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ABSTRACT

Large Language Models (LLMs) have shown remarkable capabilities in natural lan-
guage tasks requiring complex reasoning, yet their application in agentic, multi-step
reasoning within interactive environments remains a difficult challenge. Traditional
supervised pre-training on static datasets falls short in enabling autonomous agent
capabilities needed to perform complex decision-making in dynamic settings like
web navigation. Previous attempts to bridge this gap through supervised fine-
tuning on curated expert demonstrations often suffer from compounding errors and
limited exploration data, resulting in sub-optimal policy outcomes. To overcome
these challenges, we propose a framework that combines guided Monte Carlo Tree
Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on
agent interactions using an off-policy variant of the Direct Preference Optimization
(DPO) algorithm. Our method allows LLM agents to learn effectively from both
successful and unsuccessful trajectories, thereby improving their generalization in
complex, multi-step reasoning tasks. We validate our approach in the WebShop
environment, a simulated e-commerce platform—where it consistently outperforms
behavior cloning and reinforced fine-tuning baseline, and beats average human
performance when equipped with the capability to do online search. In real-world
booking scenarios, our methodology boosts Llama-3 70B model’s zero-shot per-
formance from 18.6% to 81.7% success rate (a 340% relative increase) after a
single day of data collection and further to 95.4% with online search. We believe
this represents a substantial leap forward in the capabilities of autonomous agents,
paving the way for more sophisticated and reliable decision-making in real-world
settings.

1 INTRODUCTION

The recent advances in Large Language Models (LLMs) represent a significant leap in artificial
intelligence. Frontier models like ChatGPT (John Schulman et al., 2022), Gemini (Anil et al., 2023),
Opus (Anthropic, 2024), and LLaMA-3 (Touvron et al., 2023) demonstrate promising reasoning
capabilities that approach average human performance in a number of domains. These breakthroughs
have extended the utility of LLMs from traditional chat and text-based applications to more dynamic,
agentic roles, in which they do not just generate text but can take actions autonomously in a number
of environments including code and software engineering (Holt et al., 2024; Zhang et al., 2024d;
Jimenez et al., 2024; Yang et al., 2024), device control (Wang et al., 2024a; Zhang et al., 2023; Chen
and Li, 2024) and web applications (Hong et al., 2023; Deng et al., 2023; Zhou et al., 2024b; Lai et al.,
2024a; Gur et al., 2024) among others. However, despite these advancements, significant challenges
persist: LLMs still struggle to generalize effectively in interactive, multi-step environments, since
they are not native trained for such applications . This is true, even for some of the strongest models
of the current generation, such as GPT-4 (Achiam et al., 2023).

A growing literature on agentic formulation seeks to address these issues; however these works
mostly focus on building frameworks around prompt-based learning on existing models or limited
fine-tuning on static datasets, and are thus limited by the base models’ reasoning and decision making
capabilities. Reasoning and planning have indeed been highlighted as core challenges for current
LLMs. Since the seminal work on chain-of-thought reasoning (Wei et al., 2022), significant efforts
have been made to improve these capabilities via prompt-based strategies (Kojima et al., 2022; Wang
et al., 2023; Qiao et al., 2023; Yao et al., 2023a). While successful, these approaches are still bounded
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by the base model’s performance. Another direction of research has explored fine-tuning approaches
(Zelikman et al., 2022; Pang et al., 2024), and more recently combining them with inference-time
search prompting (Yao et al., 2023a) to produce fine-grained feedback. Concurrent works (Xie et al.,
2024; Hwang et al., 2024; Zhang et al., 2024e; Tian et al., 2024) utilize the traces produced by search
algorithms and combine them with optimization approaches (Rafailov et al., 2023; Zelikman et al.,
2022) to achieve significant boost in capabilities, especially in mathematics problem solving and
code generation.

In this work we explore improving planning and reasoning capabilities of a web agent, which interacts
with a real world website. Our goal is to design an approach that allows the agent to improve with
autonomous experience and limited supervision. Indeed, prior works (Yao et al., 2023b; Zhang et al.,
2024c; Masterman et al., 2024; Sumers et al., 2024) have shown strong reasoning to be critical for
performance of autonomous agents, where challenges are even greater than during text generation,
as the model needs to further understand how its actions affect its environment. Towards this goal,
we introduce Agent Q—a novel approach that combines several key concepts in reasoning, search,
self-critique and reinforcement learning. Our method takes inspiration from Sutton’s The Bitter
Lesson on the power of general purpose methods that continue to scale with increased computation,
showing the significant benefits of combining search and learning.

