
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

NetEvolve: Social Network Forecasting using Multi-Agent
Reinforcement Learning with Interpretable Features

Anonymous Author(s)

ABSTRACT

Predicting how social networks change in the future is important in
many applications. Results in social network research have shown
that the change in the network can be explained by a small number
of concepts, such as “homophily” and “transitivity”. However, ex-
isting prediction methods require many latent features that are not
connected to such concepts, making the methods’ black boxes and
their prediction results difficult to interpret, making them harder to
derive scientific knowledge about social networks. In this study, we
propose NetEvolve a novel multi-agent reinforcement learning-
basedmethod that predicts changes in a given social network. Given
a sequence of changes as training data, NetEvolve learns the char-
acteristics of the nodes with interpretable features, such as how the
node feels rewards for connecting with similar people and the cost
of the connection itself. Based on the learned feature, NetEvolve
makes a forecast based on multi-agent simulation. NetEvolve
achieves comparable or better accuracy than existing methods in
predicting network changes in real-world social networks while
keeping the prediction results interpretable.

CCS CONCEPTS

• Information systems→ Data mining; • Applied computing

→ Sociology; • Computing methodologies → Multi-agent

systems.

KEYWORDS

Network science, Time-series, Multi-agent system, Reinforcement
learning
ACM Reference Format:

Anonymous Author(s). 2023. NetEvolve: Social Network Forecasting us-
ing Multi-Agent Reinforcement Learning with Interpretable Features. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A social network is a graph in which people are connected based
on some relationship. Typical examples are the follower/followee
relationships on Twitter (X), the friend on Facebook, and collabora-
tive relationships between researchers. In many cases, each social
network node has attribute values that express its own charac-
teristics. In the case of a researcher’s co-authorship network, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Training

Patters Parameters
𝜶𝜶 (similarity) → (high)
𝜷𝜷 (cost) → (low)
𝝀𝝀 (stubbornness) ↓   (high)
𝝁𝝁 (influence) ↑   (very high)

Patters Parameters
𝜶𝜶 (similarity) ↑ (high)
𝜷𝜷 (cost) ↓ (low)
𝝀𝝀 (stubbornness) ↓ (high)
𝝁𝝁 (influence) ↑ (low)

Figure 1:NetEvolve forecasts the future network with inter-

pretable features in real-world social networks.We define the

features based onnetwork science studies to simulate the phe-

nomenon in real-world social networks such as homophily,

heterophily, homogenization, and polarization [26, 33, 34, 39]

which leads to the interpretation of the behavior of the nodes

in the network.

words contained in the researcher’s published papers are examples.
Social networks often change their structures and node attribute
values over time. For example, the interests and opinions of each
node change over time, and they change friendships in the network
according to the change in their interests and opinions [22, 24, 39].

In this study, we aim to predict the changes in such dynami-
cally changing social networks. The importance of social network
prediction is growing, and the predicted interests and connections
of a group of people are used for market size prediction [5], mar-
keting [40], and analyzing opinion dynamics [30]. Thus, future
prediction in social networks, such as predicting opinions and con-
nections in social networks, is gaining importance and is expected
to be used for prediction-based decision-making in social media in
the future [3].

Methods for predicting dynamically changing social networks
have been actively studied in recent years. Previous studies [11,
20, 23, 42] have used latent feature-based models that take into
account interest propagation and utilize graph neural networks
to predict how future connections in social networks will change.
However, existing methods require a large number of latent features
for prediction, making them black-box methods, which makes it
hard to derive scientific knowledge from the model. Moreover,
they do not fully consider theories considered in existing network
research, such as transitivity [45].

From this background, we propose a novel method NetEvolve
for predicting the future of social networks with interpretable fea-
tures based on multi-agent reinforcement learning. Our study aims
to forecast the change in their edges and attributes (interests or
opinions) over time. In our study, we assume each node represents
an agent in a reinforcement learning setting, and each node repre-
sents a rational agent, i.e., each node always moves to achieve a

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Reinforcement 
Learning

ActionReward

Optimize
Policy

Figure 2: Framework of NetEvolveThe proposedmethod de-

fines a reward function and a policy function and learns the

parameters from observed network sequences. The learned

functions generate future network sequences by letting the

agent behave as a network generator in a reinforcement

learning environment.

higher reward in the network. For the reward and the policy func-
tions, we designed the interpretable features based on knowledge
of network science. Our research questions are two-fold;

(RQ1) How to design the explainable reward and policy func-
tions that can simulate the phenomena of social networks in
a multi-agent reinforcement learning setting?

(RQ2) How well does the devised framework behave in terms
of forecasting the real-world data?

To answer (RQ1), we formulated a dynamic social network as
an environment of multi-agent reinforcement learning, in which
a node represents an agent in the environment. We assume the
actions of nodes are to make/delete the edge and change their
attribute. NetEvolve consists of three parts of processes (Figure 2);

Step1. Learning the reward functions of each node indicates
in what situation the nodes feel comfortable.

Step2. Learning the policy of each node to learn the strategy
to achieve a higher reward.

Step3. Based on the learned policy of each node, forecasts the
future representation of the network based on the policy
of each node.

We constructed the reward and policy functions based on a net-
work science-based scheme. For the reward function, we designed
a reward function as a linear combination of the similarity of con-
necting nodes’ attributes and the cost function for remaining edges;
this is based on the homophily effect [34] in the network, which
means similar nodes have more connections and different attributes
are difficult to connect to other nodes [14]. We designed a policy
function that can illustrate various stories for getting high rewards.

The contributions of this study are the following. We proposed
a novel method for forecasting social networks using interpretable
features of network science and psychology knowledge based on
multi-agent reinforcement learning. The number of parameters is
smaller than that of existing methods, which improves the model’s
explanatory power and illustrates the characters of each node. Ex-
periments using synthetic data show NetEvolve can simulate the
phenomena in real-world social networks, such as homophily, het-
erophily, homogenization, and polarization[26, 33, 34, 39]. More-
over, to answer (RQ2), we conducted experiments using real-world

network data. The results show that by fitting the model to the
real-world network data, NetEvolve forecasts the future network
structure and the attribute more accurately than the previous works,
which indicates NetEvolve well fits the real-world social phenom-
enon. The main advantages of NetEvolve are the following.

(1) Interpretable: Interpretability is improved by constructing
a network science and psychology-based model.

(2) Extensible: can be easily extended to incorporate other
network science and psychology known phenomena.

(3) Effective: Experimental results on real data show that our
method outperforms existing methods in predicting edges
in unobserved networks by 8% in accuracy.

Reproducability: Our code and datasets will be open-sourced on
GitHub https://github.com/crowd4u/netevolve

2 RELATEDWORKS

In this section, we describe the related works and discuss the dif-
ferences between our work.

Representation Learning for Social Networks Representa-
tion learning for network data is the method for learning vectors
encoding the network structure. In particular, several methods have
been proposed within the framework of latent vector models based
on probabilistic models [1], network embeddings [17, 38, 41, 44, 50],
and graph neural networks [28, 29, 43]. In recent years, methods
have been proposed to embed both node and attribute and track
their changes [31], a method for tracking user interest in Twitter
by embedding nodes and words in a dynamic network [50]. These
methods were developed for acquiring graph and node features in
observed networks and did not examine the prediction of networks
at unobserved times.

