
Under review as a conference paper at ICLR 2023

HYPERBOLIC BINARY NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Binary Neural Network (BNN) converts the full-precision weights and activations
to the extreme 1-bit counterparts, which is especially suitable to be deployed on
lightweight mobile devices. Neural network binarization is usually formulated
as a constrained optimization problem, which restricts its optimized potential. In
this paper, we introduce the dynamic exponential map that converts a constrained
problem in the Riemannian manifold into an unconstrained one in the Euclidean
space. Specifically, we propose a Hyperbolic Binary Neural Network (HBNN)
by representing the parameter vector in the Euclidean space as the one in the
hyperbolic space, which would enable us to optimize the parameter in an uncon-
strained space. By analyzing the parameterized representation, we present that
the dynamic exponential map is a diffeomorphism in the Poincaré ball. Theo-
retically, this property will not create extra saddle points or local minima in the
Poincaré ball, which also explains the good performance of the HBNN. Experi-
ments on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGs-
mall, ResNet18, and ResNet34 demonstrate the superiorities of our HBNN over
existing state-of-the-art methods.

1 INTRODUCTION

Deep Neural Networks (DNNs) have greatly succeeded in various computer vision fields such as
image classification (Krizhevsky et al., 2012; He et al., 2016), object detection (Redmon et al., 2016;
He et al., 2017), semantic segmentation (Long et al., 2015; Noh et al., 2015), etc. However, such
success is greatly attributed to the massive parameters and computational complexity of DNNs,
which limits the deployment of DNNs to lightweight mobile devices. To address this problem,
many model-based compression methods are being proposed, mainly including pruning (Ding et al.,
2019b; Lin et al., 2020a) and quantization (Banner et al., 2018; Helwegen et al., 2019).

Quantization seems to be a better and more general choice for resource-constrained and low-power
devices than pruning (Chen et al., 2021). Specifically, quantization converts the full-precision
weights and activations into low-precision counterparts. In the extreme case, neural network bi-
narization restricts its weights and activations to two possible discrete values (−1 or +1), which
brings two benefits: (a) 32× reduction in memory than the corresponding full-precision version; (b)
the multiply-accumulation operation can be replaced with the efficient xnor and bitcount operations.

Neural network binarization is always formulated as a constrained optimization problem depending
on the dataset D = {xi,yi}mi=1 and the set of all possible binarized solutions X ⊂ Rn:

min
w∈X

L(w;D) := 1

m

m∑
i=1

L (w; (xi,yi)) , (1)

where w is the n dimensional parameter vector and L is the loss function (e.g., cross-entropy loss).
Based on a mirror descent framework (Bubeck et al., 2015), MD (Ajanthan et al., 2021) converts the
constrained problem into an unconstrained one via a mapping P : Rn → X such that

min
w̃∈Rn

L(P (w̃);D). (2)

And then P (w̃) ∈ X is not binarized to a discrete set Bn = {−1,+1}n until the end of training.
In particular, MD (Ajanthan et al., 2021) requires the constrained space to be convex and compact
when P is defined as a mirror map (convex function).

1

Under review as a conference paper at ICLR 2023

In this paper, we extend the constrained optimization problem of binarization from the constraint
set X to a Riemannian manifold M. In the context of a connected manifold, we consider the
transformation of a constrained optimization problem into an unconstrained one:

Original problem: min
w∈M

L(w;D) Unconstrained problem: min
w̃∈Rn

L(φ(w̃);D). (3)

In this way, we replace the mirror map P with the Riemannian exponential map φ : Rn →M (Pe-
tersen, 2006) that is a differentiable map from the tangent space to a connected manifold. Thus, the
parameterized representation φ(w̃) also acts the metric onM, and performs Riemannian gradient
descent on the original optimization problem.

Motivation. We note that the length of the binarized parameter vector in a layer is fixed, which
is only related to the dimension n of the parameter vector. Consequently, the binarized parameter
vector is constantly updated on a ball with the radius |Bn|. Following such properties, we consider
the connected manifold as the Poincaré ball (Ganea et al., 2018a). Then the constrained optimization
problem of neural network binarization on the hyperbolic space seems reasonable and helpful.

The main contributions of this paper are summarized as:

1. By introducing the dynamic exponential map, we provide a Riemannian geometry frame-
work to formulate neural network binarization as an unconstrained optimization problem.
Specifically, we propose a Hyperbolic Binary Neural Network (HBNN) that represents the
parameter vector in the Euclidean space as the one in the hyperbolic space, which would
enable us to optimize the parameter in an unconstrained space.

2. Theoretically, the dynamic exponential map is a diffeomorphism in the Poincaré ball, and
will not add extra saddle points or local minima, which seems to indicate that the good
performance of the HBNN is benefited from the hyperbolic representation.

3. Practically, experiments on CIFAR10, CIFAR100, and ImageNet classification datasets
with VGGsmall, ResNet18, and ResNet34 demonstrate the superiorities of our HBNN over
existing state-of-the-art methods.

2 PRELIMINARIES

Here we present background knowledge about the Riemannian geometry and BNNs.

2.1 RIEMANNIAN GEOMETRY

We briefly introduce the basic concepts of Riemannian geometry used in this work. For more in-
depth propositions, see (Petersen, 2006; Guggenheimer, 2012).

