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ABSTRACT

Hamiltonian Monte Carlo (HMC) is one of the most successful sampling meth-
ods in machine learning. However, its performance is significantly affected by
the choice of hyperparameter values, which require careful tuning. Existing ap-
proaches for automating this task either optimize a proxy for mixing speed or
consider the HMC chain as an implicit variational distribution and optimize a
tractable lower bound that is too loose to be useful in practice. Instead, we pro-
pose to optimize an objective that quantifies directly the speed of convergence to
the target distribution. Our objective can be easily optimized using stochastic gra-
dient descent. We evaluate our proposed method and compare to baselines on a
variety of problems including synthetic 2D distributions, the posteriors of varia-
tional autoencoders and the Boltzmann distribution for molecular configurations
of a 22 atom molecule. We find our method is competitive with or improves upon
alternative baselines on all problems we consider.

1 INTRODUCTION

Hamiltonian Monte Carlo (HMC) is a popular sampling based method for performing accurate infer-
ence on complex distributions that we may only know up to a normalization constant (Neal, 2011).
Unfortunately, HMC can be slow to run in practice as we need to allow time for the simulation
to ‘burn-in’ and also to sufficiently explore the full extent of the target distribution. Tuning the
HMC hyperparameters can help alleviate these issues but this requires domain expertise and must
be repeated for every problem HMC is applied to.

There have been many attempts to provide an automatic method of tuning the hyperparameters.
Some methods use a proxy for the mixing speed of the chain, i.e. the speed at which the Markov
chain marginal distribution approaches the target. For example, Levy et al. (2018) use a variation on
the expected squared jumped distance to tune parameters in order to encourage the chain to make
large moves within the sample space. Other methods draw upon ideas from Variational Inference
(VI). VI (Jordan et al., 1999) is an optimization based method that is often contrasted to Markov
Chain Monte Carlo methods such as HMC. In VI, we approximate the target using a parametric
distribution, reducing the approximation bias through optimizing the distribution parameters. The
optimization procedure maximises a lower bound on the normalization constant of the target which
is equivalent to minimising the KL-divergence between the approximation and the target. To apply
this idea to HMC, Salimans et al. (2015); Wolf et al. (2016) consider the marginal distribution of
the final state in a finite length HMC chain as an implicit variational distribution with the intention
of tuning the HMC parameters using the VI approach. However, the implicit distribution makes
the usual variational lower bound intractable. To restore tractability, they make the bound looser
by introducing an auxiliary inference distribution approximating the reverse dynamics of the chain.
The looseness of the bound depends on the KL-divergence between the auxiliary inference distri-
bution and the true reverse dynamics. As the chain length increases, the dimensionality of these
distributions increases, tending to increase the looseness of the bound. This causes issues during op-
timization because the increasing magnitude of this extra KL-divergence term encourages the model
to fit to the imperfect auxiliary inference distribution as opposed to the target as desired. Indeed,
Salimans et al. (2015) only consider very short HMC chains using their method.

In this work, we further investigate the combined VI-HMC approach as this has the potential to
provide a direct measure of the chain’s convergence without the need to rely on proxies for per-
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formance. When applied to an implicit HMC marginal distribution, the variational objective can be
broken down into the tractable expectation of the log target density and the intractable entropy of the
variational approximation. This entropy term prevents a fully flexible variational distribution from
collapsing to a point mass maximizing the log target density. Since HMC, by construction, cannot
collapse to such a point mass, we argue that the entropy term can be dropped provided the initial
distribution of the chain has enough coverage of the target. We evaluate our proposed method on a
variety of tasks. We first consider a range of synthetic 2D distributions before moving on to higher
dimensional problems. In particular, we use our method to train deep latent variable models on the
MNIST and FashionMNIST datasets. We also evaluate on a popular statistical mechanics bench-
mark: sampling molecular configurations from the Boltzmann distribution of a 22 atom molecule,
Alanine Dipeptide. Our results show that this method is competitive with or can improve upon
alternative tuning methods for HMC on all problems we consider.

2 BACKGROUND

2.1 HAMILTONIAN MONTE CARLO

HMC is a Markov Chain Monte Carlo method (Neal, 1993) which aims to draw samples from
the n-dimensional target distribution p(x) = 1

Z p
∗(x) where Z is the (usually unknown) nor-

malization constant. It introduces an auxiliary variable ν ∈ Rn, referred to as the momentum,
which is distributed according to N

(
ν;0, diag(m)

)
, with the resulting method sampling on the

extended space ζ = (x, ν). HMC progresses by first sampling an initial state from some ini-
tial distribution and then iteratively proposing new states and accepting/rejecting them accord-
ing to an acceptance probability. To propose a new state, first, a new value for the momentum
is drawn from N

(
ν;0, diag(m)

)
, then, we simulate Hamiltonian Dynamics with Hamiltonian,

H(x, ν) = −log p∗(x) + 1
2ν

T diag(m)−1ν arriving at new state (x′, ν′). This new state is ac-
cepted with probability min

[
1, exp(−H(x′, ν′) +H(x, ν))

]
otherwise we reject the proposed state

and remain at the starting state. The Hamiltonian Dynamics are simulated using a numerical inte-
grator, the leapfrog integrator (Hairer et al., 2003) being a popular choice. To propose the new state,
L leapfrog updates are taken, each update consisting of the following equations:

νk+ 1
2

= νk +
1

2
ε�∇xk log p∗(xk)

xk+1 = xk + νk+ 1
2
� ε� 1

m

νk+1 = νk+ 1
2

+
1

2
ε�∇xk+1

log p∗(xk+1)

where 1
m = ( 1

m1
, . . . , 1

mn
) and � denotes element wise multiplication. The step size, ε, and the

mass, m, are hyperparameters that need to be tuned for each problem the method is applied to. We
note that in the usual definition of HMC, a single scalar valued ε is used. Our use of a vector ε
implies a different step size in each dimension which, with proper tuning, can improve performance
by taking into account the different scales in each dimension. The use of ε does mean the procedure
can no longer be interpreted as simulating Hamiltonian Dynamics, however, it can still be used as a
valid HMC proposal (Neal, 2011). We do not consider the problem of choosing L in this work.

