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Abstract

Bilevel optimization has gained prominence in various applications. In this study,
we introduce a framework for solving bilevel optimization problems, where the
variables in both the lower and upper levels are constrained on Riemannian man-
ifolds. We present several hypergradient estimation strategies on manifolds and
analyze their estimation errors. Furthermore, we provide comprehensive conver-
gence and complexity analyses for the proposed hypergradient descent algorithm
on manifolds. We also extend our framework to encompass stochastic bilevel
optimization and incorporate the use of general retraction. The efficacy of the
proposed framework is demonstrated through several applications.

1 Introduction

Bilevel optimization is a hierarchical optimization problem where the upper-level problem depends
on the solution of the lower-level, i.e.,

min
x∈Rdx

F (x) = f(x, y∗(x)), s.t. y∗(x) = argmin
y∈Rdy

g(x, y).

Applications involving bilevel optimization include meta learning [16], hyperparameter optimization
[18], and neural architecture search (NAS) [53], to name a few. The lower-level problem is usually
assumed to be strongly convex.

Common strategies for solving such problem can be classified into two categories: single-level refor-
mulation [29, 60] and approximate hypergradient descent [19, 40]. The former aims to reformulate the
bilevel optimization problem into a single-level one using the optimality conditions of the lower-level
problem as constraints. However, this may impose a large number of constraints for machine learning
applications. The latter scheme directly solves the bilevel problem through iteratively updating the
lower and upper-level parameters and, hence, is usually more efficient. Nevertheless, existing works
have mostly focused on unconstrained bilevel optimization [19, 32, 40, 11, 52, 45, 14].

In this work, we study bilevel optimization problems where x and y are on Riemannian manifolds
Mx and My , respectively. We focus on the setup where the lower-level function g(x, y) is geodesic
strongly convex (a generalized notion of convexity on manifolds, defined in Section 2) in y. This
ensures the lower-level problem has a unique solution y∗(x) given x. The upper-level function
f can be nonconvex on Mx × My. Because the unconstrained bilevel optimization is a special
case of our formulation on manifolds, such a formulation includes a wider class of applications.
Examples of Riemannian bilevel optimization include Riemannian meta learning [64] and NAS over
SPD networks [62]. Moreover, there has been a surge of interest of min-max optimization over
Riemannian manifolds [37, 41, 73, 27, 25, 67, 35], which also gets subsumed in the framework of
bilevel optimization with g = −f .
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Contributions. (i) We derive intrinsic Riemannian hypergradient via the implicit function theorem
and propose four strategies for estimating the hypergradient, i.e., through Hessian inverse, conjugate
gradient, truncated Neumann series, and automatic differentiation. We then provide hypergradient
estimation error bounds for all the proposed strategies. (ii) We introduce the Riemannian hypergradi-
ent descent algorithm to solve bilevel optimization problems on manifolds and provide convergence
guarantees. We also generalize the framework to the stochastic setting and to allow the use of
retraction. (iii) The efficacy of the proposed modeling is shown on several problem instances includ-
ing hyper-representation over SPD matrices, Riemannian meta learning, and unsupervised domain
adaptation. The proofs, extensions, and experimental details are deferred to the appendix sections.

Related works in unconstrained setting. Unconstrained bilevel optimization where the lower-
level problem is strongly convex has been widely studied [19, 32, 40, 11, 52, 45, 14]. A crucial
ingredient is the notion of hypergradient in bilevel optimization problems and its computation. There
exist strategies for approximating the hypergradient, e.g., using conjugate gradient [40], Neumann
series [19], iterative differentiation [21], and Nyström method [31]. While bilevel optimization with
constraints is relatively unexplored, a few works exists that impose constraints only for the upper level
problem [32, 10]. Recently, linearly lower-level constrained bilevel optimization has been explored
in [65, 68], where a projected gradient method is employed for the lower-level problem.

Related works on manifolds. There has been limited work on bilevel optimization problems on
manifolds. [7] studies semivectorial bilevel optimization on Riemannian manifolds where the upper-
level is a scalar optimization problem while the lower-level is a multiobjective problem under greatest
coalition. [50, 49] reformulate bilevel problems on manifolds into a single-level problem based on
the KKT conditions on manifolds. However, for all those works, it is unclear whether there exists an
algorithm that efficiently solves the problem in large-scale settings. In contrast, we aim to provide a
general framework for solving bilevel optimization on Riemannian manifolds. [47] is a contemporary
work that also proposes gradient-based algorithms for bilevel optimization on Riemannian manifolds.
The main differences of our work with respect to [47] are as follows: (1) We provide an analysis for
various hypergradient estimators while [47] focuses on conjugate gradient for deterministic setting
and Neumann series for stochastic setting; (2) We provide an analysis for retraction which is more
computationally efficient than exponential map and parallel transport employed in [47]; and (3) We
explore the utility of Riemannian bilevel optimization in various machine learning applications, which
is not the case with [47].

2 Preliminaries and notations

A Riemannian manifold M is a smooth manifold equipped with a smooth inner product structure (a
Riemannian metric) ⟨·, ·⟩p : TzM× TzM → R for any z ∈ M and its tangent space TzM. The
induced norm is thus ∥u∥z =

√
⟨u, u⟩z for any u ∈ TzM. A geodesic c : [0, 1] → M generalizes

the line segment in the Euclidean space as the locally shortest path on manifolds. The exponential
map on a manifold is defined as Expz(u) = c(1) for a geodesic c that satisfies c(0) = z, c′(0) = u.
In a totally normal neighbourhood U where exponential map has a smooth inverse, the Riemannian
distance d(x, y) = ∥Exp−1

x (y)∥x = ∥Exp−1
y (x)∥y . The parallel transport operation Γz2

z1 : Tz1M →
Tz2M is a linear map which preserves the inner product, i.e., ⟨u, v⟩z1 = ⟨Γz2

z1u,Γ
z2
z1v⟩z2 , ∀u, v ∈

Tz1M. The (Cartesian) product of Riemannian manifolds Mx ×My is also a Riemannian manifold.

For a differentiable function f : M → R, the Riemannian gradient Gf(z) ∈ TzM is the tangent
vector that satisfies ⟨Gf(z), u⟩z = Df(z)[u] for all u ∈ TzM. Here D is the differential operator and
Df(z)[u] represents the directional derivative of f at z along u. For a twice differentiable function f ,
Riemannian Hessian Hf(z) is defined as the covariant derivative of Riemannian gradient.

Geodesic convexity extends the convexity notion in the Euclidean space to Riemannian manifolds.
A geodesic convex set Z ⊆ M is where any two points can be joined by a geodesic. A function
f : M → R is said to be geodesic (strongly) convex if for all geodesics c : [0, 1] → Z , f(c(t))
is (strongly) convex in t ∈ [0, 1]. If the function is smooth, then f is called µ-geodesic strongly
convex if and only if f(Expz(tu)) ≥ f(z) + t⟨Gf(z), u⟩z + t2 µ

2 ∥u∥
2
z ,∀t ∈ [0, 1]. An equivalent

second-order characterization is H(z) ⪰ µid, where we denote id as the identity operator.