Tangent Space. For an n-dimensional connected manifold M, the tangent space at a point p ∈
M is defined as TpM. This is a real vector space that can be described as a high-dimensional
generalization of a tangent plane. And such a tangent space exists for all points p ∈M. In this way,
the description of tangent spaces is consistent with the Euclidean space, i.e., TpM∼= Rn.

Riemannian Manifold. Riemannian manifolds endow with a smooth metric gp : TpM×TpM→ R
varying smoothly with p, which allows us to construct a distance dg : M×M → R. While we
describe a Riemannian manifold, the Riemannian metric is always equipped by default, i.e., (M, g).

Geodesics. Given a complete Riemannian manifold, a smooth path of minimal length between
two points on M is called a geodesic, which is defined as γp,v(t) : t ∈ [0, 1] → M such that
γp,v(0) = p, γ′p,v(0) = v for v ∈ TpM. It is the generalization of a straight line in Euclidean space.

Exponential Map. The Riemannian exponential map is defined as expp : TpM → M that maps
rays starting at the origin in the tangent space TpM to geodesics on M. Given a geodesic, the
range of its parameter t is [0, 1], thus expp(tv) := γp,v(t). Specifically, the distance on the manifold
between a point p and the exponential map expp(v) is dg(p, expp(v)) = ‖v‖g .

Based on the above exponential map expp : TpM(∼= Rn) → M, we consider a parameter vector
w̃ ∈ Rn, and achieve the parameterized representation of the parameter vector w = expp(w̃) ∈M.

2

Under review as a conference paper at ICLR 2023

2.2 BINARY NEURAL NETWORK

Now we detail the mechanism of BNNs, and show how we compute the binarization and gradients.

Forward Pass. For the inference phase of a BNN, the binarization function can be simply expressed
as the deterministic form (Courbariaux et al., 2016; Rastegari et al., 2016):

xb = sign(x) =

{
+1 if x ≥ 0,

−1 otherwise,
(4)

where x can be the weights w or activations a.

Backward Pass. In back-propagation, the gradient will suffer from either infinite or zero while
propagating through the binarization function. (Hinton et al., 2012; Bengio et al., 2013) proposed
the Straight-Through Estimator to solve this problem. Then an estimator of the gradient with respect
to binarized weights can be simply approximated by

∂L
∂w

=
∂L
∂wb

· ∂w
b

∂w
, where

∂wb

∂w
:=

{
1 if |w| ≤ 1
0 otherwise . (5)

On the other hand, base on the polynomial function (Liu et al., 2020), an estimator of the gradient
with respect to binarized activations can be written as

∂L
∂a

=
∂L
∂ab
· ∂a

b

∂a
, where

∂ab

∂a
:=

2 + 2a, if − 1 ≤ a < 0

2− 2a, if 0 ≤ a ≤ 1

0, otherwise
. (6)

Activation Function. In a BNN, the activation functions like ReLU are not used, because the
binarized activation values through ReLU will all become 1. One usually uses Hardtanh instead.

Except for the above parts, the mechanism of BNN is the same as that of general DNN. Therefore,
other parts will not be expanded here.

3 HYPERBOLIC BINARY NEURAL NETWORK

3.1 THE POINCARÉ BALL

The hyperbolic space has several isometric models (Anderson, 2006). According to our discussion
in Section 1, the binarized parameter vector is always on the ball with a fixed radius. Therefore, we
choose the Poincaré ball model followed by (Nickel & Kiela, 2017; Ganea et al., 2018b).

We denote an n-dimensional Poincaré ball with radius 1√
r

as Dnr :=
{
x ∈ Rn | r‖x‖2 < 1

}
. And

the equipped hyperbolic metric is:

gHx = λ2xg
E , where λx :=

2

1− r‖x‖2
. (7)

In particular, gE is the Euclidean metric, i.e., the identity matrix. For r > 0, Dnr denotes the
open ball (Poincaré ball). While the radius r equals to zero, the Poincaré ball Dnr recovers the
Euclidean space, .i.e., Dn0 = Rn. Similarly, we can denote an n-dimensional sphere with radius 1√

r

as Snr :=
{
x ∈ Rn | r‖x‖2 = 1

}
that is expressed by the boundary of the Poincaré ball ∂Dnr .

3.2 PARAMETERIZED REPRESENTATION FOR THE PARAMETERS

In order to incorporate the hyperbolic space into the unconstrained optimization problem of neural
network binarization, we consider the original problem based on Eq.(3):

Original problem: min
w∈Dn

r

L(w;D) Unconstrained problem: min
w̃∈Rn

L(φ(w̃);D). (8)

In particular, we define the Riemannian manifold as the Poincaré ballM := Dnr , then the Rieman-
nian exponential map can be denoted as φ : TpDnr (∼= Rn) → Dnr . And we transform w̃ by the
exponential map and express φ(w̃) as the parameterized representation.

3

Under review as a conference paper at ICLR 2023

Lemma 1 Given a vector v ∈ TpDnr (∼= Rn)\{0} and a point p ∈ Dnr , the exponential map φ :
TpDnr (∼= Rn)→ Dnr can be written in the Poincaré ball with the radius 1√

r
as:

φp(v) := p⊕
(
tanh

(√
r
λp‖v‖

2

)
v√
r‖v‖

)
, ∀r ∈ R+, p ∈ Dnr , v ∈ TpDnr (∼= Rn)\{0}. (9)

Proof. The proofs can be found in (Ganea et al., 2018b). �

𝑝
𝑣

𝜙𝑝(𝑣)

𝔻𝑟
𝑛

𝑇𝑝𝔻𝑟
𝑛

Figure 1: The exponential map from the tan-
gent space TpDnr to the Poincaré ball Dnr .