Reinforcement Learning Multi-agent reinforcement learning
is a framework in which multiple agents interact to learn behaviors
that maximize their own or the group’s satisfaction. Multi-agent
reinforcement learning includes both fully cooperative and compet-
itive tasks [10, 25]. Previous research [12] has focused on learning
the optimal behavior of agents in an environment called a Markov
game. Another study [48] defines social capital, which is the ben-
efits society provides to individuals, in a game-based framework
and predicts the emergence of new social network structures in
a multi-agent reinforcement learning framework. Recent studies
have attempted to conduct reinforcement learning for several graph
mining tasks, such as representation learning, relational reasoning,
and link prediction [32, 35].

While these studies have attempted to predict the optimal behav-
ior of agents in a given situation and the associated emergence of
network structures, they have not performed the task of generating
unobserved time series networks from observed networks.

Network Predictions Recently, methods for predicting the so-
cial networkwere proposed. GraphSAGE [21] improves onGCN [28]
by sampling from neighboring nodes during training to increase
accuracy and speed, have been proposed as methods for generating
new node features from the network structure. LFP [23] is a method
for predicting changes in the latent variables of a node, taking into
account their propagation in the network structure. CoNN [18] is a
method for predicting changes in the opinions of a set of nodes as
a crowd, and ELSM [19] is a method for augmenting the network

2

https://github.com/crowd4u/netevolve


233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

NetEvolve: Social Network Forecasting using Multi-Agent Reinforcement Learning with Interpretable Features Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Property
Method LF

P
[2
3]

Te
ns
or
Ca

st
[4
]

D
yn

gr
ap
h2
ve
c
[1
6]

D
ua
lC
as
t [
27
]

SI
N
N
[3
7]

N
et

Ev
ol
ve

Network-forecast " " " "

Attribute-forecast " " " "

Extensible " "

Multi-task " " " "

Interpretable "

Table 1: Comparisons of NetEvolve with existing methods.

structure by extracting changes in the latent variables of nodes and
the community structure. STEP [11], Dyrep [42], and VGRNN [20]
are network structure prediction methods that incorporate struc-
tural and temporal information for link prediction. ONE-M [36] and
TensorCast [4] are methods for predicting changes in node features
from the network structure. These studies have focused only on
predicting the graph structure or node’s attributes, which can not
capture the mutual effects between the change of the friendship and
the change of their interests, a.k.a. attributes. In contrast to these
studies, we focus on both predicting the graph structure and the
attribute values of nodes that can fully utilize their mutual effects.

In a previous study, DualCast [27], a method for predicting both
the future of a network structure and attributes, was proposed and
showed high accuracy compared to existing methods. SINN [37]
uses a mathematical model to describe properties known in psy-
chology and incorporates them into the model to predict opinion
dynamics. This research shows the effectiveness of describing the
properties of psychology in a mathematical model for forecasting
opinion dynamics; however, the generation of edges and the pre-
diction of features for multiple future time series have not been
sufficiently investigated.

Table 1 summarizes the characteristics of the proposed method
compared to existing methods. In this study, we model properties
known from network science and psychology and assume that
nodes in a social network take the best actions to increase the
degree of satisfaction. Compared to the existing methods, the pro-
posed method differs significantly in considering changes in graph
structure and attribute values, and allowing other properties to be
easily incorporated.

3 PROBLEM DEFINITION

In this section, we explain the definition of the problem that we are
targeting in this study. The input social network is represented as a
graph structure with attribute values, where each node 𝑛 represents
a person, the attribute value x𝑛 ∈ R𝑘 is a vector representing
the interests of each person such as words, and edges represent
connections between people. Note that, for simplicity, we do not
consider the appearance and disappearance of nodes. Appendix A.1
summarizes the symbols and their definitions.

We can define the objective of our research as follows:

• Input: Given social networks G (𝑡 ) = ⟨V (𝑡 ) , E (𝑡 ) ,X (𝑡 ) ⟩
at time 𝑡 = 1 ∼ 𝑇 , whereV (𝑡 ) is the set of nodes, E (𝑡 ) =

{𝑒 (𝑡 )
𝑖, 𝑗
} is the set of edges between nodes, and X (𝑡 ) = {𝒙𝑖 }

is the set of attribute value vectors.
• Output: Forecast the future, that is, the of edges E (𝑡 ′ ) and

node-attributes X (𝑡 ′ ) at 𝑡 ′ > 𝑇 .

4 PROPOSED METHOD: NETEVOLVE

This section describes NetEvolve, a model for predicting future
social networks based on multi-agent reinforcement learning. Note
that we construct the model that the parameters are interpretable to
understand the property of the given social networks, and easy to
extend by incorporating the other knowledge on network science.

The method consists of two stages; (1) optimize reward and
policy functions for each node using historical time-series social
network data, and (2) generate unobserved time-series network
data based on multi-agent simulation.

The proposed method learns the parameters of each node’s re-
ward function from the input social network time series and op-
timizes the policy function to maximize the estimated value of
the reward function using the policy gradient method. The future
network is generated by calculating the probability of edge cre-
ation and deletion, and change of their attributes using the learned
parameters of the policy functions.

4.1 Reinforcement Learning Environment

4.1.1 Preliminary: Markov Decision Process. In this study, we as-
sume the environment as the Markov decision process (MDP)[6],
which consists of the state 𝑆 (𝑡 ) , action 𝐴(𝑡 ) , and reward 𝑅 (𝑡 ) . In
MDP, the agents select the actions based on the state by the pol-
icy function 𝜋 (𝐴(𝑡 ) | 𝑆 (𝑡 ) ,Θ), and the state will change according
to the agent’s actions according to the state transition function
𝑓 (𝑆 (𝑡+1) | 𝑆 (𝑡 ) , 𝐴(𝑡 ) ), and the rewards are calculated based on the
reward function 𝑟 (𝑆 (𝑡 ) | Ψ), where Θ and Ψ are the parameters
of the policy function and the reward function, respectively. The
objective of reinforcement learning is to learn the parameter for
the policy function that maximizes the expected reward.

4.1.2 MDP for Social Network. In this study, to utilize reinforce-
ment learning to forecast the social network, we define

• State 𝑆 (𝑡 ) as the current social network G (𝑡 ) .
• Action 𝐴(𝑡 ) as the change in social network ΔG (𝑡 ) .