For a bifunction ϕ : Mx ×My → R, we denote Gxϕ(x, y),Gyϕ(x, y) as the Riemannian (partial)
gradient and Hxϕ(x, y),Hyϕ(x, y) as the Riemannian Hessian. The Riemannian cross-derivatives
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are linear operators G2
xyϕ(x, y) : TyMy → TxMx,G2

yxϕ(x, y) : TxMx → TyMy defined as
G2
xyϕ(x, y)[v] = DyGxϕ(x, y)[v] for any v ∈ TyMy (with D representing the differential operator)

and similarly for G2
yxϕ(x, y). For a linear operator T : TxMx → TyMy, the adjoint operator,

denoted as T † is defined with respect to the Riemannian metric, i.e., ⟨T [u], v⟩y = ⟨T †[v], u⟩x for any
u ∈ TxMx, v ∈ TyMy . The operator norm of T is defined as ∥T∥y := supu∈TxMx:∥u∥x=1 ∥T [u]∥y .

3 Proposed Riemannian hypergradient algorithm

In this work, we consider the constrained bilevel optimization problem

min
x∈Mx

F (x) := f(x, y∗(x)), s.t. y∗(x) = argmin
y∈My

g(x, y), (1)

where Mx,My are two Riemannian manifolds and f, g : Mx ×My → R are real-valued jointly
smooth functions. We focus on the setting where the lower-level function g(x, y) is geodesic strongly
convex. This ensures the lower-level problem has a unique solution y∗(x) for a given x. The
upper-level function f can be nonconvex on Mx ×My .

We propose to minimize F (x) directly within the Riemannian optimization framework. To this
end, we need the notion of the Riemannian gradient of F (x) := f(x, y∗(x)), which we call the
Riemannian hypergradient.
Proposition 1. The differential of y∗(x) and the Riemannian hypergradient of F (x) are given by

Dy∗(x) = −H−1
y g(x, y∗(x)) ◦ G2

yxg(x, y
∗(x))

GF (x) = Gxf(x, y
∗(x))− G2

xyg(x, y
∗(x))[H−1

y g(x, y∗(x))[Gyf(x, y
∗(x))]].

(2)

The above proposition crucially relies on the implicit function theorem on manifolds [25] and requires
the invertibility of the Hessian of the lower level function f with respect to y. This is guaranteed in
our setup as f is geodesic strongly convex in y. Hence, there exists a unique differentiable function
y∗(x) that maps x to the lower-level solution. We show the Riemannian hypergradient descent
(RHGD) algorithm for (1) in Algorithm 1.

Algorithm 1 Riemannian hypergradient descent (RHGD)

1: Initialize x0 ∈ Mx, y0 ∈ My .
2: for k = 0, ...,K − 1 do
3: y0k = yk.
4: for s = 0, ..., S − 1 do
5: ys+1

k = Expys
k
(−ηy Gyg(xk, y

s
k)).

6: end for
7: Set yk+1 = ySk .
8: Compute approximated hypergradient ĜF (xk).
9: Update xk+1 = Expxk

(−ηxĜF (xk)).
10: end for

• Steps 3 to 7 solve the lower-level
problem using the Riemannian gradi-
ent descent method. Since computing
the optimal solution y∗(x) is compu-
tationally challenging, we obtain an
approximate solution yk+1.
• Step 8 involves computing the
Riemannian hypergradient GF (x)
of F (x). For computational effi-
ciency, we compute an approximation
ĜF (xk).
• Step 9 is the usual exponential map
to find the updated point xk+1.

We highlight that Step 8 of Algorithm 1 approximates the Riemannian hypergradient. In the rest of
the section, we discuss various computationally efficient ways to estimate the Riemannian hypergra-
dient and discuss the corresponding theoretical guarantees for RHGD. The error of hypergradient
approximation comes from the inaccuracies of yk+1 to y∗(xk) and also from the Hessian inverse.

3.1 Hypergradient estimation

When the inverse Hessian of the lower-level problem can be computed efficiently, we can estimate
the hypergradient directly by evaluating the Hessian inverse (HINV) at yk+1, i.e., ĜhinvF (xk) =
Gxf(xk, yk+1) − −G2

xyg(xk, yk+1)
[
H−1

y g(xk, yk+1)[Gyf(xk, yk+1)]
]
. However, computing the

inverse Hessian is computationally expensive in many scenarios. We now discuss three practical
strategies for estimating the Riemannian hypergradient when yk+1 is given.

Conjugate gradient approach (CG). When evaluating the Hessian inverse is difficult, we can
solve the linear system Hyg(xk, yk+1)[u] = Gyf(xk, yk+1) for some u ∈ Tyk+1

My. To this
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end, we employ the tangent space conjugate gradient algorithm (Appendix F, Algorithm 3) that
solves the linear system on the tangent space Tyk+1

My with only access to Hessian-vector products,
i.e., ĜcgF (xk) = Gxf(xk, yk+1) − G2

xyg(xk, yk+1)[v̂
T
k ], where v̂Tk is computed as a solution to

Hyg(xk, yk+1)[v̂
T
k ] = Gyf(xk, yk+1), where T is the number of iterations of the tangent space

conjugate gradient algorithm.

Truncated Neumann series approach (NC). The Neumann series states for an invertible operator H
such that ∥H∥ ≤ 1, its inverse H−1 =

∑∞
i=0(id−H)i, where id is the identity operator. An alterna-

tive approach to estimate the Hessian inverse is to use a truncated Neumann series, which leads to the
following approximated hypergradient, ĜnsF (xk) = Gxf(xk, yk+1)−G2

xyg(xk, yk+1)[γ
∑T−1

i=0 (id−
γHyg(xk, yk+1))

i[Gyf(xk, yk+1)]], where γ is chosen such that (id − γHyg(xk, yk+1)) ≻ 0. γ
can be set as γ = 1

L , where the gradient operator is L-Lipschitz (discussed later in Definition 1).
Empirically, we observe that this approach is faster than the conjugate gradient approach. However, it
requires estimating T and L beforehand.

Automatic differentiation approach (AD). Another hypergradient estimation strategy follows the
idea of iterative differentiation by backpropagation. After running several iterations of gradient update
to obtain yk+1 (which is a function of xk), we can use automatic differentiation to compute directly
the Riemannian gradient of f(xk, yk+1(xk)) with respect to xk. We can compute the Riemannian
hypergradient from the differential in the direction of arbitrary u ∈ Txk

Mx using basic chain rules.

3.2 Theoretical analysis

This section provides theoretical analysis for the proposed hypergradient estimators as well as
the Riemannian hypergradient descent. First, we require the notion of Lipschitzness of functions
and operators defined on Riemannian manifolds. Below, we introduce the definition in terms of
bi-functions and bi-operators and state the assumptions that are required for the analysis.