Geometrically, the exponential map starts from a
point p and takes v as the initial tangent vector on the
geodesic, which satisfies that the geodesic distance
from the mapped point φ(v) to the point p is ‖v‖g .
Then the exponential map is the result of adding p
to ‖v‖g as shown in Figure 1. Note that the notation
⊕ used here is the addition formalism for hyperbolic
geometry instead of traditional Euclidean geometry.
We can express the non-associative algebra for hy-
perbolic geometry in the framework of gyrovector
spaces (Ungar, 2001; 2008).

Since the exponential map φp is limited by p, the
parameter vector w = φp(w̃) can not be fully rep-
resented. Consequently, we introduce the dynamic
exponential map to obtain a more fine-gained repre-
sentation by iterating a series of p1, p2, · · · , pt while
learning w̃. The entire process of the parameterized
representation of HBNN with the dynamic exponen-
tial map is shown in Figure 2.

Definition 1 In the Poincaré ball Dnr , the addition
of two points p and q is defined as:

p⊕ q :=
(
1 + 2r〈p, q〉+ r‖q‖2

)
p+

(
1− r‖p‖2

)
q

1 + 2r〈p, q〉+ r2‖p‖2‖q‖2
, ∀r ∈ R+, p, q ∈ Dnr . (10)

Based on the above preparations, we can give the unconstrained problem in the HBNN unifying
Eq.(4) and Eq.(8) as:

min
w̃∈Rn,p∈Dn

r

L(sign (φp(w̃)) ;D)

= min
w̃∈Rn,p∈Dn

r

L
(
sign

(
p⊕

(
tanh

(√
r
λp‖w̃‖

2

)
w̃√
r‖w̃‖

))
;D
)
.

(11)

In this way, this unconstrained problem is the multi-objective optimization. For the point p, it is
constrained on the Poincaré ball, and further constrains the dynamic exponential map. However, for
the parameter vector w̃, it is unconstrained. Given the radius r, our HBNN requires two variables p
and w̃ to be set and updated during the back-propagation process.

3.3 BACKWARD MODE AND GRADIENT COMPUTATION

In order to fully achieve our HBNN in the deep learning framework, we must efficiently compute
gradients for the problem of Eq.(11). Intuitively, we can first utilize the inverse of the exponential
map to represent w back to w̃. Then we update w̃ in the Euclidean space and p in the Poincaré ball,
respectively. We can denote the logarithmic map as φ−1 : Dnr → TpDnr (∼= Rn).

Lemma 2 Given two points p and q (p 6= q), the logarithmic map φ−1 : Dnr → TpDnr (∼= Rn) can
be written in the Poincaré ball with the radius 1√

r
as:

φ−1p (q) :=
2√
rλp

tanh−1
(√
r ‖−p⊕ q‖

) −p⊕ q
‖−p⊕ q‖

, ∀r ∈ R+, p, q ∈ Dnr (p 6= q). (12)

4

Under review as a conference paper at ICLR 2023

x

y

z

Euclidean space

Hyperbolic space

Binarized space

sign

𝑤1
𝑤2

𝑤3
𝑤4

𝑤1

𝑤2

𝑤3

𝑤4

𝜙𝑝

𝜙𝑝1

𝑝1

𝑝2

𝜙𝑝2

𝜙𝑝
−1

𝑝𝑡

𝜙𝑝𝑡

x

y

z

Figure 2: The parameterized representation of HBNN with the dynamic exponential map that is iter-
ated via a series of p1, p2, · · · , pt. The weight of Euclidean space is first transformed into hyperbolic
space through the dynamic exponential map, and then transformed into binarized space.

Proof. The proofs can be found in (Ganea et al., 2018b). �

In particular, we can check the algebraic identity φ−1p (φp(v)) = v or φp(φ−1p (q)) = q satisfying the
closed-formula between the exponential and logarithmic map.

Recall that the Straight-Through Estimator ∂L/∂w = ∂L/∂ sign(w) holds when |w| ≤ 1 is sat-
isfied based on Eq.(5). Specifically, the parameter vector w := φp(w̃) ∈ Dnr naturally satisfies
the constraint of ‖w‖ < 1√

r
. If we change the bounds of Straight-Through Estimator a little bit

(1→ 1√
r

), then we can use ∂L/∂w = ∂L/∂ sign(w) directly, which is always guaranteed to hold.

Following the Straight-Through Estimator, we can compute the gradients in our HBNN:
∂L
∂w

=
∂L

∂φp(w̃)
=

∂L
∂ sign(φp(w̃))

=
∂L
∂w̃
· 1

φ′p(w̃)
=

∂L
∂φ−1p (w)

· 1

φ′p(φ
−1
p (w))

. (13)

For a learning rate η > 0, the update rule of the parameter vector in our HBNN can be written as

w̃t ← w̃t−1 − η
∂L

∂w̃t−1
wt ← wt−1 ⊕−η ⊗

(
∂L

∂w̃t−1
· 1

φ′p(φ
−1
p (wt−1))

)
. (14)

And w can also be written directly in the form of w̃:

wt ← φp

(
w̃t−1 − η

∂L
∂w̃t−1

)
. (15)

Similarly, the update rule of the point p can be written as

pt ← pt−1 ⊕−η ⊗
∂L
∂pt−1

, (16)

where the notation ⊗ is denoted as the multiplication formalism for hyperbolic geometry.

