
described in Appendix A and consist of the summary of the agent’s history and the DOM tree of
the current web-page. Unlike board games, such as Chess or Go (,) the complex
web-agent action space we use is open-format and variable. Instead we will use the base model as an
action-proposal distribution and sample a fixed amount of possible actions at each node (web-page).
Once we select and execute an action in the browser we traverse the next web-page, which together
with the updated history becomes the new node.

5.1.1 ACTION SELECTION WITH AI PROCESS SUPERVISION

The selection phase uses the Upper Confidence Bound (UCB1) formulation of MCTS, also used by

(), to select nodes with the aim to balance exploration and exploitation. With some
abuse of notation we will also denote the agent state with h;. We consider the value function Q (h;, &)
which represents the estimated value (chance of success) of taking action a in the state h;. At each
new node h; we sample K proposal actions from the base model a;, . .., a’*. We initialize all values
Q(hg,al),i=1,..., K to zero. The web-based environment does not provide intermediate rewards
to guide the search, so we incorporate Al-based critique to provide process supervision at the step
level to guide the exploration process. We use the base model to produce a feedback score for each
action by asking it to rank the generated actions by its perceived utility in helping the agent complete
the user task.

Under review as a conference paper at ICLR 2025

Agent Input Proposed Action 2
| will first select the desired date and time
SYSTEM PROMP! for the reservation, then choose the number
XEC ON HISTORY> of people and select a suitable time slot.

1 am searching for the Terra - Eataly
silicon Valley restaurant on OpenTable.

) TYPE <searchbar> “Terra - Eataly”
th CLICK <date selector> o y

Jcople on August 14 202 o0pm
.' ‘ Proposed Action 2 LLM Critic

1 willfirst select the desired date and time
for the reservation, then choose the number
of people and select a suitable time slot.

e " - 4 | am searching for the Terra - Eataly
. silicon Valley restaurant on OpenTable. Upon analyzing the current browser
O LLM Actor +=> state, I notice that we are on the >
—— TYPE <searchbar> “Terra - Eataly” SLLED G o iy CLICK <date selectors
- e e reservation times. The relevant
B esena
mE mmm mm e mm on the page are ..
Proposed Action 3 A The most promising command s . Proposed Action 3
1 will navigate to the OpenTable homepage = ,* e search bar for the search term 2 I willnavigate to the OpenTable homepage
to search for the relevant restaurant. “Terra - Eataly” to search for the relevant restaurant.

GOTO “opentable.com” GOTO “opentable.com”

Figure 2: The policy proposes K actions at every step during inference time search. The critic, also
initialized as the same base LLM model used by the policy, ranks the actions proposed by the policy.
This ranking is used to guide node selection after expansion and used to construct preference pairs
during policy training.

We query the feedback model for multiple iterations, each time removing the best action selected
from the previous iteration from the list, until we have a full ranking of all actions. The full Al
feedback process is demonstrated in Figure 2. The Al feedback is used for the initial ordering of
actions to explore as well as later for collecting the preference pairs. After the initial selection, we
select actions to explore based on the standard MCTS UCB1 formulation:

log N (hy)

—o 6
1+ N(hyq) ©

at = arg lmax Q(hta a) + Cexp
Qg 7af
where N (h;) is the visitation frequency of state h;, and Cexp 18 an exploration constant. For each
rollout added to the tree, we start at the root node and follow the child states that maximize the UCB1
score until we reach a leaf node. This process is repeated for each tree/prompt in the batch.

5.1.2 EXPANSION AND BACKTRACKING

Based on the preceding section, we select and execute an action in the browser environment to reach
a new node (page). Beginning from the selected state node’s trace, we roll out the trajectory using the
current policy 7y until a terminal state is reached. The environment returns a reward at the end of the
trajectory, R, where R = 1 if the agent was successful and R = 0 otherwise. We then backpropagate
this reward by updating the values of each node bottom up from the leaf node to the root as follows:

; Q(hy,a})N(hy,a}) + R

h;,a}) «+ -

b, i) N(hy,a)) + 1)
N(hg,al) « N(hg,al) +1

Each state node tracks two values: Q(hy, a!), the average reward for passing through state h; and
choosing action a, and N (hy, a}), the number of times this state action pair was visited during search

(and N (h;) = Zfil N (hy, al)). The backpropogation updates correctly maintain these values.

