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ABSTRACT

In this work, we present a simple yet theoretically motivated improvement to
Supervised Fine-Tuning (SFT) for the Large Language Model (LLM), address-
ing its limited generalization compared to reinforcement learning (RL). Through
mathematical analysis, we reveal that standard SFT gradients implicitly encode
a problematic reward structure that may severely restrict the generalization ca-
pabilities of model compared to RL. To rectify this, we propose Dynamic Fine-
Tuning (DFT), stabilizing gradient updates for each token by dynamically rescal-
ing the objective function with the probability of this token. With just a single-line
change, the method outperforms standard SFT on multiple difficult benchmarks
and base models, from math reasoning to code generation and multi-modal tasks,
demonstrating improved generalization. Additionally, DFT achieves competitive
results in offline RL settings, and further boosts the effectiveness of subsequent
RL training, providing an effective yet streamlined alternative. The experiments
further demonstrate that DFT not only strengthens SFT performance but also con-
sistently improves the effectiveness of subsequent RL training. By bridging theo-
retical insights with practical solutions, this work advances the state of SFT. The
source code will be publicly released.

1 INTRODUCTION

Supervised Fine-Tuning (SFT), which adapts models to expert demonstrations, has become the stan-
dard post-training paradigm for Large Language Models (LLMs). It enables efficient task adapta-
tion and capability enhancement (Chung et al., 2024; Zhang et al., 2024b; Sanh et al., 2022; Ouyang
etal., 2022), and is popular for its ease of implementation and rapid acquisition of expert-like behav-
iors (Wei et al., 2022; Zhou et al., 2023). Despite these advantages, SFT often shows limited gener-
alization compared to reinforcement learning (RL) (Chu et al., 2024; Ouyang et al., 2022; Christiano
etal., 2017; Bai et al., 2022; Huan et al., 2025; Swamy et al., 2025). RL leverages explicit reward or
verification signals to explore diverse strategies and thus generalizes better. However, RL requires
substantial computation, careful hyperparameter tuning, and explicit reward signals—conditions of-
ten impractical in real-world settings (Schulman et al., 2017; Ouyang et al., 2022; Sheng et al.,
2025; Strubell et al., 2019; Liu & Yin, 2024; Winsta, 2025). Moreover, RL can struggle to recover
expert-like behaviors that SFT captures efficiently (Mandlekar et al., 2022; Chen et al., 2025b).

To exploit the complementary strengths of both approaches, many hybrid methods combine SFT
with RL (Ouyang et al., 2022; Sheng et al., 2025; Rafailov et al., 2023; Liu et al., 2025; Qiu et al.,
2025). Yet a key question remains: can SFT itself be fundamentally improved? This is crucial, as
SFT remains the only viable option when datasets contain only positive demonstrations, with no
negative samples or reward model available.

In this work, we address this gap with a mathematical analysis of the connection between SFT and
RL. We show that the gradient update in SFT can be interpreted as a form of policy gradient with
a specific, implicitly defined reward under certain assumptions. Crucially, this reward is (i) sparse,
and (ii) inversely proportional to the model’s probability of expert actions (see equation 6). As a
result, when the model assigns low probability to expert actions, the gradient becomes excessively
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large, yielding an ill-posed reward structure and unstable optimization (Pascanu et al., 2013; Yang
et al., 2019).

Building on this insight, we propose Dynamic Fine-Tuning (DFT), a principled fix. Our method
rescales the SFT objective at each token by its probability, canceling the distortion introduced by
inverse-probability weighting. This reframing turns the SFT gradient from a potentially unstable
and biased estimator into a more stable, more uniformly weighted update rule that behaves closer to
an RL-style.

Empirically, DFT delivers substantial improvements. On the Qwen-2.5-Math series (Qwen Team
et al., 2024b) fine-tuned with NuminaMath-CoT (LI et al., 2024), DFT yields gains several times
larger than standard SFT. More importantly, unlike SFT, which often degrades on challenging bench-
marks such as OlympiadBench (He et al., 2024), AIME 2024 (American Institute of Mathematics,
2024), and AMC 2023 (Mathematical Association of America, 2023), our method consistently im-
proves performance and generalization. These improvements hold across models, scales, and data
sizes (Table 1, Figure 1), and extend to code generation and multimodal reasoning (Tables 3, 4).