2.2 VARIATIONAL INFERENCE

VI approximates the target p(x) with a tractable distribution qφ(x) parameterized by φ. We choose
φ as to minimise the Kullback-Leibler divergence with the target, DKL

(
qφ(x)||p(x)

)
. As we only

know p(x) up to a normalization constant, we can equivalently choose φ as to maximise the tractable
Evidence Lower-Bound (ELBO):

ELBO = logZ −DKL

(
qφ(x)||p(x)

)
= Eqφ(x)

[
log p∗(x)− log qφ(x)

]
.

3 HYPERPARAMETER TUNING THROUGH THE EXPECTED LOG-TARGET

VI tunes the parameters of an approximate distribution to make it closer to the target. We would like
to use this idea to tune the hyperparameters of HMC. We can run multiple parallel HMC chains and
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treat the final states as independent samples from an implicit variational distribution. If each chain
starts at initial distribution q(0)(x) and then runs T accept/reject cycles, we can denote this implicit
distribution as q(T )

φ (x), where φ now represents the HMC hyperparameters. Ideally, we would then
choose φ as to maximise the ELBO:

φ∗ = argmax
φ

E
q
(T )
φ (x)

[
log p∗(x)− log q(T )

φ (x)
]

= argmax
φ

E
q
(T )
φ (x)

[
log p∗(x)

]
+H

(
q
(T )
φ (x)

)
.

Whilst the first term in this expression can be estimated directly via Monte Carlo, the entropy term,
H
(
q
(T )
φ (x)

)
, is intractable. To get around this, we should consider the purpose of the two terms

during optimization. Maximizing the first term encourages q(T )
φ (x) to produce samples that are

in the high probability regions of the target, i.e., ensuring that q(T )
φ (x) is high where log p∗(x) is

high. The entropy term acts as a regularizer preventing q(T )
φ (x) from simply collapsing to a delta

function at the mode of p(x). The key observation of our method is that HMC already fulfills this
regularization role because the implicit distribution it defines is not fully flexible. If q(T )

φ (x) were
to collapse to a delta function, this would require the hyperparameters to be such that the HMC
scheme guides samples to the same point in space no matter their starting position, as sampled from
q(0)(x), which is unreasonable for practical problems. Therefore, we propose tuning φ simply by
maximizing the expected log target density under the final state of the chain:

φ∗ = argmax
φ

E
q
(T )
φ (x)

[
log p∗(x)

]
. (1)

Although HMC does have a regularization effect, removing the entropy term does have some im-
plications that we need to consider. Namely, if the initial distribution, q(0)(x), is concentrated in
a very high probability region of the target, p(x), then optimizing objective (1) will not encourage
HMC to explore the full target. Conversely, it would encourage the chains to remain in this region
of high probability, close to their initial sampling point, which is undesirable behaviour. The key to
avoiding this problem is to choose an initial distribution that has a sufficiently wide coverage of the
target, we will discuss methods for doing this in Section 4.

We perform the optimization in (1) using stochastic gradient ascent with gradients being ob-
tained using the standard reparameterization trick (Rezende et al., 2014; Kingma & Welling,
2014). Samples from q

(T )
φ (x) can be obtained through a deterministic function of primitive ran-

dom variables: x0 ∼ q(0)(x) for the initial distribution, γ0:T−1, γt ∼ N (0, I) for the momen-
tum variables and a0:T−1, at ∼ U [0, 1] for the accept/reject decisions. We denote this function as
fφ(x0, γ0:T−1, a0:T−1). For minibatches of size N , the gradient is then estimated by

1

N

N∑
n=1

∇φlog p∗
(
fφ

(
x
(n)
0 , γ

(n)
0:T−1, a

(n)
0:T−1

))
. (2)

Each gradient value can be calculated using automatic differentiation tools. For (2) to be strictly
unbiased, fφ must obey certain smoothness constraints to allow differentiation under the integral
sign (Border, 2016). This does not hold in this case due to the accept/reject step. Other works
have found success in making this approximation (Levy et al., 2018; Thin et al., 2020) and as Thin
et al. (2020) point out, this same issue is encountered when using the very popular ReLU activation
function. Our empirical results confirm that (2) enables effective optimization of (1). We also make
another approximation when using automatic differentiation. For the leapfrog updates, we stop the
backpropagation of the gradient through xk in∇xk log p∗(xk) to prevent the calculation of second-
order gradients. We find this has little impact on the convergence of the algorithm and can lead to
5× speedups in execution time.

3.1 DEMONSTRATION ON A TOY PROBLEM

We now demonstrate the ideas of the previous section on a very simple toy problem. Here the
target is a 1-dimensional normal distribution N (0, 1) which we attempt to sample from using a
10 step HMC chain with each step consisting of 5 leapfrog updates. We initialize the chain either
with a narrow initial distribution N (0, 0.25) or a wide initial distribution N (0, 4). We keep m
constant for all steps but train one step size εt for each HMC step. Figure 1 plots the progression
of E

q
(t)
φ

[
log p(x)

]
during sampling for these two cases, before and after training. Before training,
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Figure 1: (Left) E
q
(t)
φ

[
log p(x)

]
as a function of step t in the HMC chain for initial distribution

1, N (0, 0.25), and initial distribution 2, N (0, 4), before and after training. The ‘true’ value,
Ep
[
log p(x)

]
is also plotted. (Right) The target pdf along with the two initial distributions.

when using the narrow initial distribution, E
q
(t)
φ

[
log p(x)

]
initially starts above the true value but

converges from above as the marginal HMC distribution, q(t)φ , spreads to cover the target. However,
after training by optimizing eq (1), all the step sizes have become very small causing the HMC
chains to remain at their initial sampled positions which is obviously detrimental for convergence.
To avoid this, we can use a wide initial distribution. Figure 1 shows that, in this case, optimizing (1)
greatly speeds up convergence to the true distribution. We give the code for all our experiments in
the supplementary material.