Definition 2 In the Poincaré ball Dnr , the scalar multiplication of the point p ∈ Dnr \{0} by c ∈ R
is defined as:

c⊗ p := (1/
√
r) tanh

(
c tanh−1(

√
r‖p‖)

) p

‖p‖
, ∀r ∈ R+, c ∈ R, p ∈ Dnr \{0}. (17)

5

Under review as a conference paper at ICLR 2023

4 METHOD ANALYSIS

4.1 THEORETICAL ANALYSIS

According to the Gauss’ lemma (Petersen, 2016), we know that the exponential map changes
the metric on the Poincaré ball around the point p into a new one with the square of the
distance near p. By summarizing Section 3, we realize that the constrained optimization
problem minw∈Dn

r
L(sign (w) ;D) via Euclidean descent accounts for the unconstrained one

minw̃∈Rn L(sign (φ(w̃)) ;D) through Riemannian gradient descent, which is equipped with a met-
ric on Dnr induced by φ. In particular, the parameterized representation of our HBNN using φ will
not add any saddle points or local minima when φ : TpDnr (∼= Rn)→ Dnr is a diffeomorphism.

Theorem 1 Given a connected and complete Riemannian manifold (M, g) and a point p ∈M, the
exponential map φ with respect to the largest convex open neighborhood of zero Xp ⊆ TpM is a
diffeomorphism.

Proof. The proofs can be found in(Anderson, 2006). �

Combined with Theorem 1, it seems that φ is indeed a diffeomorphism in the Poincaré ball Dnr .
However, the exponential map φ stops being a diffeomorphism on the boundary ∂Dnr .

Theorem 2 For the segment domain segp defined by

segp = {v ∈ TpDnr | φp(tv) : [0, 1]→ Dnr is a segment } ,

the exponential map φ is not a diffeomorphism on the open neighborhood V ∈ TpDnr containing a
point p in the cut locus C := φp(segp \Xp) where Xp ⊆ TpDnr is the largest radially convex open
neighborhood of zero.

Proof. According to the Hopf-Rinow thorem (Spiegel, 2016), we have Dnr = φp(segp). The rest of
the proof can refer to (Petersen, 2016), which gives the case of general manifolds. Obviously, the
case of the Poincaré ball is also fully applicable. �

Actually, for the Poincaré ball, Theorem 2 gives a more vivid conclusion that the set C at a point p is
the boundary of the Poincaré ball. Therefore, the parameterized representation via the exponential
map can add saddle points or local minima at these points on the boundary ∂Dnr .

4.2 METHOD COMPARISON AND EXPLANATION

HBNN vs. BNN. The improvement of our HBNN over the traditional BNN can be primarily at-
tributed to the parameterized representation via the dynamic exponential map. On the other hand,
this brings additional computational overhead to the training process. Based on Eq.(14) and Eq.(16),
we consider updating both w̃ and p, which doubles the trainable parameters at once. However, our
HBNN is not different from the BNN in the inference phase, because both w̃ and p are parameterized
to sign(w) = sign(φp(w̃)), which keeps the parameter amount constant.

HBNN vs. Mirror Descent. MD (Ajanthan et al., 2021) provided the mirror descent framework
mapping the variables from the unconstrained space to the quantized one. However, MD regards
neural network binarization as a single-objective optimization problem, while HBNN treats neural
network binarization as a multi-objective one. Consequently, the mirror map of MD can only be set
artificially, while the dynamic exponential map of our HBNN can be optimized via the derivative of
loss function with respect to p. In essence, we provide the new framework mapping the variables
from the unconstrained space to the Riemannian manifold. And HBNN also directly benefits from
the properties of hyperbolic spaces. As for the reason why the hyperbolic space is chosen, it is the
binarized parameter vector fits the hyperbolic space very well (refer to the discussion of Section 1
for details). On the other hand, MD is not fully binarized until the end of training. Specifically,
MD is more like relaxed quantization during the back-propagation. As a contrast, HBNN invariably
remains binary during either backward or forward pass.

6

Under review as a conference paper at ICLR 2023

Table 1: Top-1 classification accuracy results on CIFAR100 with ResNet18 w.r.t. different radii.

Parametr space (Dnr) Parametr space (∂Dnr)

Radius (r) mean ± std (%) Radius (r) mean ± std (%)

0.01 69.34 ± 0.15 0.01 69.24 ± 0.10

0.05 69.50 ± 0.10 0.05 69.31 ± 0.37

0.10 69.45 ± 0.09 0.10 68.96 ± 0.27

0.50 69.33 ± 0.19 0.50 69.16 ± 0.09

1.00 69.19 ± 0.21 1.00 69.47 ± 0.11

5.00 68.84 ± 0.33 5.00 69.01 ± 0.17

5 RELATED WORK

Optimization on Manifolds. Most optimization methods on manifolds have analogs in the Rie-
mannian form (Absil et al., 2009), which can be roughly divided into two categories: follow-
ing geodesics (Zhang & Sra, 2016) and following first-order approximations to geodesics (Lez-
cano Casado, 2019). Our proposed method utilizes the Riemannian exponential map that maps the
parameter vector onto geodesics and clearly belongs to the first category.