Inspired by the success of search-based methods in prior game-playing settings (Silver et al., 2017a;
Brown and Sandholm, 2019; Gray et al., 2021) and mathematical reasoning (Yao et al., 2023a; Besta
et al., 2024), we deploy a Monte Carlo Tree Search (MCTS) based search routine over web pages to
guide agent exploration. Given the complexity of the environment, we use a base LLM for sampling
possible rationales and web actions to explore. While this simple search-strategy shows a meaningful
improvement in the success rate, it still struggles on long horizon tasks due to sparsity of environment
rewards. Indeed even a small mistake across the trajectory can cause the final agent output to be
wrong, creating significant credit assignment problems. To overcome this, we use AI feedback (Bai
et al., 2022) and self-criticism (Yuan et al., 2024) to further prompt the LLM to provide self-evaluation
feedback at each node, which serves as intermediate reward and helps guide the search steps. This
meaningfully improves the final agent success rate, but requires significant online interactions and
moreover the capability to rollback actions, which is not always possible in online realistic settings.
Such online autonomous search with little supervision on the web can result in a weak or unsafe
agent which can make many errors, resulting in risky behaviors in sensitive online settings like bank
transfers and sensitive information sharing.

To correct this, we use the traces generated by the search process to improve capabilities of the
model by learning from both the successful and unsuccessful trajectories with offline reinforcement
learning, utilizing the Direct Preference Optimization (DPO) algorithm. We create preferences over
different branches at the node level, which are scored using a mixture of the AI process feedback
rewards and the final success rate of the explored branch. We evaluate our approach on the simulated
WebShop benchmark (Yao et al., 2022)—a simulated e-commerce platform—as well as a real-world
reservations booking website. We utilize LLaMa 3-70B as the base model in our experiments. In the
WebShop environment, our approach consistently outperforms behavior cloning and reinforcement
learning fine-tuned baselines, and beats average human performance when equipped with the
capability to do online search.

In our real-world booking experiments, using our Agent Q framework we improve the model zero-
shot absolute success rate from 18.6% to 81.7% (a 340% relative increase), outperforming GPT-4’s
performance after a single day of autonomous data collection. When we equip Agent Q with online
search capability, our absolute success further improves to 95.4%. We believe that our approach
represents a significant step forward in the development of autonomous web agents through it’s search
and self-critique capabilities, setting a new benchmark for reliable multi-step decision-making in
interactive settings.

2 RELATED WORK

Our work touches on a large number of research directions around agent design, self-improvement,
reasoning and reinforcement learning. We include a short overview of related works from those
various fields below.
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2.1 GUIDED SEARCH FOR REASONING AND PLANNING

The latest generation of Large Language Models (LLMs) have demonstrated promising emerging
properties around reasoning and planning. Moreover such behaviours can be directly elicited from
strong models only using simple prompting techniques (Wei et al., 2022; Kojima et al., 2022; Qiao
et al., 2023). These have also become an integral part of agentic design (Yao et al., 2023b; Zhang
et al., 2024c), which we also utilize for our approach. Another emerging research direction is based
around step-by-step verifiers or “Process Reward Models” (Uesato et al., 2022; Lightman et al., 2023),
specifically for mathematical reasoning. These have shown to improve performance beyond purely
outcome-based training, however they require a large amount of human effort to label individual
steps. Some recent approaches have proposed self-supervised methods for step-level supervision
(Hwang et al., 2024; Wang et al., 2024b; Setlur et al., 2024a). A number of concurrent works (Xie
et al., 2024; Zhang et al., 2024e; Tian et al., 2024) have further explored tree-based search approaches
(Yao et al., 2023a) in combination with DPO (Rafailov et al., 2023) training for math-based reasoning.
These algorithms optimize actions at the node level, using different branches produced by the search
algorithm to create preference pairs. Our approach shares similarities to the self-supervised search
proposed in (Yao et al., 2023a) with a combination of AI-based feedback (Bai et al., 2022; Yuan et al.,
2024) to guide intermediate search steps, but we are the first to scale this a realistic agent setting.
Similar approaches were proposed in (Zhou et al., 2024a; Hao et al., 2023; Kang et al., 2024), and
other works (Koh et al., 2024); however these works only use the base model’s zero-shot capability
to search and do not train it further. Moreover they are only evaluated on simulated environments.
Beyond the search stage, our work further adopts the training methodology of (Xie et al., 2024; Zhang
et al., 2024e; Tian et al., 2024), which significantly boosts our agent’s zero-shot capabilities.

2.2 WEB AGENTS

The strength and capabilities of recent pretrained Large Language (Vision) Models LL(V)Ms has
significantly boosted progress in developing autonomous web-agents. Improved code understanding
and long context have allowed agents to represent environment state and action space with document
object model (DOM) allowing for deployment in complex and realistic domains. Moreover strong
reasoning (Yao et al., 2023b) and planning (Liu et al., 2023; Zhang et al., 2024c) capabilities have also
led to the development of a number of promising agents (Zhang and Zhang, 2023; Hong et al., 2023;
Zhou et al., 2024b; Deng et al., 2023; Gur et al., 2024). Beyond using LL(V)Ms as plug-and-play
planners/policies, recent works have sought to improve agentic-specific performance. Examples
include online exploration (Zhang et al., 2024a), planning (Zhang et al., 2024b), error-correction
(Wang et al., 2024a), and self- (Wu et al., 2024) or AI-critique (He et al., 2024; Pan et al., 2024).
However, with small exceptions (Nakano et al., 2022) (which is still limited in scope) these agents
mostly provide a framework around a strong pre-existing model like GPT4-V or deploy limited
fine-tuning and adaptation. In this work we show that model training is crucial for continuous
improvement. We combine a planning and reasoning agent with MCTS inference-time search and AI
self-critique for self-supervised data collection, which we then use for RL type training.