5.2 IMPROVING ZERO-SHOT PERFORMANCE WITH REINFORCEMENT LEARNING

Training large foundation models with offline (,) or off-policy (s)
reinforcement learning at scale has still remalned challenging. At the same time online (on-policy)
reinforcement learning (s s) is not scalable to real interactive
environments. Instead, we follow a line of recent works, which apply the DPO algorithm (
, ;) at the step level in multi-step reasoning problems in mathematical domains (
; s). Our approach is most similar to (); ();
() who also use the branching nature of tree search to produce step-level preference

pairs. We will also use this approach in our setting due to its simplicity, scalability and prior success
in smaller scale (non-interactive) reasoning applications.

Under review as a conference paper at ICLR 2025

Algorithm 1 MCTS Guided Direct Preference Optimization

Input: 7y, : initial LLM policy, Dr: dataset of tasks the agent must complete in the environment,
N: number of iterations, B: number of samples per iteration, 7: MCTS tree depth, B: replay
buffer, Oiresnola: value threshold in Eq. 9, K: number of actions to sample for MCTS
Output: 7y, , the trained LLM policy
fori =1to N do
Tref = o, To; < Mo, _,
Sample a batch of B tasks from Dp
for each task in batch do
Initialize the root node hy
fort =1toT do
Selection: Traverse tree from the root node to a leaf node using tree policy (UCB1; 6)
Expansion: From the selected node, sample K actions using mp, and rank with
Al Process Supervision (Sec 5.1.1)
Trajectory Rollout: From the selected node’s trace, roll out the trajectory using
mp, until a terminal state is reached
Backpropagation: Backpropagate the value estimate bottom-up (Eq. 7)
end for
Collect trajectories from rollouts and store them in replay buffer 3
end for
Construct preference pairs Dp = {(h;,a,al)} ! where h; ~ Dp. For each node at step
level ¢, compare each pair of child nodes, and construct the pair of generated actions (a®, a') if the
values of taking the action, |Q(hs,a®) — Q(h, a')| > Oeshola» Wwhere Q(hy, a®) and Q(hy, al)
are computed using Eq. 9
Optimize LLM policy 7y, using DPO objective in Eq. 4 with Dp and s
end for

We will generate a dataset of preference pairs P = {h;,a?’, al} where we make sure both actions
were explored. We then optimize the DPO objective in Eq. 4 on the node level. We will leverage a
theoretical result below to guide the construction of these preferences. We can make a number of
modifications to Theorem 6.1 from () to incorporate the interactive nature of the
web environment dynamics to obtain the following result:

Theorem 1. Consider a policy that optimizes the objective in Eq. 2 on trajectories generated by
Trer and that at each node h, we have preferences generated accordingly to p(ay’ > allhy) o
a(Q(hy,a) — Q(hy,al)), then the policy which optimizes the DPO objective in Eq. 4 is identical
to the optimal RL policy

7" (alht) o< mer(alhy) exp (Q(he, a)/B) (®)
Proof. The proof follows directly from the proof of Theorem 6.1 in () and the
control as inference arguments in (); ().]

That is, we can approximate the optimal RL policy if we generate preferences under the optimal
value function (or an approximation thereof). Since the outcome success provides limited supervision
we also incorporate process supervision through the Al feedback as outlined in Section 5.1.1. We
interpret the ranking of possible actions by the model to be driven by an implicit value function.
Similar semantics was used in (), where GPT-4 was used as a zero-shot value function,
while here we ask the model to instead reason over the given potential actions and provide rankings
instead. This self-rewarding approach has shown promise in the RLHF setting (,) and
we utilize it for our agent setting as well. Under this formulation, we compute the state-action value
as an average:

Q(ht7 a;) = a@(hb a%) + (]‘ - a)Q(hta az) (9)
where Q(hy, a?) is the empirical value estimated through MCTS backpropagation and Q(hy,al)isa
value estimate based on the ranking of the action a; by the process supervision Al model. Specifically,
we treat the lowest ranked action as having a @)(hy, al) estimate of 0.0 and the highest ranked action
as having a) (hy, a!) estimate of 1.0, and interpolate the actions in between based on their ranking.