We further test DFT in off-policy RL settings (Table 2), where dense rewards are available (Levine
et al., 2020). Our method not only outperforms offline RL approaches such as DPO (Rafailov et al.,
2023) and RAFT (Dong et al., 2023; Ahn et al., 2024), but also achieves competitive or superior
performance to online methods like GRPO and PPO on math tasks with Qwen2.5-Math-1.5B. Unlike
these RL methods, DFT requires neither a reference model nor large batch sizes, making it a simpler
and more resource-efficient alternative. Besides, our experiments further show that DFT not only
yields stronger SFT performance, but also reliably enhances the effectiveness of subsequent RL
training.

To understand its effect, we analyze token probability distributions after training (Figure 2). While
traditional SFT uniformly pushes probabilities toward the training set, DFT selectively increases
some while reducing others. In particular, the proportion of less strongly fitted tokens rises, suggest-
ing improved regularization. We provide further discussion in Appendix A.3.

The contributions of this work are theoretical and practical. On the theoretical side, we mathemati-
cally establish LLM SFT as a special RL in policy gradient space, pinpoint the underlying reasons
for the limited generalization of SFT, and derive a method to improve it. On the experimental side,
we show that such a simple solution, just one line of code, can enhance the performance and gener-
alization capabilities of SFT across various tasks and models.

2 RELATED WORK

The trade-off between supervised fine-tuning (SFT) and reinforcement learning (RL) is central to
the alignment of large language models. SFT is widely adopted due to its simplicity and efficiency
in imitating expert demonstrations (Chung et al., 2024; Zhou et al., 2023; Wei et al., 2022), anal-
ogous to behavioral cloning in robotics (Sammut, 2011; Mandlekar et al., 2022). However, the
literature consistently highlights its limitations, particularly the tendency to overfit and generalize
poorly compared to RL, which leverages reward signals to discover more robust policies (Ouyang
et al., 2022; Christiano et al., 2017; Bai et al., 2022; Swamy et al., 2025; Zhang et al., 2025). A
recent systematic comparison by Chu et al. (2024) across textual and visual domains confirms this
distinction, concisely summarized as “SFT memorizes while RL generalizes.” They further show
that SFT remains indispensable as an initialization step, stabilizing output formatting prior to ef-
fective RL training. Nonetheless, RL faces significant practical hurdles, including computational
expense, sensitivity to hyperparameters, and the requirement of an explicit reward function, all of
which constrain its applicability (Schulman et al., 2017; Strubell et al., 2019; Sheng et al., 2025).

To combine the strengths of both paradigms, much recent work has pursued hybrid approaches. The
most common strategy involves SFT pretraining followed by RL-based refinement with a learned
reward model, as popularized by InstructGPT (Ouyang et al., 2022). More recent methods interleave
SFT and RL updates to improve stability and performance (Sheng et al., 2025; Liu et al., 2025; Qiu
et al., 2025). Other approaches, such as Direct Preference Optimization (DPO) (Rafailov et al.,
2023), bypass reward modeling entirely by directly optimizing policies on preference data, thereby
unifying imitation and reinforcement signals within a single loss function. Chen et al. (2025a)
introduce Negative-aware Fine-Tuning (NFT), which models incorrect generations via an implicit
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negative policy, enabling self-improvement without explicit feedback. While powerful, these meth-
ods rely on reward signals, preference pairs, or negative samples. They enrich the training pipeline
but do not fundamentally improve SFT in its native setting, where only positive demonstrations are
available. Our work instead focuses on enhancing SFT itself without requiring external feedback.

A complementary line of theoretical research seeks to unify SFT and RL under a common formal-
ism. Du et al. (2025) reinterpret RLHF as a reward-weighted variant of SFT, preserving reliance on
an explicit reward. Wang et al. (2025) show that SFT can be cast as RL with an implicit reward,
proposing adjustments such as smaller learning rates to manage the vanishing KL constraint. Abdol-
maleki et al. (2025) analyze learning from both positive and negative feedback, studying how their
balance affects convergence. Qin & Springenberg (2025) view SFT as a lower bound of RL and
introduce importance weighting based on the data-generating policy. While these works establish
connections between SFT and RL through weighting, they do not provide a precise mathematical
equivalence between the SFT gradient and the offline policy gradient. Some methods approximate
this connection in practice by reweighting training losses. For instance, MixCE (Zhang et al., 2023)
combines the forward and reverse KL divergences to form a unified objective, while GOLD (Pang
& He, 2021) adopts offline RL with demonstrations, introducing reliance on an unknown demon-
stration distribution 7, and a restrictive 1/N assumption. Kantharaju & Sankar (2022) also provide
a clear and insightful exposition of GOLD’s motivation and mechanics from an alternative perspec-
tive, offering useful intuition for understanding its underlying design. In contrast, our work offers a
more formal perspective on this connection, highlighting the role of the inverse-probability weight-
ing term in shaping the difference between SFT and RL-like updates. This perspective motivates a
simple adjustment: multiplying the loss by the model’s token probability to neutralize the weighting.