2.3 REINFORCEMENT LEARNING FOR LLMS AND AGENTS

Reinforcement Learning has become a significant component of training modern generative AI
systems (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023). Classical approaches have
deployed the PPO algorithm (Schulman et al., 2017)—or similar policy-gradient based methods—
and have even been scaled to autonomous web search agents (Nakano et al., 2022) as well as
embodied applications with vision-language models (Zhai et al., 2024) (in simulation). However,
these algorithms are challenging due to their complexity and the need for a high number of online
samples from the model. This is especially prominent in potentially risky situations, such as
autonomous agentic models that could make a number of impactful mistakes during training. Implicit
Language Q-learning (Snell et al., 2022) and the Q-transformer (Chebotar et al., 2023) are offline RL
algorithms (Levine et al., 2020) designed for auto-regressive transformer models, and hence can be
safely trained on pre-collected datasets; however they have not been successfully scaled to modern
LLMs. While these methods represent a token-level MDP, (Zhou et al., 2024c) has shown success
formulating the RL problem at a step level and these ideas have recently been scaled to a general
device-control agent (Bai et al., 2024). However, these algorithms still have high complexity and
require auxiliary models, such as value functions, so instead in our approach we opt to use the Direct
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Preference Optimization (DPO) algorithm (Rafailov et al., 2023) due to it’s simplicity and natural fit
for the branching nature of tree-search based data.

3 PRELIMINARIES

In this section we will outline the preliminaries of our agent training process. For a full description of
our agentic system formulation consider Appendix A. Four training purposes at each time step t the
agent receives a state ht and will produce actions at ∼ πa|ht).

3.1 FINE-TUNING LANGUAGE MODELS FROM FEEDBACK

Classical approaches to RLHF in foundation models Stiennon et al. (2022); Ouyang et al. (2022) use
the model as a policy πθ and optimize an objective of the form:

Ea∼πθ(a|h)[r(a,h)]− βDKL[πθ(a|h)||πref(a|h)] (1)

where πref is some reference policy (usually the initial model). The goal of this formulation is to
optimize some target objective (expressed by the reward r(a,h)) while preventing out-of-distribution
drift. This objective can be extended to multi-step agentic problems, where the model interacts with
an external environment env such as in Nakano et al. (2021) which focuses on information retrieval
using web navigation. In this case we use an objective of the kind

Eπθ,env

[∑
t

r(at,ht)]− βDKL[πθ(at)|ht)||πref(at|ht)]

]
(2)

Classical RLHF has used policy gradient type of algorithms, such as PPO Schulman et al. (2017),
however, they are complex and require online data, which can be costly/dangerous to collect au-
tonomously in the agent setting. While PPO has shown some success in prior web agent applications
Nakano et al. (2021). The issues above largely make the approach not practical for general web tasks,
beyond information retrieval. In this work we utilize some recent alternatives, outlined below.

3.1.1 REINFORCED FINE-TUNING

Reinforced fine-tuning (RFT) algorithms Zelikman et al. (2022); Gulcehre et al. (2023); Yuan et al.
(2023); Singh et al. (2024) have grown in popularity due to their simplicity and scalability. These
methods aggregate data and filter out the sub-optimal samples based on some reward model or
a verifier to construct a growing dataset of high-quality trajectories D. Given this dataset and a
parameterized model πθ we can carry out standard supervised fine-tuning (SFT):

L(πθ,D) = −ED

[
T∑

t=1

log πθ(at|ht)

]
(3)

In this objective the divergence penalty is only applied implicitly by limiting the number of training
rounds. While simple and relatively successful, empirically these methods tend to under-perform
standard RL and alternatives Dubois et al. (2024); Tajwar et al. (2024); Setlur et al. (2024b) in the
text generation domain, particularly in reasoning. We largely observe similar empirical results, and
we use these methods mostly as baselines to build intuition.

3.1.2 DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) Rafailov et al. (2023) is an offline RL Levine et al. (2020)
alternative to the classical RLHF optimization pipeline. It is a suitable algorithm for agent fine-tuning,
as it can use fully offline data and does not require online rollouts. The original formulation in the
pure text generation setting is based on the RL problem in Eq. 1 and considers feedback of pairwise
comparisons (h,aw,al), where s is a single prompt and aw and al are two responses with aw ≻ al

indicating that aw is preferred over al. The DPO objective then minimizes the following loss:

LDPO(πθ;D) = −E(h,aw,al)∼D

[
log σ

((
β log

πθ(a
w|hw)

πref(aw|hw)

)
−

(
β log

πθ(a
l|hl)

πref(al|hl)

))]
(4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Success rate of different approaches on the WebShop Yao et al. (2022) task. All models
are based on xLAM-v0.1-r Zhang et al. (2024c). RFT and DPO over xLAM-v0.1-r demonstrate
improvements in performance from 28.6% to 31.3% and 37.5% respectively. However, these methods
still lag behind average human performance of 50.0%. Our approach, Agent Q + MCTS achieves a
significant gain (76.57% relative improvement) over the base model, outperforming average human
performance on WebShop with a success rate of 50.5%.

