

000 001 002 003 004 005 006 007 008 009 010 011 012 ON THE GENERALIZATION OF SFT: A REINFORCE- MENT LEARNING PERSPECTIVE WITH REWARD REC- TIFICATION

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

In this work, we present a simple yet theoretically motivated improvement to Supervised Fine-Tuning (SFT) for the Large Language Model (LLM), addressing its limited generalization compared to reinforcement learning (RL). Through mathematical analysis, we reveal that standard SFT gradients implicitly encode a problematic reward structure that may severely restrict the generalization capabilities of model compared to RL. To rectify this, we propose Dynamic Fine-Tuning (DFT), stabilizing gradient updates for each token by dynamically rescaling the objective function with the probability of this token. With just a single-line change, the method outperforms standard SFT on multiple difficult benchmarks and base models, from math reasoning to code generation and multi-modal tasks, demonstrating improved generalization. Additionally, DFT achieves competitive results in offline RL settings, and further boosts the effectiveness of subsequent RL training, providing an effective yet streamlined alternative. The experiments further demonstrate that DFT not only strengthens SFT performance but also consistently improves the effectiveness of subsequent RL training. By bridging theoretical insights with practical solutions, this work advances the state of SFT. The source code will be publicly released.

1 INTRODUCTION

Supervised Fine-Tuning (SFT), which adapts models to expert demonstrations, has become the standard post-training paradigm for Large Language Models (LLMs). It enables efficient task adaptation and capability enhancement (Chung et al., 2024; Zhang et al., 2024b; Sanh et al., 2022; Ouyang et al., 2022), and is popular for its ease of implementation and rapid acquisition of expert-like behaviors (Wei et al., 2022; Zhou et al., 2023). Despite these advantages, SFT often shows limited generalization compared to reinforcement learning (RL) (Chu et al., 2024; Ouyang et al., 2022; Christiano et al., 2017; Bai et al., 2022; Huan et al., 2025; Swamy et al., 2025). RL leverages explicit reward or verification signals to explore diverse strategies and thus generalizes better. However, RL requires substantial computation, careful hyperparameter tuning, and explicit reward signals—conditions often impractical in real-world settings (Schulman et al., 2017; Ouyang et al., 2022; Sheng et al., 2025; Strubell et al., 2019; Liu & Yin, 2024; Winsta, 2025). Moreover, RL can struggle to recover expert-like behaviors that SFT captures efficiently (Mandlekar et al., 2022; Chen et al., 2025b).

To exploit the complementary strengths of both approaches, many hybrid methods combine SFT with RL (Ouyang et al., 2022; Sheng et al., 2025; Rafailov et al., 2023; Liu et al., 2025; Qiu et al., 2025). Yet a key question remains: can SFT itself be fundamentally improved? This is crucial, as SFT remains the only viable option when datasets contain only positive demonstrations, with no negative samples or reward model available.

In this work, we address this gap with a mathematical analysis of the connection between SFT and RL. We show that the gradient update in SFT can be interpreted as a form of policy gradient with a specific, implicitly defined reward under certain assumptions. Crucially, this reward is (i) sparse, and (ii) inversely proportional to the model’s probability of expert actions (see equation 6). As a result, when the model assigns low probability to expert actions, the gradient becomes excessively

054 large, yielding an ill-posed reward structure and unstable optimization (Pascanu et al., 2013; Yang
 055 et al., 2019).

056 Building on this insight, we propose Dynamic Fine-Tuning (DFT), a principled fix. Our method
 057 rescales the SFT objective at each token by its probability, canceling the distortion introduced by
 058 inverse-probability weighting. This reframing turns the SFT gradient from a potentially unstable
 059 and biased estimator into a more stable, more uniformly weighted update rule that behaves closer to
 060 an RL-style.

061 Empirically, DFT delivers substantial improvements. On the Qwen-2.5-Math series (Qwen Team
 062 et al., 2024b) fine-tuned with NuminaMath-CoT (Li et al., 2024), DFT yields gains several times
 063 larger than standard SFT. More importantly, unlike SFT, which often degrades on challenging bench-
 064 marks such as OlympiadBench (He et al., 2024), AIME 2024 (American Institute of Mathematics,
 065 2024), and AMC 2023 (Mathematical Association of America, 2023), our method consistently im-
 066 proves performance and generalization. These improvements hold across models, scales, and data
 067 sizes (Table 1, Figure 1), and extend to code generation and multimodal reasoning (Tables 3, 4).

068 We further test DFT in off-policy RL settings (Table 2), where dense rewards are available (Levine
 069 et al., 2020). Our method not only outperforms offline RL approaches such as DPO (Rafailov et al.,
 070 2023) and RAFT (Dong et al., 2023; Ahn et al., 2024), but also achieves competitive or superior
 071 performance to online methods like GRPO and PPO on math tasks with Qwen2.5-Math-1.5B. Unlike
 072 these RL methods, DFT requires neither a reference model nor large batch sizes, making it a simpler
 073 and more resource-efficient alternative. Besides, our experiments further show that DFT not only
 074 yields stronger SFT performance, but also reliably enhances the effectiveness of subsequent RL
 075 training.

076 To understand its effect, we analyze token probability distributions after training (Figure 2). While
 077 traditional SFT uniformly pushes probabilities toward the training set, DFT selectively increases
 078 some while reducing others. In particular, the proportion of less strongly fitted tokens rises, suggest-
 079 ing improved regularization. We provide further discussion in Appendix A.3.

080 The contributions of this work are theoretical and practical. On the theoretical side, we mathemati-
 081 cally establish LLM SFT as a special RL in policy gradient space, pinpoint the underlying reasons
 082 for the limited generalization of SFT, and derive a method to improve it. On the experimental side,
 083 we show that such a simple solution, just one line of code, can enhance the performance and gener-
 084 alization capabilities of SFT across various tasks and models.

086 2 RELATED WORK

088 The trade-off between supervised fine-tuning (SFT) and reinforcement learning (RL) is central to
 089 the alignment of large language models. SFT is widely adopted due to its simplicity and efficiency
 090 in imitating expert demonstrations (Chung et al., 2024; Zhou et al., 2023; Wei et al., 2022), anal-
 091 ogous to behavioral cloning in robotics (Sammut, 2011; Mandlekar et al., 2022). However, the
 092 literature consistently highlights its limitations, particularly the tendency to overfit and generalize
 093 poorly compared to RL, which leverages reward signals to discover more robust policies (Ouyang
 094 et al., 2022; Christiano et al., 2017; Bai et al., 2022; Swamy et al., 2025; Zhang et al., 2025). A
 095 recent systematic comparison by Chu et al. (2024) across textual and visual domains confirms this
 096 distinction, concisely summarized as “SFT memorizes while RL generalizes.” They further show
 097 that SFT remains indispensable as an initialization step, stabilizing output formatting prior to ef-
 098 fective RL training. Nonetheless, RL faces significant practical hurdles, including computational
 099 expense, sensitivity to hyperparameters, and the requirement of an explicit reward function, all of
 100 which constrain its applicability (Schulman et al., 2017; Strubell et al., 2019; Sheng et al., 2025).