Definition 1 (Lipschitzness). (1) For a bifunction f : Mx ×My → R, we say f has L Lipschitz
Riemannian gradient in Ux × Uy ⊆ Mx × My if it satisfies for any x, x1, x2 ∈ Ux, y, y1, y2 ∈
Uy, ∥Γy2

y1
Gyf(x, y1) − Gyf(x, y2)∥y2

≤ Ld(y1, y2), ∥Gxf(x, y1) − Gxf(x, y2)∥x ≤ Ld(y1, y2),
∥Γx2

x1
Gxf(x1, y)− Gxf(x2, y)∥x2 ≤ Ld(x1, x2) and ∥Gyf(x1, y)− Gyf(x2, y)∥y ≤ Ld(x1, x2).

(2) For an operator G(x, y) : TyMy → TxMx, we say G(x, y) is ρ-Lipschitz if it satisfies,
∥Γx2

x1
G(x1, y)− G(x2, y)∥x2 ≤ ρ d(x1, x2) and ∥G(x, y1)− G(x, y2)Γy2

y1
∥x ≤ ρ d(y1, y2).

(3) For an operator H(x, y) : TyMy → TyMy, we say H(x, y) is ρ-Lipschitz if it satisfies,
∥Γy2

y1
H(x, y1)Γ

y1
y2

−H(x, y2)∥y2
≤ ρ d(y1, y2) and ∥H(x1, y)−H(x2, y)∥y ≤ ρ d(x1, x2).

It is worth mentioning that Definition 1 implies the joint Lipschitzness over the product manifold
Mx ×My , which is verified in Appendix C.2. Due to the possible nonconvexity for the upper level
problem, the optimality is measured in terms of the Riemannian gradient norm of F (x).

Definition 2 (ϵ-stationary point). We call x ∈ Mx an ϵ-stationary point of bilevel optimization (1) if
it satisfies ∥GF (x)∥2x ≤ ϵ.

Assumption 1. All the iterates in the lower level problem are bounded in a compact subset that
contains the optimal solution, i.e., there exists a constantsDk > 0, for all k such that d(ysk, y

∗(xk)) ≤
Dk for all s. Such a neighbourhood has unique geodesic. We take D̄ := maxk{D1, ..., Dk}.

Assumption 2. Function f(x, y) has bounded Riemannian gradients, i.e., ∥Gyf(x, y)∥y ≤ M ,
∥Gxf(x, y)∥x ≤M for all (x, y) ∈ U and the Riemannian gradients are L-Lipschitz in U .

Assumption 3. Function g(x, y) is µ-geodesic strongly convex in y ∈ Uy for any x ∈ Ux and
has L Lipschitz Riemannian gradient Gxg(x, y),Gyg(x, y) in U . Further, the Riemannian Hessian
Hyg(x, y), cross derivatives G2

xyg(x, y), G2
yxg(x, y) are ρ-Lipschitz in U .

Assumption 1 is standard in Riemannian optimization literature by properly bounding the domain
of variables, which allows to express Riemannian distance in terms of (inverse) Exponential map.
Also, the boundedness of the domain implies the bound on curvature, as is required for analyzing
convergence for geodesic strongly convex lower-level problems [41, 71]. Assumptions 2 and 3
are common regularity conditions imposed on f and g in the bilevel optimization literature. This
translates into the smoothness of the function F and Dy∗(x) (discussed in Appendix C.3).
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Table 1: Comparison of first-order and second-order complexities for reaching ϵ-stationarity. For
stochastic algorithms, including HGD-NS, RSHGD-HINV, the complexities are measured with
respect to the component functions fi, gi. Here, Gf , Gg are the gradient complexities of function
f, g, respectively, to reach an ϵ-stationary point of (1). Also, we denote JVg , HVg as the complexity
of computing the second-order cross derivative and Hessian-vector product of function g.

Methods Gf Gg JVg HVg

HGD-CG [40] O(κ3l ϵ
−1) Õ(κ4l ϵ

−1) O(κ3l ϵ
−1) Õ(κ3.5l ϵ−1)

-AD [40] O(κ3l ϵ
−1) Õ(κ4l ϵ

−1) Õ(κ4l ϵ
−1) Õ(κ4l ϵ

−1)

SHGD-NS [40, 11] O(κ5l ϵ
−2) Õ(κ9l ϵ

−2) O(κ5ϵ−2) Õ(κ6ϵ−2)

RHGD-HINV O(κ3l ϵ
−1) Õ(κ5l ζϵ

−1) O(κ3l ϵ
−1) NA

-CG O(κ4l ϵ
−1) Õ(κ6l ζϵ

−1) O(κ4l ϵ
−1) Õ(κ4.5l ϵ−1)

-NS O(κ3l ϵ
−1) Õ(κ5l ζϵ

−1) O(κ3l ϵ
−1) Õ(κ4l ϵ

−1).
-AD O(κ3l ϵ

−1) Õ(κ5l ζϵ
−1) Õ(κ5l ζϵ

−1) Õ(κ5l ζϵ
−1)

RSHGD-HINV O(κ5l ϵ
−2) Õ(κ9l ζϵ

−2) O(κ5l ϵ
−2) NA

We first bound the estimation error of the proposed schemes of approximated hypergradient as follows.
For the hypergradient computed by automatic differentiation, we highlight that due to the presence of
exponential map in the chain of differentiation, it is non-trivial to explicitly express Dxk

ySk . Here,
we adopt the property of exponential map (which is locally linear) in the ambient space [1], i.e.,
Expx(u) = x+ u+O(∥u∥2x). This requires the use of tangent space projection of ξ in the ambient
space as Px(ξ), which is solved for the v such that ⟨v, ξ⟩x = ⟨u, ξ⟩ for any ξ ∈ TxM.

For notation simplicity, we denote κl := L
µ and κρ := ρ

µ . For analysis, we consider κρ = Θ(κl).

Lemma 1 (Hypergradient approximation error bound). Under Assumptions 1, 2, 3, we can bound the
error for approximated hypergradient as

1. HINV: ∥ĜhinvF (xk)− GF (xk)∥xk
≤ (L+ κρM + κlL+ κlκρM)d

(
y∗(xk), yk+1

)
.

2. CG: ∥ĜcgF (xk) − GF (xk)∥xk
≤

(
L + κρM + L

(
1 + 2

√
κl
)(
κl +

Mκρ

µ

))
d(y∗(xk), yk+1) +

2L
√
κl

(√
κl−1√
κl+1

)T

∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥yk+1

, where v∗k = H−1
y g(xk, y

∗(xk))[Gyf(xk, y
∗(xk))].