4 METHODS FOR FINDING A SUITABLE INITIAL DISTRIBUTION

In order for the method to be useful, we need to use an initial distribution that sufficiently cov-
ers the mass of the target. On the other hand, it would be unhelpful to use a distribution that was
overly spread out relative to the target because we are focusing on short parallel HMC chains so we
would like to keep the burn-in time to a minimum. Although ultimately this trade-off is an engi-
neering problem, we provide an automatic method in this section that we have empirically evaluated
on a variety of applications and have found to give consistently good results. The main idea is to
use a variational approximation to the target as the initial distribution, as done by Hoffman (2017).
This should be a distribution that can be easily sampled from and easily tuned to fit the target, e.g. a
Gaussian distribution or a normalizing flow (Tabak & Vanden-Eijnden, 2010; Rezende & Mohamed,
2015). Rather than use the standard ELBO, we use α-divergence minimization (Hernández-Lobato
et al., 2016) for training. The α value dictates the mass covering behaviour of the resulting approx-
imation, with α = 0 corresponding to the standard mode seeking DKL

(
qφ(x)||p(x)

)
minimization

and α = 1 corresponding to the mass covering DKL

(
p(x)||qφ(x)

)
minimization. We compare

both α values in our experiments. The α-divergence is very useful in this context as it can pro-
vide us with a mass covering approximation without the use of samples from the target, it requires
only the (unnormalized) target density, regardless of the value of α. However, if samples from the
target are available, then alternatively qφ(x) can be tuned via maximum likelihood which is also
mass-covering.

Note that the previous approaches will produce an initial distribution that fits the target, but do not
guarantee that this initial distribution will be broad enough. To address this, we also allow our
method to automatically adjust the width of the initial distribution as necessary to keep q(T )

φ (x) as
closely matched to p(x) as possible. This is achieved by applying a scalar scale factor s centered
around the mean µ to each sample xi from the initial distribution, i.e. using x̂i = s(xi − µ) + µ as
our sample. In particular, we train s by minimizing the Sliced Kernelized Stein Discrepancy (Gong
et al., 2020) or SKSD1 between the final state distribution and the target, SKSD(q

(T )
φ (x), p(x)).

1We use the metric referred to as the maxSKSD in Gong et al. (2020)
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Table 1: KSD between the HMC samples and the target distribution for the baselines and the 4
variations of our method on each of the synthetic target distributions.

Gaussian Laplace Dual Moon Mixture Wave 1 Wave 2 Wave 3
α = 0 0.0677 0.0005 0.2370 0.0004 0.0224 0.0525 0.0462
α = 1 0.0009 0.0004 0.8637 0.0010 0.0067 0.0158 0.0801

SKSD & α = 0 0.0008 0.0016 0.1684 0.0004 0.0017 0.0020 0.0217
SKSD & α = 1 0.0009 0.0014 0.2528 0.0004 0.0017 0.0019 0.0317
min p̄ = 0.25 0.0364 0.0005 1.1553 0.0846 0.0645 0.9447 0.0465

NUTS 0.0044 0.0016 0.2326 0.0023 0.0124 0.0260 0.0965

The SKSD is a differentiable scalable discrepancy measure requiring only samples from q
(T )
φ and

gradients of the target, ∇xlog p∗(x). This objective encourages suitable values of s because, say
s is too small, then the φ training (which occurs jointly with s training) will result in a degenerate
q
(T )
φ (x) far from the target. The SKSD measures this discrepancy and provides a learning signal

for increasing s. Conversely, if s is too large then q(T )
φ (x) will also be far from the target since the

chain will not be able to account for the extremely poor initialization. The SKSD will then result
in a learning signal to decrease s to a more reasonable value. Given that the SKSD is a tractable
objective that measures the discrepancy between q(T )

φ (x) and p(x), it is theoretically feasible to use
the SKSD to optimize φ too, but we found that the SKSD does not perform well when optimizing
too many parameters, which is why (1) is used instead. Note, however, that the SKSD works very
well in practice when we only tune the single scalar parameter s.

5 EXPERIMENTS

5.1 2D DISTRIBUTIONS

We evaluate our tuning method on a range of synthetic 2D target densities shown in Figure 2a. The
equations for these distributions are listed in Appendix A.1. We use 30-step HMC chains initialized
with a factorized Gaussian approximation, which is trained by minimizing the α-divergence. We
consider 4 variations of our method in which we optimize individual step sizes and masses for
each dimension and HMC step using (1) but vary the value of α ∈ {0, 1} and whether or not
to include the tuning of the scaling s by minimizing the SKSD (s = 1 when not tuned). We
include two baselines for reference. The first one is taken from Hoffman (2017), where the step
size in each dimension k is given by σkε0 with σk being the standard deviation in dimension k, as
estimated by a Gaussian fitted by minimizing the α = 0-divergence and ε0 being adjusted as to
control the minimum acceptance probability over a batch of parallel chains. In line with Hoffman
(2017) we set this minimum acceptance probability to 0.25. The second baseline is the popular No-
U-Turn Sampler (Hoffman & Gelman, 2011)2. We use the dual averaging variant of the No-U-Turn
Sampler, which includes a method for tuning the step size as to encourage an equivalent of the HMC
average acceptance probability towards a target δ ∈ (0, 1). We set δ = 0.2 in our experiments.
To quantify convergence to the target, we used the Kernelized Stein Discrepancy (KSD) (Liu et al.,
2016; Chwialkowski et al., 2016) between the generated samples and the targets. The results are
shown in Table 1. Our method consistently outperforms the baselines. Furthermore, the methods
that tune s by minimizing the SKSD tend to fit the targets better than those methods that do not tune
this scale factor. For some distributions, the scale factor effectively helps prevent mode seeking. In
Appendix A.2, we confirm this quantitatively by comparing expected log target values and find that
narrow initial distributions (α = 0) often lead to artificially high values with the SKSD preventing
this pathology.

5.2 DEEP LATENT GAUSSIAN MODELS

We now use our method to train Deep Latent Gaussian Models or DLGMs (Kingma & Welling,
2014; Rezende et al., 2014). DLGMs are popular generative models that describe observed data x
by the following generative process: first sample a latent variable z ∼ N (0, I) and then sample x

2We use the implementation from https://github.com/mfouesneau/NUTS in our experiments.
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Figure 2: (a) Histograms of 2D targets generated by rejection sampling. (b) Average ranking of
marginal KL-divergences for each method in the Alanine Dipeptide experiment (lower is better).

from some distribution parameterized by the output of a deep neural network that receives z as input,
i.e., x ∼ pθ(x|z), with θ being the neural network parameters. The Variational Auto-Encoder (VAE)
is a popular method for training these models. This method works by fitting a factorized Gaussian
approximation qψ(z|x) to the posterior pθ(z|x). The means and variance parameters of qψ(z|x) are
given by a deep neural network that receives x as input. The parameters θ and ψ are then optimized
jointly by maximising an ELBO objective. In our experiments, we consider the HMC sampling
distribution, q(T )