101 To combine the strengths of both paradigms, much recent work has pursued hybrid approaches. The
 102 most common strategy involves SFT pretraining followed by RL-based refinement with a learned
 103 reward model, as popularized by InstructGPT (Ouyang et al., 2022). More recent methods interleave
 104 SFT and RL updates to improve stability and performance (Sheng et al., 2025; Liu et al., 2025; Qiu
 105 et al., 2025). Other approaches, such as Direct Preference Optimization (DPO) (Rafailov et al.,
 106 2023), bypass reward modeling entirely by directly optimizing policies on preference data, thereby
 107 unifying imitation and reinforcement signals within a single loss function. Chen et al. (2025a) introduce
 Negative-aware Fine-Tuning (NFT), which models incorrect generations via an implicit

108 negative policy, enabling self-improvement without explicit feedback. While powerful, these methods
 109 rely on reward signals, preference pairs, or negative samples. They enrich the training pipeline
 110 but do not fundamentally improve SFT in its native setting, where only positive demonstrations are
 111 available. Our work instead focuses on enhancing SFT itself without requiring external feedback.

112 A complementary line of theoretical research seeks to unify SFT and RL under a common formalism.
 113 [Du et al. \(2025\)](#) reinterpret RLHF as a reward-weighted variant of SFT, preserving reliance on
 114 an explicit reward. [Wang et al. \(2025\)](#) show that SFT can be cast as RL with an implicit reward,
 115 proposing adjustments such as smaller learning rates to manage the vanishing KL constraint. [Abdol-](#)
 116 [maleki et al. \(2025\)](#) analyze learning from both positive and negative feedback, studying how their
 117 balance affects convergence. [Qin & Springenberg \(2025\)](#) view SFT as a lower bound of RL and
 118 introduce importance weighting based on the data-generating policy. While these works establish
 119 connections between SFT and RL through weighting, they do not provide a precise mathematical
 120 equivalence between the SFT gradient and the offline policy gradient. Some methods approximate
 121 this connection in practice by reweighting training losses. For instance, MixCE ([Zhang et al., 2023](#))
 122 combines the forward and reverse KL divergences to form a unified objective, while GOLD ([Pang](#)
 123 & [He, 2021](#)) adopts offline RL with demonstrations, introducing reliance on an unknown demon-
 124 stration distribution π_b and a restrictive $1/N$ assumption. [Kantharaju & Sankar \(2022\)](#) also provide
 125 a clear and insightful exposition of GOLD’s motivation and mechanics from an alternative perspec-
 126 tive, offering useful intuition for understanding its underlying design. In contrast, our work offers a
 127 more formal perspective on this connection, highlighting the role of the inverse-probability weight-
 128 ing term in shaping the difference between SFT and RL-like updates. This perspective motivates a
 129 simple adjustment: multiplying the loss by the model’s token probability to neutralize the weighting.

130 Interestingly, our method modifies the standard cross-entropy (CE) loss in a way that inverts the
 131 weighting philosophy of the widely used Focal Loss ([Lin et al., 2017](#)). Specifically, our modified
 132 CE takes the form $-p \log(p)$, whereas focal loss is defined as $-(1-p)^\gamma \log(p)$. Focal Loss delib-
 133 erately downweights well-classified samples to emphasize underrepresented or hard cases, whereas
 134 we deliberately downweight poorly classified samples to encourage generalization. This inversion
 135 reflects a fundamental shift in the LLM era: while underfitting was once a central challenge, over-
 136 fitting and memorization now dominate, demanding a rethinking of objective design.

3 METHOD

3.1 PRELIMINARIES

141 **Supervised Fine-Tuning.** Let $\mathcal{D} = \{(x, y^*)\}$ denote a corpus of expert demonstrations, where y^*
 142 is the complete reference response to the query x . SFT minimizes the sentence-level cross-entropy:

$$\mathcal{L}_{\text{SFT}}(\theta) = \mathbb{E}_{(x, y^*) \sim \mathcal{D}} [-\log \pi_\theta(y^* | x)]. \quad (1)$$

144 Its gradient is:

$$\nabla_\theta \mathcal{L}_{\text{SFT}}(\theta) = \mathbb{E}_{(x, y^*) \sim \mathcal{D}} [-\nabla_\theta \log \pi_\theta(y^* | x)]. \quad (2)$$

147 **Reinforcement Learning.** Let y denote a response sampled from the policy $\pi_\theta(\cdot | x)$ for query x .
 148 Given a reward function $r(x, y) \in \mathbb{R}$, the policy objective is

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}_x, y \sim \pi_\theta(\cdot | x)} [r(x, y)]. \quad (3)$$

151 Its policy gradient at the sentence level is

$$\nabla_\theta J(\theta) = \mathbb{E}_{x \sim \mathcal{D}_x, y \sim \pi_\theta(\cdot | x)} [\nabla_\theta \log \pi_\theta(y | x) r(x, y)]. \quad (4)$$

3.2 UNIFY SFT AND RL GRADIENT EXPRESSION

155 **Rewriting SFT Gradient as Policy Gradient via Importance Sampling.** The SFT gradient
 156 in equation 2 is taken under the *fixed* demonstration distribution. We convert it to an on-policy
 157 expectation by inserting an importance weight that compares the expert (Dirac Delta) distribution
 158 with the model distribution.

$$\mathbb{E}_{(x, y^*) \sim \mathcal{D}} [-\nabla_\theta \log \pi_\theta(y^* | x)] = \mathbb{E}_{x \sim \mathcal{D}_x} \underbrace{\mathbb{E}_{y \sim \pi_\theta(\cdot | x)} \frac{\mathbf{1}[y = y^*]}{\pi_\theta(y | x)} [-\nabla_\theta \log \pi_\theta(y | x)]}_{\text{resample + reweight}} \quad (5)$$

162 Define the auxiliary variables (importance sampling weight) as
 163

$$164 \quad w(y | x) = \frac{1}{\pi_\theta(y | x)}, \quad r(x, y) = \mathbf{1}[y = y^*].$$

166 Reorganizing equation 5 and rewriting it using the above auxiliary variables, we obtain the form
 167

$$168 \quad \nabla_\theta \mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}_x, y \sim \pi_\theta(\cdot | x)} [w(y | x) \nabla_\theta \log \pi_\theta(y | x) r(x, y)]. \quad (6)$$

170 This form of the SFT gradient closely resembles the policy gradient in Equation 4. Under
 171 this formulation, conventional SFT can be interpreted as an on-policy gradient method, where the
 172 reward is a sparse indicator function matching the expert trajectory, but biased by an importance
 173 weighting term $1/\pi_\theta$. We emphasize that this RL-style characterization serves solely as a theoretical
 174 lens: both the analysis and subsequent modifications are developed within the RL framework, while
 175 the final method remains fully implementable in standard SFT form for computational efficiency.
 176 Detailed derivations are provided in Appendix A.2.