3. NS: ∥ĜnsF (xk)−GF (xk)∥xk
≤ (L+κlL+κρM +κlκρM)d(y∗(xk), yk+1)+κlM(1− γµ)T .

4. AD: Suppose further there exist C1, C2, C3 > 0 such that ∥Dxk
ysk∥ys

k
≤ C1, ∥Γy

xPxv −
v∥y ≤ C2d(x, y)∥v∥y and DxExpx(u) = PExpx(u)

(
id + Dxu

)
+ E where ∥E∥Expx(u)

≤
C3∥Dxu∥x∥u∥x for any x, y ∈ U and v ∈ TyMy , u ∈ TxMx. Then,

∥ĜadF (xk) − GF (xk)∥xk
≤

(
2MC̃

µ−ηyζL2 + L(1 + κl)
)
(1 + η2yζL

2 − ηyµ)
S−1
2 d(yk, y

∗(xk)) +

Mκl(1− ηyµ)
S , where C̃ := (κl + 1)ρ+ (C2 + ηyC3)L

(
(1− ηyµ)C1 + ηyL

)
.

From Lemma 1, it is evident that the exact Hessian inverse exhibits the tightest bound, which is
followed by conjugate gradient (CG) and truncated Neumann series (NS). Automatic differentiation
(AD) presents the worst upper bound on the error due to the introduction of curvature constant ζ,
resulting in (1 − Θ( µ2

L2ζ ))
S = (1 − Θ( 1

κ2
l ζ
))S for the trailing term, which could be much larger

than (1 − γµ)T = (1 − Θ( 1
κl
))T for NS and

(√
κl−1√
κl+1

)T
= (1 − Θ( 1√

κl
))T for CG. Further, the

error critically relies on the number of inner iterations S compared with T for CG and NS, and
the constants C1, C2, C3 can be large for manifolds with high curvature. We now present the main
convergence result with the four proposed hypergradient estimation strategies.

Theorem 1. Denote ∆0 := F (x0) + d2(y0, y
∗(x0)) and LF :=

(
L
µ +1

)(
L+ τM

µ + ρLM
µ2 + L2

µ

)
=

O(κ3l ). Under Assumptions 1, 2, 3, we have the following bounds on the hypergradient norm obtained
by Algorithm 1.

• HINV: Let ηx = 1
20LF

and S ≥ Θ̃(κ2l ζ). We have mink=0,...,K−1 ∥GF (xk)∥2xk
≤ 80LF∆0/K.
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• CG: Let Λ := C2
v + κ2l (

5M2C2
0D

2

µ + 1), where Cv :=
Mκρ

µ +
Mκρκl

µ + κ2l + κl. Choosing

ηx = 1
24Λ , S ≥ Θ̃(κ2l ζ), and Tcg ≥ Θ̃(

√
κl), we have mink=0,...,K−1 ∥GF (xk)∥2xk

≤
96Λ
K

(
∆0 + ∥v∗0∥2y∗(x0)

)
.

• NS: Choosing ηx = 1
20LF

, S ≥ Θ̃(κ2l ζ), and Tns ≥ Θ̃(κ log( 1ϵ )) for an arbitrary ϵ > 0, we have
mink=0,...,K−1 ∥GF (xk)∥2xk

≤ 80LF

K ∆0 +
ϵ
2 .

• AD: Choosing ηx = 1
20LF

and S ≥ Θ̃(κ2l ζ log(
1
ϵ )) for an arbitrary ϵ > 0, we have

mink=0,...,K−1 ∥GF (xk)∥2xk
≤ 80LF

K ∆0 +
ϵ
2 .

Complexity analysis. Based on the convergence guarantees in Theorem 1, we have analyzed (in
Corollary 1), the computational complexity of the proposed algorithm with four different hypergradi-
ent estimation strategies in reaching the ϵ-stationary point. The results are summarized in Table 1.
For reference, we also provide the computational cost of Euclidean algorithms which solve bilevel
Euclidean optimization problem [40]. We notice that except for CG, the gradient complexity for f
(i.e., Gf ) matches the Euclidean version. For conjugate gradient, the complexity is higher by O(κl),
which is due to the additional distortion from the use of vector transport when tracking the error of
conjugate gradient at each epoch. In terms of gradient complexity for g (i.e., Gg), all deterministic
methods require a higher complexity by at least Õ(κlζ) compared to the Euclidean baselines. This is
because of the curvature distortion when analyzing the convergence for geodesic strongly convex
functions. Similar comparisons can be also made with respect to the computations of cross-derivatives
and Hessian vector products.

3.3 Extension to stochastic bilevel optimization

Algorithm 2 Riemannian stochastic bilevel
optimization with Hessian inverse.

1: Initialize x0 ∈ Mx, y0 ∈ My .
2: for k = 0, ...,K − 1 do
3: y0k = yk.
4: for s = 0, ..., S − 1 do
5: Sample a batch B1.
6: ys+1

k = Expys
k
(−ηy GygB1

(xk, y
s
k)).

7: end for
8: Set yk+1 = ySk .
9: Sample batches B2,B3,B4.

10: Compute ĜF (xk).
11: Update xk+1 = Expxk

(−ηxĜF (xk)).
12: end for

In this section, we consider the bilevel opti-
mization problem (1) in the stochastic setting,
where f(x, y∗(x)) := 1

n

∑n
i=1 fi(x, y

∗(x)) and
g(x, y) := 1

m

∑m
i=1 gi(x, y). The algorithm

for solving the stochastic bilevel optimization
problem is in Algorithm 2, where we sample
B1,B2,B3,B4 afresh every iteration. The batch
index is omitted for clarity. The batches are
sampled uniformly at random with replacement
such that the mini-batch gradient is an unbiased
estimate of the full gradient. Here, we denote
fB(x, y) :=

1
|B|

∑
i∈B fi(x, y) and similarly for

g. We let [n] := {1, . . . , n}.

In Step 10 of Algorithm 2, we can employ any
hypergradient estimator proposed in Section 3.1.
In this work, we only show convergence un-

der the Hessian inverse approximation of hypergradient, i.e., ĜF (xk) = GxfB2
(xk, yk+1) −

G2
xygB3

(xk, yk+1)[H−1
y gB4

(xk, yk+1)[GyfB2
(xk, yk+1)]]. Similar analysis can be followed for other

approximation strategies. The theoretical guarantees are in Theorem 2, where we require Assumption
4, which is common in existing works for analyzing stochastic algorithms on Riemannian manifolds
[42, 23, 22].

Assumption 4. Under stochastic setting, Assumption 1 holds and Assumptions 2, 3 are satisfied for
component functions fi(x, y), gj(x, y), for all i ∈ [n], j ∈ [m]. Further, stochastic gradient, Hessian,
and cross derivatives are unbiased estimates.

Theorem 2. Under Assumption 4, consider Algorithm 2. Suppose we choose ηx = 1
20LF

, S ≥
Θ̃(κ2l ζ), and |B1|, |B2|, |B3|, |B4| ≥ Θ(κ2l ϵ

−1) for an arbitrary ϵ > 0. Then we have
mink=0,...,K−1 E∥GF (xk)∥2xk

≤ 80LF∆0

K + ϵ
2 and the gradient complexity to reach ϵ-stationary

solution is Gf = O(κ5l ϵ
−2), Gg = Õ(κ9l ζϵ

−2), JVg = O(κ5l ϵ
−2).