While the algorithm was developed in a bandit setting Hejna et al. (2024); Rafailov et al. (2024) have
extended it to the multi-turn setting in Eq. 2 with preferences over trajectories. In our setting, we can
directly utilize this objective as:

LT-DPO(πθ;D) = −E(τw,τl)∼D

log σ
|τw|∑

t=0

β log
πθ(a

w
t |hw

t )

πref(awt |hw
t )

−
 |τ l|∑

t=0

β log
πθ(a

l
t|hl

t)

πref(alt|hl
t)


(5)

One bottleneck for the practical deployment of the algorithm is the need for a reference model πref
during optimization, which requires more computational resources. Instead in our settings, we slightly
modify the algorithm using an off-policy replay buffer, which aggregates trajectory data, as well as
likelihoods of the generated actions. During the optimization step, we sample tuples of trajectories
and the corresponding likelihoods under the data generation (reference) density, which eliminates the
need for a separate reference model.

4 PRELIMINARY APPROACH WITH OUTCOME SUPERVISION

In this section we will outline preliminary experimental results, which will build the base under-
standing for our further experiments. We use the AgentOhana xLAM-v0.1-r model Zhang et al.
(2024c), which is a fine-tune of a pre-trained Mixtral-8x7B-Instruct-v0.1 model Jiang et al. (2024)
on a mix of agentic applications, including WebShop SFT data. We also incorporate the same
agent configuration 1 specified by the AgentLite Liu et al. (2024) work to ensure a fair comparison
between our fine-tuned model and the xLAM base model performance. We evaluate all approaches
on the WebShop environment Yao et al. (2022), where the agent needs to find particular products
by browsing a simulated web shop. The environment comes with a set of 12,087 pre-defined tasks
(corresponding to specific products to find), which we split into a train set of 11,000 tasks, which
we use for further agent fine-tuning and a set of 1,087 held-out tasks, which we use for zero-shot
evaluation. We show success rates (exact product match) for different approaches in Fig. 1. The base
xLAM-v0.1-r model achieves success rate of 28.6% on the test tasks. All other methods are based on

1https://github.com/SalesforceAIResearch/xLAM
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outcome-based supervision only, depending on whether a particular attempt was successful or not.
We see that further RFT training, using a STaR-like algorithm Zelikman et al. (2022) on the trajectory
level, as outlined in Sec. 3.1.1, achieves success rate of 31.3%, which is a small improvements of
2.7% over the initial model. This is not surprising since the base model is already trained as an agent
on the environment with supervised fine-tuning on demonstrations. Our next experiment fine-tunes
the base model using the trajectory-level DPO algorithm, as outlined in Eq. 5 in Sec. 3.1.2 using
successful trajectories as preferred over failed ones. This approach also uses only outcome-level
supervision, but unlike the RFT baseline can utilize failed trajectories as well, which improves the
agent performance by 9.3% over RFT agent to 40.6% success rate. We also evaluate this model with
beam search for the action generation, which can be considered a form of planning the horizon of a
single environment action (which still consists of multiple simple actions) Rafailov et al. (2023), but
it only yields marginal improvement over the base model. These findings match results on reasoning
for math problems Pang et al. (2024) and some recent approaches that also apply DPO to agent
applications Song et al. (2024); Xi et al. (2024).

Despite the additional reinforcement learning training, our agents are still not able to match the
average human performance on this environment. We identify that one of the core failure modes of
the DPO policy is that it executes a greedy search when looking for matches to the product query.
For example, for every search query, the WebShop environment yields a number of pages of results.
However, we find that the model nearly always greedily searches for the best matching item in the
first page of results rather than using the ”[NEXT]” and ”[PREV]” buttons to navigate between pages,
essentially deploying a weak exploration strategy.

5 AGENT SEARCH

As we discovered in the previous section, while training based on outcome supervision with DPO
yields meaningful improvement, the model is still not able to match human performance due to
it’s limited exploration. In this section we will explore endowing the agent with additional search
capability via MCTS.

5.1 MONTE-CARLO TREE SEARCH OVER WEB-PAGES

The Monte Carlo Tree Search (MCTS) algorithm Kocsis and Szepesvári (2006) employed in this
work follows closely the one in Hao et al. (2023) and consists of four phases: selection, expansion,
simulation, and backpropagation. Each phase plays a critical role in balancing exploration and
exploitation while iteratively refining the policy.

We formulate the web agent execution as tree search over web-pages. The state is represented as
described in Appendix A and consist of the summary of the agent’s history and the DOM tree of
the current web-page. Unlike board games, such as Chess or Go Silver et al. (2017b) the complex
web-agent action space we use is open-format and variable. Instead we will use the base model as an
action-proposal distribution and sample a fixed amount of possible actions at each node (web-page).
Once we select and execute an action in the browser we traverse the next web-page, which together
with the updated history becomes the new node.