177 Due to the inherently sparse reward signal in the SFT setting, we identify the importance weight
 178 $1/\pi_\theta$ as a key contributor to SFT’s generalization limitations compared to RL. When the model as-
 179 signs low probability to the expert response, the resulting weight becomes excessively large, intro-
 180 ducing an ill-posed reward landscape. This leads to disproportionately large gradients and training
 181 instability. The issue is compounded by the fact that the reward function $r(x, y) = \mathbf{1}[y = y^*]$ is non-
 182 zero only for exact matches to the expert output causing optimization to overfit rare exact-match
 183 samples and weakening the model’s ability to generalize beyond the training data.

185 3.3 PROPOSED METHOD

187 **Reward Rectification via Dynamic Reweighting.** To neutralize the skewed reward issue identi-
 188 fied when viewing SFT under the RL objective, we dynamically reweight the reward by multiplying
 189 by a corrective inverse ratio given by the policy probability $1/w$. The resulting “dynamically fine-
 190 tuned” gradient is then

$$192 \quad \nabla_\theta \mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}_x, y \sim \pi_\theta(\cdot | x)} \left[\text{sg}\left(\frac{1}{w}\right) \cdot w(y | x) \nabla_\theta \log \pi_\theta(y | x) r(x, y) \right]. \quad (7)$$

195 where $\text{sg}(\cdot)$ denotes the stop gradient operator, ensuring that gradients do not flow through the reward
 196 scaling term w . To facilitate transition to later equations, we directly write $1/w$ to be $\pi_\theta(y^* | x)$
 197 instead of $\pi_\theta(y | x)$ because the indicator function in equation 5 or equation 6 would leave all cases
 198 where $y \neq y^*$ is 0. Now since the gradient does not flow, the corrected SFT loss also becomes a
 199 simple reweighted loss, called Dynamic Fine-tuning (DFT).

$$201 \quad \mathcal{L}_{\text{DFT}}(\theta) = \mathbb{E}_{(x, y^*) \sim \mathcal{D}} \left[-\text{sg}(\pi_\theta(y^* | x)) \log \pi_\theta(y^* | x) \right]. \quad (8)$$

204 However, in practice, computing importance weights over the entire trajectory can induce numerical
 205 instability. A common treatment of this issue is to simply apply importance sampling at the token
 206 level, as was adopted in PPO (Schulman et al., 2017). This leads to the final DFT loss version:

$$208 \quad \mathcal{L}_{\text{DFT}}(\theta) = \mathbb{E}_{(x, y^*) \sim \mathcal{D}} \left[-\sum_{t=1}^{|y^*|} \text{sg}(\pi_\theta(y_t^* | y_{<t}^*, x)) \log \pi_\theta(y_t^* | y_{<t}^*, x) \right]. \quad (9)$$

212 Note that the reward of this corrected SFT (in RL form), i.e., DFT, now becomes 1 uni-
 213 formly for all expert trajectory. This is akin to contemporary verification based reward approach
 214 RLVR (DeepSeek-AI et al., 2025) that assigns uniform reward to all correct samples. Consequently,
 215 it avoids over-concentration on specific low-probability reference tokens, leading to more stable up-
 216 dates and improved generalization without introducing any additional sampling or reward models.

216
 217 Table 1: Average@16 accuracy of five state-of-the-art large language models on mathematical rea-
 218 soning benchmarks. The best performance of each model across benchmarks is bold.

	Math500	Minerva Math	Olympiad Bench	AIME24	AMC23	Avg.
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239	LLaMA-3.2-3B LLaMA-3.2-3B w/SFT LLaMA-3.2-3B w/DFT LLaMA-3.1-8B LLaMA-3.1-8B w/SFT LLaMA-3.1-8B w/DFT DeepSeekMath-7B DeepSeekMath-7B w/SFT DeepSeekMath-7B w/DFT Qwen2.5-Math-1.5B Qwen2.5-Math-1.5B w/SFT Qwen2.5-Math-1.5B w/DFT Qwen2.5-Math-7B Qwen2.5-Math-7B w/SFT Qwen2.5-Math-7B w/DFT	1.63 8.65 12.79 1.86 16.85 27.44 6.15 26.83 41.46 31.66 43.76 64.89 40.12 53.96 68.20	1.36 2.38 2.84 0.98 5.78 8.26 2.15 7.26 16.79 8.51 13.04 20.94 14.39 16.66 30.16	1.01 2.06 2.90 0.94 3.88 6.94 1.74 6.33 15.00 15.88 12.63 27.08 17.12 18.93 33.83 4.16 1.87 6.87 6.68 2.48 8.56	0.41 0.00 0.83 0.21 0.00 0.41 2.97 0.41 1.24 19.38 18.75 38.13 27.96 26.09 45.00	1.19 3.24 4.65 1.00 6.33 11.02 2.64 9.82 18.15 15.92 18.01 31.58 21.25 23.62 37.15

4 EXPERIMENTS

240
 241 We design four groups of experiments to comprehensively evaluate DFT. We first study the standard
 242 SFT setting on mathematical reasoning tasks to establish its core advantage over SFT (Section 4.1).
 243 We then extend to an offline RL setting, comparing DFT with representative offline and online RL
 244 methods (Section 4.2). To test cross-domain robustness, we further examine DFT on code generation
 245 benchmarks (Section 4.3) and its applicability to multi-modal reasoning math datasets (Section 4.4).
 246

4.1 MAIN EXPERIMENT - MATHEMATICAL REASONING TASK

247 To examine whether DFT can outperform vanilla SFT across tasks, architectures, and scales, we use
 248 mathematical reasoning as a representative testbed.

249 DFT consistently yields average performance improvements over base models compared to standard
 250 SFT across all benchmarks. Table 1 shows that, for Qwen2.5-Math-1.5B, DFT achieves an average
 251 gain of +15.66 points over the base model, which is over 5.9 \times larger than the +2.09 point improve-
 252 ment from SFT. This pattern generalizes across other model families and sizes: LLaMA-3.2-3B
 253 benefits from a +3.46 point gain with DFT, exceeding the SFT gain (+2.05) by approximately 1.4 \times ;
 254 LLaMA-3.1-8B achieves +10.02 from DFT, surpassing SFT’s +5.33 by 1.88 \times ; DeepSeekMath-7B
 255 sees a +15.51 point improvement via DFT, which is 1.58 \times larger than SFT’s +7.18; and Qwen2.5-
 256 Math-7B reaches a +15.90 point gain, nearly 3.8 \times higher than the SFT improvement of +2.37.