Under review as a conference paper at ICLR 2025

OpenTable Success Rates

1001 95.4%*

84.3%

Success Rate (%)

Figure 3: Success rate of different approaches on OpenTable. All models unless otherwise stated are
based on LLaMA-3-70B-Instruct (Touvron et al., 2023). Using DPO and RFT with MCTS further
improves performance from 18.6% to 71.8% and 84.3% respectively. We show that Agent Q in
itself achieves 81.7% and Agent Q + MCTS significantly outperforms all other techniques, with a
performance of 95.4% on OpenTable.

Finally, we create the preference dataset over pairs of actions for which the difference in value,
|Q(hy,a¥) — Q(hy,al)|, is greater than the value threshold hyperparameter, Oeshola. The full
outline of our RL approach is shown in Algorithm 1.

6 RESULTS

6.1 FULL WEBSHOP RESULTS

The full range of results and baselines is shown in Figure 1. The headline result is that Agent Q with
test-time MCTS search (Agent Q + MCTS) is able to slightly outperform the average human success
rate. When just looking at agents that do not use test-time search, we see that training approach
outlined in Algorithm 1, gives Agent Q an improvement of 10.2% over RFT and a 0.9% improvement
over DPO from outcome supervision. We note that while our dense-level supervision improves over
purely outcome-based one, the improvement is modest on WebShop. This is because the WebShop
environment requires relatively short trajectories, and the model is capable enough to learn credit
assignment purely from outcome supervision. We will further explore more complex real world
environment, which requires longer-range credit assignment. Beyond the zero-shot agents, we see
that the ability to search at test time is a significant paradigm shift. Using MCTS on top of the base
xLAM-v0.1-r model, significantly boosts success rates from 28.6% to 48.4%, approaching close to
the average human performance of 50.0% and significantly out-performing the zero-shot performance
of the DPO model. As mentioned before, pairing test-time MCTS with the trained Agent Q model
improves performance to 50.5%, slightly beating the average human success rates.

6.2 SCALING To REAL WORLD WEBSITES

In this section we will investigate scaling the Agent Q framework to real use cases on live websites,
in particular bookings on OpenTable. Initial experiments showed that the xXLAM-v0.1-r model was
too weak for the task, achieving a success rate of 0.0%. Instead, we use LLaMa3-70B-Instruct, which
achieved non-trivial success rates. Descriptions of our real-world environment are in Appendix B.

The base xLAM-v0.1-r model achieves a success rate of 0.0%, largely from failing to follow instruc-
tions for the general web navigation instructions used for live websites, contrary to the simplified

Under review as a conference paper at ICLR 2025

observation and action space used in WebShop. We instead initialize the base policy with the LLaMa-
3 70B Instruct model, which achieves a zero-shot success rate of 18.6%. We do a single round of
RFT on 600 successful trajectories which improves the success rate to 67.2% already out-performing
the the GPT-40 model zero-shot performance with a success rate of 62.6%. For all other baselines we
adopt the RFT model as the reference policy, due to the relatively low success rate of original LLaMa
3 70B Instruct model.

In this environment, training with outcome-supervision only DPO further improves performance by
4.6% to 71.8% but significantly under-performs the full Agent Q pipeline which achieves a zero-shot
success rate of 81.7% We hypothesizes that this is due to the fact that OpenTable is a significantly
more challenging environment, which requires almost twice as many steps to complete as WebShop,
so the agent benefits from fine-grained supervision and credit assignment. We further ablate the role
of the intermediate Al feedback process supervision during training as outlined in Eq. 9 and use
MCTS with online Q values computed from outcome rewards only. This setting still outperforms
training with trajectory-level DPO (75.2% versus 71.8%) likely due to the more fine-grained credit
assignment that the branching tree search provides to the agent. However, zero-shot performance
is still meaningfully worse than using intermediate process-level supervision and the full Agent Q
achieves 6.5% higher success rate at 81.7%.

Similar to the WebShop experiment we see a step level increase in capability from allowing the
model to search at inference time, with the base RFT model achieving 84.3% success with MCTS,
outperforming the Agent Q zero-shot performance of 81.7% success. However, if we carry out
additional MCTS search using the Agent Q model as the base policy we achieve a significant 95.4%
success rate.