Interestingly, our method modifies the standard cross-entropy (CE) loss in a way that inverts the
weighting philosophy of the widely used Focal Loss (Lin et al., 2017). Specifically, our modified
CE takes the form —plog(p), whereas focal loss is defined as —(1 — p)? log(p). Focal Loss delib-
erately downweights well-classified samples to emphasize underrepresented or hard cases, whereas
we deliberately downweight poorly classified samples to encourage generalization. This inversion
reflects a fundamental shift in the LLM era: while underfitting was once a central challenge, over-
fitting and memorization now dominate, demanding a rethinking of objective design.

3 METHOD

3.1 PRELIMINARIES

Supervised Fine-Tuning. Let D = {(z, y*)} denote a corpus of expert demonstrations, where y*
is the complete reference response to the query . SFT minimizes the sentence-level cross-entropy:

Lspr(0) = Eqyyop[—logme(y* | 2)]. )
Its gradient is:
VoLsrr(0) = E(gyyup|[—Velogmy(y* | z)]. (2)

Reinforcement Learning. Let y denote a response sampled from the policy 7y (- | ) for query x.
Given a reward function r(z, y) € R, the policy objective is

J(0) = Epnn,, yomo-|a) [T(% y)] 3)
Its policy gradient at the sentence level is
Vol (0) = Eonp,, yomo(|a) [Vg logmo(y | x) r(x, y)] (4)

3.2 UNIFY SFT AND RL GRADIENT EXPRESSION

Rewriting SFT Gradient as Policy Gradient via Importance Sampling. The SFT gradient
in equation 2 is taken under the fixed demonstration distribution. We convert it to an on-policy
expectation by inserting an importance weight that compares the expert (Dirac Delta) distribution
with the model distribution.

1[y = y*]
mo(y | )

resample + reweight

E sy~ [~Vologm(y* | 2)] = Eann, Eymmy(lo) [~Vologma(y | z)] (5
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Define the auxiliary variables (importance sampling weight) as

1

m7 r(z,y) =1y =y*].

w(y | z) =

Reorganizing equation 5 and rewriting it using the above auxiliary variables, we obtain the form

VoLsrr(0) = —Epop, yomo(2) (WY | ) Vologma(y | ) (2, y)]. (6)

This form of the SFT gradient closely resembles the policy gradient in Equation equation 4. Under
this formulation, conventional SFT can be interpreted as an on-policy gradient method, where the
reward is a sparse indicator function matching the expert trajectory, but biased by an importance
weighting term 1 /7. We emphasize that this RL-style characterization serves solely as a theoretical
lens: both the analysis and subsequent modifications are developed within the RL framework, while
the final method remains fully implementable in standard SFT form for computational efficiency.
Detailed derivations are provided in Appendix A.2.

Due to the inherently sparse reward signal in the SFT setting, we identify the importance weight
1/7q as a key contributor to SFT’s generalization limitations compared to RL. When the model as-
signs low probability to the expert response, the resulting weight becomes excessively large, intro-
ducing an ill-posed reward landscape. This leads to disproportionately large gradients and training
instability. The issue is compounded by the fact that the reward function r(x, y) = 1[y = y*] is non-
zero only for exact matches to the expert outputm causing optimization to overfit rare exact-match
samples and weakening the model’s ability to generalize beyond the training data.

3.3 PROPOSED METHOD

Reward Rectification via Dynamic Reweighting. To neutralize the skewed reward issue identi-
fied when viewing SFT under the RL objective, we dynamically reweight the reward by multiplying
by a corrective inverse ratio given by the policy probability 1/w. The resulting “dynamically fine-
tuned” gradient is then

VoLsrr(0) = —Epnp,, yomo(|a) [Sg(%) cw(y | z) Vologma(y | z) r(z,y)]. (7N
where sg(+) denotes the stop gradient operator, ensuring that gradients do not flow through the reward
scaling term w. To facilitate transition to later equations, we directly write 1/w to be my(y* | x)
instead of 7y (y | ) because the indicator function in equation 5 or equation 6 would leave all cases
where y # y* is 0. Now since the gradient does not flow, the corrected SFT loss also becomes a
simple reweighted loss, called Dynamic Fine-tuning (DFT).