5.1.1 ACTION SELECTION WITH AI PROCESS SUPERVISION

The selection phase uses the Upper Confidence Bound (UCB1) formulation of MCTS also used by
Hao et al. (2023) to select nodes which aims to balance exploration and exploitation. With some
abuse of notation we will also denote the agent state with ht. We consider the value function Q(ht,a)
which represents the estimated value (chance of success) represents the estimated value of taking
action a in the state ht. At each new node ht we sample K proposal actions from the base model
a1t , . . . ,a

K
t . We initialize all values Q(ht,a

i
t), i = 1, . . . ,K to zero. The web-based environment

does not provide intermediate rewards to guide the search, so we incorporate AI-based critique to
provide process supervision at the step level to guide the exploration process. We use the base model
to produce a feedback score for each action by asking it to rank the generated actions by its perceived
utility in helping the agent complete the user task.

We query the feedback model for multiple iterations, each time removing the best action selected
from the previous iteration from the list, until we have a full ranking of all actions. The full AI
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Figure 2: The policy proposes K actions at every step during inference time search. The critic, also
initialized as the same base LLM model used by the policy, ranks the actions proposed by the policy.
This ranking is used to guide node selection after expansion and used to construct preference pairs
during policy training.

feedback process is demonstrated in Figure 2. After the initial selection, we select the actions to
explore based on the standard MCTS UCB1 formulation:

a∗t = arg max
a1
t ,...,a

K
t

[
Q(ht,a) + cexp ·

√
logN(ht)

1 +N(ht+1)

]
, (6)

where N(ht) is the visitation frequency of state ht, and cexp is an exploration constant. For each
rollout added to the tree, we start at the root node and follow the child states that maximize the UCB1
score until we reach a leaf node. This process is repeated for each tree/prompt in the batch.

5.1.2 EXPANSION AND BACKTRACKING

Based on the preceding section, we select and execute an action in the browser environment to reach
a new node (page). Beginning from the selected state node’s trace, we roll out the trajectory using the
current policy πθ until a terminal state is reached. The environment returns a reward at the end of the
trajectory, R, where R = 1 if the agent was successful and R = 0 otherwise. We then backpropagate
this reward by updating the values of each node bottom up from the leaf node to the root as follows:

Q(ht,a
i
t)←

Q(ht,a
i
t)N(ht,a

i
t) +R

N(ht,ait) + 1

N(ht,a
i
t)← N(ht,a

i
t) + 1

(7)

Each state node tracks two values: Q(ht,a
i
t), the average reward for passing through state ht and

choosing action ait, and N(ht,a
i
t), the number of times this state action pair was visited during search

(and N(ht) =
∑K

i=1 N(ht,a
i
t)). The backpropogation updates correctly maintain these values.

5.2 IMPROVING ZERO-SHOT PERFORMANCE WITH REINFORCEMENT LEARNING

Training large foundation models with offline Snell et al. (2022) or off-policy Chebotar et al. (2023)
reinforcement learning at scale has still remained challenging. At the same time online (on-policy)
reinforcement learning Stiennon et al. (2022); Ouyang et al. (2022) is not scalable to real interactive
environments. Instead, we follow a line of recent works, which apply the DPO algorithm Rafailov
et al. (2023; 2024) at the step level in multi-step reasoning problems in mathematical domains Xie
et al. (2024); Hwang et al. (2024); Chen et al. (2024); Lai et al. (2024b); Lu et al. (2024); Setlur et al.
(2024b); Zhang et al. (2024f). Our approach is most similar to Xie et al. (2024); Chen et al. (2024);
Zhang et al. (2024f) who also use the branching nature of tree search to produce step-level preference
pairs. We will also use this approach in our setting due to its simplicity, scalability and prior success
in smaller scale (non-interactive) reasoning applications.

We will generate a dataset of preference pairs P = {ht,a
w
t ,a

l
t} where we make sure both actions

were explored. We then optimize the DPO objective in Eq. 4 on the node level. We will leverage a
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Algorithm 1 MCTS Guided Direct Preference Optimization

Input: πθ0 : initial LLM policy, DT : dataset of tasks the agent must complete in the environment,
N : number of iterations, B: number of samples per iteration, T : MCTS tree depth, B: replay
buffer, θthreshold: value threshold in (9), K: number of actions to sample for MCTS
Output: πθN , the trained LLM policy
for i = 1 to N do

πref ← πθi , πθi ← πθi−1

Sample a batch of B tasks from DT

for each task in batch do
Initialize the root node h0

for t = 1 to T do
Selection: Traverse tree from the root node to a leaf node using tree policy (UCB1; 6)
Trajectory Rollout: From the selected node’s trace, roll out the trajectory using