257 DFT demonstrates generalization and robustness, especially on challenging benchmarks where stan-
 258 dard SFT yields minimal or even negative impact. For instance, on Olympiad Bench, SFT degrades
 259 performance for Qwen2.5-Math-1.5B, dropping accuracy from 15.88 to 12.63, while DFT boosts
 260 it to 27.08, +11.20 point improvement over base model. On AIME24, SFT reduces accuracy for
 261 Qwen2.5-Math-7B by 4.20 points (from 6.68 to 2.48), whereas DFT improves performance to 8.56,
 262 achieving a +1.88 point gain over the base model despite the difficulty of the benchmark. A similar
 263 trend is observed on AMC23. SFT reduces the performance of Qwen2.5-Math-1.5B from 19.38 to
 264 18.75, while DFT raises it to 38.13, a +18.75 point gain over base. For Qwen2.5-Math-7B, SFT
 265 yields only a marginal improvement (+1.86), whereas DFT achieves a +17.04 point gain. These
 266 results underscore that DFT not only scales more effectively across models of varying capacities,
 267 but also exhibits better resilience on difficult reasoning tasks where traditional SFT struggles.

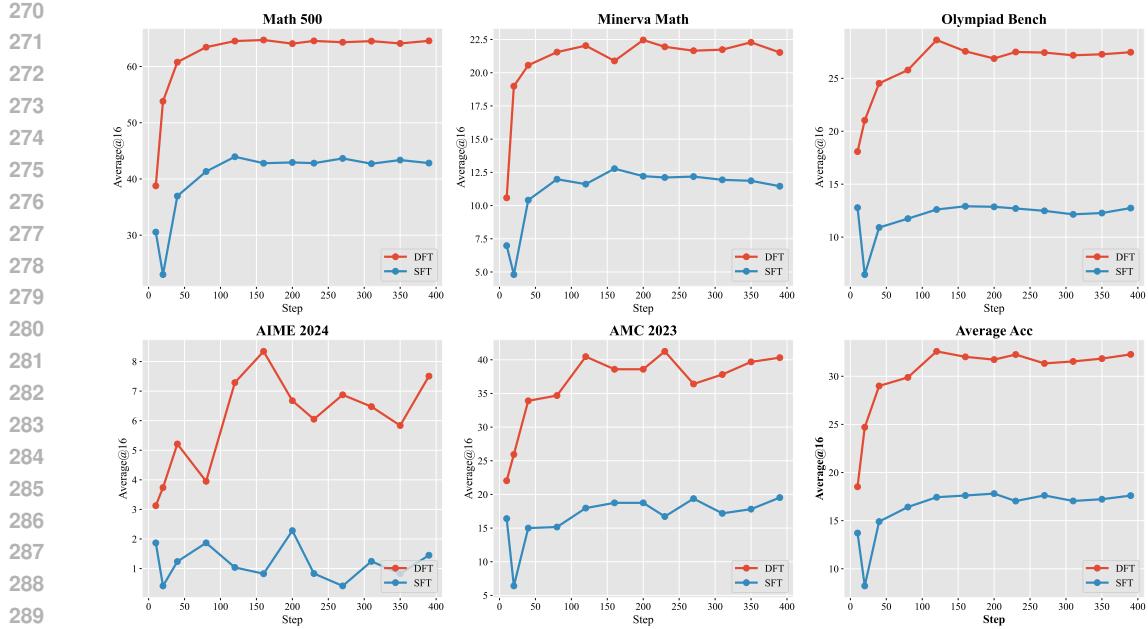


Figure 1: Accuracy progression for Qwen2.5-Math-1.5B across mathematical benchmarks, illustrating faster convergence and better performance achieved by DFT relative to SFT.

DFT exhibits better learning efficiency and faster convergence characteristics. Figure 1 reveals clear differences in learning dynamics between DFT and standard SFT on Qwen2.5-Math-1.5B across all math reasoning benchmarks. Compared to SFT, our method demonstrates three distinct advantages: (1) Faster convergence, achieving peak performance within the first 120 training steps on most benchmarks; (2) Better early-stage performance, with DFT already outperforming best final accuracy of SFT within the first 10–20 steps; and (3) Higher sample efficiency, consistently requiring fewer updates to reach relatively optimal results. This accelerated convergence shows that the dynamic reweighting mechanism in DFT leads to more informative gradient updates, guiding the model toward high-quality solutions early in training. It also suggests that DFT helps avoid the optimization plateaus or noise-prone regions often encountered in standard SFT, thereby enabling more efficient acquisition of complex mathematical reasoning patterns.

We also report the results of parameter-efficient fine-tuning (PEFT) training setting (Hu et al., 2022) and training on the OpenR1-Math dataset (Hugging Face, 2025) with better quality in Appendix A.8 and Appendix A.7, respectively. Comparison and Discussion with the concurrent method iw-SFT (Qin & Springenberg, 2025) is provided in Appendix A.6.

4.2 EXPLORATORY EXPERIMENT - OFFLINE RL SETTING

Equation 7 shows that SFT suffers from reward sparsity, since in a constructed dataset each query x has only a single reference answer y^* . From the perspective of RL, RFT/RAFT (Dong et al., 2023; Ahn et al., 2024) can be viewed as alleviating the sparse reward issue by effectively increasing reward density, thereby enhancing model performance. Motivated by this observation, we conduct an exploratory study applying DFT in an offline RL setting, where the reward sparsity problem is inherently less severe compared to standard SFT, to further validate the effectiveness.

DFT demonstrates competitive performance in the offline RL setting, outperforming both offline and online RL baselines. Table 2 shows DFT achieves an average score of 35.43, exceeding the best offline method RFT by +11.46 points, and even outperforming the strongest online RL algorithm GRPO by +3.43 points. Specially, on Math500, DFT scores 64.71, slightly ahead of GRPO (62.86) and better than PPO (56.10) and RFT (48.23). The gains are also notable on more challenging benchmarks: on AMC23, DFT achieves 48.44, a +7.19 point margin over GRPO and a +17.66 point gain over RFT. Similarly, on Minerva Math, DFT reaches 25.16, outperforming GRPO by +6.23 points, PPO by +9.75, and all offline baseline methods.

324
 325 Table 2: Evaluation results on mathematical reasoning benchmarks in an offline reinforcement learning
 326 setting using reward signals from rejection sampling. The best performance is in bold.

	Setting	Math500	Minerva Math	Olympiad Bench	AIME24	AMC23	Avg.
Qwen2.5-Math-1.5B w/DFT	SFT	64.89	20.94	27.08	6.87	38.13	31.58
Qwen2.5-Math-1.5B w/DPO	Offline	46.89	11.53	22.86	4.58	30.16	23.20
Qwen2.5-Math-1.5B w/RFT	Offline	48.23	14.19	22.29	4.37	30.78	23.97
Qwen2.5-Math-1.5B w/PPO	Online	56.10	15.41	26.33	7.50	37.97	28.66
Qwen2.5-Math-1.5B w/GRPO	Online	62.86	18.93	28.62	8.34	41.25	32.00
Qwen2.5-Math-1.5B w/DFT	Offline	64.71	25.16	30.93	7.93	48.44	35.43

335
 336 Table 3: Performance of various models on code generation benchmarks. The best performance for
 337 each benchmark is highlighted in bold.