Parametrizations of BNNs. As the sign function used in BNNs is non-differentiable, some meth-
ods, including DoReFa (Zhou et al., 2016) and MD (Ajanthan et al., 2021), use the similar differ-
entiable function (tanh) for representation in training. Other methods (such as ReCU (Xu et al.,
2021b)) use the weight normalization (Salimans & Kingma, 2016; Huang et al., 2017) to achieve
the reparameterized representation of BNNs.

Hyperbolic Embeddings. In many machine learning fields (Sala et al., 2018; Ganea et al., 2018b),
hyperbolic embeddings outperformed Euclidean embeddings, which is attributed to the fact that
the hyperbolic space provides more powerful and meaningful geometrical representations than the
Euclidean space (Ganea et al., 2018a). For example in a tree structure, the Euclidean space with
infinite dimensions can not be embedded with arbitrary low distortion while the hyperbolic space
with only 2 dimensions can achieve this goal (Sala et al., 2018).

6 EXPERIMENTS

In this section, we design experiments to compare our HBNN trained from scratch with existing
state-of-the-art methods in classification tasks. Furthermore, we evaluate the performance of the pro-
posed method via CIFAR (Krizhevsky et al., 2009) and ImageNet (Krizhevsky et al., 2012) datasets.
All experiments are implemented on NVIDIA 3090Ti based on the framework of PyTorch. See
Appendix A, B and C for more details about compatibility, algorithm and visualization of HBNN.

Experimental Setup. For CIFAR datasets, our HBNNs are totally trained for 600 epochs with a
batch size of 256. We adopt SGD optimizer with momentum of 0.9 and a weight decay of 5e-4. For
ImageNet dataset, our HBNN is totally trained for 250 epochs with a batch size of 512. We adopt
SGD optimizer with momentum of 0.9 and a weight decay of 1e-4. In particular, we use an initial
learning rate of 0.1 and the cosine learning rate scheduler in CIFAR10/CIFAR100 and ImageNet.

6.1 ABLATION STUDY

CIFAR datasets. There are two CIFAR benchmarks consisting of natural color images with 32x32
pixels, respectively, 50k training and 10k test images. CIFAR10 consists of images organized into
10 classes and CIFAR100 into 100 classes. We adopt a standard data augmentation scheme (sym-
metric padding, random clipping and random flipping) that is widely used (Wang et al., 2021). We
normalize the images with the means of the channel and standard deviations in preprocessing.

7

Under review as a conference paper at ICLR 2023

Table 2: Top-1 classification accuracy results on CIFAR10 and CIFAR100 datasets with ResNet18
and VGGsmall. W/A denotes the bit-width of weights/activations.

Model Method
Bit-width

(W/A)
Acc.(%)

(CIFAR10)
Acc.(%)

(CIFAR100)

ResNet18

Full-precision 32/32 94.8 77.0
IR-Net (Qin et al., 2020) 1/1 91.5 64.5
RBNN (Lin et al., 2020b) 1/1 92.2 65.3

IR-Net+CMIM (Shang et al., 2022) 1/1 92.2 71.2
ReCU (Xu et al., 2021b) 1/1 92.8 -

HBNN (∂D1) 1/1 92.8 71.2
HBNN (D0.05) 1/1 93.0 71.6

BC (Courbariaux et al., 2015) 1/32 91.6 72.1
MD-softmax-s (Ajanthan et al., 2021) 1/32 93.3 72.2

HBNN (D0.05) 1/32 94.8 74.8

VGGsmall

Full-precision 32/32 94.1 75.5
XNOR (Rastegari et al., 2016) 1/1 89.8 -

DoReFa (Zhou et al., 2016) 1/1 90.2 -
RAD (Ding et al., 2019a) 1/1 90.5 -

Proxy-BNN (He et al., 2020) 1/1 91.8 67.2
RBNN (Lin et al., 2020b) 1/1 91.3 67.4
DSQ (Gong et al., 2019) 1/1 91.7 -
SLB (Yang et al., 2020) 1/1 92.0 -
ReCU (Xu et al., 2021b) 1/1 92.2 -

RBNN+CMIM (Shang et al., 2022) 1/1 92.2 71.0
HBNN (∂D1) 1/1 92.8 72.2
HBNN (D0.05) 1/1 93.0 72.5

We first conduct a series of ablation studies of HBNN in CIFAR100 with the ResNet18 model.
Based on the two parameter spaces (Poincaré ball Dnr and the boundary of Poincaré ball ∂Dnr), we
adjust the different radii to determine the optimal radius using the classification accuracies at epoch
120. The mean top-1 accuracies (mean ± std) are reported in Table 1. Consequently, we have
r = 0.05 for the parameter space Dnr and r = 1 for the parameter space ∂Dnr , which will be used in
the following experiments. Although we choose the radius like this, the effect of the radius is very
small by considering the choice of random seeds. It seems that our HBNN has great robustness.

6.2 EXPERIMENTAL RESULTS

For ResNet18, we compare with IR-Net (Qin et al., 2020), RBNN (Lin et al., 2020b), IR-
Net+CMIM (Shang et al., 2022), ReCU (Xu et al., 2021b), BC (Courbariaux et al., 2015) and MD-
softmax-s (Ajanthan et al., 2021). For VGGsmall, our HBNN is compared with XNOR (Rastegari
et al., 2016), DoReFa (Zhou et al., 2016), RAD (Ding et al., 2019a), Proxy-BNN (He et al., 2020),
DSQ (Gong et al., 2019) and SLB (Yang et al., 2020), etc.