In Table 1, we compare our attained complexities with that of stocBiO [40], which makes use of a
truncated Neumann series. With exact Hessian inverse, we can match the Gf and JVg complexities
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with stocBio. For the Gg complexity, the additional curvature constant is inevitable from the
convergence analysis for geodesic strongly convex functions. Nevertheless we observe the same
order dependency on κl. This is mainly due to the analysis where we choose a smaller stepsize
ηy = Θ( µ

L2 ) compared to Θ( 2
L+µ ) in [40]. The larger stepsize, despite increasing the convergence

rate, also increases the variance under stochastic setting. We believe an order of Θ(κl) lower can be
established for stocBio, following our analysis.

3.4 Extension to retraction

Our analysis till now has been limited to the use of the exponential map. However, the retraction
mapping is often preferred over the exponential map due to its lower computational cost. Here, we
show that use of retraction in our algorithms also leads to similar convergence guarantees.

Assumption 5. There exist constants c ≥ 1, cR ≥ 0 such that d2(x, y) ≤ c∥u∥2x and ∥Exp−1
x (y)−

u∥x ≤ cR∥u∥2, for any x, y = Retrx(u) ∈ U .

Assumption 5 is standard (e.g. in [42, 23]) in bounding the error between exponential map and
retraction given that retraction is a first-order approximation to the exponential map.

Theorem 3. Suppose Assumptions 1, 2, 3 and 5 hold and let L̃F = 4κlcRM +5c̄LF . Then consider
Algorithm 1 with exponential map replaced with general retraction. We can obtain the following
bounds.

• HINV: Let ηx = Θ(1/L̃F ), S ≥ Θ̃(κ2l ζ). Then mink=0,...,K−1 ∥GF (xk)∥2xk
≤ 16L̃F∆0/K.

• CG: Let ηx = Θ(1/Λ̃), S ≥ Θ̃(κ2l ζ), Tcg ≥ Θ̃(
√
κl), where Λ̃ = C2

v c̄+ κ2l (
5M2C2

0 D̄
2

µ + c̄). Then

mink=0,...,K−1 ∥GF (xk)∥2xk
≤ 96Λ̃

K (∆0 + ∥v∗0∥2y∗(x0)
).

• NS: Let ηx = Θ(1/L̃F ), S ≥ Θ̃(κ2l ζ). Then for an arbitrary ϵ > 0, Tns ≥ Θ̃(κl log(1/ϵ)), we
have mink=0,...,K−1 ∥GF (xk)∥2xk

≤ 16L̃F

K ∆0 +
ϵ
2 .

• AD: Let ηx = Θ(1/L̃F ), S ≥ Θ̃(κ2l ζ log(1/ϵ)). Then for an arbitrary ϵ > 0, we have
mink=0,...,K−1 ∥GF (xk)∥2xk

≤ 16L̃F

K ∆0 +
ϵ
2 .

Theorem 3 demonstrates that employing a general retraction preserves the same order of convergence
and complexity as the exponential map in Theorem 1. This is due to the fact that L̃F = Θ(LF ) and
Λ̃ = Θ(Λ), where LF and Λ are as defined in Theorem 1. In addition, when exponential map is used,
Theorem 3 recovers the results in Theorem 1 as cR = 0 and c̄ = 1.

4 Experiments

This section explores various applications of bilevel optimization problems over manifolds. All
the experiments are implemented based on Geoopt [44] and the codes are available at https:
//github.com/andyjm3/rhgd.

4.1 Synthetic problem

We consider the following bilevel optimization problem on the Stiefel manifold St(d, r) = {W ∈
Rd×r : W⊤W = Ir} and SPD manifold Sd++ = {M ∈ Rd×d : M ≻ 0} (in Appendix A):

max
W∈St(d,r)

tr(M∗X⊤YW⊤), s.t. M∗ = argmin
M∈Sd++

⟨M,X⊤X⟩+ ⟨M−1,WY⊤YW⊤ + νI⟩,

where X ∈ Rn×d,Y ∈ Rn×r, with n ≥ d ≥ r, are given matrices and ν > 0 is the regularization
parameter. The above is a synthetically constructed problem that aims to maximize the similarity
between X and Y in different feature dimensions. We align X and Y to the same dimension via
W ∈ St(d, r) and also learn an appropriate geometric metric M ∈ Sd++ in the lower-level problem
[69]. The geodesic convexity of the lower-level problem and the Hessian inverse expression are
discussed in Appendix H.1.
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Figure 1: Figures (a) & (b) show the plot of objective of the upper-level problem (Upper Objective)
for different strategies. HINV and CG strategies have fastest convergence, followed by NS and AD.
The corresponding estimation errors are shown in (c). Figure (d) specifically shows the robustness of
approximation error obtained by NS across different γ and T values.

Results. We generate random data matrices X,Y with n = 100, d = 50, and r = 20. We set
ν = 0.01 and fix ηx = ηy = 0.5. We compare the three proposed strategies for approximating the
hypergradient where we select γ = 1.0 and Tns = 50 for Neumann series (NS) and set maximum
iterations Tcg for conjugate gradient (CG) to be 50 and break once the residual reaches a tolerance of
10−10. We set the number of outer iterations (epochs) K to be 200. Figure 1 compares RHGD with
different approximation strategies implemented with S = 20 or 50 number of inner iterations.

4.2 Hyper-representation over SPD manifolds

Hyper-representation [54, 61] aims to solve a regression/classification task while searching for the
best representation of the data. It can be formulated as a bilevel optimization problem, where the
lower-level optimizes the regression/classification parameters while the upper-level searches for the
optimal embedding of the inputs. Suppose we are given a set of SPD matrices, D = {Ai}ni=1 where
Ai ∈ Sd++ and the task is to learn a low-dimensional embedding of Ai while remaining close to their
semantics labels. In particular, we partition the set into a training set Dtr and validation set Dval.

Shallow hyper-representation for regression. We consider a shallow learning paradigm over
D through the regression task. The representation is parameterized with W⊤AiW for W ∈
St(d, r). The requirement of orthogonality on W follows [38, 30, 33] that ensures the learned
representations are SPD. The learned representation is then transformed to a Euclidean space for
performing regression, namely through a matrix logarithm (that acts as a bijective map between the
space of SPD matrices and symmetric matrices) and a vectorization operation vec(·) that extract the
upper-triangular part of the symmetric matrix. The bilevel optimization problem is

min
W∈St(d,r)

∑
i∈Dval

(vec(logm(W⊤AiW))β∗−yi)
2

2|Dval| ,

s.t. β∗ = argmin
β∈Rr(r+1)/2

∑
i∈Dtr

(vec(logm(W⊤AiW))β−yi)
2

2|Dtr| + λ
2 ∥β∥

2.