φ (z|x), as a variational approximation with the initial distribution being a factorized

Gaussian distribution q(0)ψ (z|x) whose parameters are given by a deep neural network receiving x as
input. The parameters ψ are trained by minimizing an α-divergence. We train (φ, θ) by maximizing
the objective given by (1). Note that we train only one set of HMC hyperparameters for all x values,
i.e., we assume the same hyperparameter values will work on all pθ(z|x) targets, independently of x.
One could make the hyperparameters depend on x through an amortization network, but we found
that this did not improve performance. We also include a scaling of q(0)ψ (z|x) with scale factor
s trained by minimizing the SKSD. We consider two benchmark datasets: MNIST and Fashion
MNIST. As it is common in the literature, we use binarized versions of these datasets, with pθ(x|z)
giving the parameters of a Bernoulli distribution over the pixels. The likelihood is parameterized
with the same convolutional architecture used by Salimans et al. (2015). Full experiment details can
be found in Appendix B.1. In these experiments, we found that an appropriate value of s can be
successfully found by minimizing the SKSD. The values of s obtained are large enough to prevent
our HMC tuning method to overfit to regions of high posterior density, but also small enough to
ensure the generation of accurate samples. More details can be found in Appendix B.2.

We evaluate the quality of the models trained with our method on both the MNIST and Fashion
MNIST datasets. For each model, we estimate the data marginal log-likelihood, log pθ(x), on each
of the test images using Hamiltonian Annealed Importance Sampling or HAIS (Sohl-Dickstein &
Culpepper, 2012) and report the average value and its standard error in Table 2. For comparison, we
also report log-likelihood values for multiple other methods. Using the same neural architecture, we
implemented the standard VAE and IWAE3 models. We also implemented another method of tuning
φ (Hoffman, 2017) where the step sizes are adjusted to make the minimum average acceptance
probability across a batch of images equal to 0.25. We update θ as in our method and use the
same number of leapfrog steps for a fair comparison. Finally, we report the best log-likelihood
values from Salimans et al. (2015); Caterini et al. (2018) which include HMC hyperparameter tuning
during training and use the same network architecture as us (note that these authors only evaluated
on the MNIST dataset). We confirm the difference in average log-likelihood between models is
significant by performing a paired t-test for each pairing of models, we report the results in Appendix
B.3. We find that on both MNIST and Fashion MNIST, the HMC based methods generally achieve

3We used the DReG estimator from Tucker et al. (2019) for the IWAE.
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Table 2: Average test set marginal log-likelihood and its standard error for different models for
MNIST and Fashion MNIST estimated using HAIS. For models with a scale factor, we also report
the final scale after training. For comparison, we report the best log-likelihood values from previous
works that tune HMC hyperparameters and use the same architecture.

MNIST Fashion MNIST
Model Scale Mean Standard Error Scale Mean Standard Error
VAE - -85.08 0.2172 - -108.54 0.6010

DReG-IWAE - -83.73 0.2109 - -104.48 0.5841
α = 0 1.0 -83.48 0.2101 1.0 -104.08 0.5834
α = 1 1.0 -82.46 0.2073 1.0 -103.57 0.5826

α = 0 & SKSD 6.79 -81.91 0.2042 5.58 -103.18 0.5802
α = 1 & SKSD 3.90 -81.94 0.2045 3.59 -102.29 0.5748
Hoffman (2017) - -81.74 0.2046 - -103.04 0.5804

Salimans et al. (2015) - -81.94 -
Caterini et al. (2018) - -82.62 -

significantly better performance than VAE or IWAE, showing that reducing the approximation bias
of the variational distribution with HMC greatly helps model learning. Furthermore, we see that
adding the scale factor to our model significantly improves performance as this avoids degenerate
behaviour when training the HMC hyperparameters. We note that, without any scaling, α = 1
outperforms α = 0 due to α = 0 resulting in a too narrow initial distribution. With scaling, the
SKSD automatically widens the initial distribution making the performance between the α values
similar. Finally, we observe that HMC based methods top out at similar log-likelihood values (within
around one standard error), we believe this is due to reaching the limits of the architecture on these
datasets with no more gains to be made from more accurate posterior approximations.

5.3 MOLECULAR CONFIGURATIONS

For our final experiment, we evaluate our method on the complex real-world problem of sam-
pling equilibrium molecular configurations from the Boltzmann distribution of the molecule Ala-
nine Dipeptide. The unnormalized target distribution given the atom coordinates x is e−u(x), where
u is the potential energy of the system, which can be obtained using the laws of physics. While
this problem is usually tackled through Molecular Dynamics (MD) simulations, giving a sequence
of highly correlated samples, we aim to produce samples using our trained short HMC chains. We
do not operate directly on the Cartesian coordinates but apply the coordinate transform presented by
Noé et al. (2019), see also Appendix C.2, to map some of the Cartesian coordinates to bond lengths,
bond angles, and dihedral angles giving a dimensionality of 60. Our methods use a normalizing flow
based on real-valued non-volume preserving (RNVP) transformations (Dinh et al., 2017) as initial
distribution, followed by 50 HMC steps. We used various methods to train the initial distribution
and HMC hyperparameters (using individual masses and step sizes for each dimension and HMC
step in this case). The RNVP models were trained with α = {0, 1}-divergence and maximum likeli-
hood. The latter was done using 105 training data samples obtained via a MD simulation4. In these
experiments, we first trained the initial sampling distributions (via ML or α-divergence) and then
kept them fixed when tuning the HMC hyperparameters and the scale factor. To evaluate the perfor-
mance of the different methods, a new MD simulation was run to obtain 106 test samples. Since we
the model likelihood is intractable, we approximated the 60 marginal distributions by kernel density
estimates from the MD test samples and compared them using the KL-divergence with the corre-
sponding density estimates for the samples of the HMC tuning methods. This performance measure
also has practical relevance as the marginals of proteins, especially those of the dihedral angles,
determine important material properties such as how the protein folds (Ramachandran et al., 1963).
The HMC hyperparameters were tuned by maximising the expected log-target without adjusting the
initial distribution (referred to as maxELT) or by maximising the expected log-target whilst also
tuning the scale factor of the initial distribution by minimizing the SKSD (referred to as maxELT &
SKSD). As a baseline, we also optimized the HMC parameters via a grid search, keeping step sizes

4The same dataset was used to obtain the mean and variances required in the normalization step of the
coordinate transform.
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Table 3: P-values of the Wilcoxon test comparing
the model with HMC parameters tuned by maxELT
& SKSD with the baseline models based on the KL-
divergences of the marginals. Bold means maxELT &
SKSD improves on the baseline at the given p-value.