Lorr(0) = Eipyoyop [— sg (mo(y* | 2)) log mo(y* | 7). (8)

However, in practice, computing importance weights over the entire trajectory can induce numerical
instability. A common treatment of this issue is to simply apply importance sampling at the token
level, as was adopted in PPO (Schulman et al., 2017). This leads to the final DFT loss version:

ly*|

Lort(8) = By |~ 58 (To(y7 | v @) log molyi | 1, )] ©)
t=1

Note that the reward of this corrected SFT (in RL form), i.e., DFT, now becomes 1 uni-
formly for all expert trajectory. This is akin to contemporary verification based reward approach
RLVR (DeepSeek-Al et al., 2025) that assigns uniform reward to all correct samples. Consequently,
it avoids over-concentration on specific low-probability reference tokens, leading to more stable up-
dates and improved generalization without introducing any additional sampling or reward models.
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Table 1: Average@ 16 accuracy of five state-of-the-art large language models on mathematical rea-
soning benchmarks. The best performance of each model across benchmarks is bold.

Math500 Minerva Math Olympiad Bench AIME24 AMC23 Avg.

LLaMA-3.2-3B 1.63 1.36 1.01 0.41 1.56 1.19
LLaMA-3.2-3B w/SFT 8.65 2.38 2.06 0.00 3.13 3.24
LLaMA-3.2-3B w/DFT 12.79 2.84 2.90 0.83 3.91 4.65
LLaMA-3.1-8B 1.86 0.98 0.94 0.21 1.01 1.00
LLaMA-3.1-8B w/SFT 16.85 5.78 3.88 0.00 5.16 6.33
LLaMA-3.1-8B w/DFT 27.44 8.26 6.94 0.41 12.03 11.02
DeepSeekMath-7B 6.15 2.15 1.74 0.21 2.97 2.64
DeepSeekMath-7B w/SFT 26.83 7.26 6.33 0.41 8.28 9.82
DeepSeekMath-7B w/DFT 41.46 16.79 15.00 1.24 16.25  18.15
Qwen2.5-Math-1.5B 31.66 8.51 15.88 4.16 19.38 15.92
Qwen2.5-Math-1.5B w/SFT 43.76 13.04 12.63 1.87 18.75 18.01
Qwen2.5-Math-1.5B w/DFT 64.89 20.94 27.08 6.87 38.13  31.58
Qwen2.5-Math-7B 40.12 14.39 17.12 6.68 2796  21.25
Qwen2.5-Math-7B w/SFT 53.96 16.66 18.93 2.48 26.09  23.62
Qwen2.5-Math-7B w/DFT 68.20 30.16 33.83 8.56 45.00 37.15

4 EXPERIMENTS

We design four groups of experiments to comprehensively evaluate DFT. We first study the standard
SFT setting on mathematical reasoning tasks to establish its core advantage over SFT (Section 4.1).
We then extend to an offline RL setting, comparing DFT with representative offline and online RL
methods (Section 4.2). To test cross-domain robustness, we further examine DFT on code generation
benchmarks (Section 4.3) and its applicability to multi-modal reasoning math datasets (Section 4.4).

4.1 MAIN EXPERIMENT - MATHEMATICAL REASONING TASK

To examine whether DFT can outperform vanilla SFT across tasks, architectures, and scales, we use
mathematical reasoning as a representative testbed.

DFT consistently yields average performance improvements over base models compared to standard
SFT across all benchmarks. Table 1 shows that, for Qwen2.5-Math-1.5B, DFT achieves an average
gain of +15.66 points over the base model, which is over 5.9 x larger than the +2.09 point improve-
ment from SFT. This pattern generalizes across other model families and sizes: LLaMA-3.2-3B
benefits from a +3.46 point gain with DFT, exceeding the SFT gain (+2.05) by approximately 1.4x;
LLaMA-3.1-8B achieves +10.02 from DFT, surpassing SFT’s +5.33 by 1.88 x; DeepSeekMath-7B
sees a +15.51 point improvement via DFT, which is 1.58 x larger than SFT’s +7.18; and Qwen2.5-
Math-7B reaches a +15.90 point gain, nearly 3.8 x higher than the SFT improvement of +2.37.