The regularization λ > 0 ensures the lower-level problem is strongly convex. The upper-level problem
is on the validation set while the lower-level problem is on the training set. We generate random
W,Ai and β and construct y with yi = vec(logm(W⊤AiW))β + ϵi, where ϵi ∼ N (0, 1). We
generate 200Ai with |Dval| = 100 and |Dtr| = 100. In Figure 2a, we show the loss on validation set
(the upper loss) in terms of number of outer iterations. We compare both the deterministic (RHGD)
and stochastic (RSHGD) versions of Riemannian hypergradient descent. We again observe that the
best performance is attained by either the ground-truth Hessian inverse or the conjugate gradient. NS
requires carefully selecting the hyperparameters γ, T , which pose difficulties in real applications. For
the stochastic versions, all the methods perform similarly.

Deep hyper-representation for classification. We now explore a 2-layer SPD network [38] for
classifying ETH-80 image set [46]. The dataset consists of 8 classes, each with 10 objects. Each
object is represented by an image set consisting of images taken from different viewing angles. Here,
we represent each image set by taking the covariance matrix of the images in the same set after
resizing them into 10× 10. This results in 80 SPD matrices Ai of size 100× 100 for classification.
Let Φ(Ai) = vec(logm(W⊤

2 ReEig(W
⊤
1 AiW1)W2)) be the output of the 2 layer network where

ReEig(A) = Umax{ϵI,Σ}U⊤ is the eigenvalue rectifying activation with the eigenvectors U and
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Figure 2: Figures (a), (b), and (c) show the performance of RHGD on the hyper-representation
problems on SPD networks. Figure (d) shows the good generalization performance of our proposed
RHGD algorithms over the projected gradient PHGD baselines on the MiniImageNet dataset.

Table 2: Classification accuracy on the Caltech-Office dataset.

Methods A→C A→D A→W C→A C→D C→W D→A D→C D→W W→A W→C W→D

OT-EMD 66.67 47.77 45.76 67.52 36.31 42.71 62.17 59.71 85.08 55.41 51.16 96.82
OT-SKH 76.83 75.80 69.83 84.35 78.34 68.14 80.92 71.57 93.90 74.17 67.02 87.26
Proposed 78.70 80.25 69.83 88.21 80.25 68.47 82.74 75.69 97.97 83.49 73.62 98.73

eigenvalues Σ of A. We consider the same bilevel optimization as above except the least-squares
loss function becomes the cross-entropy loss. Here we sample 5 samples from each class to form the
training set and the rest as the validation set. We set d1 = 20, d2 = 5, and fix learning rate to be 0.1
for both lower and upper problems. Figures 2b and 2c show the good performance on the validation
accuracy (upper-level loss).

4.3 Riemannian meta learning

Meta learning [16, 34] allows adaptation of models to new tasks with minimal amount of additional
data and training, by distilling past learning experiences. A recent work [64] considers meta learning
with orthogonality constraint. In particular, the upper-level optimization searches for the base
parameters shared by all tasks while the lower level optimizes over the task-specific parameters to
ensure generalization ability. Let PT denote the distribution of meta tasks and for each training
epoch, we sample m tasks Dℓ ∼ PT , ℓ = 1, ...,m. Each task is composed of a support and query set
denoted by Dℓ

s ,Dℓ
q, and the task is to learn a set of base parameters Θ such that the model can quickly

adapt to the query set from the support set by adjusting only a few parameters w. For each task, the
task-specific parameterw∗

ℓ is learned from the support set, which is used to update the base parameters
by minimizing the loss over the query set. In standard settings, wℓ corresponds to the final linear
layer of a neural network [39, 40]. Here, we adopt the setup with wℓ to be the last layer parameters in
the Euclidean space while enforcing Θ on the Stiefel manifold. The problem of Riemannian meta-
learning is minΘ∈St

1
m

∑m
ℓ=1 L(Θ, w∗

ℓ ;Dℓ
q) s.t. w∗

ℓ = argminwℓ

1
m

∑m
ℓ=1 L(Θ, wℓ;Dℓ

s) +R(wℓ),
where Dℓ

s , Dℓ
q are the support and query sets for task ℓ and R(·) is a regularizer that ensures strong

convexity of the lower-level problem.

Results. We consider 5-ways 5-shots meta learning over the MiniImageNet dataset [59] where the
backbone network is a 4-block CNN with the kernel of the first 2 layers constrained to be orthogonal
in terms of the output channel (following [48]). The kernel size is 3× 3 and we consider 16 output
channels with a padding of 1. Each convolutional block consists of a convolutional layer, followed
by a ReLU activation, a max-pooling and a batch normalization layer. Θ, thus, has the dimension
(16 ∗ 3 ∗ 3)× 16 = 144× 16, which is constrained to the Stiefel manifold.

In Figure 2d, we plot the test accuracy averaged for over 200 tasks. We compare RHGD with an
extrinsic update baseline PHGD, which projects the update from the Euclidean space to the Stiefel
manifold at every iteration. We observe the RHGD converges faster compared to the extrinsic update
PHGD, thereby showing the benefit of the Riemannian modeling.

4.4 Unsupervised domain adaptation

Given two marginals µ ∈ Rn,ν ∈ Rm with equal total mass, i.e., µ⊤1n = ν⊤1m = 1 where
we assume unit mass without loss of generality. Let Π(µ,ν) := {Γ ∈ Rn×m : Γ > 0,Γ1m =
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µ,Γ⊤1n = ν} be the set of doubly stochastic matrices with strictly positive entries. From [15, 57],
it is known that the set forms a Riemannian manifold with the Fisher metric.

Given a supervised source dataset X ∈ Rn×d and an unsupervised target dataset Y ∈ Rm×d

(n,m ≥ d), we consider the unsupervised domain adaptation problem to classify target domain
instances. Using the optimal transport framework [58, 12], we pose this as a bilevel problem:

minΓ∈Π(µ,ν)⟨Γ, C(XM∗−1/2,YM∗−1/2)⟩ − λH(Γ),

s.t. M∗ = argminM∈Sd++
αdist2(M,X⊤X) + (1− α)dist2(M,Y⊤Γ⊤ΓY),

(3)

where H(Γ) = −⟨Γ, logΓ⟩ is the entropy regularization, C(X,Y) = diag(XX⊤)1⊤
m +

1ndiag(YY⊤)−2XY⊤ is the pairwise squared distance matrix, and Π denotes the doubly stochastic
manifold [15]. Here, dist is the geodesic distance between SPD matrices and α ∈ [0, 1].

The lower-level problem in (3) finds M∗ which is the weighted geometric mean between X⊤X and
Y⊤Γ⊤ΓY [6]. Conceptually, learning of M allows to align the features of the source and target
instances. The upper-level problem, on the other hand, minimizes the Mahalanobis distance between
the source and target domain instances parameterized by M∗−1. An interpretation is that the matrix
M∗ leads to whitening of the data (i.e., XM∗−1/2 is the whitened data) [5].