Note that, ΔG (𝑡 ) = ⟨ΔE (𝑡 ) ,ΔX (𝑡 ) ⟩, where ΔE (𝑡 ) is a set of newly
added/deleted edges and ΔX (𝑡 ) is a change in attributes of nodes.
By using the above statements, we can describe the reward, policy,
and state transition as follows:

• Reward 𝑟 (𝑆 (𝑡 ) | Ψ) = 𝑟 (G (𝑡 ) | Ψ)
• Policy 𝜋 (𝐴(𝑡 ) | 𝑆 (𝑡 ) ,Θ) = 𝜋 (ΔG (𝑡 ) | G (𝑡 ) ,Θ)
• State transition

𝑓 (𝑆 (𝑡+1) |𝑆 (𝑡 ) , 𝐴(𝑡 ) ) = ⟨V (𝑡 ) , E (𝑡 ) ∪ΔE (𝑡 ) ,X (𝑡 ) ∪ΔX (𝑡 ) ⟩
We can forecast the future social network by using the policy func-
tion 𝜋 (ΔG (𝑡 ) | G (𝑡 ) ,Θ) and the state transition ⟨V (𝑡 ) , E (𝑡 ) ∪
ΔE (𝑡 ) ,X (𝑡 ) ∪ ΔX (𝑡 ) ⟩.

4.1.3 Multi-agent Reinforcement Learning for Social Network. We
assume that each node 𝑛𝑖 is an agent and has a reward function
𝑟𝑖 (G (𝑡 ) | 𝜓𝑖 ) with a set of parameters𝜓𝑖 ∈ Ψ and a policy function
𝜋𝑖 (ΔG | G (𝑡 ) , 𝜃𝑖 ) with a set of parameters 𝜃𝑖 ∈ Θ; which represents

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

as the multi-agent environment. The reward function expresses
each node’s desirability to a social network, and the policy function
expresses the tendency to change their edges and attributes. For
simplicity, we assume the overall reward is a summation of each
node’s reward and the policy is the simple product of each node’s
policy, which are described as follows:

• Reward 𝑟 (G (𝑡 ) | Ψ) = ∑
𝑛𝑖 ∈V 𝑟𝑖 (G (𝑡 ) | 𝜓𝑖 )

• Policy 𝜋 (ΔG (𝑡 ) | Θ) = ∏
𝑛𝑖 ∈V 𝜋𝑖 (ΔG (𝑡 ) | G (𝑡 ) , 𝜃𝑖 )

We construct the optimization scheme to learn the parameters
Ψ = {𝜓𝑖 }𝑛𝑖 ∈V of the reward function and Θ = {𝜃𝑖 }𝑛𝑖 ∈V of the ac-
tion policy from the sequence of social network ⟨G (1) ,G (2) , . . . ,G (𝑇 ) ⟩.

4.1.4 Forecasting the Network using the Policy Function. By learn-
ing the policy function, we can forecast the future sequence of the
social network ⟨G (𝑇+1) ,G (𝑇+2) , . . . ,G (𝑇+𝑇 ′ ) ⟩. Based on MDP, the
probability of generating a sequence of future social network is

𝑃𝑟 (⟨G (𝑇+1) , . . . ,G (𝑇+𝑇
′ ) ⟩) =

𝑇 ′∏
𝑡=1

𝜋 (ΔG (𝑇+𝑡 ) | G (𝑇+𝑡 ) ,Θ) (1)

4.2 Reward Function

In this section, we describe the design of the reward function for a
given social network. We designed the reward function to measure
the desirability of a given network for each node. In this work, we
assume the reward that a node gets from the network is calculated
based on the relationship between neighboring nodes (Fig. 3). We
define the reward function in the social network at time G (𝑡 ) for
each node by the following equation.

𝑟𝑖 (G (𝑡 ) |𝜓𝑖 ) =
∑︁

𝑛 𝑗 ∈𝑵 (𝑛𝑖 )
𝛼𝑖 𝑠𝑖𝑚(𝑛𝑖 , 𝑛 𝑗 ) − 𝛽𝑖 𝑐𝑜𝑠𝑡 (𝑛𝑖 , 𝑛 𝑗 )
+ 𝛾𝑖 𝑖𝑚𝑝𝑎𝑐𝑡 (𝑛 𝑗 )

(2)

Eq. 2 consists of a linear combination of the reward based on
the similarity of the connecting nodes, the cost of connecting an
edge, and the impact for changing the neighbor’s attribute with
weighting parameters 𝛼𝑖 ,𝛽𝑖 and 𝛾𝑖 . Note that the reward function
is easy to extend by adding the other factors for calculating the
reward of the nodes. Intuitively, each of the parameters can be
interpreted as follows:

• 𝛼𝑖 : Similarity weight representing tendency for making
homophily. When this value is positive, the node is more
motivated to connect to someone with close interests.

• 𝛽𝑖 : Cost weight representing stress in human connections.
The higher this value, the lower the reward value for a
connection.

• 𝛾𝑖 : Impact weight representing reward for influencing
neighbors. When this value is positive, the node gets a
higher reward by influencing the neighbor’s attribute.

where𝜓𝑖 = {𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 } is the parameter set of node 𝑛𝑖 and 𝑵 (𝑛𝑖 ) is
the set of adjacent nodes of 𝑛𝑖 .

𝑠𝑖𝑚(𝑛𝑖 , 𝑛 𝑗 ) denotes the similarity of nodes. In this study, for
simplicity, we assume the similarity as the cosine similarity of the
node attribute value vector x𝑖 .

𝑠𝑖𝑚(𝑛𝑖 , 𝑛 𝑗 ) =
𝒙𝑖 · 𝒙 𝑗

|𝒙𝑖 | |𝒙 𝑗 |
(3)

𝒏𝒏𝒊𝒊

𝒓𝒓𝒊𝒊(𝓖𝓖 𝑻𝑻 )

Reward

Reward
Reward

Figure 3: Evaluation scheme for reward function. The reward

is calculated for each edge based on similarity and the cost

and aggregated over the neighboring nodes.

𝑐𝑜𝑠𝑡 denotes the cost of having an edge between node 𝑛𝑖 and 𝑛 𝑗 in
the social network. In this study, we defined it as follows.

𝑐𝑜𝑠𝑡 (𝑛𝑖 , 𝑛 𝑗 ) =
{
1, 𝑒𝑖, 𝑗 ∈ E (𝑡 )

0, 𝑒𝑖, 𝑗 ∉ E (𝑡 )
(4)

𝑖𝑚𝑝𝑎𝑐𝑡 denotes the influence of one’s attributes on others. In this
study, we defined it as follows.

𝑖𝑚𝑝𝑎𝑐𝑡 (𝑛 𝑗 ) = ∥xj (𝑡 ) − xj (𝑡−1) ∥22 (5)

We can also employ more complex models for 𝑠𝑖𝑚, 𝑐𝑜𝑠𝑡 , and 𝑖𝑚𝑝𝑎𝑐𝑡 ,
such as utilizing embeddings and graph neural networks [8, 13, 28].

To optimize the parameters in the reward function, we assume
that the observed time-series social network is optimal in the en-
vironment and estimate the parameters so that the value of the
reward function in the current social network is maximized. In this
study, we find the parameter that maximizes the reward summed
over a series of input social networks.

Ψ∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥Ψ

𝑇∑︁
𝑡=1

𝑟 (G (𝑡 ) | Ψ) (6)

To optimize the problem, we employed SGD to estimate the param-
eters that maximize the reward.