As shown in Table 2, HBNN always outperforms the existing state-of-the-art methods. In particular,
our HBNN (1-bit weights and 1-bit activations) achieves over 1.5% performance improvement with
VGGsmall architecture on CIFAR100 dataset, which even exceeds the methods of 1-bit weights and
32-bit activations with ResNet18 architecture.

For the 1/32 case, the training of HBNN on the boundary ∂Dr is unstable, which may be attributed
to the introduction of extra saddle points or local minima that causes the HBNN to get stuck in them.

8

Under review as a conference paper at ICLR 2023

Table 3: Top-1 and Top-5 classification accuracy results on ImageNet dataset with ResNet18 and
ResNet34. W/A denotes the bit-width of weights/activations.

Model Method
Bit-width

(W/A)
Acc.(%)
(Top-1)

Acc.(%)
(Top-5)

ResNet18

Full-precision 32/32 69.6 89.2
ABC-Net (Lin et al., 2017) 1/1 42.7 67.6

XNOR (Rastegari et al., 2016) 1/1 51.2 73.2
BiReal (Liu et al., 2020) 1/1 56.4 79.5
IR-Net (Qin et al., 2020) 1/1 58.1 80.0
RBNN (Lin et al., 2020b) 1/1 59.9 81.9

FDA-BNN (Xu et al., 2021a) 1/1 60.2 82.3
ReCU (Xu et al., 2021b) 1/1 61.0 82.6

RBNN+CMIM (Shang et al., 2022) 1/1 61.2 82.2
HBNN (∂D1) 1/1 61.5 83.3
HBNN (D0.05) 1/1 61.5 83.3

ResNet34

Full-precision 32/32 73.3 91.3
XNOR++ (Bulat & Tzimiropoulos, 2019) 1/1 57.1 79.9

LNS (Han et al., 2020) 1/1 59.4 81.7
BiReal (Liu et al., 2020) 1/1 62.2 83.9
IR-Net (Qin et al., 2020) 1/1 62.9 84.1
RBNN (Lin et al., 2020b) 1/1 63.1 84.4

RBNN+CMIM (Shang et al., 2022) 1/1 65.0 85.7
ReCU (Xu et al., 2021b) 1/1 65.1 85.8

HBNN (∂D1) 1/1 65.6 86.0
HBNN (D0.05) 1/1 65.7 86.2

ImageNet dataset. The ImageNet benchmark consists of 1.2 million high-resolution natural images,
where the validation set contains 50k images. These images are organized into 1000 categories of
objects for training, which are resized to 224x224 pixels before fed into the network. We follow
the standard data augmentation strategies, including random clips and horizontal flips (Wang et al.,
2021). Then we report our single-crop evaluation results using Top-1 and Top-5 accuracies.

For ResNet18, we compare with ABC-Net (Lin et al., 2017), XNOR (Rastegari et al., 2016),
BiReal (Liu et al., 2020) and FDA-BNN (Xu et al., 2021a), etc. For ResNet34, our HBNN is
compared with XNOR++ (Bulat & Tzimiropoulos, 2019) and LNS (Han et al., 2020), etc.

As shown in Table 3, HBNN continues to exceed the existing state-of-the-art methods in both top-1
and top-5 accuracies. Specifically, our proposed method achieves 0.6% Top-1 accuracy improve-
ment with ResNet34 architecture compared with ReCU method.

7 CONCLUSION

In this paper, we have introduced the Riemannian manifold framework for neural network binariza-
tion via the dynamic exponential map that is learned with the training iteration. Specifically, we
proposed a Hyperbolic Binary Neural Network (HBNN) by converting a constrained optimization
problem in the Poincaré ball into an unconstrained one in the Euclidean space. By analyzing the dy-
namic exponential map, we present that HBNN will not create extra saddle points or local minima
in the Poincaré ball. In the future, we will intend to focus more on the dynamic representation and
optimization of neural networks in the geometrical aspects.

9

Under review as a conference paper at ICLR 2023

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
In Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

Thalaiyasingam Ajanthan, Kartik Gupta, Philip Torr, Richad Hartley, and Puneet Dokania. Mirror
descent view for neural network quantization. In International Conference on Artificial Intelli-
gence and Statistics, pp. 2809–2817. PMLR, 2021.

James W Anderson. Hyperbolic geometry. Springer Science & Business Media, 2006.

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of
neural networks. Advances in neural information processing systems, 31, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends R© in Machine Learning, 8(3-4):231–357, 2015.

Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks. arXiv
preprint arXiv:1909.13863, 2019.

Jun Chen, Liang Liu, Yong Liu, and Xianfang Zeng. A learning framework for n-bit quantized
neural networks toward fpgas. IEEE Transactions on Neural Networks and Learning Systems, 32
(3):1067–1081, 2021. doi: 10.1109/TNNLS.2020.2980041.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing
systems, 28, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation distribution
for training binarized deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11408–11417, 2019a.

Xiaohan Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, Ji Liu, et al. Global sparse momentum
sgd for pruning very deep neural networks. Advances in Neural Information Processing Systems,
32, 2019b.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in
neural information processing systems, 31, 2018a.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learning
hierarchical embeddings. In International Conference on Machine Learning, pp. 1646–1655.
PMLR, 2018b.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and
Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4852–4861,
2019.

Heinrich W Guggenheimer. Differential geometry. Courier Corporation, 2012.

Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu, and Chang Xu. Training binary
neural networks through learning with noisy supervision. In International Conference on Machine
Learning, pp. 4017–4026. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

Under review as a conference paper at ICLR 2023

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Xiangyu He, Zitao Mo, Ke Cheng, Weixiang Xu, Qinghao Hu, Peisong Wang, Qingshan Liu, and
Jian Cheng. Proxybnn: Learning binarized neural networks via proxy matrices. In European
Conference on Computer Vision, pp. 223–241. Springer, 2020.

Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, and Roe-
land Nusselder. Latent weights do not exist: Rethinking binarized neural network optimization.
Advances in neural information processing systems, 32, 2019.

Geoffrey Hinton, Nitsh Srivastava, and Kevin Swersky. Neural networks for machine learning.
Coursera, video lectures, 264(1):2146–2153, 2012.

Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng Tao. Centered weight normaliza-
tion in accelerating training of deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2803–2811, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. Advances in
Neural Information Processing Systems, 32, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1529–1538, 2020a.

Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan Wang, Yongjian Wu, Feiyue Huang,
and Chia-Wen Lin. Rotated binary neural network. Advances in neural information processing
systems, 33:7474–7485, 2020b.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.
Advances in neural information processing systems, 30, 2017.

Zechun Liu, Wenhan Luo, Baoyuan Wu, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Binarizing deep network towards real-network performance. International Journal of Computer
Vision, 128(1):202–219, 2020.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
tions. Advances in neural information processing systems, 30, 2017.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for seman-
tic segmentation. In Proceedings of the IEEE international conference on computer vision, pp.
1520–1528, 2015.

Peter Petersen. Riemannian geometry, volume 171. Springer, 2006.

Peter Petersen. Riemannian metrics. In Riemannian Geometry, pp. 1–39. Springer, 2016.

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan
Song. Forward and backward information retention for accurate binary neural networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2250–
2259, 2020.

11

Under review as a conference paper at ICLR 2023

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International conference on machine learning, pp. 4460–4469. PMLR, 2018.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Yuzhang Shang, Dan Xu, Ziliang Zong, and Yan Yan. Network binarization via contrastive learning.
arXiv preprint arXiv:2207.02970, 2022.

Daniel Spiegel. The hopf-rinow theorem. Notes available online, 2016.

Abraham A Ungar. Hyperbolic trigonometry and its application in the poincaré ball model of hy-
perbolic geometry. Computers & Mathematics with Applications, 41(1-2):135–147, 2001.

Abraham Albert Ungar. A gyrovector space approach to hyperbolic geometry. Synthesis Lectures
on Mathematics and Statistics, 1(1):1–194, 2008.

Wenxiao Wang, Minghao Chen, Shuai Zhao, Long Chen, Jinming Hu, Haifeng Liu, Deng Cai,
Xiaofei He, and Wei Liu. Accelerate cnns from three dimensions: a comprehensive pruning
framework. In International Conference on Machine Learning, pp. 10717–10726. PMLR, 2021.

Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang. Learning frequency
domain approximation for binary neural networks. Advances in Neural Information Processing
Systems, 34:25553–25565, 2021a.

Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling Shao, Yue Gao, Yonghong Tian, and
Rongrong Ji. Recu: Reviving the dead weights in binary neural networks. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 5198–5208, 2021b.

Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao Xu, Dacheng Tao, and Chang Xu. Search-
ing for low-bit weights in quantized neural networks. Advances in neural information processing
systems, 33:4091–4102, 2020.

Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In Con-
ference on Learning Theory, pp. 1617–1638. PMLR, 2016.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

12

Under review as a conference paper at ICLR 2023

A COMPATIBILITY

In this section, we further evaluate the compatibility of HBNN. And we plug HBNN into IR-Net
and ReCU as a plug-and-play module, as shown in Table 4 and 5. By plugging our HBNN, the
corresponding methods both have improved the accuracies.

Table 4: Top-1 classification accuracy results on CIFAR10 dataset with ResNet18 and VGGsmall.
W/A denotes the bit-width of weights/activations.

Model Method
Bit-width

(W/A)
Acc.(%)

(CIFAR10)

ResNet18

Full-precision 32/32 94.8
IR-Net (Qin et al., 2020) 1/1 91.5

IR-Net+HBNN 1/1 91.9
ReCU (Xu et al., 2021b) 1/1 92.8

ReCU+HBNN 1/1 92.8

VGGsmall

Full-precision 32/32 94.1
IR-Net (Qin et al., 2020) 1/1 90.4

IR-Net+HBNN 1/1 92.4
ReCU (Xu et al., 2021b) 1/1 92.2

ReCU+HBNN 1/1 92.9

Table 5: Top-1 and Top-5 classification accuracy results on ImageNet dataset with ResNet18 and
ResNet34. W/A denotes the bit-width of weights/activations.

Model Method
Bit-width

(W/A)
Acc.(%)
(Top-1)

Acc.(%)
(Top-5)

ResNet18

Full-precision 32/32 69.6 89.2
IR-Net (Qin et al., 2020) 1/1 58.1 80.0

IR-Net+HBNN 1/1 60.9 82.9
ReCU (Xu et al., 2021b) 1/1 61.0 82.6

ReCU+HBNN 1/1 61.5 83.1

ResNet34

Full-precision 32/32 73.3 91.3
IR-Net (Qin et al., 2020) 1/1 62.9 84.1

IR-Net+HBNN 1/1 64.2 85.2
ReCU (Xu et al., 2021b) 1/1 65.1 85.8

ReCU+HBNN 1/1 65.8 86.2

13

Under review as a conference paper at ICLR 2023

B ALGORITHM

Algorithm 1 Forward and Backward Propagation of HBNN
Require: A minibatch of data samples D = {xi,yi}mi=1, current binary weight wb

k, latent full-
precision unconstrained weight w̃k, latent full-precision constrained weight wk, the dynamic
exponential map φp, and a learning rate η.