After the transport plan Γ∗ is learned, we employ barycentric projection using Γ∗ to transport the
source points to the target domain and and employ the nearest neighbour (1-NN) classifier for the
target dataset classification . For barycentric projection, we project the source samples X to the target
Y by solving xi = argminxi∈Rd

∑m
j=1 Γ

∗
i,j∥M∗−1/2xi − M∗−1/2yj∥2 = µ−1

i (
∑m

j=1 Γ
∗
i,jyj).

Then, a nearest-neighbour (NN) classifier is used to classify the samples in the target given the source
labels based on the distance computed with M∗, i.e., C(XM∗−1/2,YM∗−1/2).

Results. We consider the Caltech-Office dataset [20], which is commonly used for domain adaptation.
The dataset contains images from four domains in ten classes, i.e., Amazon (A), the Caltech image
dataset (C), DSLR (D), and Webcam (W), each with containing 958, 1123, 157, and 295 samples
respectively. Hence, there are 12 domain adaptation tasks, e.g., A→D implies A is the source and D
is the target. Each domain has the same ten classes. The goal is to classify images from target domain
given source domain. For preprocessing, we normalize the samples to have unit norm and reduce the
dimensionality to 128 by mean pooling every 64 columns.

We compare our proposed bilevel approach (3) with single-level optimal transport baselines, i.e., solv-
ing minΓ∈Π(µ,ν)⟨Γ, C(X,Y)⟩ − λH(Γ), followed by the same barycentric projection. Specifically,
the baselines are: (1) optimal transport where λ = 0 (labelled as OT-EMD) and (2) optimal transport
with the Sinkhorn algorithm (labelled as OT-SKH). OT-EMD employs the earth mover distance while
OT-SKH employs the Sinkhorn distance [13]. We implement the two OT baselines with the POT
Python library [17]. λ is tuned in OT-SKH for each source-target pair. The best validation results
are obtained by setting λ = 5 × 10−3 for all the problem pairs except the W→D pair for which
λ = 10−3 gives the best result. For our proposed bilevel approach, we set λ = 0 and α = 0.5.

In Table 2, we observe that the proposed bilevel approach obtains better generalization performance
than the baselines across all the tasks. This showcases the utility of learning the whitening metric
M−1 in a bilevel setting.

5 Conclusion

In this work, we have proposed a framework for tackling bilevel optimization over Riemannian mani-
folds. We discussed various hypergradient approximation strategies (conjugate gradients, truncated
Neumann series, and automatic differentiation) and provide error bounds. Our proposed algorithms
rely only on gradient updates and make use of retraction which scale well across problems. We
illustrate the efficacy of the proposal approach in several machine learning applications.

Although in this work, we focus on geodesic strongly convex lower-level problems, our framework
can be extended to relax such assumption to (geodesic) convexity with an extra strongly convex
regularizer [2], or to (Riemannian) PL condition where a global minimizer exists [9]. Furthermore, we
believe there is potential to improve the current results in stochastic bilevel optimization by reducing
the strict requirements on batch size. Additionally, the dependency on the curvature constant could
also be further optimized.
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Appendix

A Riemannian geometries of considered manifolds

Symmetric positive definite (SPD) manifold. The SPD manifold of size d is denoted as Sd++ :=

{X ∈ Rd×d : X⊤ = X,X ≻ 0} and the commonly considered Riemannian metric is the affine-
invariant metric ⟨U,V⟩X = tr(X−1UX−1V) [6], for U,V ∈ TXSd++. Other Riemannian metrics,
such as (generalized) Bures-Wasserstein [55, 24], log-Euclidean [4] and log-Cholesky [51] metrics
can also be considered. The exponential map is given by ExpX(U) = Xexpm(X−1U) where
expm(·) denotes the principal matrix exponential. The corresponding logarithm map is given by
logX(Y) = Xlogm(X−1Y). Its Riemannian gradient of a real-valued function f is derived as
gradf(X) = X∇f(X)X and the Riemannian Hessian is Hessf(X)[U] = Dgradf(X)[U] −
{UX−1gradf(X)}S = X∇2f(X)[U]X+ {U∇f(X)X}S where we use {A}S := (A+A⊤)/2.

Stiefel manifold. The Stiefel manifold is the set of orthonormal matrices, i.e., St(d, r) := {X ∈
Rd×r : X⊤X = I}. A common Riemannian metric is the Euclidean inner product. We consider the
QR-based retraction in the experiment, which is RetrX(U) = qf(X+U) where qf(·) extracts the
Q-factor from the QR decomposition. Let the orthogonal projection to the tangent space be denoted
as PX(U) = U−X{X⊤U}S. Then, the Riemannian gradient and Riemannian Hessian are given
by gradf(X) = PX(∇f(X)) and Hessf(X)[U] = PX(∇2f(X)[U]−U{X⊤∇f(X)}S).
Doubly stochastic manifold. The doubly stochastic manifold (or coupling manifold) between two
discrete probability measures µ, ν with marginals a ∈ Rm,b ∈ Rn is the set Π(µ, ν) = {Γ ∈
Rm×n : Γij > 0,Γ1n = a,Γ⊤1m = b}. It can be equipped with the Fisher information metric,
defined as ⟨U,V⟩Γ =

∑
i,j(UijVij)/Γij for any U,V ∈ TΓΠ(µ, ν). The retraction is given by

RetrΓ(U) = Sinkhorn(Γ⊙ exp(U⊘ Γ)) where exp,⊙,⊘ are elementwise exponential, product,
and division operations. Sinkhorn(·) represents the Sinkhorn-Knopp iterations for balancing a matrix
[43].

B Important Lemmas

Proposition 2 ([8]). In a totally normal neighbourhood U ⊆ M, a function f : U → R is µ-geodesic
strongly convex, then it satisfies for all x, y ∈ U

f(y) ≥ f(x) + ⟨gradf(x),Exp−1
x (y)⟩x +

µ

2
d2(x, y).

If a function f has L-Lipschitz Riemannian gradient, then it satisfies for all x, y ∈ U

f(y) ≤ f(x) + ⟨gradf(x),Exp−1
x (y)⟩x +

L

2
d2(x, y).

Lemma 2 ([63, 26]). There exists a constant C0 > 0 such that for any y1, y2, y3 ∈ Uy , u ∈ Ty1My ,
∥Γy3

y2
Γy2
y1
u− Γy3

y1
u∥ ≤ C0d(y1, y2)d(y2, y3)∥u∥y1

Lemma 3 (Trigonometric distance bound [72, 71, 28]). Let xa, xb, xc ∈ U ⊆ M and denote
a = d(xb, xc), b = d(xa, xc) and c = d(xa, xb) as the geodesic side lengths. Then,

a2 ≤ ζb2 + c2 − 2⟨Exp−1
xa

(xb),Exp
−1
xa

(xc)⟩xa

where ζ =

√
|κ−|D̄

tanh(
√

|κ−|D̄)
if κ− < 0 and ζ = 1 if κ− ≥ 0. Here, D̄ denotes the diameter of U and

κ− denotes the lower bound of the sectional curvature of U .