DFT demonstrates generalization and robustness, especially on challenging benchmarks where stan-
dard SFT yields minimal or even negative impact. For instance, on Olympiad Bench, SFT degrades
performance for Qwen2.5-Math-1.5B, dropping accuracy from 15.88 to 12.63, while DFT boosts
it to 27.08, +11.20 point improvement over base model. On AIME24, SFT reduces accuracy for
Qwen2.5-Math-7B by 4.20 points (from 6.68 to 2.48), whereas DFT improves performance to 8.56,
achieving a +1.88 point gain over the base model despite the difficulty of the benchmark. A similar
trend is observed on AMC23. SFT reduces the performance of Qwen2.5-Math-1.5B from 19.38 to
18.75, while DFT raises it to 38.13, a +18.75 point gain over base. For Qwen2.5-Math-7B, SFT
yields only a marginal improvement (+1.86), whereas DFT achieves a +17.04 point gain. These
results underscore that DFT not only scales more effectively across models of varying capacities,
but also exhibits better resilience on difficult reasoning tasks where traditional SFT struggles.
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Figure 1: Accuracy progression for Qwen2.5-Math-1.5B across mathematical benchmarks, illustrat-
ing faster convergence and better performance achieved by DFT relative to SFT.

DFT exhibits better learning efficiency and faster convergence characteristics. Figure 1 reveals
clear differences in learning dynamics between DFT and standard SFT on Qwen2.5-Math-1.5B
across all math reasoning benchmarks. Compared to SFT, our method demonstrates three distinct
advantages: (1) Faster convergence, achieving peak performance within the first 120 training steps
on most benchmarks; (2) Better early-stage performance, with DFT already outperforming best
final accuracy of SFT within the first 10-20 steps; and (3) Higher sample efficiency, consistently
requiring fewer updates to reach relatively optimal results. This accelerated convergence shows that
the dynamic reweighting mechanism in DFT leads to more informative gradient updates, guiding
the model toward high-quality solutions early in training. It also suggests that DFT helps avoid the
optimization plateaus or noise-prone regions often encountered in standard SFT, thereby enabling
more efficient acquisition of complex mathematical reasoning patterns.

We also report the results of parameter-efficient fine-tuning (PEFT) training setting (Hu et al.,
2022) and training on the OpenR1-Math dataset (Hugging Face, 2025) with better quality in Ap-
pendix A.8 and Appendix A.7, respectively. Comparison and Discussion with the concurrent method
iw-SFT (Qin & Springenberg, 2025) is provided in Appendix A.6.

4.2 EXPLORATORY EXPERIMENT - OFFLINE RL SETTING

Equation 7 shows that SFT suffers from reward sparsity, since in a constructed dataset each query z
has only a single reference answer y*. From the perspective of RL, RFT/RAFT (Dong et al., 2023;
Ahn et al., 2024) can be viewed as alleviating the sparse reward issue by effectively increasing
reward density, thereby enhancing model performance. Motivated by this observation, we conduct
an exploratory study applying DFT in an offline RL setting, where the reward sparsity problem is
inherently less severe compared to standard SFT, to further validate the effectiveness.

DFT demonstrates competitive performance in the offline RL setting, outperforming both offline
and online RL baselines. Table 2 shows DFT achieves an average score of 35.43, exceeding the best
offline method RFT by +11.46 points, and even outperforming the strongest online RL algorithm
GRPO by +3.43 points. Specially, on Math500, DFT scores 64.71, slightly ahead of GRPO (62.86)
and better than PPO (56.10) and RFT (48.23). The gains are also notable on more challenging
benchmarks: on AMC23, DFT achieves 48.44, a +7.19 point margin over GRPO and a +17.66 point
gain over RFT. Similarly, on Minerva Math, DFT reaches 25.16, outperforming GRPO by +6.23
points, PPO by +9.75, and all offline baseline methods.
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Table 2: Evaluation results on mathematical reasoning benchmarks in an offline reinforcement learn-
ing setting using reward signals from rejection sampling. The best performance is in bold.

Setting Math500 Minerva Math  Olympiad Bench AIME24 AMC23 Avg.