4.3 Policy Function

This section describes the policy function of the nodes. We as-
sume each node can take the actions for making/deleting edges and
changing their attributes. In this study, the policy for edges and the
attributes are independent,

𝜋𝑖 (ΔG (𝑡 ) | G (𝑡 ) , 𝜃𝑖 ) = 𝜋𝑖 (ΔE (𝑡 ) | G (𝑡 ) , 𝜃𝑖 ) · 𝜋𝑖 (ΔX (𝑡 ) | G (𝑡 ) , 𝜃𝑖 )
(7)

In the following sections, we describe the design of the policy
functions and strategy for learning the parameters.

4.3.1 Policy Function for Edges. In this section, we describe the
design of policy functions for changing their edges. The choices of
action of a node aremaking new edges or deleting the existing edges.
We assume the targets to create edges based on random selection
and transitivity based on knowledge of network science [45]. In
this study, let the making/deleting of the edges be independent; we

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

NetEvolve: Social Network Forecasting using Multi-Agent Reinforcement Learning with Interpretable Features Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝒏𝒋 ∈ 𝓐𝒊
𝒏𝒋 ∈ 𝓝(𝒊)

𝝅𝒊"(𝒆𝒊,𝒋
(𝒕)|𝜽𝒊)

𝝅𝒊((𝒆𝒊,𝒋
(𝒕)|𝜽𝒊)

𝒏𝒊

Figure 4: How to run policy function for edges. The policy

for making new edge 𝜋+ (·) calculates the edge probability

for the two-hop neighbors and random nodes, and the policy

for deleting edge 𝜋− (·) calculates the deleting probability for

the current edges.

assume the policy function can be decomposed as follows:

𝜋𝑖 (ΔE (𝑡 ) | G (𝑡 ) , 𝜃𝑖 ) =
∏

𝑛 𝑗 ∈A𝑖

𝜋+𝑖 (𝑒
(𝑡 )
𝑖, 𝑗
| 𝜃𝑖 )

∏
𝑛 𝑗 ∈𝑁 (𝑛𝑖 )

𝜋−𝑖 (𝑒
(𝑡 )
𝑖, 𝑗
| 𝜃𝑖 )

(8)

where 𝜋+
𝑖
(𝑒𝑖, 𝑗 | 𝜃𝑖 ) and 𝜋−

𝑖
(𝑒𝑖, 𝑗 | 𝜃𝑖 ) are the policy functions for

making and deleting an edge, respectively. Let A𝑖 = {𝑛 𝑗 ∈ V|𝑛𝑖 ∈
𝑉𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖) ∪ 𝑉𝑟𝑎𝑛𝑑𝑜𝑚} as action space for making new edges,
where𝑉𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖) =

⋃
𝑛 𝑗 ∈𝑵 (𝑖 ) 𝑵 (𝑖) which is a set of nodes in the

two-hop neighbors of node 𝑛𝑖 , and𝑉𝑟𝑎𝑛𝑑𝑜𝑚 is a set of nodes which
are randomly selected. By designing the action space as the above
setting, the edges are more likely to be generated in the neighbor
of the neighbors, which simulates the transitivity phenomenon.

We design the policy function for making/deleting the edges to
illustrate the variety of representation patterns (Fig. 4). To increase
the reward function, there are a variety of strategies, such as (1)
making the edges too many people while ignoring the costs, (2)
making the edges a limited number of people with similar attributes,
etc. In this study, we define a similarity function based on the
attribute values of each node and use it to define a policy function.
Using the similarity function 𝑠𝑖𝑚(𝑛𝑖 , 𝑛 𝑗 ), the policy function for
edge making 𝜋+ (·) and edge deletion 𝜋− (·) for the 𝑖-th node are
defined as follows:

𝜋+𝑖 (𝑒
(𝑡 )
𝑖, 𝑗
| 𝜃𝑖 ) = tanh

{
𝜖𝑖 exp

(
𝑠𝑖𝑚(𝑛𝑖 , 𝑛 𝑗 )

𝜏𝑖

)}
𝜋−𝑖 (𝑒

(𝑡 )
𝑖, 𝑗
| 𝜃𝑖 ) = tanh

{
𝜖𝑖 exp

( 1 − 𝑠𝑖𝑚(𝑛𝑖 , 𝑛 𝑗 )
𝜏𝑖

)} (9)

(10)

Equations (9)(10) contains the following parameters:
• 𝜖𝑖 : Intensity for making/deleting the edges. When the pa-

rameter is large, the node tends to make/delete more of the
edges to increase the rewards.

• 𝜏𝑖 : Temperature for making/deleting the edges. When the
parameter is small, the node tends to make/delete edges
relying on the similarity of the attributes.

4.3.2 Policy Function for Attributes. Next, this section describes
the policy function for changing the attributes. The function is
designed to illustrate various stories of changing the attribute to
earn higher rewards (Fig.5). The possible stories are (1) changing
their attributes similar to the neighboring nodes to increase the
similarity between the neighbors, (2) enforcing the neighbors to

𝒏𝒏𝒊𝒊

𝝅𝝅𝒊𝒊 𝚫𝚫𝓧𝓧𝐭𝐭 𝓖𝓖𝐭𝐭,𝜽𝜽𝒊𝒊)

𝓧𝓧𝒋𝒋
(𝒕𝒕)

𝓧𝓧𝒋𝒋
(𝒕𝒕)

𝓧𝓧𝒋𝒋
(𝒕𝒕)

𝓧𝓧𝒊𝒊
(𝒕𝒕)

𝓧𝓧𝒊𝒊
(𝒕𝒕+𝟏𝟏)

𝓧𝓧𝒊𝒊
(𝒕𝒕+𝟏𝟏)

𝓧𝓧𝒊𝒊
(𝒕𝒕+𝟏𝟏)

Figure 5: How to run policy function for attributes. In this

figure, the color of the node represents the attributes. The

nodes change their attributes based on his/her stubbornness

and the attributes of neighboring nodes of strong influence.

change the attributes to make the neighboring nodes similar, etc.
To illustrate such stories, we model the policy based on the nodes’
stubbornness and influence. To simplify the function, we designed
the policy function can make changes to their own attributes only:

𝜋𝑖 (ΔX (𝑡 ) | G (𝑡 ) , 𝜃𝑖 ) = 𝜋𝑖 (𝒙 (𝑡+1)𝑖
| G (𝑡 ) , 𝜃𝑖 )

= 𝜎
©«𝜆𝑖 · 𝒙 (𝑡 )𝑖

+ (1 − 𝜆𝑖 )
∑︁

𝑛 𝑗 ∈𝑵 (𝑛𝑖 )
𝜇 𝑗 · 𝒙 (𝑡 )𝑗

ª®¬ (11)

Where 𝜆𝑖 , 𝜇𝑖 are the parameter of node 𝑖 .

• 𝜆𝑖 : Stubbornness of their attributes. When the value is
large means the node does not tend to change its attributes.

• 𝜇𝑖 : Influence to the neighbors. The larger value means
they influence to make change the attribute of neighbors.

Overall, the set of parameters in policy functions of node 𝑛𝑖 is
𝜃𝑖 = {𝜖𝑖 , 𝜏𝑖 , 𝜆𝑖 , 𝜇𝑖 }, i.e., the behavior of the node 𝑛𝑖 in the network
is characterized by the parameters.