Grid search pa = 0.65
α = 0 0.158 0.627
α = 1 0.0102 0.0247
ML 0.883 2.63 · 10−5

and masses constant across dimension and HMC step and varying these two constants in a grid,
picking the combination that gave the lowest median marginal KL-divergence to the MD training
data. We also implemented another baseline, adjusting the step size constant such that the average
acceptance probability was 0.65 (referred to as pa = 0.65). Further details about the implementation
are given in Appendix C.1.
The marginal KL-divergences vary greatly in magnitude so we use a rank based metric to summarize
the results. For each initial distribution type and marginal, we assign each HMC method a rank (1-5)
according to the ordering of KL values on that marginal. We then average over the 60 marginals for
each of the 15 methods, resulting in Figure 2b. For the α = 1 trained initial distribution, maxELT
& SKSD clearly results in the lowest average ranked marginal KL-divergences, meaning its sam-
ples are closest to the target. For the other two initial distributions, maxELT & SKSD is generally
on-par with the best baseline. To confirm this observation, we performed a two-sided Wilcoxon test
(Wilcoxon, 1945) to determine whether the differences between average rank across KL-divergences
are significant or not. The resulting p-values for comparisons between maxELT & SKSD and the
baselines are shown in Table 3; further details are given in Appendix C.2. The pair of models show-
ing a significant difference, i.e., the respective p-value is smaller than 0.05, are those where our
method outperforms the baseline. For the other cases, it is on par with them.

6 DISCUSSION AND RELATED WORK

Our experiments show a general trend that, when we solely optimize (1), the value of α used sig-
nificantly affects performance. However, when applying the SKSD scaling, this difference becomes
smaller, showing that this technique is useful for automatically finding a suitable initial distribution.
In practice, it may be simple and effective to just use the standard ELBO method (i.e. α = 0) to find
an initial distribution for HMC with the SKSD scaling to ensure that it is wide enough.

Comparing to other methods for tuning the HMC hyperparameters, there are some methods also
inspired by variational inference. Salimans et al. (2015); Wolf et al. (2016) use an approximation
to the reverse dynamics of the chain to put a lower bound on the standard ELBO and make the
optimization tractable. The method is then dependent on the accuracy of this reverse approximation
with the concern that this new lower bound gets looser and looser as the the HMC chain length gets
larger and larger. As our experiments in section 5.2 show, we can do just as well as these methods by
directly optimizing a measure of convergence without the need for extra approximations. Caterini
et al. (2018) also construct an alternative ELBO for HMC, however, they only sample the auxiliary
momentum variables once at the start of the chain which reduces the empirical performance of
HMC. In contrast to these methods, some gradient based tuning techniques do not use ideas from
variational inference but instead optimize a proxy for mixing speed. Levy et al. (2018) generalize
the standard leapfrog integrator used in HMC with multi-layer perceptrons which are then trained
by maximising a modified version of the expected squared jumped distance. We improve upon this
objective by directly optimizing convergence speed and using gradient information from the target
distribution itself. It would be an interesting direction to use our objective to train this generalised
leapfrog operator. Finally, there is the method of Titsias & Dellaportas (2019) who consider the
gradient based tuning of the Markov transition operator, pφ(xt|xt−1), in the case of a single long
MCMC chain. For the objective, they use the expected acceptance probability for the next step in
the chain, regularized with the entropy of pφ(xt|xt−1). Unfortunately, as this entropy is intractable
when using the leapfrog algorithm as the Markov transition operator, it cannot be applied to HMC
in its current form.

There are also many non-gradient based heuristics for tuning the HMC hyperparameters. The popu-
lar No-U-Turn Sampler (Hoffman & Gelman, 2011) can adaptively set the number of leapfrog steps
L to avoid U-turns and find a global constant for the step sizes by adjusting the average acceptance

8



Under review as a conference paper at ICLR 2021

rate. In section 5.1, we found we can outperform NUTS even though we do not adaptively set L.
With our objective, we can tune individual step sizes (and masses) for each dimension and step in
the chain, allowing for a much higher degree of granular control over the algorithm. Furthermore,
we do not need to rely on ‘rules of thumb’ such as standard acceptance rate targets used in many al-
gorithms (Hoffman & Gelman, 2011; Hoffman, 2017) but we can automatically tune all continuous
hyperparameters using information from the target distribution directly.

Our work also builds upon methods from statistical mechanics. The Boltzmann Generator (Noé
et al., 2019) opened up this line of research by applying a normalizing flow to the problem of sam-
pling molecular configurations. We found we can improve upon this by using the flow as the initial
distribution for HMC, fine tuning the flow samples with our short chains. Our Alanine Dipeptide ex-
periment comes from the recent work of Wu et al. (2020) on stochastic normalizing flows consisting
of stochastic steps interspersed between deterministic steps in a normalizing flow. An interesting fu-
ture extension would be to combine the approaches and tune parameters within the stochastic layers
with our objective.

7 CONCLUSION

In this work, we presented a new objective motivated by the variational inference ELBO that can be
easily used for the gradient-based optimization of HMC hyperparameters. We provided a fully au-
tomatic method for choosing an initial distribution for the HMC chain that reduces burn-in time and
aids optimization. Evaluating on multiple real-world problems, we find our method is competitive
with or improves upon existing tuning methods. We hope this encourages further work applying this
idea to other methods that use HMC and that would benefit from increased convergence speed.
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A 2D DISTRIBUTIONS

A.1 EQUATIONS FOR 2D TARGETS

Table 4: Unnormalized log densities for the 2D distributions used in the first experiment.