Qwen2.5-Math-1.5B w/DFT SFT 64.89 20.94 27.08 6.87 38.13 31.58
Qwen2.5-Math-1.5B w/DPO Offline 46.89 11.53 22.86 4.58 30.16 23.20
Qwen2.5-Math-1.5B w/RFT Offline 48.23 14.19 22.29 4.37 30.78 23.97
Qwen2.5-Math-1.5B w/PPO Online 56.10 15.41 26.33 7.50 37.97 28.66
Qwen2.5-Math-1.5B w/GRPO  Online 62.86 18.93 28.62 8.34 41.25 32.00
Qwen2.5-Math-1.5B w/DFT Offline 64.71 25.16 30.93 7.93 48.44 35.43

Table 3: Performance of various models on code generation benchmarks. The best performance for
each benchmark is highlighted in bold.

HumanEval MultiPL-E
HE HE+ Python C++ Java PHP TS C# Bash JS Avg.

Qwen2.5-3B 433 360 4329 4099 3734 37.89 47.17 43.04 2468 4596 40.05
Qwen2.5-3B w/SFT 415 348 42.07 4224 3797 3727 4340 4177 2025 47.83 39.10
Qwen2.5-3B w/DFT 45.7 390 4573 44.72 41.77 4534 42.14 43.04 27.85 44.10 41.84
Qwen2.5-Coder-3B 524 427 51.83 5342 4620 4720 54.09 55.06 2532 54.04 48.39

Qwen2.5-Coder-3B w/SFT ~ 51.8 439 5122 51.55 48.10 54.66 59.12 5127 34.18 54.04 50.52
Qwen2.5-Coder-3B w/DFT 56.7 50.0 5732 54.66 51.27 5839 5849 60.76 3101 5342 53.16

Qwen?2.5-Coder-7B 622 53.0 6341 6398 53.16 59.01 6289 5949 3924 60.87 57.76
Qwen2.5-Coder-7B w/SFT 549 488 5488 64.60 5127 6211 6855 60.76 33.54 6522 57.62
Qwen2.5-Coder-7B w/DFT  67.7 59.8 67.68 67.70 5443 60.87 7044 65.19 48.73 6335 62.30

These results highlight the strength of DFT as a simple yet effective fine-tuning strategy. Despite its
lack of iterative reward modeling or environment interaction, it provides a stronger learning signal
than both offline methods like DPO/RFT and online policy optimization algorithms like PPO/GRPO
in certain scale train set. This suggests that DFT can serve as a more efficient and scalable alternative
to traditional RL pipelines, particularly in domains where preference supervision is available but
reward modeling or online response sampling is expensive or impractical.

4.3 EXPLORATORY EXPERIMENT - CODE GENERATION TASK

Table 3 shows DFT achieves improvements in most cases compared to both base models and SFT.
For Qwen2.5-3B, DFT raises HumanEval from 43.3 to 45.7 and HumanEval+ from 36.0 to 39.0,
with the MultiPL-E average also increasing from 40.05 (base) and 39.10 (SFT) to 41.84. Simi-
lar trends are observed for Qwen2.5-Coder-3B, where DFT improves HumanEval to 56.7 and Hu-
manEval+ to 50.0, outperforming both base and SFT. For Qwen2.5-Coder-7B, DFT reaches 67.7
on HumanEval, 59.8 on HumanEval+, and 62.3 average on MultiPL-E, surpassing SFT by +12.8,
+11.0, and +4.7 points respectively. The overall trend demonstrates that DFT generally provides
stronger performance across different models and languages.

4.4 EXPLORATORY EXPERIMENT - MULTI-MODAL REASONING

DFT achieves consistent improvements over base models and SFT across all multi-modal reason-
ing benchmarks. Table 4 shows, on MathVerse, DFT boosts Qwen2.5-VL-3B from 33.83 to 37.54
average accuracy, outperforming the SFT gain of only +1.83 by +3.71 points. Consistent improve-
ments are observed across all major vision-related subcategories. On MathVision, DFT improves
performance from 21.25 (base) to 22.30, exceeding SFT which fails to provide gains (21.02). On
WeMath, SFT already yields a +19.23 point gain, but DFT pushes performance slightly further to
23.71, maintaining superiority over both base and SFT. These results indicate that DFT not only
strengthens text-only reasoning but also extends effectively to multi-modal domains.
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Table 4: Performance comparison across different multi-modal reasoning benchmarks. The best
performance on each benchmark is highlighted in bold.