4.3.3 Learning the Parameters in Policy Functions. Next, we de-
scribe how to learn the parameters of the policy functions. Specifi-
cally, we learn the parameters of the policy function that maximizes
its own optimized reward function in 4.2 using REINFORCE [47],
one of the gradient descent methods. This method generates an
unobserved social network and learns the policy parameters that
maximize the expected value of the reward function.

Assuming that each node in the social network has chosen the
optimal action at each time, it is possible to predict the network in
the unobserved time series by obtaining the strategy that maximizes
the future reward.

In this study, we optimize the policy function parameter Θ using
the policy gradient method. To generate a social network at an
unobserved time based on the policy function 𝜋 (ΔG (𝑡 ) | G (𝑡 ) ,Θ),
we use the generation function eq. 1, and we note the simulated se-
quence as 𝜔 = ⟨ G (𝑇+1) ,G (𝑇+2) , . . . ,G (𝑇+𝑇 ′ ) ⟩. From the sequence,
we can calculate the cumulative rewards for all nodes in the network
at an unobserved time as follows.

𝑅(𝜔) = 𝑟 (G (𝑇+1) ) + 𝜉 · 𝑟 (G (𝑇+2) ) + · · · + 𝜉𝑇
′
· 𝑟 (G (𝑇+𝑇

′ ) ) (12)

where 𝜉 is the discount rate.
5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

This method learns the policy function’s parameters that maxi-
mize the cumulative reward’s expected value. The objective func-
tion 𝐽 (𝜃 ) is expressed as follows.

𝐽 (Θ) = E𝜔∼𝜋Θ [𝑅(𝜔)] (13)

We derive the gradient for the parameter Θ in the objective
function to maximize the above objective function.

∇Θ 𝐽 (Θ) = ∇ΘE𝜔∼𝜋Θ [𝑅(𝜔)]

≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑇 ′∑︁
𝑡=1

𝑅(𝜔 (𝑖 ) )∇Θ log𝜋 (ΔG (𝑡 ) | G (𝑡 ) ,Θ) (14)

Refer to appendix A.2 to see the derivation process. 𝜔 (𝑖 ) is the 𝑖-th
sequence sampled by the policy function. The gradient is used to
update the set of parameters Θ

Θ∗ ← Θ + 𝜂 · ∇Θ 𝐽 (Θ) (15)

where 𝜂 is the learning rate. The learned parameters of the policy
functions are used to generate an unobserved network graph. Ap-
pendix A.3 shows the computational complexity of NetEvolve is
almost linear to the number of nodes in a sparse network.

5 EXPERIMENT 1: ADEQUACY OF MODEL

To answer (RQ1), we conducted experiments with synthesized data
to see whether NetEvolve can simulate potential phenomena we
can see in social networks, such as homophily, heterophily, ho-
mogenization, and polarization [26, 33, 34, 39]. We expect that the
parameters of NetEvolve can explain such phenomena with a
variety of parameter settings.

5.1 Experimental Setting

In this experiment, we manually set the parameters of the reward
function and the policy function, and see in what setting the phe-
nomena will occur. The phenomena we aim to simulate are ho-
mophily, heterophily, homogenization, and polarization, which are
very famous phenomena in real-world social networks. The follow-
ing are brief explanations of each pattern.

• Homophily: The property of the similar nodes in the net-
work tends to be connected in the network. In a homophily
network, the network will grow by people connecting to
similar people [9, 24].

• Heterophily: The property of the dissimilar nodes in the
network tends to be connected in the network. In a het-
erophily network, the network will grow by people con-
necting dissimilar nodes [49].

• Homogenization: The property of the connecting nodes
gradually gets similar to each other while keeping the con-
nections [39].

• Polarization: The property of the similar nodes form com-
munities, and the communities are gradually separated.
The phenomena typically observed in the congress net-
work [15, 18, 22, 26].

In this experiment, we set the number of nodes is 20, and the
attributes are "red" and "blue".

5.2 Results: Representation Differences in

Parameters

Figures 6a to 6d show the generated network, and table 2 summa-
rizes the parameter settings to simulate the networks. In figure 6a,
NetEvolve generates homophily network, in which the parameters
are a high reward in high similarity, and the low cost for connec-
tion, and the nodes have great influence and low stubbornness. This
illustrates the nodes will be happy to connect and make one big
community of similar nodes. In figure 6c, NetEvolve generates het-
erophily network, in which the parameters are similar to the case of
homophily in rewards and low influence. The final network is differ-
ent from homophily network; one big community of nodes having
different attributes occurs. In figure 6b, NetEvolve generates ho-
mogenization, in which the parameters are similar to homophily.
In figure 6d, NetEvolve generates polarization, the community is
separated, and the nodes of the same attribute form the different
communities. These results indicate that, even if the initial network
is in the same condition, NetEvolve can successfully illustrate the
different scenarios in different parameters.

6 EXPERIMENT2: FIT NETEVOLVE AND

FORECAST IN REAL-WORLD DATA

To answer (RQ2), we verify how accurately NetEvolve predicts un-
observed social network edges and changes in attributes using real
data. More specifically, we calculated the probability that the edges
and the attribute were generated in the unknown time segment.
The details of implementation and the hyperparameter setting are
shown in appendix A.5.

As for comparative methods, for edge forecasting, we employ
simple RNN, DualCast [27], which predicts edges and features based
on latent vector features, and VGAE [29] and VGRNN [20], which
are methods based on graph neural networks that generate edges.
For attribute forecasting, we employ simple RNN and DualCast.
Moreover, for the ablation study, we employed NetEvolve with
only forecasts edge or attributes.

In this study, we employ the area under the curve (AUC) and neg-
ative log-likelihood (NLL) to verify the forecasting accuracy, where
a higher AUC and lower NLL indicate a more accurate prediction.

6.1 Dataset Description

We use the three datasets, DBLP, NIPS, and Twitter for experiments.
We chose them to cover a variety of settings in terms of size and
density. In every dataset, we collected 10 time segments and used 5
time segments to optimize the reward function and the remaining
to test the accuracy. The following are the dataset description and
statistics (see appendix A.4 for more detail):

• DBLP is a co-authorship network of researchers. Nodes are
authors, edges are co-authorship, and the time segment is
in years. The number of nodes is 32 and the average 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
of edges is 0.0045 ± 0.00020, where 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≜ |E |/ |V |𝐶2.

• NIPS is a co-authorship network of researchers. Nodes are
authors, edges are co-authorship, and the time segment
is in years. The number of nodes is 500 and the average
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 of edges is 0.0435 ± 0.00259.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

NetEvolve: Social Network Forecasting using Multi-Agent Reinforcement Learning with Interpretable Features Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

ForecastInit State

(a) Case of homophily

ForecastInit State

(b) Case of homogenization

ForecastInit State

(c) Case of heterophily

ForecastInit State

(d) Case of polarization

Figure 6: Results of Experiment1: By setting the different parameters, NetEvolve can simulate the various types of social

network phenomena. In each scenario, the parameters are set to that stated in table 2.