πθi until a terminal state is reached
Backpropagation: Backpropagate the value estimate bottom-up (7)

end for
Collect trajectories from rollouts and store them in replay buffer B

end for
Construct preference pairs DP = {(ht,a

w
t ,a

l
t)}T−1

t=1 where ht ∼ DP . For each node at step
level t, compare each pair of child nodes, and construct the pair of generated actions (aw,al) if the
values of taking the action, |Q(ht,a

w)−Q(ht,a
l)| > θthreshold, where Q(ht,a

w) and Q(ht,a
l)

are computed using (9)
Optimize LLM policy πθi using DPO objective in Eq. (4) with DP and πref

end for

theoretical result below to guide the construction of these preferences. We can make a number of
modifications to Theorem 6.1 from Setlur et al. (2024b) to incorporate the interactive nature of the
web environment dynamics to obtain the following result:
Theorem 1. Consider a policy that optimizes the objective in Eq. 2 on trajectories generated by
πref and that at each node ht we have preferences generated accordingly to p(awt ≻ alt|ht) ∝
σ(Q(ht,a

w
t )−Q(ht,a

l
t)), then the policy which optimizes the DPO objective in Eq. 4 is identical

to the optimal RL policy
π∗(a|ht) ∝ πref(a|ht) exp (Q(ht,a)/β) (8)

Proof. The proof follows directly from the proof of Theorem 6.1 in Setlur et al. (2024b) and the
control as inference arguments in Rafailov et al. (2024); Levine (2018).

That is, we can approximate the optimal RL policy if we generate preferences under the optimal
value function (or an approximation thereof). Since the outcome success provides limited supervision
we also incorporate process supervision through the AI feedback as outlined in Section 5.1.1. We
interpret the ranking of possible actions by the model to be driven by an implicit value function.
Similar semantics was used in Koh et al. (2024), where GPT-4 was used as a zero-shot value function,
while here we ask the model to instead reason over the given potential actions and provide rankings
instead. This self-rewarding approach has shown promise in the RLHF setting Yuan et al. (2024) and
we utilize it for our agent setting as well. Under this formulation, we compute the state-action value
as an average:

Q(ht,a
i
t) = αQ̃(ht,a

i
t) + (1− α)Q̂(ht,a

i
t) (9)

where Q̃(ht,a
i
t) is the empirical value estimated through MCTS backpropagation and Q̂(ht,a

i
t) is

a value estimate based on the ranking of the action ait by the process supervision AI model. We
then create preferences over pairs of actions which are above a certain value threshold |Q(ht,a

w
t )−

Q(ht,a
l
t)| ≥ θthreshold. The full outline of our RL approach is shown in Algorithm 1.

5.3 FULL WEBSHOP RESULTS

The full range of results and baselines is shown in Figure 1. We see that equipping the agent with
search capabilities at test time significantly boost success rates from 28.6% to 48.4% when using
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Figure 3: Success rate of different approaches on OpenTable. All models unless otherwise stated are
based on LLaMA-3-70B-Instruct Touvron et al. (2023). Using DPO and RFT with MCTS further
improves performance from 18.6% to 71.8% and 84.3% respectively. We show that Agent Q in
itself achieves 81.7% and Agent Q + MCTS significantly outperforms all other techniques, with a
performance of 95.4% on OpenTable.

MCTS on top of the base xLAM-v0.1-r model, approaching close to the average human performance
of 50.0% and significantly out-performing the zero-shot performance of the DPO model trained
with outcome supervision. We further fine-tune the base model using the approach outlined in
Algorithm 1, which yields an improvement of 0.9% over the base DPO model. Using MCTS on top
of the trained Agent Q model further improves performance to 50.5% slightly out-performing the
average human success rates. We find that the ability to search at test time is a significant paradigm
shift from zero-shot agents, even with significant RL training. Furthermore, while dense-level
supervision improves over purely outcome-based one, the improvement is modest on WebShop. This
is because the environment requires relatively short trajectories, and the model is capable to learn
credit assignment purely from outcome supervision. We will further explore more complex real world
environment, which requires longer-range credit assignment.

6 SCALING TO REAL WORLD WEBSITES

In this section we will investigate scaling the Agent Q framework to real use cases on live websites, in
particular bookings on OpenTable. We carried out initial experiments with the xLAM-v0.1-r model,
which proved to weak for the task achieving an initial success rate of 0.0%. Instead we shifted to
the LLaMa 70B Instruct model, which was able to achieve some non-trivial initial success. For
description of our real-world environment, consult Appendix B.

The base xLAM-v0.1-r model achieves a success rate of 0.0%, largely from failing to follow instruc-
tions for the general web navigation instructions used for live websites, contrary to the simplified
observation and action space used in WebShop. We instead initialize the base policy with the LLaMa-
3 70B Instruct model, which achieves a zero-shot success rate of 18.6%. We do a single round of
RFT on 600 successful trajectories which improves the success rate to 67.2% already out-performing
the the GPT-4o model zero-shot performance with a success rate of 62.6%. For all other baselines we
adopt the RFT model as the reference policy, due to the relatively low success rate of original LLaMa
3 70B Instruct model.