MathVerse

Vision Only Vision Intensive Vision Dominant Overall

MathVision WeMath

Qwen2.5-VL-3B 28.81 30.96 31.60 33.83 21.25 4.10
Qwen2.5-VL-3B w/SFT 30.96 33.63 32.74 35.66 21.02 23.33
Qwen2.5-VL-3B w/DFT 32.49 35.91 33.50 37.54 22.30 23.71

Table 5: Performance comparison on mathematical reasoning benchmarks under cold-start settings.
All models are initialized via fine-tuning (SFT or DFT) and further optimized with GRPO.

Math500 Minerva Math  Olympiad Bench AIME24 AMC23  Avg.

Qwen2.5-Math-1.5B w/SFT+GRPO 62.54 23.10 26.92 5.00 40.15 31.54
Qwen2.5-Math-1.5B w/DFT+GRPO 65.96 23.51 28.37 8.63 41.40 33.57

4.5 CAN DFT ENHANCE REINFORCEMENT LEARNING?

To further investigate the role of DFT in RL optimization, we conduct a set of exploratory experi-
ments where models are first initialized with either SFT or DFT, and then fine-tuned using GRPO.

Mathematical Reasoning. As shown in Table 5, DFT+GRPO consistently outperforms
SFT+GRPO across all benchmarks. Improvements are moderate on Math500 and Minerva Math,
but become substantial on harder datasets such as Olympiad Bench (+1.45) and AIME24 (+3.63).
The average score rises from 31.54 to 33.57.

Code Generation. Table 6 shows that DFT+GRPO yields strong gains on HumanEval (+11.6)
and HumanEval+ (+10.4), and improves performance across most MultiPL-E languages, raising the
average from 58.15 to 62.61 compared to SFT.

Multi-modal Reasoning. As reported in Table 7, DFT+GRPO surpasses SFT+GRPO across all
MathVerse subsets and achieves a notable +4.76 improvement on WeMath, demonstrating that DFT
also enhances RL optimization in multimodal settings.

These results indicate that DFT not only improves performance in SFT but also consistently en-
hances the effectiveness of subsequent RL training. This validates DFT as a stronger pretraining
strategy in RL pipelines across diverse tasks.

4.6 LIMITATIONS OF DFT: A CASE STUDY ON FACTUAL KNOWLEDGE

While DFT consistently outperforms SFT on reasoning-heavy tasks, it may not always be the better
choice, particularly in factual knowledge domains. We conduct an exploratory experiment on the
Natural Questions dataset (Kwiatkowski et al., 2019), which consists of real-user, open-domain
factual queries grounded in Wikipedia articles.

In this setting, we find that SFT improves performance from 31.24% to 36.62%, while DFT un-
expectedly reduces it to 30.14%. This result reveals an important limitation of DFT: because it
reweights samples based on the model’s own confidence, it tends to reinforce the model’s existing
beliefs. When the model lacks sufficient factual knowledge, such reinforcement may hinder effective
learning instead of facilitating it.

This case suggests that DFT is most effective when the task aligns well with the model’s prior
competence, such as logical reasoning or structured prediction. In contrast, when the objective is to
absorb new factual information, especially in domains beyond the model’s current capabilities, SFT
remains a more reliable and stable fine-tuning strategy.
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Table 6: Code generation performance on HumanEval and MultiPL-E benchmarks. All models are
fine-tuned with GRPO after either SFT or DFT initialization.

HumanEval MultiPL-E

HE HE+ Python C++ Java PHP TS C#  Bash JS Avg.

Qwen2.5-Coder-3B w/SFT+GRPO  57.3  50.6 5732 6335 5127 6398 6855 60.76 33.54 66.46 58.15
Qwen2.5-Coder-3B w/DFT+GRPO  68.9  61.0 68.90 67.08 55.06 62.73 70.44 65.19 49.37 62.11 62.61

Table 7: Multi-modal reasoning performance comparison with GRPO initialized via SFT or DFT.

MathVerse

Vision Only Vision Intensive Vision Dominant Overall

MathVision WeMath

Qwen2.5-VL-3B w/SFT+GRPO 32.48 33.50 43.78 35.93 21.44 21.43
Qwen2.5-VL-3B w/DFT+GRPO 34.64 37.31 37.06 39.06 23.35 26.19

Table 8: Comparison of weighting strategies on mathematical reasoning benchmarks.
Math500 Minerva Math Olympiad Bench AIME24 AMC23 Avg.