7 DISCUSSION

In this work we developed algorithms for autonomous improvement of web-agents with limited
human supervision. While most prior works build frameworks around existing models without
additional training, we specifically seek to fine-tune pre-trained models for web navigation tasks
based on synthetic reasoning and search data. While we achieve significant improvement in model
capabilities on our target domain, many research questions remain.

Design of reasoning algorithms. The core challenge for our web agents is the weak reasoning
capabilities, which limit the agent’s exploration and search strategy. In our approach we used process-
level supervision from a separate critic model, which we prompt to rank possible agent actions. This
is in contrast to works in mathematical reasoning where PRMs are usually trained to classify the
correctness of individual steps (s), while other agent works (s)
have prompted models as zero-shot value functions. Furthermore, while we spent significant effort in
training the agent policy, we maintain a frozen critic, which would likely also benefit from additional
fine-tuning. We defer exploration of these design choices to further work.

Choice of search algorithm. We used MCTS search due to the approach’s prior success in mathemat-
ical and code reasoning tasks. However, agent models executing MCTS on live environments might
require significant number of risky interactions and a different search strategy might be more suitable.
Recent works such as (); () have even suggested directly learning
to optimally search and explore in reasoning tasks using meta-reinforcement learning. We believe
this is a promising research direction for autonomous agents, which we will pursue in further work.

Discrepancy between zero-shot vs search results. Similar to some recent works that focus on code
and reasoning, we observe significant gap between zero-shot agent performance and performance
of the agent equipped with search capabilities (,). Investigating
these trade-offs at scale and the potential effect of dlfferent search/optlmlzatlon approaches.

Online safety and interaction. The design of agent Q allows for largely autonomous exploration,
self-evaluation and improvement with limited human intervention. However, the agent might make a
significant number of mistakes in it’s search process which might be difficult to fix/reverse, especially
for safety-critical online transactions, such as communications/email, payments, filings etc. This
limits the scope of websites that Agent Q can be safely deployed and we might require additional
safety critics and human-in-the-loop training setups.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 1, 2023.

Anthropic. Introducing the next generation of claude, 2024. URL
IntroducingthenextgenerationofClaude.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning, 2024.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph
of thoughts: Solving elaborate problems with large language models. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(16):17682—17690, March 2024. ISSN 2159-5399. doi:
10.1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/aaai.v38116.29720.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 2019.

Yevgen Chebotar, Quan Vuong, Alex Irpan, Karol Hausman, Fei Xia, Yao Lu, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
Sumedh Sontakke, Grecia Salazar, Huong T Tran, Jodilyn Peralta, Clayton Tan, Deeksha Manju-
nath, Jaspiar Singht, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn, and Sergey
Levine. Q-transformer: Scalable offline reinforcement learning via autoregressive q-functions,
2023.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization for
mathematical reasoning, 2024. URL https://arxiv.org/abs/2406.10858.

Wei Chen and Zhiyuan Li. Octopus v2: On-device language model for super agent, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In NeurIPS Datasets and Benchmarks
Track, 2023. URL https://openreview.net/forum?id=kiYgbO3wqw.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
learn from human feedback, 2024.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D. Goodman. Stream of search (sos): Learning to search in language, 2024. URL https:
//arxiv.org/abs/2404.03683.

11

Introducing the next generation of Claude
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2406.10858
https://openreview.net/forum?id=kiYqbO3wqw
https://arxiv.org/abs/2404.03683
https://arxiv.org/abs/2404.03683

Under review as a conference paper at ICLR 2025

Jonathan Gray, Adam Lerer, Anton Bakhtin, and Noam Brown. Human-level performance in no-press
diplomacy via equilibrium search, 2021.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling,
2023.

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. In ICLR, 2024. URL https://openreview.net/forum?id=9JQtrumvgs.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model, 2023.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
ArXiv, 2024. URL https://api.semanticscholar.org/CorpusID:267211622.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W. Bradley Knox, and Dorsa
Sadigh. Contrastive preference learning: Learning from human feedback without reinforcement
learning. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=iX1RjVQODJ.