𝛼 (similarity) 𝛽 (cost) 𝛾 (impact) 𝜖 (intensity) 𝜏 (temperature) 𝜆 (stubbornness) 𝜇 (influence)
homophily (Fig.6a) 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ

homogenization (Fig.6b) 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ

heterophily (Fig.6c) 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤

polalization (Fig.6d) 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤

Table 2: Parameter setting of Experiment1. The (𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ, 𝐻𝑖𝑔ℎ, 𝐿𝑜𝑤) represents the relative value of parameters. We note

“𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ" if 𝑥 ≥ 1.5, “𝐻𝑖𝑔ℎ” if 1.5 > 𝑥 ≥ 1.0, and “𝐿𝑜𝑤" if 𝑥 < 1.0. For simplicity, we set the parameters of every node to the same.

• Twitter is a retweet network of Twitter users, and the time
segment is in months. The number of nodes is 15000 and
the average 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 of edges is 2.79𝑒 − 6 ± 1.83𝑒 − 6.

We use the NIPS and DBLP, the first five years are used for train-
ing data, and the remaining five years are used for test data. And,
we use the twitter datasets, the first five months are used for
training data, and the remaining data is used for testing.

6.2 Result: Accuracy Evaluation on Forecasting

Figures 7a to 7c show the change in AUC values for edge forecasting,
and figures 7d to 7f show the NLL at each prediction time. By
comparing the accuracy of NetEvolve and that of predicting only
edges, the two methods achieve almost the same accuracy in DBLP
and NIPS. In Twitter, NetEvolve of both predicting the edges and
attributes is higher than that for only edges. It indicates that multi-
task learning is effective in several cases. Figures 8a to 8c show
the change in AUC values for attribute forecasting, and figures 7d
to 7f show the NLL at each prediction time. Similar to the edge
forecasting task, NetEvolve forecasting edges and attributes wins
that of only forecasting edges. The running time for the experiment
were 49.6 ± 1.31(𝑠), 10.0 ± 3.16(𝑠), and 1213.9 ± 199.0(𝑠) for DBLP,
NIPS, and Twitter, respectively. It indicates our method is scalable
for large network data having over 10,000 nodes.

6.3 Interpretability: Learned Parameters

To validate the interpretability of NetEvolve, we monitored the
optimized parameters of reward functions. Table 3 shows the av-
erage and std of learned parameters 𝛼 (similarity), 𝛽 (cost), and 𝛾
(impact). Before learning the parameters, we set the initial value
of each parameter to 1.0. The results of DBLP, NIPS, and Twitter
show that 𝛼 (similarity) and 𝛾 (impact) have a larger impact on
node behavior than 𝛽 (cost). A result on the Twitter shows the

Dataset average ± std.

DBLP
𝛼 (similarity) 1.31 ± 0.40 (𝐻𝑖𝑔ℎ)
𝛽 (cost) 0.93 ± 0.02 (𝐿𝑜𝑤)
𝛾 (impact) 3.00 ± 0.00 (𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ)

NIPS
𝛼 (similarity) 1.13 ± 0.12 (𝐻𝑖𝑔ℎ)
𝛽 (cost) 0.99 ± 0.00 (𝐿𝑜𝑤)
𝛾 (impact) 1.13 ± 0.00 (𝐻𝑖𝑔ℎ)

Twitter
𝛼 (similarity) 1.03 ± 1.29 (𝐻𝑖𝑔ℎ)
𝛽 (cost) 0.99 ± 0.00 (𝐿𝑜𝑤)
𝛾 (impact) 41.0 ± 0.00 (𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ)

Table 3: The result of learned parameters in each dataset.

effects of 𝛼 and 𝛽 are the same and 𝛾 has a larger impact on node
behavior.

7 CONCLUSION

We proposed a novel multi-agent reinforcement learning-based
network forecasting method called NetEvolve, that explicitly mod-
els the network science and psychology knowledge by designing
a reward function and policy function, which makes the model
explainable and can derive network scientific outcome from the
model parameters. Experiments show NetEvolve can simulate
the various types of social phenomena and can forecast future
networks comparably or more accurately than the related works,
which indicatesNetEvolvewell fits the change in real-world social
networks.

For future works, we aim to explain the behavior of nodes in
social networks with higher accuracy by incorporating properties
revealed in other network sciences and psychology into the reward
function that determines behavior.

Reproducability: Our code and datasets will be open-sourced
on GitHub https://github.com/crowd4u/netevolve.

7

https://github.com/crowd4u/netevolve


813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

5％

Better

(a) Edge AUC over time with DBLP

8％8％

Better

(b) Edge AUC over time with NIPS

Better

(c) Edge AUC over time with Twitter

Better

(d) Edge NLL over time with DBLP

Better

(e) Edge NLL over time with NIPS

Better

(f) Edge NLL over time with Twitter

Figure 7: The accuracy of edge forecasting: These figures show the AUC and NLL of forecasting the edges that appear in the

future. “Proposed(both)" is NetEvolve and “proposed" is a method that only considers the policy function for edges. Both

methods win the comparative methods in most cases.

Better

(a) Attribute AUC over time with DBLP

Better

(b) Attribute AUC over time with NIPS

7％

Better

(c) Attribute AUC over time with Twitter

Better

(d) Attribute NLL over time with DBLP

Better

(e) Attribute NLL over time with NIPS

Better

(f) Attribute NLL over time with Twitter

Figure 8: The accuracy of attribute forecasting: These figures show the AUC and NLL of forecasting the attribute changes in

the future. “Proposed(both)" is NetEvolve and “proposed" is a method that only considers the policy function for attributes.

NetEvolve win the comparative methods in most of the cases.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

NetEvolve: Social Network Forecasting using Multi-Agent Reinforcement Learning with Interpretable Features Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. 2008. Mixed mem-
bership stochastic blockmodels. In Proceedings of Advances in Neural Information
Processing Systems (NIPS’08). 1981–2014.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (KDD’19). 2623–2631.

[3] Gil Appel, Lauren Grewal, Rhonda Hadi, and Andrew T Stephen. 2020. The
future of social media in marketing. Journal of the Academy of Marketing science
48, 1 (2020), 79–95.

[4] Miguel Araújo, Pedro Ribeiro, and Christos Faloutsos. 2018. Tensorcast: forecast-
ing time-evolving networks with contextual information. In Proceedings of the
27th International Joint Conference on Artificial Intelligence (IJCAI’18). 5199–5203.

[5] Sitaram Asur and Bernardo A Huberman. 2010. Predicting the future with
social media. In Proceedings of IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT’10), Vol. 1. IEEE, 492–499.

[6] Richard Bellman. 1957. A Markovian decision process. Journal of mathematics
and mechanics (1957), 679–684.

[7] Ayan Kumar Bhowmick. 2019. Lady Gaga dataset. https://doi.org/10.5281/
zenodo.2586362

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the association
for computational linguistics 5 (2017), 135–146.

[9] Yann Bramoullé, Sergio Currarini, Matthew O Jackson, Paolo Pin, and Brian W
Rogers. 2012. Homophily and long-run integration in social networks. Journal
of Economic Theory 147, 5 (2012), 1754–1786.

[10] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A Comprehensive
Survey of Multiagent Reinforcement Learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156–172.