	HumanEval				MultiPL-E						
	HE	HE+	Python	C++	Java	PHP	TS	C#	Bash	JS	Avg.
Qwen2.5-3B	43.3	36.0	43.29	40.99	37.34	37.89	47.17	43.04	24.68	45.96	40.05
Qwen2.5-3B w/SFT	41.5	34.8	42.07	42.24	37.97	37.27	43.40	41.77	20.25	47.83	39.10
Qwen2.5-3B w/DFT	45.7	39.0	45.73	44.72	41.77	45.34	42.14	43.04	27.85	44.10	41.84
Qwen2.5-Coder-3B	52.4	42.7	51.83	53.42	46.20	47.20	54.09	55.06	25.32	54.04	48.39
Qwen2.5-Coder-3B w/SFT	51.8	43.9	51.22	51.55	48.10	54.66	59.12	51.27	34.18	54.04	50.52
Qwen2.5-Coder-3B w/DFT	56.7	50.0	57.32	54.66	51.27	58.39	58.49	60.76	31.01	53.42	53.16
Qwen2.5-Coder-7B	62.2	53.0	63.41	63.98	53.16	59.01	62.89	59.49	39.24	60.87	57.76
Qwen2.5-Coder-7B w/SFT	54.9	48.8	54.88	64.60	51.27	62.11	68.55	60.76	33.54	65.22	57.62
Qwen2.5-Coder-7B w/DFT	67.7	59.8	67.68	67.70	54.43	60.87	70.44	65.19	48.73	63.35	62.30

351
 352 These results highlight the strength of DFT as a simple yet effective fine-tuning strategy. Despite its
 353 lack of iterative reward modeling or environment interaction, it provides a stronger learning signal
 354 than both offline methods like DPO/RFT and online policy optimization algorithms like PPO/GRPO
 355 in certain scale train set. This suggests that DFT can serve as a more efficient and scalable alternative
 356 to traditional RL pipelines, particularly in domains where preference supervision is available but
 357 reward modeling or online response sampling is expensive or impractical.

358 359 4.3 EXPLORATORY EXPERIMENT - CODE GENERATION TASK

360
 361 Table 3 shows DFT achieves improvements in most cases compared to both base models and SFT.
 362 For Qwen2.5-3B, DFT raises HumanEval from 43.3 to 45.7 and HumanEval+ from 36.0 to 39.0,
 363 with the MultiPL-E average also increasing from 40.05 (base) and 39.10 (SFT) to 41.84. Similar
 364 trends are observed for Qwen2.5-Coder-3B, where DFT improves HumanEval to 56.7 and Hu-
 365 manEval+ to 50.0, outperforming both base and SFT. For Qwen2.5-Coder-7B, DFT reaches 67.7
 366 on HumanEval, 59.8 on HumanEval+, and 62.3 average on MultiPL-E, surpassing SFT by +12.8,
 367 +11.0, and +4.7 points respectively. The overall trend demonstrates that DFT generally provides
 368 stronger performance across different models and languages.

369 370 4.4 EXPLORATORY EXPERIMENT - MULTI-MODAL REASONING

371 DFT achieves consistent improvements over base models and SFT across all multi-modal reason-
 372 ing benchmarks. Table 4 shows, on MathVerse, DFT boosts Qwen2.5-VL-3B from 33.83 to 37.54
 373 average accuracy, outperforming the SFT gain of only +1.83 by +3.71 points. Consistent improve-
 374 ments are observed across all major vision-related subcategories. On MathVision, DFT improves
 375 performance from 21.25 (base) to 22.30, exceeding SFT which fails to provide gains (21.02). On
 376 WeMath, SFT already yields a +19.23 point gain, but DFT pushes performance slightly further to
 377 23.71, maintaining superiority over both base and SFT. These results indicate that DFT not only
 strengthens text-only reasoning but also extends effectively to multi-modal domains.

378
 379 Table 4: Performance comparison across different multi-modal reasoning benchmarks. The best
 380 performance on each benchmark is highlighted in bold.

	MathVerse				MathVision	WeMath
	Vision Only	Vision Intensive	Vision Dominant	Overall		
Qwen2.5-VL-3B	28.81	30.96	31.60	33.83	21.25	4.10
Qwen2.5-VL-3B w/SFT	30.96	33.63	32.74	35.66	21.02	23.33
Qwen2.5-VL-3B w/DFT	32.49	35.91	33.50	37.54	22.30	23.71

388
 389 Table 5: Performance comparison on mathematical reasoning benchmarks under cold-start settings.
 390 All models are initialized via fine-tuning (SFT or DFT) and further optimized with GRPO.

	Math500	Minerva Math	Olympiad Bench	AIME24	AMC23	Avg.
Qwen2.5-Math-1.5B w/SFT+GRPO	62.54	23.10	26.92	5.00	40.15	31.54
Qwen2.5-Math-1.5B w/DFT+GRPO	65.96	23.51	28.37	8.63	41.40	33.57

395 4.5 CAN DFT ENHANCE REINFORCEMENT LEARNING?

397 To further investigate the role of DFT in RL optimization, we conduct a set of exploratory experiments
 398 where models are first initialized with either SFT or DFT, and then fine-tuned using GRPO.

400 **Mathematical Reasoning.** As shown in Table 5, DFT+GRPO consistently outperforms
 401 SFT+GRPO across all benchmarks. Improvements are moderate on Math500 and Minerva Math,
 402 but become substantial on harder datasets such as Olympiad Bench (+1.45) and AIME24 (+3.63).
 403 The average score rises from 31.54 to 33.57.

405 **Code Generation.** Table 6 shows that DFT+GRPO yields strong gains on HumanEval (+11.6)
 406 and HumanEval+ (+10.4), and improves performance across most MultiPL-E languages, raising the
 407 average from 58.15 to 62.61 compared to SFT.

410 **Multi-modal Reasoning.** As reported in Table 7, DFT+GRPO surpasses SFT+GRPO across all
 411 MathVerse subsets and achieves a notable +4.76 improvement on WeMath, demonstrating that DFT
 412 also enhances RL optimization in multimodal settings.

413 These results indicate that DFT not only improves performance in SFT but also consistently en-
 414 hances the effectiveness of subsequent RL training. This validates DFT as a stronger pretraining
 415 strategy in RL pipelines across diverse tasks.

417 4.6 LIMITATIONS OF DFT: A CASE STUDY ON FACTUAL KNOWLEDGE

419 While DFT consistently outperforms SFT on reasoning-heavy tasks, it may not always be the better
 420 choice, particularly in factual knowledge domains. We conduct an exploratory experiment on the
 421 Natural Questions dataset (Kwiatkowski et al., 2019), which consists of real-user, open-domain
 422 factual queries grounded in Wikipedia articles.