Samuel Holt, Max Ruiz Luyten, and Mihaela van der Schaar. L2mac: Large language model
automatic computer for extensive code generation, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for gui agents.
ArXiv, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models, 2022b. URL https://arxiv.org/abs/2207.05608.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A. Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference, 2019. URL https://arxiv.org/
abs/1905.06424.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. Self-explore to
avoid the pit: Improving the reasoning capabilities of language models with fine-grained rewards,
2024.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.

Barret Zoph John Schulman, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan Fe-
lipe Ceron Uribe, Liam Fedus, Michael Pokorny Luke Metz, Rapha Gontijo Lopes, Shengjia Zhao,
Arun Vijayvergiya, Eric Sigler, Adam Perelman, Chelsea Voss, Mike Heaton, Joel Parish, Dave
Cummings, Rajeev Nayak, Valerie Balcom, David Schnurr, Tomer Kaftan, Chris Hallacy, Nicholas
Turley, Noah Deutsch, Vik Goel, Jonathan Ward, Aris Konstantinidis, Wojciech Zaremba, Long
Ouyang, Leonard Bogdonoff, Joshua Gross, David Medina, Sarah Yoo, Teddy Lee, Ryan Lowe,

12

https://openreview.net/forum?id=9JQtrumvg8
https://api.semanticscholar.org/CorpusID:267211622
https://openreview.net/forum?id=iX1RjVQODj
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/1905.06424
https://arxiv.org/abs/1905.06424

Under review as a conference paper at ICLR 2025

Dan Mossing, Joost Huizinga, Roger Jiang, Carroll Wainwright amd Diogo Almeida, Steph Lin,
Marvin Zhang, Kai Xiao, Katarina Slama, Steven Bills, Alex Gray, Jan Leike, Jakub Pachocki, Phil
Tillet, Shantanu Jain, Greg Brockman, Nick Ryder, Alex Paino, Qiming Yuan, Clemens Winter,
Ben Wang, Mo Bavarian, Igor Babuschkin, Szymon Sidor, Ingmar Kanitscheider, Mikhail Pavlov,
Matthias Plappert, Nik Tezak, Heewoo Jun, William Zhuk, Vitchyr Pong, Lukasz Kaiser, Jerry
Tworek, Andrew Carr, Lilian Weng, Sandhini Agarwal, Karl Cobbe, Vineet Kosaraju, Alethea
Power, Stanislas Polu, Jesse Han, Raul Puri, Shawn Jain, Benjamin Chess, Christian Gibson,
Oleg Boiko, Emy Parparita, Amin Tootoonchian, Kyle Kosic, and Christopher Hesse. Introducing
chatgpt, 2022. URL https://openai.com/blog/chatgpt#0penAl.

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, Qianyi Sun, Boxing Chen, Dong Li, Xu He,
Quan He, Feng Wen, Jianye Hao, and Jun Yao. Mindstar: Enhancing math reasoning in pre-trained
lIms at inference time, 2024. URL https://arxiv.org/abs/2405.16265.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Machine Learning:
ECML 2006: 17th European Conference on Machine Learning Berlin, Germany, September 18-22,
2006 Proceedings, pages 282-293. Springer, 2006.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
agent models, 2024. URL https://jykoh.com/search-agents/paper.pdf.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2022.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: Bootstrap and reinforce a large
language model-based web navigating agent, 2024a.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqgiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of 1lms, 2024b. URL https://arxiv.org/
abs/2406.18629.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinging Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrapping,
2024. URL https://arxiv.org/abs/2402.14083.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review,
2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems, 2020.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong,
and Silvio Savarese. Bolaa: Benchmarking and orchestrating llm-augmented autonomous agents,
2023.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei Yang, Zuxin Liu, Juntao Tan, Prafulla K. Choubey,
Tian Lan, Jason Wu, Huan Wang, Shelby Heinecke, Caiming Xiong, and Silvio Savarese. Agentlite:
A lightweight library for building and advancing task-oriented llm agent system, 2024.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Step-controlled dpo: Leveraging stepwise error for enhanced mathematical
reasoning, 2024. URL https://arxiv.org/abs/2407.00782.