Name Unnormalized log density, logπ∗(x)
Gaussian − 1

2

(
32
19x

2
1 − 60

19x1x2 + 40
19x

2
2

)
Laplace −|x1 − 5| − |x2 − 5|

Dual Moon −3.125
(√

x21 + x22 − 2
)2

+ log
[
exp

(
−0.5

(
x1+2
0.6

)2)
+ exp

(
−0.5

(
x1−2
0.6

)2)]
Mixture log

[∑7
i=1 exp

(
−0.5

[(
x1 − 5cos

(
2iπ
7

))2
+
(
x2 − 5sin

(
2iπ
7

))2])]
Wave 1 −0.5

(
x2+sin(0.5πx1)

0.4

)2

Wave 2
log

[
exp

(
−0.5

[
x2+sin(0.5πx1)

0.35

]2)
+

exp

(
−0.5

[
−x2−sin(0.5πx1)+3 exp(− 0.5

0.36 (x1−1)2)
0.35

]2)]

Wave 3

log

[
exp

(
−0.5

[
x2+sin(0.5πx1)

0.4

]2)
+

exp

−0.5

[
−x2−sin(0.5πx1)+

3

1+exp − x1−1
0.3

0.35

]2]

A.2 COMPARISON BETWEEN −Ep
[

log p∗(x)
]

AND −E
q
(T )
φ

[
log p∗(x)

]
Here, we compare −Ep

[
log p∗(x)

]
with −E

q
(T )
φ

[
log p∗(x)

]
to quantify the mode seeking be-

haviour of the different methods. We display our results in Table 5. We see that the SKSD helps
the method better match the ground truth and on some distributions e.g. Gaussian, helps prevent
−E

q
(T )
φ

[
log p∗(x)

]
from underestimating −Ep

[
log p∗(x)

]
. This may occur with a narrow initial

distribution (α = 0) because the optimization will encourage the chains to remain in the region of
high log target, artificially inflating the E

q
(T )
φ

[
log p∗(x)

]
value.

Table 5: −E
q
(T )
φ

[
log p∗(x)

]
values for the baselines and the 4 variations of our method on each

of the synthetic test distributions. The ground truth value −Ep
[

log p∗(x)
]

is found using rejection
sampling.

Gaussian Laplace Dual Moon Mixture Wave 1 Wave 2 Wave 3
Ground-truth 2.8083 2.0075 0.8511 0.9282 0.4994 -0.1703 0.1483

α = 0 2.4911 1.9937 1.0315 0.9216 0.4845 0.0463 0.1314
α = 1 2.7861 2.0431 2.9218 0.9197 0.4982 -0.1050 0.6938

SKSD & α = 0 2.8390 2.0074 0.8439 0.9174 0.5142 -0.1293 0.2500
SKSD & α = 1 2.8183 2.0281 0.7987 0.9198 0.4993 -0.1814 1.2002
min p̄ = 0.25 3.0148 1.9140 4.1515 2.4894 1.4081 1.4220 1.0397

NUTS 2.7862 1.9955 0.7828 0.9379 0.4959 -0.1979 0.0911

A.3 TRAINING TIME

We provide the training times for the 2D experiments in Table 6. We note that the SKSD times are
almost exactly double the non-SKSD times. This is because the majority of training time is taken
up by sampling from the HMC chains. Each iteration, we use one batch of 100 HMC samples to
estimate the expected log target objective and another separate batch of 100 is used to estimate the
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SKSD resulting in the approximate doubling of total training time. In practice, this can be made
more efficient by using the same batch of samples to estimate both objectives resulting in similar
training times whether or not the SKSD is included.

Table 6: Training time for synthetic 2D problems on CPU (sec / 100 iters).

Gaussian Laplace Dual Moon Mixture Wave 1 Wave 2 Wave 3
α = 0 22.62 25.33 33.44 61.17 21.75 65.91 65.08
α = 1 23.60 25.92 34.15 62.35 21.98 67.62 67.02

SKSD & α = 0 45.44 50.01 63.8 128.71 41.67 131.15 129.79
SKSD & α = 1 46.44 50.28 65.35 132.53 42.2 133.09 133.48
min p̄ = 0.25 4.96 4.16 3.66 16.83 2.8 6.78 7.14

B DEEP LATENT GAUSSIAN MODEL EXPERIMENTS

B.1 DETAILS ABOUT THE SETUP

In these experiments, we set the dimension of the latent variable z to be 32. For our HMC variational
distribution, q(T )

φ (z|x), we set T = 30 and use 5 leapfrog updates. We only consider training the
step sizes here and leave all masses at 1. As there are multiple parameters being optimized jointly,
we summarise the entire method in this section for clarity. The parameters being optimized are: θ
- the decoder neural network parameters, φ - the HMC step sizes (a total of 30 × 32 = 960 scalar
values), ψ - the encoder (q(0)ψ (z|x)) neural network parameters and s - the scale factor used to scale

samples from q
(0)
ψ (z|x). There are then 4 optimization objectives:

L1 = E
q
(T )
φ (z|x)

[
log pθ(x, z)

]
Our tuning heuristic (3)

L2 = SKSD
(
q
(T )
φ (z|x), pθ(z|x)

)
(4)

L3 = E
q
(0)
ψ (z|x)

[
log pθ(x, z)− log q

(0)
ψ (z|x)

]
Standard ELBO (5)

L4 = E
z1:k∼q(0)ψ (z|x)

 k∑
i=1

(
ωi∑k
j=1 ω

j

)2

logωi

 , ωi =
pθ(x, z

i)

q
(0)
ψ (zi|x)

DReG IWAE objective

(6)

Using these 4 objectives, we then follow Algorithm 1 during training. We use ηt+1 ← Adamηt(Li)
to denote one gradient step using the Adam optimizer (Kingma & Ba, 2014) maximising objective
Li with respect to parameter η. We note that we introduce 105 pre-training steps before starting
HMC optimization as these updates are very quick to do and make sure the HMC optimization
has a reasonable starting point. We see that when α = 0, we train ψ by maximising (5) which
is equivalent to minimising the α = 0 divergence with the target. When α = 1 we use (6) as
the objective for ψ which is the doubly reparameterized version of the IWAE objective (Tucker
et al., 2019). This is equivalent to minimizing the α = 1 divergence with the target, as shown by
Hernández-Lobato (2016).For the case where we do not use the SKSD then we simply omit s from
our model and omit the updates to s from Algorithm 1. For the VAE and IWAE baselines we simply
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run the pre-training steps for the full 1.5× 105 steps using the α = 0 or α = 1 updates respectively.