Qwen2.5-Math-1.5B 31.66 8.51 15.88 4.16 19.38 15.92
Sentence-Level Weighting 31.26 8.05 16.47 3.12 19.84 15.75
Geometric-Mean Weighting 42.87 12.34 13.03 1.23 16.56 17.21
Token-Level Weighting 64.89 20.94 27.08 6.87 38.13  31.58

4.7 AN EMPIRICAL COMPARISON WITH SENTENCE-LEVEL WEIGHTING

Our framework applies confidence-based weighting at the token level. While this design was pri-
marily motivated by numerical stability, we also compared it against two sentence-level variants to
better understand their behavior.

The first variant uses the full sequence probability to scale the loss. However, these values are
extremely small in practice, making the loss nearly uninformative and producing a highly skewed
weight distribution that is difficult to tune. To address this, we also evaluated a geometric-mean
variant inspired by GSPO (Zheng et al., 2025), which rescales sentence probabilities to avoid nu-
merical collapse. Although this version is more stable, it still provides a weak training signal and
offers limited performance gains.

As shown in Table 8, both sentence-level strategies lead to minimal changes over the base model,
while our token-level formulation delivers substantial and consistent improvements, raising average
accuracy from 15.92 to 31.58. These results demonstrate that token-level weighting provides a more
reliable optimization signal and significantly stronger empirical performance.

4.8 ANALYSIS OF PROBABILITIES

To understand how the model trained by DFT is different from SFT and other RL methods, we
look into the token probability distribution of the model’s output over the training set in Figure 2.
SFT tends to uniformly increase token probabilities, shifting the entire distribution towards higher
confidence, but mainly targeting the lower and lowest probability tokens. The highest probability
token portion barely increases. In stark contrast, DFT exhibits a polarizing effect: it significantly
boosts the probabilities of a subset of tokens while actively suppressing the probabilities of oth-
ers. This leads to a bimodal distribution, with more tokens occupying both the highest and lowest
probability bins. Other RL methods such as DPO, GPPO and PPO show the same trend as DFT,
although the scale is much milder than it. We look into the words that belong to the lowest proba-
bility bin, and find that they are generally the conjunctive words or punctuations such as ‘the’, ‘let’,
‘), . etc. These results suggest that for robust learning, models should not attempt to fit all tokens
with uniform confidence. It may be beneficial to deprioritize fitting tokens that serve grammatical
functions rather than carrying primary semantic content. This concept is analogous to human peda-
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Figure 2: Token probability distributions on the training set before training and after fine-tuning
with DFT, SFT, and various RL methods. A logarithmic scale is used on the y-axis for clarity.

gogy, where students are taught to focus on substantive concepts rather than perfecting the usage of
common connective words. Further analysis can be found in Appendix A.3.

5 CONCLUSION

In this work, we revisit the well-known generalization gap between SFT and RL. We offer a the-
oretical perspective showing that the standard SFT gradient can be interpreted as a policy gradient
with an ill-posed, implicitly defined reward inversely related to model confidence. This formulation
helps explain the instability and limited generalization observed in SFT training. Motivated by this
analysis, we introduce DFT, a simple yet effective method that dynamically reweights the SFT loss
using the token probability. This one-line change improves gradient stability and leads to better
generalization. Our empirical results show that DFTconsistently improves over standard SFT across
a range of models and challenging mathematical reasoning tasks. Beyond supervised settings, we
adapt DFTto offline RL scenarios and find that it outperforms several established online and offline
RL baselines, suggesting broader applicability. Moreover, DFTalso enhances the performance of
subsequent RL fine-tuning when used as a warm start. Overall, this work contributes both a refined
understanding of SFT’s limitations and a lightweight, practical method that helps bridge the gap to
more complex RL-based approaches.

Limitations. While our experiments demonstrate the effectiveness of DFT on mathematical rea-
soning benchmarks and code generation tasks, the evaluation scope remains limited. We have not
yet assessed its performance on broader task categories or with larger-scale LLM, which we leave
for future exploration. Moreover, DFT can not offer universal benefits across all scenarios. In do-
mains that primarily involve the acquisition of factual knowledge, conventional SFT still remains the
most efficient approach. DFT may also not be an ideal choice for hard examples or domains under-
represented in the training data, since it assigns low initial probabilities to such samples, reducing
their learning weight. Our aim is not to assert that DFT universally outperforms SFT, but rather to
offer a new perspective on objective design by analyzing the distinction between RL and SFT. Be-
sides, an important future direction is to explore non-uniform or quality-aware reward assignments
for demonstrations.

10
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scenarios. No conflicts of interest, legal compliance issues, or sponsorship-related influences are
present in this work.

REPRODUCIBILITY STATEMENT
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