[11] Huiyuan Chen and Jing Li. 2018. Exploiting structural and temporal evolution in
dynamic link prediction. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management (CIKM’18). 427–436.

[12] Yang Chen, Jiamou Liu, He Zhao, and Hongyi Su. 2020. Social structure emer-
gence: Amulti-agent reinforcement learning framework for relationship building.
In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS’20). 1807–1809.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[14] Nan Du, Christos Faloutsos, Bai Wang, and Leman Akoglu. 2009. Large Human
Communication Networks: Patterns and a Utility-Driven Generator. In Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’09). 269–278.

[15] Sean M Gerrish and David M Blei. 2011. Predicting legislative roll calls from text.
In International Conference on Machine Learning (ICML’11). 489–496.

[16] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowledge-Based Systems 187 (2020).

[17] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’16). 855–864.

[18] Yupeng Gu, Yizhou Sun, and Jianxi Gao. 2017. The Co-evolution model for social
network evolving and opinion migration. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’17). 175–
184.

[19] Shubham Gupta, Gaurav Sharma, and Ambedkar Dukkipati. 2019. A Generative
Model for Dynamic Networks with Applications. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI’19), Vol. 33. 7842–7849.

[20] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield,
Mingyuan Zhou, and Xiaoning Qian. 2019. Variational graph recurrent neural
networks. Proceedings of Advances in Neural Information Processing Systems
(NeurIPS’19) 32 (2019).

[21] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of Advances in Nneural Information
Processing Systems (NIPS’17). 1024–1034.

[22] Christopher Hare and Keith T Poole. 2014. The polarization of contemporary
American politics. Polity 46, 3 (2014), 411–429.

[23] Creighton Heaukulani and Zoubin Ghahramani. 2013. Dynamic probabilis-
tic models for latent feature propagation in social networks. In Proceedings of
International Conference on Machine Learning (ICML’13). 275–283.

[24] Itai Himelboim, Kaye Sweetser, Spencer Tinkham, Kristen Cameron, Matthew
Danelo, and Kate West. 2014. Valence-based homophily on Twitter: Network
Analysis of Emotions and Political Talk in the 2012 Presidential Election. New
Media & Society 18 (2014), 1382–1400.

[25] Junling Hu, Michael P Wellman, et al. 1998. Multiagent reinforcement learning:
theoretical framework and an algorithm.. In International Conference on Machine

Learning (ICML’98). 242–250.
[26] Daniel J. Isenberg. 1986. Group polarization: A critical review and meta-analysis.

Journal of Personality and Social Psychology 50 (1986), 1141–1151.
[27] Hiroyoshi Ito and Christos Faloutsos. 2022. DualCast: Friendship-Preference

Co-evolution Forecasting for Attributed Networks. In Proceedings of the 2022
SIAM International Conference on Data Mining (SDM’22). 46–54.

[28] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[29] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[30] Mirko Lai, Viviana Patti, Giancarlo Ruffo, and Paolo Rosso. 2018. Stance evolution
and twitter interactions in an italian political debate. In Proceedings of 23rd
International Conference on Applications of Natural Language to Information
Systems (NLDB’18). Springer, 15–27.

[31] Shangsong Liang, Xiangliang Zhang, Zhaochun Ren, and Evangelos Kanoulas.
2018. Dynamic embeddings for user profiling in twitter. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining
(KDD’18). 1764–1773.

[32] Marcus Lim, Azween Abdullah, NZ Jhanjhi, Muhammad Khurram Khan, and
Mahadevan Supramaniam. 2019. Link prediction in time-evolving criminal
network with deep reinforcement learning technique. IEEE Access 7 (2019),
184797–184807.

[33] Carlos Lozares, Joan Miquel Verd, Irene Cruz, and Oriol Barranco. 2014. Ho-
mophily and heterophily in personal networks. From mutual acquaintance to
relationship intensity. Quality & Quantity 48 (2014), 2657–2670.

[34] Miller Mcpherson, Lynn Smith-Lovin, and James Cook. 2001. Birds of a Feather:
Homophily in Social Networks. Annual Review of Sociology 27 (2001), 415–444.
https://doi.org/10.3410/f.725356294.793504070

[35] MingshuoNie, Dongming Chen, and DongqiWang. 2023. Reinforcement learning
on graphs: A survey. IEEE Transactions on Emerging Topics in Computational
Intelligence (2023).

[36] Aastha Nigam, Kijung Shin, Ashwin Bahulkar, Bryan Hooi, David Hachen,
Boleslaw K Szymanski, Christos Faloutsos, and Nitesh V Chawla. 2018. One-m:
Modeling the co-evolution of opinions and network connections. In Proceedings
of Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD’18). Springer, 122–140.

[37] Maya Okawa and Tomoharu Iwata. 2022. Predicting Opinion Dynamics via
Sociologically-Informed Neural Networks. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’22). 1306–
1316.

[38] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, (KDD’14). 701–710.

[39] George A. Quattrone and Edward Ellsworth Jones. 1980. The perception of
variability within in-groups and out-groups: Implications for the law of small
numbers. Journal of Personality and Social Psychology 38 (1980), 141–152.

[40] Pablo Sánchez-Núñez, Manuel J Cobo, Carlos De las Heras-Pedrosa, Jose Ignacio
Pelaez, and Enrique Herrera-Viedma. 2020. Opinion mining, sentiment analysis
and emotion understanding in advertising: a bibliometric analysis. IEEE Access 8
(2020), 134563–134576.

[41] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web (WWW’15). 1067–1077.

[42] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. Dyrep: Learning representations over dynamic graphs. In Proceedings of
International Conference on Learning Representations (ICLR’17).

[43] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2018. Graphgan: Graph representation learn-
ing with generative adversarial nets. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI’18), Vol. 32.

[44] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community preserving network embedding.. In Proceedings of AAAI Conference
on Artificial Intelligence (AAAI’17). 203–209.

[45] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. Vol. 8. Cambridge university press.

[46] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen
Schmidhuber. 2014. Natural evolution strategies. The Journal of Machine Learning
Research 15, 1 (2014), 949–980.

[47] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8, 3–4 (1992), 229–256.

[48] Lantao Yu, Jiaming Song, and Stefano Ermon. 2019. Multi-Agent Adversarial
Inverse Reinforcement Learning. arXiv preprint arxiv:1907.13220 (2019).

[49] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S. Yu. 2016.
Graph Neural Networks for Graphs with Heterophily: A Survey. arXiv preprint
arXiv:2202.07082 (2016).

[50] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
Network Embedding by Modeling Triadic Closure Process.. In Proceedings of
AAAI Conference on Artificial Intelligence (AAAI’18). 571–578.

9

https://doi.org/10.5281/zenodo.2586362
https://doi.org/10.5281/zenodo.2586362
https://doi.org/10.3410/f.725356294.793504070


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDICES

A.1 Table of symbols

For referencing the symbols, we state the table as a summary.

Table 4: Symbols and Definitions

G (𝑡 ) Graph at time 𝑡 .
V (𝑡 ) = {𝑛𝑖 } Node set at time 𝑡 .
E (𝑡 ) = {𝑒 (𝑡 )

𝑖, 𝑗
} Edge set at time 𝑡 .