Algorithm 1: DLGM Training Algorithm
Pre-training steps;
for t = 1, . . . , 105 do

if α = 0 then
θt+1 ← Adamθt(L3);
ψt+1 ← Adamψt(L3);

end
if α = 1 then

θt+1 ← Adamθt(L4);
ψt+1 ← Adamψt(L4);

end
end
HMC-training steps;
for t = 105, . . . , 1.5× 105 do

if α = 0 then
ψt+1 ← Adamψt(L3);

end
if α = 1 then

ψt+1 ← Adamψt(L4);
end
φt+1 ← Adamφt(L1);
θt+1 ← Adamθt(L1);
st+1 ← Adamst(−L2);

end

B.2 EFFECTIVENESS OF THE SCALING
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Figure 3: Ep(z|x)
[

log pθ(x, z)
]
− E

q
(T )
φ (z|x)

[
log pθ(x, z)

]
averaged over 200 randomly chosen

MNIST test images for a range of fixed scalings used during training. The ground truth poste-
rior p(z|x) is estimated using 100 HAIS samples. The final scales found when running the training
with the SKSD are also plotted.

To demonstrate the scaling’s effectiveness, we run our optimization scheme on the MNIST dataset
for a range of fixed scale factors and then compute Ep(z|x)

[
log pθ(x, z)

]
−E

q
(T )
φ (z|x)

[
log pθ(x, z)

]
with samples from p(z|x) found through HAIS (Sohl-Dickstein & Culpepper, 2012). The results for
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α = 0 and α = 1 are shown in Figure 3. For small scales, the metric is negative implying q(T )
φ (z|x)

is oversampling high probability regions of the target with a higher scale factor alleviating this issue.
Figure 3 also shows the scale found by SKSD training when this is included in the optimization run,
we see it can find an appropriate scale factor that is large enough to prevent this pathology whilst
also ensuring stable performance.

B.3 DEEP LATENT GAUSSIAN MODEL PAIRED T-TESTS

We carry out a paired t-test for each model pairing with the null hypothesis that the two population
means of the log-likelihoods log p(x) are equal. Log-likelihood values are paired between models
by observed data point x. The p-values for the tests on the MNIST dataset are given in Table 7
and the p-values for the Fashion MNIST dataset are given in Table 8. A 0 value represents that the
p-value is numerically indistinguishable from 0.

Table 7: p-values for paired t-tests on test log-likelihood values on the MNIST dataset.

DReG-IWAE α = 0 α = 1
α = 0

& SKSD
α = 1

& SKSD Hoffman (2017)

VAE 0 0 0 0 0 0
DReG-IWAE - 4.93e-18 0 0 0 0

α = 0 - - 0 0 0 0
α = 1 - - - 1.07e-115 1.50e-104 2.04e-173

α = 0 & SKSD - - - - 0.2405 1.45e-14
α = 1 & SKSD - - - - - 2.95e-19

Table 8: p-values for paired t-tests on test log-likelihood values on the Fashion MNIST dataset.

DReG-IWAE α = 0 α = 1
α = 0

& SKSD
α = 1

& SKSD Hoffman (2017)

VAE 0 0 0 0 0 0
DReG-IWAE - 2.51e-22 1.25e-94 2.12e-205 0 4.54e-217

α = 0 - - 6.46e-42 6.48e-124 0 5.90e-129
α = 1 - - - 8.45e-28 1.05e-262 2.04e-40

α = 0 & SKSD - - - - 1.35e-135 4.81e-4
α = 1 & SKSD - - - - - 1.27e-79

B.4 TRAINING TIME

We give the training times for the DLGM training algorithms we examined in Table 9. We first note
that the VAE and IWAE baselines are much faster as they do not involve sampling from any HMC
chains. We also see that the times when the SKSD loss is included are much longer than when it is
omitted. This is because, in our experiments, we use a single HMC sample to estimate the expected
log target objective, L1, at each gradient step, however, we estimate the SKSD objective, L2, using
a further 30 samples resulting in much longer times per training step. We decided to not use the
same batch of samples to estimate both L1 and L2 in our experiment in order to clearly identify the
effect of the SKSD. Keeping total training iterations the same, if we had used these extra samples to
estimate L1 then it would be unclear if any improvement was down to the SKSD or just to reduced
variance in the estimate for L1. In practice, it would be more efficient to estimate both L1 and L2

using the same batch of HMC samples and reduce the total number of training steps as the reduced
variance of L1 will help speed up training.

C MOLECULAR CONFIGURATIONS SAMPLING EXPERIMENTS

C.1 DETAILS ABOUT THE SETUP

All the RNVP models we used as initial distributions have the same architecture. They consist of
five coupling blocks composed of two alternating coupling layers. The scale and shift within the

15



Under review as a conference paper at ICLR 2021

Table 9: Training Time for DLGM on GPU (sec / 1000 iters).

MNIST Fashion MNIST
VAE 2.95 3.34

DReG-IWAE 4.34 4.45
α = 0 102.73 103.13
α = 1 103.66 104.02

α = 0 & SKSD 1514.93 1520.27
α = 1 & SKSD 1527.11 1539.52
Hoffman (2017) 126.84 133.13

coupling layers is given by fully connected networks having three layers with 128 hidden units
each. Before each coupling block, we applied activation normalization (Kingma & Dhariwal, 2018).

For use in scaling the initial distribution samples, we use an empirical estimate of the nor-
malizing flow sample mean using 105 samples. To calculate the SKSD metric, to save computation,
we use fixed vectors for what Gong et al. (2020) refer to as gr instead of optimizing them. This was
because we found gr ended up very close to one-hot vectors during optimization anyway so this
approximation does not make a large difference to the method.

Training the RNVP model with the α-divergence when α = 0 was achieved by using the re-
verse KL-divergence as a training objective (Papamakarios et al., 2019; Hernández-Lobato et al.,
2016).

As baselines for tuning HMC parameters we used a grid search as well as training the ac-
ceptance probability. For the grid search, 25 different parameter settings were tested for each initial
distribution. In each setting the step size and log mass is held constant over all HMC layers but 5
different step size constants are tested in combination with 5 different log mass constants giving 25
total combinations. The metric used to find the best combination was the median KL-divergence
over all 60 marginals computed using 104 samples against the 105 molecular dynamics training
data. When training the acceptance probability, the log mass was held at 0 for all layers and the
step size was a constant for all layers with this step size constant being adjusted so that the average
acceptance probability was 0.65. The constant was updated each training iteration with an update
of the form εt+1 = εt − at(0.65 − pa), where pa is the average acceptance probability and at
being a parameter decreasing according to the Robbins-Monro conditions (Robbins & Monro, 1951).