Ensure: Update w̃k, wk and p.
1: {Forward propagation}
2: for k = 1 to l − 1 do
3: Compute the weight in the hyperbolic space: wk ← φp(w̃k);
4: Binarize the weight: wb

k ← sign(wk);
5: Binarize the activation: abk−1 ← sign(ak−1);
6: Perform binary operation: ak ← XnorDotProduct(wb

k,a
b
k−1);

7: Perform Batch Normalization: ak ← BatchNorm(ak);
8: end for
9: Optimize the unconstrained problem with Eq.(11);

10: {Backward propagation}
11: Compute the gradient of the overall loss function, i.e., ∂L∂a , ∂L∂w̃ and ∂L

∂p , where the sign function
can be handled in Eq.(5) for the weight and Eq.(6) for activation;

12: {The parameters update}
13: Update the full-precision unconstrained weight: w̃t ← w̃t−1 − η ∂L

∂w̃t−1
;

14: Update the dynamic exponential map φp in Eq.(9) with p: pt ← pt−1 ⊕−η ⊗ ∂L
∂pt−1

;

15: Update the full-precision constrained weight: wt ← wt−1 ⊕−η ⊗
(

∂L
∂w̃t−1

· 1
φ′pt (φ

−1
pt (wt−1))

)
;

C VISUALIZATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.498 0.497 0.499 0.498 0.496 0.496 0.495 0.499 0.494 0.496 0.497 0.499 0.497 0.499 0.499 0.500

0.398 0.404 0.415 0.392 0.414 0.399
0.350 0.359 0.377 0.397

0.363 0.384 0.393
0.355 0.351

0.288

HBNN XNOR++

Figure 3: Weight flip rates of our HBNN and XNOR++ in different layers of ResNet18.

14

Under review as a conference paper at ICLR 2023

Figure 3 shows the weight flip rates of our HBNN and XNOR++ in different layers of ResNet18 in
CIFAR10. By the hyperbolic representation, HBNN leads to around 50% weight flips each layer. It
seems that the introduction of hyperbolic geometry expands the expressive ability of BNN compared
with XNOR++.

The validation curves with ResNet18 are shown in Figure 4. Compared to RBNN and ReCU on
CIFAR10, the validation accuracies of our HBNN show a good and stable convergence followed by
the training epoch.

Furthermore, we show 2D visualization of the loss surfaces based on the previous work (Li et al.,
2018). By analyzing Figure 5, we find that the loss surface of the full-precision model is smooth
and flat, which is beneficial for the neural network to arrive at the global optimum. Our HBNN has
a relatively flat loss surface, which can also explain its better performance than XNOR++.

0 100 200 300 400 500 600
Epoch

30

40

50

60

70

80

90

Va
lA

cc
@

1

RBNN
ReCU
HBNN 560 570 580 590 600

92.0

92.5

93.0

(a) ResNet18

0 100 200 300 400 500 600
Epoch

20

30

40

50

60

70

80

90

Va
lA

cc
@

1

RBNN
ReCU
HBNN 560 570 580 590 600

91

92

93

(b) VGGsmall

Figure 4: Validation accuracy curves on CIFAR10 dataset.

15

Under review as a conference paper at ICLR 2023

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.1

0.6

1.1

1.6
2.1

2.6

2.6

3.1

3.1 3.1

3.6
3.6

3.6

4.1
4.1

4.6
5.15.6

(a) Full-precision

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.61.1

1.6

2.1

2.6

3.1

3.6

4.1

4.1

4.6

4.6

4.6

5.1
5.

1

5.1

5.1 5.6

5.65.6

5.
6

5.6

5.66.1

6.1

6.
1

6.1

6.
1

6.1

6.1

6.1

6.1
6.1

6.1

6.6

6.6

6.
6

6.
6

6.6
6.6 6.6 6.6

6.6

6.6

6.6

6.6

6.6

7.1

7.1

7.1 7.1 7.1

7.1 7.1

7.6

7.6

7.
6

7.6

7.6
7.67.

67.6

8.1

8.1 8.1

8.6

8.6

9.19.
6

9.6

(b) XNOR++

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.1

0.6
1.1

1.6

2.1

2.6

2.6

3.1

3.1

3.1

3.13.
1

3.1

3.1
3.1

3.1

3.1

3.6

3.6

3.6

3.6

3.6

3.6

4.1

4.14.1

4.1

4.
1

4.6

4.6
4.6

4.6

4.6 4.6
5.15.6

(c) HBNN

Figure 5: 2D visualization of the loss surfaces of ResNet18 for CIFAR10 dataset, which is used to
enable comparisons of sharpness/flatness of different methods.

16

	Introduction
	Preliminaries
	Riemannian Geometry
	Binary Neural Network

	Hyperbolic Binary Neural Network
	The Poincaré Ball
	Parameterized Representation for the Parameters
	Backward Mode and Gradient Computation

	Method Analysis
	Theoretical Analysis
	Method Comparison and Explanation

	Related Work
	Experiments
	Ablation Study
	Experimental Results

	Conclusion
	Compatibility
	Algorithm
	Visualization