Tula Masterman, Sandi Besen, Mason Sawtell, and Alex Chao. The landscape of emerging ai agent
architectures for reasoning, planning, and tool calling: A survey, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

13

https://openai.com/blog/chatgpt#OpenAI
https://arxiv.org/abs/2405.16265
https://jykoh.com/search-agents/paper.pdf
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2402.14083
https://arxiv.org/abs/2407.00782

Under review as a conference paper at ICLR 2025

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
back. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Ad-
vances in Neural Information Processing Systems, volume 35, pages 27730-27744. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
blefde53be364a73914f58805a001731-Paper-Conference. pdf.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents, 2024.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://arxiv.org/
abs/2305.18290.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to ¢*: Your language model is
secretly a gq-function, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold, 2024a.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. R1
on incorrect synthetic data scales the efficiency of 1lm math reasoning by eight-fold, 2024b. URL
https://arxiv.org/abs/2406.14532.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354-359, 2017b.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J.
Liu, James Harrison, Jachoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Elsayed, Hanie Sedghi, Igor
Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron, Kathleen
Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao, Maxwell L. Bileschi,
Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian, Yamini Bansal, Ethan
Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human data: Scaling
self-training for problem-solving with language models, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.
03314.

14

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2406.14532
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

Under review as a conference paper at ICLR 2025

Charlie Victor Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. In The Eleventh International Conference
on Learning Representations, 2022.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents, 2024.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive architec-
tures for language agents, 2024.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of 1lms should leverage suboptimal,
on-policy data, 2024.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward
self-improvement of 1lms via imagination, searching, and criticizing, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv,
2024a.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. Neural
Information Processing Systems, 2022.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv, 2024. URL https://api.semanticscholar.org/CorpusID:265149992.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, Songyang Gao, Lu Chen, Rui Zheng, Yicheng Zou,
Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Agentgym:
Evolving large language model-based agents across diverse environments, 2024. URL https:
//arxiv.org/abs/2406.04151.

15

https://api.semanticscholar.org/CorpusID:265149992
https://arxiv.org/abs/2406.04151
https://arxiv.org/abs/2406.04151

Under review as a conference paper at ICLR 2025

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning, 2024.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R.
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In NeurIPS,
2023a. URL https://openreview.net/forum?id=5Xc1ecx01h.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models, 2024.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476-15488, 2022.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining
Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as
decision-making agents via reinforcement learning, 2024.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, and Saravan Rajmohan. Ufo: A ui-focused agent for windows os interaction. arXiv, 2024a.
URL https://api.semanticscholar.org/CorpusID:267211622.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang
Yu. Appagent: Multimodal agents as smartphone users. arXiv, 2024b. URL https://api.
semanticscholar.org/CorpusID:262053313.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang,
Liangwei Yang, Yihao Feng, Zuxin Liu, Tulika Awalgaonkar, Juan Carlos Niebles, Silvio Savarese,
Shelby Heinecke, Huan Wang, and Caiming Xiong. Agentohana: Design unified data and training
pipeline for effective agent learning, 2024c.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges, 2024d.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference
optimization: Improving chain-of-thought reasoning in 1lms, 2024e. URL https://arxiv.org/
abs/2406.09136.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
ArXiv, 2023. URL https://api.semanticscholar.org/CorpusID:262053313.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2024a.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. In /ICLR, 2024b.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn 1, 2024c.

16

https://openreview.net/forum?id=5Xc1ecxO1h
https://api.semanticscholar.org/CorpusID:267211622
https://api.semanticscholar.org/CorpusID:262053313
https://api.semanticscholar.org/CorpusID:262053313
https://arxiv.org/abs/2406.09136
https://arxiv.org/abs/2406.09136
https://api.semanticscholar.org/CorpusID:262053313

Under review as a conference paper at ICLR 2025

Agent Input Agent Output

<SYSTEM PROMPT> PLAN:

<EXECUTION HISTORY> 1. Select the date (May 22, 2024) for the
reservation.

USER QUERY: Book a reservation for the 2. Choose the time (7:00 PM) for the

restaurant Ceconni’s on OpenTable for reservation.

2 people on June 17 2024 at 7:00pm 3. Select the party size (4 people) for the

reservation.
4. Click on the "Find a table" button to book
the reservation.