When testing the models, the KL-divergence was computed by first computing a kernel den-
sity estimate for each marginal using a Gaussian kernel with bandwidth chosen using Scott’s
rule and then finding the KL-divergence between the kernel density estimates using numerical
integration.

C.2 COORDINATE GROUPS AND MODEL COMPARISON

The coordinate transformation, introduced in Noé et al. (2019), which we used splits the feature
dimensions in four different groups: 17 bond angles, 17 bond lengths, 17 dihedral angles, and 9
Cartesian coordinates, adding up to 60 dimensions in total. Due to their differing physical mean-
ing and relevance, they follow different distributions. For each group, three sample marginals
are shown in Figure 4, Figure 5, and Figure 6. We used the MacCallum lab’s implementation
for our coordinate transform which can be found at https://github.com/maccallumlab/
BoltzmannGenerator.

The bond lengths and angles follow mostly unimodal, almost Gaussian, distributions which is due
to the regular vibrations of the atoms within the molecule. The dihedral angles can have multiple
modes while the Cartesian coordinates are quite irregular. As evaluating the KL-divergences on one-
dimensional distributions is much easier than approximating it for higher dimensional distributions,
we compared our models using the KL-divergences of these marginals. Figure 7 visualizes the
distribution of all KL-divergences.

16

https://github.com/maccallumlab/BoltzmannGenerator
https://github.com/maccallumlab/BoltzmannGenerator


Under review as a conference paper at ICLR 2021

Figure 4: Sample distributions of marginals from the four coordinate groups. The graphs compare
the ground truth with models having a RNVP as initial distribution followed by 50 HMC steps.
The RNVP was trained with the α = 0-divergence and the HMC parameters were tuned with the
indicated methods.

17



Under review as a conference paper at ICLR 2021

Figure 5: Sample distributions of marginals from the four coordinate groups. The graphs compare
the ground truth with models having a RNVP as initial distribution followed by 50 HMC steps.
The RNVP was trained with the α = 1-divergence and the HMC parameters were tuned with the
indicated methods.
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Figure 6: Sample distributions of marginals from the four coordinate groups. The graphs compare
the ground truth with models having a RNVP as initial distribution followed by 50 HMC steps. The
RNVP was trained via maximum likelihood and the HMC parameters were tuned with the indicated
methods.
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Figure 7: Violin plot of the KL-divergence of the marginals between the model tuned using maxELT
& SKSD and the test set. The results are split up into the four different variable groups, i.e. Cartesian
coordinates, bond lengths, bond angles, and dihedral angles. The median is marked by an x and the
inner bars are the upper and lower quartiles.

Table 10: P-values of the Wilcoxon test comparing models with initial distribution trained with
α = 0-divergence. Values in bold mean that the test showed the top row model has lower KL-
divergences than the left column model, i.e. the top row model is the better model at the significance
level given by the p-value.

maxELT maxELT & SKSD Grid search pa = 0.65
maxELT - 0.00056 0.00064 0.00065
maxELT & SKSD 0.00056 - 0.158 0.627
Grid search 0.00065 0.158 - 0.489
pa = 0.65 0.00065 0.627 0.489 -

Clearly, there are a few outliers to both the high and the low end. To not let them distort our results,
we decided to use the rank based metric to summarize our results. Furthermore, we performed a
paired two-sided Wilcoxon rank test for pairs of models to assess the statistical significance of our
results. The null hypothesis for this test is that the difference of the KL-divergences has a symmetric
distribution around 0, i.e. there is no model with marginals consistently closer to the ground truth
than the other. The resulting p-values are listed in the tables Table 10, Table 11, Table 12, and
Table 13. Here, we also included an initial distribution that was trained with the α = 2-divergence.
Due to the poor performance, we did not include it in the main text. Overall, we see again that
our method of tuning HMC parameters, i.e. maxELT & SKSD, is competitive or outperforms the
baselines, i.e. the grid search and the training to get an average acceptance probability of 0.65.

Table 11: P-values of the Wilcoxon test comparing models with initial distribution trained with
α = 1-divergence. Values in bold mean that the test showed the top row model has lower KL-
divergences than the left column model, i.e. the top row model is the better model at the significance
level given by the p-value.

maxELT maxELT & SKSD Grid search pa = 0.65
maxELT - 0.0017 0.024 0.015
maxELT & SKSD 0.0017 - 0.010 0.025
Grid search 0.024 0.010 - 0.023
pa = 0.65 0.015 0.025 0.023 -
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Table 12: P-values of the Wilcoxon test comparing models with initial distribution trained with
α = 2-divergence. Values in bold mean that the test showed the top row model has lower KL-
divergences than the left column model, i.e. the top row model is the better model at the significance
level given by the p-value.

maxELT maxELT & SKSD Grid search pa = 0.65
maxELT - 2.4e-8 0.14 0.0066
maxELT & SKSD 2.4e-8 - 0.00069 6.6e-6
Grid search 0.14 0.00069 - 0.83
pa = 0.65 0.0066 6.6e-6 0.83 -

Table 13: P-values of the Wilcoxon test comparing models with initial distribution trained with
maximum likelihood. Values in bold mean that the test showed the top row model has lower KL-
divergences than the left column model, i.e. the top row model is the better model at the significance
level given by the p-value.

maxELT maxELT & SKSD Grid search pa = 0.65
maxELT - 0.60 0.16 0.0094
maxELT & SKSD 0.60 - 0.883 2.6e-5
Grid search 0.16 0.88 - 6.0e-6
pa = 0.65 0.0094 2.6e-5 6.0e-6 -

C.3 SCALE PROGRESSION DURING TRAINING

To improve the overlap of the initial distribution with the target, we scale the former and learn
the scaling parameter through the SKSD. Figure 8 shows the progression of the scale parameter
during training for different initial distributions. The distributions trained using the α-divergence
with α = 0 tend to be mode seeking. Hence, we expect the scale to be larger than 1 so the proposal
covers the whole target distribution, and this is indeed the case. With α = 2 the distribution tends to
be mode covering, so it needs to be shrunken. The model trained with maximum likelihood already
has a low KL-divergence (see e.g. Figure 2b) so there is not much modification needed, i.e. the scale
is close to 1.
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Figure 8: Progression of scale factor for maxELT & SKSD models during training. RNVP models
trained by maximum likelihood and the α-divergence with α = 0, 1, 2 was used as initial distribu-
tion.
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