424 In this setting, we find that SFT improves performance from 31.24% to 36.62%, while DFT un-
 425 expectedly reduces it to 30.14%. This result reveals an important limitation of DFT: because it
 426 reweights samples based on the model’s own confidence, it tends to reinforce the model’s existing
 427 beliefs. When the model lacks sufficient factual knowledge, such reinforcement may hinder effective
 428 learning instead of facilitating it.

429 This case suggests that DFT is most effective when the task aligns well with the model’s prior
 430 competence, such as logical reasoning or structured prediction. In contrast, when the objective is to
 431 absorb new factual information, especially in domains beyond the model’s current capabilities, SFT
 remains a more reliable and stable fine-tuning strategy.

432
 433 Table 6: Code generation performance on HumanEval and MultiPL-E benchmarks. All models are
 434 fine-tuned with GRPO after either SFT or DFT initialization.

	HumanEval					MultiPL-E					Avg.
	HE	HE+	Python	C++	Java	PHP	TS	C#	Bash	JS	
Qwen2.5-Coder-3B w/SFT+GRPO	57.3	50.6	57.32	63.35	51.27	63.98	68.55	60.76	33.54	66.46	58.15
Qwen2.5-Coder-3B w/DFT+GRPO	68.9	61.0	68.90	67.08	55.06	62.73	70.44	65.19	49.37	62.11	62.61

440 Table 7: Multi-modal reasoning performance comparison with GRPO initialized via SFT or DFT.
 441

	MathVerse			Overall	MathVision	WeMath
	Vision Only	Vision Intensive	Vision Dominant			
Qwen2.5-VL-3B w/SFT+GRPO	32.48	33.50	43.78	35.93	21.44	21.43
Qwen2.5-VL-3B w/DFT+GRPO	34.64	37.31	37.06	39.06	23.35	26.19

447 Table 8: Comparison of weighting strategies on mathematical reasoning benchmarks.
 448

	Math500	Minerva Math	Olympiad Bench	AIME24	AMC23	Avg.
Qwen2.5-Math-1.5B	31.66	8.51	15.88	4.16	19.38	15.92
Sentence-Level Weighting	31.26	8.05	16.47	3.12	19.84	15.75
Geometric-Mean Weighting	42.87	12.34	13.03	1.23	16.56	17.21
Token-Level Weighting	64.89	20.94	27.08	6.87	38.13	31.58

456 4.7 AN EMPIRICAL COMPARISON WITH SENTENCE-LEVEL WEIGHTING

457 Our framework applies confidence-based weighting at the token level. While this design was primarily
 458 motivated by numerical stability, we also compared it against two sentence-level variants to
 459 better understand their behavior.

460 The first variant uses the full sequence probability to scale the loss. However, these values are
 461 extremely small in practice, making the loss nearly uninformative and producing a highly skewed
 462 weight distribution that is difficult to tune. To address this, we also evaluated a geometric-mean
 463 variant inspired by GSPO (Zheng et al., 2025), which rescales sentence probabilities to avoid
 464 numerical collapse. Although this version is more stable, it still provides a weak training signal and
 465 offers limited performance gains.

466 As shown in Table 8, both sentence-level strategies lead to minimal changes over the base model,
 467 while our token-level formulation delivers substantial and consistent improvements, raising average
 468 accuracy from 15.92 to 31.58. These results demonstrate that token-level weighting provides a more
 469 reliable optimization signal and significantly stronger empirical performance.

472 4.8 ANALYSIS OF PROBABILITIES

473 To understand how the model trained by DFT is different from SFT and other RL methods, we
 474 look into the token probability distribution of the model’s output over the training set in Figure 2.
 475 SFT tends to uniformly increase token probabilities, shifting the entire distribution towards higher
 476 confidence, but mainly targeting the lower and lowest probability tokens. The highest probability
 477 token portion barely increases. In stark contrast, DFT exhibits a polarizing effect: it significantly
 478 boosts the probabilities of a subset of tokens while actively suppressing the probabilities of others.
 479 This leads to a bimodal distribution, with more tokens occupying both the highest and lowest
 480 probability bins. Other RL methods such as DPO, GPPO and PPO show the same trend as DFT,
 481 although the scale is much milder than it. We look into the words that belong to the lowest proba-
 482 bility bin, and find that they are generally the conjunctive words or punctuations such as ‘the’, ‘let’,
 483 ‘;’, ‘.’ etc. These results suggest that for robust learning, models should not attempt to fit all tokens
 484 with uniform confidence. It may be beneficial to deprioritize fitting tokens that serve grammatical
 485 functions rather than carrying primary semantic content. This concept is analogous to human peda-

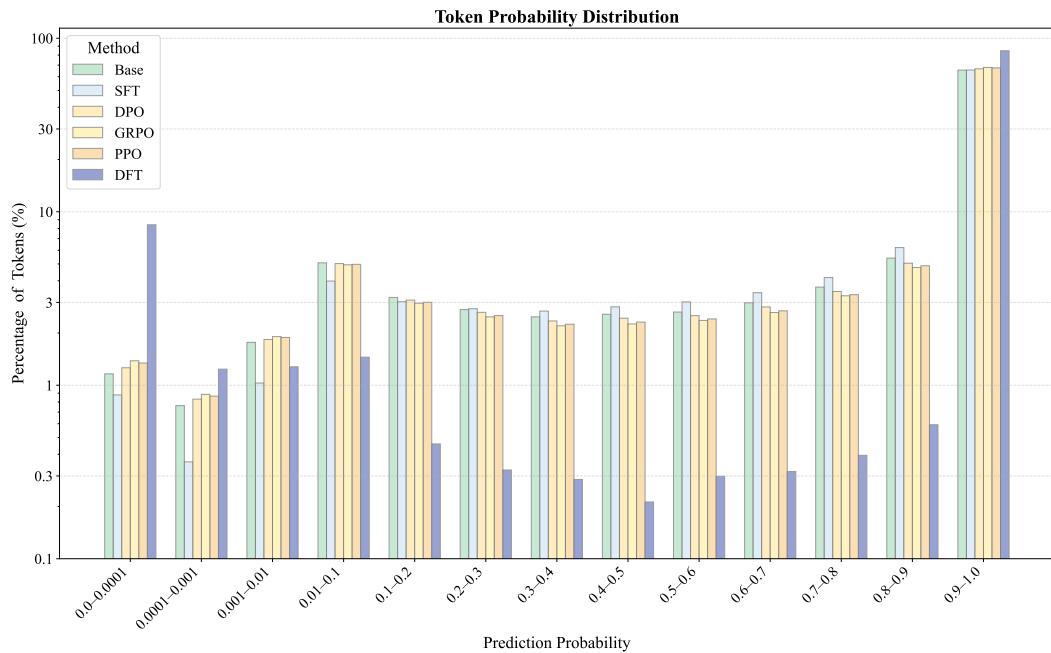


Figure 2: Token probability distributions on the training set before training and after fine-tuning with DFT, SFT, and various RL methods. A logarithmic scale is used on the y-axis for clarity.

gogy, where students are taught to focus on substantive concepts rather than perfecting the usage of common connective words. Further analysis can be found in Appendix A.3.