THOUGHT: I am currently on the Cecconi's
restaurant page on OpenTable, and I need to
select the date and time for the reservation
and choose the number of guests. I will focus
on selecting the date, time, and party size
for the reservation.

STATUS: CONTINUE

Figure 4: We provide the following input format to the Agent, consisting of the system prompt,
execution history, the current observation as a DOM representation, and the user query containing the
goal. We divide our Agent output format into an overall step-by-step plan, thought, a command, and
a status code.

A AGENT FORMULATION

We consider a general POMDP setup (O, S, A, T, R, uio,~y) where O denotes the observation space,
S the unobserved state space, A the action space, T'(s;+1|s¢, a¢) the transition distribution (in this
case the dynamics of a web browser), R(s, a) the reward function (in this work we use sparse rewards
of 1/0 representing success/failure), pio(so) the initial state distribution, and ~ the discount factor,
which we set to 1. A POMDP is the most suitable framework to model web interactions for several
reasons - first novel environments, which the agent is unfamiliar with require exploration in order
to locate the task objective, consistent with the meta-reinforcement learning as task inference view
(Humplik et al., 2019). Moreover, the real web is dynamic, which creates partial observability of
the current state each time the agent is deployed - i.e. it does not a priori know current booking
availability before attempting to do it. We will outline the main parts of our web agent below.

The agent observation o, € O are commands/information given by the user and the web browser.
The first observation o is a user text instruction, such as

”Book reservation for restaurant Cecconi’s on OpenTable for 4 people on May 22 2024 at 7:00 PM”

for example and a browser home page. Subsequent observations consist of web pages from the
browser, represented as a HTML DOM format. Occasionally for some tasks the agent might ask for
confirmation/feedback from the user, which then also becomes part of the observation.

The agent actions a; € A are composite, based on agent history h;. Our base approach is a ReAct

agent Yao et al. (2023b) with a preliminary planning step (PlanReAct) Liu et al. (2023) with few
additional components.

* Planning For the first action after the initial observation we leverage the base LLM’s
planning capabilities (Huang et al,, 20224) and prompt the agent to generate a plan af™" ~

7(a?™|hy) of sequential steps to execute in language.

* Reasoning Subsequently all actions consist of a thought action a ~ 7(a!"|h,), which is a
chain-of-thought reasoning step (Wei et al., 2022).

17

Under review as a conference paper at ICLR 2025

* Environment action Next we generate the browser interaction command ag™ ~
m(as™|hy, aM), which consists of a finite set of options like "CLICK [ELEMENT ID]”,
”SCROLL”, ”"TYPE [CONTENT]” or ”ASK USER [CONTENT]” etc.. This is the only part
of the action generation, which interacts with the environment.

» Explanation action After the environment interaction action has been generated, we addi-
tional prompt the model for an explanation action a°' ~ 7(a'|h,, a', ac™).

We denote the step action a; as a tuple of plan, thought, environment and explanation actions for the
first step and thought, environment and explanation actions for subsequent steps. When optimizing
models we consider the joint likelihood

log 7(aj|hy) =log w(ai"pl|h1, as™, al, a‘{lan) +logm(as™|hy,al", a‘l’la“)—&—
log w(al|hy, a?™") 4 log (al™ |hy) (10)

for the initial action and
log m(a/hy) = log m(a;™ [y, a™, al) + log 7 (a™ hy, af) + log 7 (a}" |hy)

for subsequent actions, unlike some prior works (,), which down-weight the reasoning
likelihood.

The agent state is the current state of the web, which may mot be observable. In this POMDP
formulation we also need to build an agent memory component h;. Prior works have used the entire
trajectory of observations and actions, however HTML DOMs can be hundred of thousands of tokens
long. Moreover realistic web-tasks can require many more interactions than static benchmarks such
as WebShop (s) and WebArena (s), which most prior works use. This
makes it impractical to use full web trajectories due to limited context windows, potential out-of-
distribution issues and practical inference speed and cost. Instead, we build the history representation
of the agent as hy = (ay,...,a;_1,0;). That is, the agent history consists of the actions generated
so far and the current browser state. With some abuse of notation we will also refer to this as the
agent state. Even though only the environment action is used for interacting with the browser, we
construct the agent thought and explanation actions to act as a form of inner monologue (,

) and adequately represent its state and intentions. This allows us to use a significantly more
compact history representation. We should note that, while only the environment action affects the
browser state, the planning, reasoning and explanation components affect subsequent decisions due
to conditioning. Because of this reason, when we optimize the agent, we compute likelihoods over
the composite action.