In this environment, training with outcome-supervision only DPO further improves performance by
4.6% to 71.8% but significantly under-performs the full Agent Q pipeline which achieves a zero-shot
success rate of 81.7% We hypothesizes that this is due to the fact that OpenTable is a significantly
more challenging environment, which requires almost twice as many steps to complete as WebShop,
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so the agent benefits from fine-grained supervision and credit assignment. We further ablate the role
of the intermediate AI feedback process supervision during training as outlined in Eq. 9 and use
MCTS with online Q values computed from outcome rewards only. This setting still outperforms
training with trajectory-level DPO (75.2% versus 71.8%) likely due to the more fine-grained credit
assignment that the branching tree search provides to the agent. However, zero-shot performance
is still meaningfully worse than using intermediate process-level supervision and the full Agent Q
achieves 6.5% higher success rate at 81.7%.

Similar to the WebShop experiment we see a step level increase in capability from allowing the
model to search at inference time, with the base RFT model achieving 84.3% success with MCTS,
outperforming the Agent Q zero-shot performance of 81.7% success. However, if we carry out
additional MCTS search using the Agent Q model as the base policy we achieve a significant 95.4%
success rate.

7 DISCUSSION

In this work we developed algorithms for autonomous improvement of web-agents with limited
human supervision. While most prior works build frameworks around existing models without
additional training, we specifically seek to fine-tune pre-trained models for web navigation tasks
based on synthetic reasoning and search data. While we achieve significant improvement in model
capabilities on our target domain, many research questions remain.

Design of reasoning algorithms. The core challenge for our web agents is the weak reasoning
capabilities, which limit the agent’s exploration and search strategy. In our approach we used process-
level supervision from a separate critic model, which we prompt to rank possible agent actions. This
is in contrast to works in mathematical reasoning where PRMs are usually trained to classify the
correctness of individual steps Lightman et al. (2023), while other agent works Koh et al. (2024)
have prompted models as zero-shot value functions. Furthermore, while we spent significant effort in
training the agent policy, we maintain a frozen critic, which would likely also benefit from additional
fine-tuning. We defer exploration of these design choices to further work.

Choice of search algorithm. We used MCTS search due to the approach’s prior success in mathemat-
ical and code reasoning tasks. However, agent models executing MCTS on live environments might
require significant number of risky interactions and a different search strategy might be more suitable.
Recent works such as Lehnert et al. (2024); Gandhi et al. (2024) have even suggested directly learning
to optimally search and explore in reasoning tasks using meta-reinforcement learning. We believe
this is a promising research direction for autonomous agents, which we will pursue in further work.

Discrepancy between zero-shot vs search results. Similar to some recent works that focus on code
and reasoning, we observe significant gap between zero-shot agent performance and performance of
the agent equipped with search capabilities Snell et al. (2024); Brown et al. (2024). Investigating
these trade-offs at scale and the potential effect of different search/optimization approaches.

Online safety and interaction. The design of agent Q allows for largely autonomous exploration,
self-evaluation and improvement with limited human intervention. However, the agent might make a
significant number of mistakes in it’s search process which might be difficult to fix/reverse, especially
for safety-critical online transactions, such as communications/email, payments, filings etc. This
limits the scope of websites that Agent Q can be safely deployed and we might require additional
safety critics and human-in-the-loop training setups.
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Figure 4: We provide the following input format to the Agent, consisting of the system prompt,
execution history, the current observation as a DOM representation, and the user query containing the
goal. We divide our Agent output format into an overall step-by-step plan, thought, a command, and
a status code.

A AGENT FORMULATION

We consider a general POMDP setup (O,S,A, T,R, µ0, γ) where O denotes the observation space,
S the unobserved state space, A the action space, T (st+1|st,at) the transition distribution (in this
case the dynamics of a web browser), R(s,a) the reward function (in this work we use sparse rewards
of 1/0 representing success/failure), µ0(s0) the initial state distribution, and γ the discount factor,
which we set to 1. A POMDP is the most suitable framework to model web interactions for several
reasons - first novel environments, which the agent is unfamiliar with require exploration in order
to locate the task objective, consistent with the meta-reinforcement learning as task inference view
Humplik et al. (2019). Moreover, the real web is dynamic, which creates partial observability of
the current state each time the agent is deployed - i.e. it does not a priori know current booking
availability before attempting to do it. We will outline the main parts of our web agent below.

The agent observation ot ∈ O are commands/information given by the user and the web browser.
The first observation o1 is a user text instruction, such as

”Book reservation for restaurant Cecconi’s on OpenTable for 4 people on May 22 2024 at 7:00 PM”

for example and a browser home page. Subsequent observations consist of web pages from the
browser, represented as a HTML DOM format. Occasionally for some tasks the agent might ask for
confirmation/feedback from the user, which then also becomes part of the observation.

The agent actions at ∈ A are composite, based on agent history ht. Our base approach is a ReAct
agent Yao et al. (2023b) with a preliminary planning step (PlanReAct) Liu et al. (2023) with few
additional components.

• Planning For the first action after the initial observation we leverage the base LLM’s
planning capabilities Huang et al. (2022a) and prompt the agent to generate a plan aplan

1 ∼
π(aplan

1 |h1) of sequential steps to execute in language.