5 CONCLUSION

In this work, we revisit the well-known generalization gap between SFT and RL. We offer a theoretical perspective showing that the standard SFT gradient can be interpreted as a policy gradient with an ill-posed, implicitly defined reward inversely related to model confidence. This formulation helps explain the instability and limited generalization observed in SFT training. Motivated by this analysis, we introduce DFT, a simple yet effective method that dynamically reweights the SFT loss using the token probability. This one-line change improves gradient stability and leads to better generalization. Our empirical results show that DFT consistently improves over standard SFT across a range of models and challenging mathematical reasoning tasks. Beyond supervised settings, we adapt DFT to offline RL scenarios and find that it outperforms several established online and offline RL baselines, suggesting broader applicability. Moreover, DFT also enhances the performance of subsequent RL fine-tuning when used as a warm start. Overall, this work contributes both a refined understanding of SFT’s limitations and a lightweight, practical method that helps bridge the gap to more complex RL-based approaches.

Limitations. While our experiments demonstrate the effectiveness of DFT on mathematical reasoning benchmarks and code generation tasks, the evaluation scope remains limited. We have not yet assessed its performance on broader task categories or with larger-scale LLM, which we leave for future exploration. Moreover, DFT can not offer universal benefits across all scenarios. In domains that primarily involve the acquisition of factual knowledge, conventional SFT still remains the most efficient approach. DFT may also not be an ideal choice for hard examples or domains under-represented in the training data, since it assigns low initial probabilities to such samples, reducing their learning weight. Our aim is not to assert that DFT universally outperforms SFT, but rather to offer a new perspective on objective design by analyzing the distinction between RL and SFT. Besides, an important future direction is to explore non-uniform or quality-aware reward assignments for demonstrations.

540 ETHICS STATEMENT
541

542 This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, per-
543 sonally identifiable information, or proprietary data. All datasets used, including Numinamath,
544 OpenR1-Math, UltraFeedback, and WeThink, are publicly available and documented in the ap-
545 pendix. The proposed method is a simple training strategy that modifies gradient computation for
546 improved generalization. It does not introduce any new capabilities that could cause harm, nor
547 does it enable misuse beyond the standard capabilities of existing large language models. We are
548 not aware of any potential risks related to bias, fairness, or security that arise specifically from the
549 method proposed. Nonetheless, we acknowledge that like any fine-tuning strategy, DFT may inherit
550 biases present in the underlying data or model, and future research may explore safeguards for these
551 scenarios. No conflicts of interest, legal compliance issues, or sponsorship-related influences are
552 present in this work.

553 REPRODUCIBILITY STATEMENT
554

555 We have taken multiple steps to ensure the reproducibility of our work. All datasets used in our
556 experiments are publicly available and properly cited in the main text and appendix. Training con-
557 figurations, including model architectures, hyperparameters, optimizers, and evaluation settings, are
558 described in detail in Section 4 and Appendix A.7-A.8. Theoretical claims, including the equiva-
559 lence between SFT and policy gradient, are formally derived in Appendix A.2. Experimental results
560 include multiple model scales, tasks, and training settings to validate robustness. A complete imple-
561 mentation of our method is included in the supplementary material, along with scripts for reproduc-
562 ing all reported results. We will release the full source code and training logs upon publication to
563 further support reproducibility.

564 REFERENCES
565

566 Abbas Abdolmaleki, Bilal Piot, Bobak Shahriari, Jost Tobias Springenberg, Tim Hertweck, Michael
567 Bloesch, Rishabh Joshi, Thomas Lampe, Junhyuk Oh, Nicolas Heess, et al. Learning from nega-
568 tive feedback, or positive feedback or both. In *ICLR*, 2025. 3

569 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
570 for mathematical reasoning: Progresses and challenges. In *EACLW*, pp. 225–237, 2024. 2, 6, 18

571 American Institute of Mathematics. Aime 2024 competition mathematical problems, 2024. 2, 17

572 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dasgupta, Dawn
573 Drain, Stanislav Fort, Deep Ganguli, Tom Hase, et al. Training a helpful and harmless assistant
574 with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022. 1, 2

575 Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
576 Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipli-
577 e: A scalable and polyglot approach to benchmarking neural code generation. *IEEE Transactions
578 on Software Engineering*, 49(7):3675–3691, 2023. 18

579 Huayu Chen, Kaiwen Zheng, Qinsheng Zhang, Ganqu Cui, Yin Cui, Haotian Ye, Tsung-Yi Lin,
580 Ming-Yu Liu, Jun Zhu, and Haoxiang Wang. Bridging supervised learning and reinforcement
581 learning in math reasoning. *arXiv preprint arXiv:2505.18116*, 2025a. 2

582 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
583 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
584 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021. 18

585 Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin
586 Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. An empiri-
587 cal study on eliciting and improving r1-like reasoning models. *arXiv preprint arXiv:2503.04548*,
588 2025b. 1

589 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
590 reinforcement learning from human preferences. In *NeurIPS*, volume 30, 2017. 1, 2

594 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 595 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 596 model post-training. In *ICML*, 2024. [1](#), [2](#)

597

598 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
 599 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
 600 guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024. [1](#), [2](#)

601 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
 602 Xie, Ruobing Xie, Yankai Lin, et al. Ultrafeedback: boosting language models with scaled ai
 603 feedback. In *ICML*, pp. 9722–9744, 2024. [18](#)

604

605 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 606 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 607 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 608 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 609 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 610 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 611 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 612 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 613 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 614 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 615 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 616 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 617 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
 618 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 619 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 620 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 621 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 622 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 623 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 624 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 625 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 626 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 627 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 628 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 629 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 630 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 631 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 632 Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
 633 ment learning, 2025. [4](#), [19](#)

634

635 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
 636 Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
 637 foundation model alignment. *Transactions on Machine Learning Research*, 2023, 2023. [2](#), [6](#), [18](#)

638

639 Yilun Du et al. Simplify rlhf as reward-weighted sft: A variational method. *arXiv preprint*
 640 *arXiv:2502.11026*, 2025. [3](#), [18](#)

641

642 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
 643 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating
 644 large multi-modality models. In *ACM MM*, pp. 11198–11201, 2024. [18](#)

645

646 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 647 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 648 *arXiv preprint arXiv:2407.21783*, 2024. [17](#)

649

650 Yoav Freund. A more robust boosting algorithm. *arXiv preprint arXiv:0905.2138*, 2009. [17](#)

651

652 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
 653 Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi

648 with olympiad-level bilingual multimodal scientific problems. In *ACL*, pp. 3828–3850, 2024. 2,
 649 17
 650

651 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 652 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
 653 In *NeurIPS*, 2021. 17

654 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 655 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022. 6
 656