X (𝑡 ) = {𝒙𝑖 } Attribute value set at time 𝑡 .
𝑛𝑖 𝑖-th node.
𝑒
(𝑡 )
𝑖, 𝑗

= ⟨𝑛𝑖 , 𝑛 𝑗 ⟩ Directed edge between nodes 𝑛𝑖 and 𝑛 𝑗 .
𝒙𝑖 ∈ R𝑘 Attribute of node 𝑛𝑖 .
𝑆 (𝑡 ) State at time 𝑡 .
𝐴(𝑡 ) Action at time 𝑡 .
𝑟 (𝑆 (𝑡 ) | Ψ) Reward function with parameters Ψ.
𝜋 (𝐴(𝑡 ) | 𝑆 (𝑡 ) ,Θ) Policy function with parameters Θ.
Ψ = {𝜓𝑖 }𝑛𝑖 ∈V (𝑡 ) Parameters of reward function.
Θ = {𝜃𝑖 }𝑛𝑖 ∈V (𝑡 ) Parameters of policy function.
𝜓𝑖 = {𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 } Parameters of reward function of node 𝑛𝑖 .
𝜃𝑖 = {𝜖𝑖 , 𝜏𝑖 , 𝜆𝑖 , 𝜇𝑖 } Parameters of policy function of node 𝑛𝑖 .
𝛼𝑖 ∈ R+ Similarity weight in reward.
𝛽𝑖 ∈ R+ Cost weight in reward.
𝛾𝑖 ∈ R+ Impact weight in reward.
𝜖𝑖 ∈ R+ Intensity in policy for edges.
𝜏𝑖 ∈ R+ Temperature in policy for edges.
𝜆𝑖 ∈ R+ Stubbornness in policy for attributes.
𝜇𝑖 ∈ R+ Influence in function for attributes.
𝜂 ∈ R+ Learning rate of policy gradient.
𝜉 ∈ R+ Discount rate of the reward.
𝑁 ∈ N+ Number of simulations in policy gradient.
𝑇 ′ ∈ N+ Future time of the simulation. height

A.2 Derivation of the policy gradient

We derive the gradient for the parameter Θ in the objective func-
tion (13) to maximize the function. Following the “log-likelihood
trick” [46], we derive the gradient:

∇Θ 𝐽 (Θ) = ∇ΘE𝜔∼𝜋Θ [𝑅(𝜔)]

= ∇Θ
∑︁
𝜔

𝑃𝑟 (𝜔 | Θ)𝑅(𝜔)

=
∑︁
𝜔

𝑅(𝜔)∇Θ𝑃𝑟 (𝜔 | Θ)

=
∑︁
𝜔

𝑅(𝜔)𝑃𝑟 (𝜔 | Θ) ∇Θ𝑃𝑟 (𝜔 | Θ)
𝑃𝑟 (𝜔 | Θ)

= E [𝑅(𝜔)∇Θ log 𝑃𝑟 (𝜔 | Θ)]

= E

[
𝑇 ′∑︁
𝑡=1

𝑅(𝜔)∇Θ log𝜋 (ΔG (𝑡 ) | G (𝑡 ) ,Θ)
]

≈ 1
𝑁

𝑁∑︁
𝑖=1

𝑇 ′∑︁
𝑡=1

𝑅(𝜔 (𝑖 ) )∇Θ log𝜋 (ΔG (𝑡 ) | G (𝑡 ) ,Θ) (16)

A.3 Computational Complexity

NetEvolve has the following part of the calculation each of which
has the following time complexity :

(1) Learning reward function: O(𝑇 · |E |)
(2) Learning policy function: O(𝑇 · 𝑁 · | E |

2

|V | )

(3) Generate future networks: O(𝑇 ′ · | E |
2

|V | )

Overall, NetEvolve has O
(
(𝑇𝑁 +𝑇 ′) · | E |

2

|V |

)
. Note that, when

edges are sparse, the time complexity is almost linear to |V|.

A.4 Dataset conditions

Following are more details of the dataset creation processes.
• DBLP is a co-authorship network of researchers. Nodes are

authors, edges are co-authorship relationships, and the time
segment is in years. When two authors, x and y, publish a
joint paper in a given year, a bi-directional directed edge is
created between them. We obtained 47 international con-
ference papers published from 2008 to 2017 in data mining,
databases, natural language processing, machine learning,
artificial intelligence, information retrieval, and computer
vision. We use the data from 2008 to 2012 as training data
and from 2013 to 2017 as test data. The number of nodes is
500, and the number of attribute values is 3854.

• NIPS is a co-authorship network of researchers. Nodes are
authors, and edges are co-authors. Network data, such as
edge information and features, are generated similarly to
DBLP. Each node has a word in the title of a paper published
in a certain year as an attribute value. The number of nodes
is 32, and the number of attribute values is 2411.

• Twitter is a retweet network of Twitter users. A node
represents a user. We set the time segment to be monthly.
When a user 𝑖 retweeted a tweet from another user 𝑗 dur-
ing the month, directed edge appeared from 𝑖 to 𝑗 . 112, 044
users were collected [7]. The collection period of tweets
was from January 2010 to October 2010. Data from Janu-
ary to May were used as training data, and from June to
October were used as test data. Users who appeared only
once throughout all time segments were excluded from the
dataset. The number of attribute values was 5372. Each user
had hashtags included in the tweets from each time division
as the attribute value.

A.5 Details of implementation and

hyperparameters

We can set the hyperparameters by measuring the accuracy of
validation data, which are separated from the observed time series
graph. In the experiments, we used 3 time segments as training data,
and the 2 remaining time segments as validation data, and used
Optuna [2] to search the optimal hyperparameters. As a result of
tuning, we got 𝜂 = 0.00015, 𝜉 = 0.420 for NIPS, 𝜂 = 0.079, 𝜉 = 0.164
for DBLP, 𝜂 = 0.00086, 𝜉 = 0.725 for Twitter, and |A𝑟𝑎𝑛𝑑𝑜𝑚 | =
0.001 × |V|, 𝑁 = 48, 𝑇 ′ = 48 for all dataset.

We implemented NetEvolve using PyTorch2.1.0. We ran the ex-
periments onMacOS 13.4.1, AppleM1Max, 64GBRAM, Python3.11.4.

10


	Abstract
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 Proposed Method: NetEvolve
	4.1 Reinforcement Learning Environment
	4.2 Reward Function
	4.3 Policy Function

	5 Experiment 1: Adequacy of Model
	5.1 Experimental Setting
	5.2 Results: Representation Differences in Parameters

	6 Experiment2: Fit NetEvolve and Forecast in Real-world data
	6.1 Dataset Description
	6.2 Result: Accuracy Evaluation on Forecasting
	6.3 Interpretability: Learned Parameters

	7 Conclusion
	References
	A Appendices
	A.1 Table of symbols
	A.2 Derivation of the policy gradient
	A.3 Computational Complexity
	A.4 Dataset conditions
	A.5 Details of implementation and hyperparameters