• Reasoning Subsequently all actions consist of a thought action atht
t ∼ π(atht

t |ht), which is
reasoning step Wei et al. (2022).
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• Environment action Next we generate the browser interaction command aenv
t ∼

π(aenv
t |ht,a

tht
t ), which consists of a finite set of options like ”CLICK [ELEMENT ID]”,

”SCROLL”, ”TYPE [CONTENT]” or ”ASK USER [CONTENT]” etc.. This is the only part
of the action generation, which interacts with the environment.

• Explanation action After the environment interaction action has been generated, we addi-
tional prompt the model for an explanation action aexpl

t ∼ π(aexpl
t |ht,a

tht
t ,aenv

t ).

We denote the step action at as a tuple of plan, thought, environment and explanation actions for the
first step and thought, environment and explanation actions for subsequent steps. When optimizing
models we consider the joint likelihood

log π(a1|h1) = log π(aexpl
1 |h1,a

env
1 ,atht

1 ,aplan
1 ) + log π(aenv

1 |h1,a
tht
1 ,aplan

1 )+

log π(atht
1 |h1,a

plan
1 ) + log π(aplan

1 |h1) (10)

for the initial action and

log π(at|ht) = log π(aexpl
t |ht,a

env
t ,atht

t ) + log π(aenv
t |ht,a

tht
t ) + log π(atht

t |ht)

for subsequent actions, unlike some prior works Zhai et al. (2024), which down-weight the reasoning
likelihood.

The agent state is the current state of the web, which may mot be observable. In this POMDP
formulation we also need to build an agent memory component ht. Prior works have used the entire
trajectory of observations and actions, however HTML DOMs can be hundred of thousands of tokens
long. Moreover realistic web-tasks can require many more interactions than static benchmarks such
as WebShop Yao et al. (2022) and WebArena Zhou et al. (2024b), which most prior works use. This
makes it impractical to use full web trajectories due to limited context windows, potential out-of-
distribution issues and practical inference speed and cost. Instead, we build the history representation
of the agent as ht = (a1, . . . ,at−1,ot). That is, the agent history consists of the actions generated
so far and the current browser state. With some abuse of notation we will also refer to this as the
agent state. Even though only the environment action is used for interacting with the browser, we
construct the agent thought and explanation actions to act as a form of inner monologue Huang et al.
(2022b) and adequately represent its state and intentions. This allows us to use a significantly more
compact history representation. We should note that, while only the environment action affects the
browser state, the planning, reasoning and explanation components affect subsequent decisions due
to conditioning. Because of this reason, when we optimize the agent, we compute likelihoods over
the composite action.
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Figure 5: At the end of a trajectory, a GPT-4-V evaluator is called to provide feedback on the agent’s
performance given the final observation and action history to determine the success score. The model
is prompted with a condensed execution history of the trajectory and the screenshot of the final state.
The success metric is a binary 0/1 value.

B OPENTABLE ENVIRONMENT

In OpenTable, the agent is tasked with booking a restaurant reservation for a user. The agent must
find a restaurant page on the OpenTable site, look for a reservation at a certain date and time, choose
seating options that align with a user’s preference and submit the user contact information to complete
the task successfully. Since OpenTable is a live environment and is difficult to programatically
measure metrics for, we use a language model, GPT-4-V to collect rewards for each trajectory,
based on the following metrics: (1) date and time set correctly, (2) party size set correctly, (3) user
information entered correctly, and (4) clicked complete reservation. The task is marked as completed
if each of the above constraints are satisfied. The outcome supervision setup is shown in Figure
5. We experimented with using LLaMa 70B for outcome supervision as well, but discovered that
vision capabilities significantly improve the success classification accuracy (as measured by human
validation). At the time of writing no open source vision-language model of sufficient capability was
available, hence we opted to use GPT-4-V. We believe that as more open-source multi-modal models
become available we can switch to a fully self-supervised pipeline.

To generate queries for the OpenTable benchmark dataset, we programatically generate a diverse set
of user queries by combining the restaurant name, desired date and time, and user information.

Navigating on live websites pose a wide variety of challenges. For example, consider that the user
specifies a restaurant in a different city than the location the browser is initialized in, the model will
have to take extra steps to find the restaurant. Further, if the exact user requested date and time are
not available, the model may have to choose the closest available reservation slot. Lastly, if there are
preferences, such as indoor or outdoor seating options that the model is presented with, the desired
behavior is to interact with the user to determine the best course of action. OpenTable presents a
complex set of challenges for web navigation agents; the number of steps required to complete the
task is on average 13.9 steps, over double the average number of steps for Webshop, 6.8.

For the observation space for this environment, we design an intermediate state representation that
crawls the raw HTML content of a website to retrieve relevant visual components, and highlight
interactive elements to the model. The agent is allowed the actions, ”CLICK [ID]”, ”GOTO [URL]”,
”TYPE [ID] [TEXT]”, ”SUBMIT [ID]”, ”CLEAR [ID]”, ”SCROLL [UP/DOWN]”, and ”ASK USER
HELP”. For OpenTable experiments, we use the LLaMA-3-70B-Instruct model as the initial policy.
We find that the superior reasoning abilities of this class of model is required for effective task
completion, which is necessary to produce the diverse success and failure trajectories required to
effectively improve the policy.
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