657 Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-
 658 dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities?
 659 understanding transferability of llm reasoning. *arXiv preprint arXiv:2507.00432*, 2025. 1

660 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. 6, 19
 661

662 Pavan Kantharaju and Aiswarya Sankar. An understanding of learning from demon-
 663 strations for neural text generation. In *ICLR Blog Track*, 2022. URL [https://iclr-
 664 blog-track.github.io/2022/03/25/text-gen-via-lfd/](https://iclr-blog-track.github.io/2022/03/25/text-gen-via-lfd/). [https://iclr-
 666 blog-track.github.io/2022/03/25/text-gen-via-lfd/](https://iclr-

 665 blog-track.github.io/2022/03/25/text-gen-via-lfd/). 3

667 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 668 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 669 benchmark for question answering research. *Transactions of the Association for Computational
 670 Linguistics*, 7:453–466, 2019. 8

671 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
 672 rial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020. 2
 673

674 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 675 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 676 reasoning problems with language models. *NeurIPS*, 35:3843–3857, 2022. 17

677 Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
 678 Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
 679 Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath, 2024. 2, 17, 18

680 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
 681 detection. In *ICCV*, pp. 2999–3007, 2017. 3

682 Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. 2025. 18
 683

684 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
 685 gpt really correct? rigorous evaluation of large language models for code generation. *NeurIPS*,
 686 36:21558–21572, 2023. 18

687 Mingyang Liu, Gabriele Farina, and Asuman Ozdaglar. Uft: Unifying supervised and reinforcement
 688 fine-tuning. *arXiv preprint arXiv:2505.16984*, 2025. 1, 2
 689

690 Vivian Liu and Yiqiao Yin. Green ai: exploring carbon footprints, mitigation strategies, and trade
 691 offs in large language model training. *Discover Artificial Intelligence*, 4(49), 2024. 1

692 Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
 693 Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
 694 human demonstrations for robot manipulation. In *CoRL*, pp. 1678–1690, 2022. 1, 2
 695

696 Mathematical Association of America. Amc 2023 competition problems, 2023. 2, 17

697 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 698 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 699 instructions with human feedback. *NeurIPS*, 35:27730–27744, 2022. 1, 2
 700

701 Richard Yuanzhe Pang and He He. Text generation by learning from demonstrations. In *ICLR*, 2021.
 3

702 Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
 703 networks. In *ICML*, pp. 1310–1318. Pmlr, 2013. [2](#)

704

705 Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma
 706 GongQue, Shanglin Lei, Zhe Wei, MiaoXuan Zhang, et al. We-math: Does your large multi-
 707 modal model achieve human-like mathematical reasoning? *arXiv preprint arXiv:2407.01284*,
 708 2024. [18](#)

709

710 Chongli Qin and Jost Tobias Springenberg. Supervised fine tuning on curated data is reinforcement
 711 learning (and can be improved). *arXiv preprint arXiv:2507.12856*, 2025. [3](#), [6](#), [18](#)

711

712 Haibo Qiu, Xiaohan Lan, Fanfan Liu, Xiaohu Sun, Delian Ruan, Peng Shi, and Lin Ma. Metis-
 713 rise: RL incentivizes and sft enhances multimodal reasoning model learning. *arXiv preprint*
 714 *arXiv:2506.13056*, 2025. [1](#), [2](#)

714

715 Qwen Team, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 716 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2.5: A party of foundation models. *arXiv*
 717 *preprint arXiv:2412.15115*, 2024a. [17](#)

718

719 Qwen Team, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 720 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2.5 technical report. *arXiv preprint*
 721 *arXiv:2412.15115*, 2024b. [2](#)

721

722 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 723 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 724 *NeurIPS*, volume 36, 2023. [1](#), [2](#), [18](#)

724

725 Claude Sammut. *Behavioral Cloning*. 2011. [2](#)

726

727 Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutton, Zaid Alyafeai, Antoine
 728 Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
 729 zero-shot task generalization. In *ICLR*, 2022. [1](#)

729

730 Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In *ICLR*,
 731 2020. [17](#)

732

733 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 734 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017. [1](#), [2](#), [4](#), [18](#)

734

735 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 736 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 737 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024. [17](#), [18](#)

737

738 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 739 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *ECCV*, pp.
 740 1279–1297, 2025. [1](#), [2](#), [17](#), [18](#)

741

742 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
 743 learning in nlp. In *ACL*, pp. 3645–3650, 2019. [1](#), [2](#)

743

744 Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhiwei Steven Wu, and J Andrew Bagnell. All
 745 roads lead to likelihood: The value of reinforcement learning in fine-tuning. *arXiv preprint*
 746 *arXiv:2503.01067*, 2025. [1](#), [2](#)

747

748 Bo Wang, Qinyuan Cheng, Runyu Peng, Rong Bao, Peiji Li, Qipeng Guo, Linyang Li, Zhiyuan
 749 Zeng, Yunhua Zhou, and Xipeng Qiu. Implicit reward as the bridge: A unified view of sft and
 750 dpo connections. *arXiv preprint arXiv:2507.00018*, 2025. [3](#)

750

751 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 752 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In
 753 *NeurIPS*, 2024. [18](#)

753

754 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 755 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *ICLR*,
 2022. [1](#), [2](#)

756 Jenis Winsta. The hidden costs of ai: A review of energy, e-waste, and inequality in model develop-
 757 ment. *arXiv preprint arXiv:2507.09611*, 2025. 1
 758

759 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 760 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025. 19
 761

762 Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S Schoenholz. A
 763 mean field theory of batch normalization. In *ICLR*, 2019. 2
 764

765 Jie Yang, Feipeng Ma, Zitian Wang, Dacheng Yin, Kang Rong, Fengyun Rao, and Ruimao Zhang.
 766 Wethink: Toward general-purpose vision-language reasoning via reinforcement learning. *arXiv*
 767 *preprint arXiv:2506.07905*, 2025a. 18
 768

769 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 770 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal rea-
 771 soning through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025b. 18
 772

773 Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
 774 is already half the answer: Fully unsupervised llm reasoning incentivization. *arXiv preprint*
 775 *arXiv:2504.05812*, 2025. 2
 776

777 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
 778 Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the
 779 diagrams in visual math problems? In *ECCV*, pp. 169–186, 2024a. 18
 780

781 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 782 Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruction tuning for large language models: A
 783 survey. *arXiv preprint arXiv:2308.10792*, 2024b. 1
 784

785 Shiyue Zhang, Shijie Wu, Ozan Irsoy, Steven Lu, Mohit Bansal, Mark Dredze, and David Rosen-
 786 berg. Mixce: Training autoregressive language models by mixing forward and reverse cross-
 787 entropies. In *ACL*, pp. 9027–9050, 2023. 3
 788

789 Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
 790 Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight
 791 infrastructure for fine-tuning, 2024. 18
 792

793 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
 794 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint*
 795 *arXiv:2507.18071*, 2025. 9
 796

797

798

799

800

801

802

803

804

805

806

807

808

809