18

Under review as a conference paper at ICLR 2025

USER QUERY: Book a reservation for the
restaurant Fogo de Chao on OpenTable for
2 people on August 29 2024 at 7:00pm
FINAL OBSERVATION:

PV IPRPSTRPURR SR Jere—

@ s . @as a

LLM Critic
D

Score 0.0

The agent booked a reservation for the
correct restaurant, but incorrect date and
time.

Figure 5: At the end of a trajectory, a GPT-4-V evaluator is called to provide feedback on the agent’s
performance given the final observation and action history to determine the success score. The model
is prompted with a condensed execution history of the trajectory and the screenshot of the final state.
The success metric is a binary 0/1 value.

B OPENTABLE ENVIRONMENT

In OpenTable, the agent is tasked with booking a restaurant reservation for a user. The agent must
find a restaurant page on the OpenTable site, look for a reservation at a certain date and time, choose
seating options that align with a user’s preference and submit the user contact information to complete
the task successfully. Since OpenTable is a live environment and is difficult to programatically
measure metrics for, we use a language model, GPT-4-V to collect rewards for each trajectory,
based on the following metrics: (1) date and time set correctly, (2) party size set correctly, (3) user
information entered correctly, and (4) clicked complete reservation. The task is marked as completed
if each of the above constraints are satisfied. The outcome supervision setup is shown in Figure
5. We experimented with using LLLaMa 70B for outcome supervision as well, but discovered that
vision capabilities significantly improve the success classification accuracy (as measured by human
validation). At the time of writing no open source vision-language model of sufficient capability was
available, hence we opted to use GPT-4-V. We believe that as more open-source multi-modal models
become available we can switch to a fully self-supervised pipeline.

To generate queries for the OpenTable benchmark dataset, we programatically generate a diverse set
of user queries by combining the restaurant name, desired date and time, and user information.

Navigating on live websites pose a wide variety of challenges. For example, consider that the user
specifies a restaurant in a different city than the location the browser is initialized in, the model will
have to take extra steps to find the restaurant. Further, if the exact user requested date and time are
not available, the model may have to choose the closest available reservation slot. Lastly, if there are
preferences, such as indoor or outdoor seating options that the model is presented with, the desired
behavior is to interact with the user to determine the best course of action. OpenTable presents a
complex set of challenges for web navigation agents; the number of steps required to complete the
task is on average 13.9 steps, over double the average number of steps for Webshop, 6.8.

For the observation space for this environment, we design an intermediate state representation that
crawls the raw HTML content of a website to retrieve relevant visual components, and highlight
interactive elements to the model. The agent is allowed the actions, ”CLICK [ID]”, ’GOTO [URLY]”,
“TYPE [ID] [TEXT]”, ”SUBMIT [ID]”, "CLEAR [ID]”, ”SCROLL [UP/DOWN]”, and ”ASK USER
HELP”. For OpenTable experiments, we use the LLaMA-3-70B-Instruct model as the initial policy.
We find that the superior reasoning abilities of this class of model is required for effective task
completion, which is necessary to produce the diverse success and failure trajectories required to
effectively improve the policy.

19

	Introduction
	Related Work
	Guided Search for Reasoning and Planning
	Web Agents
	Reinforcement Learning for LLMs and Agents

	Preliminaries
	Fine-Tuning Language Models From Feedback
	Reinforced Fine-Tuning
	Direct Preference Optimization

	Preliminary Approach With Outcome Supervision
	Agent Search
	Monte-Carlo Tree Search Over Web-Pages
	Action Selection With AI Process Supervision
	Expansion and Backtracking

	Improving Zero-Shot Performance with Reinforcement Learning

	Results
	Full WebShop Results
	Scaling To Real World Websites

	Discussion
	Agent Formulation
	OpenTable Environment