C Proofs for Section 3.1

C.1 Proof of Proposition 1

Proof of Proposition 1. By the first-order optimality condition, y∗(x) satisfies Gyg(x, y
∗(x)) = 0 ∈

Ty∗(x)My . Based on Theorem 5 in [25], taking the (implicit) derivative of the equality with respect
to x yields G2

yxg(x, y
∗(x))[u] + Hyg(x, y

∗(x))[Dy∗(x)[u]] = 0 for any u ∈ TxMx. This gives
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Dy∗(x) = −H−1
y g(x, y∗(x)) ◦ G2

yxg(x, y
∗(x)). Notice that Dy∗(x) : TxMx → Ty∗(x)My(x), its

adjoint operator (Dy∗(x))† is derived as follows. For any u ∈ TxMx, v ∈ Ty∗(x)My

⟨(Dy∗(x))†[v], u⟩x = ⟨Dy∗(x)[u], v⟩y∗(x) = −
〈(
H−1

y g(x, y∗(x)) ◦ G2
yxg(x, y

∗(x))
)
[u], v

〉
y∗(x)

= −
〈
G2
yxg(x, y

∗(x))[u],H−1
y g(x, y∗(x))[v]

〉
y∗(x)

= −
〈(
G2
xyg(x, y

∗(x)) ◦ H−1
y g(x, y∗(x))

)
[v], u

〉
x

where the first equality uses the definition of adjoint operator and the third equality is due to
the self-adjointness of Riemannian Hessian (inverse) and the last equality is due to Proposition
D.2 in [27] that G2

xyg and G2
yxg are adjoint operators. By identification, we have (Dy∗(x))† =

−G2
xyg(x, y

∗(x)) ◦ H−1
y g(x, y∗(x)).

Finally by the chain rule, we obtain (from the definition of Riemannian gradient), for any u ∈ TxMx

⟨GF (x), u⟩x = ⟨Gxf(x, y
∗(x)), u⟩x +Dyf(x, y

∗(x))[Dy∗(x)[u]]

= ⟨Gxf(x, y
∗(x)), u⟩x + ⟨Gyf(x, y

∗(x)),Dy∗(x)[u]⟩y
= ⟨Gxf(x, y

∗(x)), u⟩x + ⟨(Dy∗(x))†Gyf(x, y
∗(x)), u⟩x

= ⟨Gxf(x, y
∗(x))− G2

xyg(x, y
∗(x))[H−1

y g(x, y∗(x))[Gyf(x, y
∗(x))]], u⟩x.

By identification the proof is complete.

C.2 On Lipschitzness of gradients

Proposition 3. If a bifunction f(x, y) has L-Lipschitz Riemannian gradient, then it satisfies
∥Gf(z1)−Γz1

z2Gf(z2)∥z1 ≤ 2Ld(z1, z2), where we let z = (x, y). If an operator G(x, y) : TyMy →
TxMx is ρ-Lipschitz, then it satisfies ∥G(z1) − Γx1

x2
G(z2)Γy2

y1
∥x1

≤ ρ d(z1, z2). If an operator
H(x, y) : TyMy → TxMx is ρ-Lipschitz, then it satisfies ∥H(z1)−Γy1

y2
H(z2)Γ

y2
y1
∥y1

≤ ρ d(z1, z2).

Proof of Proposition 3. From the definition of Riemannian gradient of product manifold we have

∥Gf(z1)− Γz1
z2Gf(z2)∥z1 = ∥Gxf(x1, y1)− Γx1

x2
Gxf(x2, y2)∥x1 + ∥Gyf(x1, y1)− Γy1

y2
Gyf(x2, y2)∥y1

≤ ∥Gxf(x1, y1)− Gxf(x1, y2)∥x1
+ ∥Gxf(x1, y2)− Γx1

x2
Gxf(x2, y2)∥x1

+ ∥Gyf(x1, y1)− Gyf(x2, y1)∥y1 + ∥Gyf(x2, y1)− Γy1
y2
f(x2, y2)∥y1

≤ Ld(y1, y2) + Ld(x1, x2) + Ld(x1, x2) + Ld(y1, y2) = 2Ld(z1, z2)

where we use triangle inequality of Riemannian norm.

Similarly, for the other two claims, we verify

∥G(z1)− Γx1
x2
G(z2)Γy2

y1
∥z1 = ∥G(x1, y1)− G(x1, y2)Γy2

y1
∥x1

+ ∥G(x1, y2)Γy2
y1

− Γx1
x2
G(x2, y2)Γy2

y1
∥x1

≤ ρd(y1, y2) + ρd(x1, x2) = ρd(z1, z2).

The same arguments also hold for H(x, y) and hence the proof is omitted.

C.3 Boundedness of ingredients

Lemma 4. Under Assumptions 1, 2, 3, we can show

4.1 ∥G2
yxg(x, y)∥y = ∥G2

xyg(x, y)∥x ≤ L holds for any (x, y) ∈ Ux × Uy .

4.2 ∥Dy∗(x)∥y∗(x) ≤ κl and ∥Dy∗(x1)− Γ
y∗(x1)
y∗(x2)

Dy∗(x2)Γ
x2
x1
∥y∗(x1) ≤ Lyd(x1, x2), for any

x, x1, x2 ∈ Ux, where we let Ly := κ2l κρ + 2κlκρ + κρ.
4.3 d(y∗(x1), y

∗(x2)) ≤ κld(x1, x2), for any x1, x2 ∈ Ux

4.4 For any x, x1, x2 ∈ Ux, y, y1, y2 ∈ Uy

∥Γy2
y1
H−1

y g(x, y1)Γ
y1
y2

−H−1
y g(x, y2)∥y2

≤ κρ
µ
d(y1, y2),

∥H−1g(x1, y)−H−1g(x2, y)∥y ≤ κρ
µ
d(x1, x2).
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4.5 Let LF :=
(
κl+1

)(
L+κρM+κρκlM+κlL

)
. Then for any x1, x2 ∈ Ux, ∥Γx2

x1
GF (x1)−

GF (x2)∥x2
≤ LF d(x1, x2).

Proof of Lemma 4. (4.1) First we have for any v ∈ TyMy

∥G2
xyg(x, y)[v]∥x = ∥DyGxg(x, y)[v]∥x ≤ lim

t→0

∥Gxg
(
x,Expy(tv)

)
− Gxg

(
x, y

)
∥x

|t|
≤ lim

t→0

L∥tv∥y
|t|

= L∥v∥y,

where we use the fact that d(Expy(ξ), y) = ∥ξ∥y . The operator norm is the same between G2
xyg(x, y)

and G2
yxg(x, y) is due to the adjointness. This proves the first claim.

(4.2) We first verify Dy∗(x) can be bounded as

∥Dy∗(x)∥y∗(x) = ∥H−1
y g(x, y∗(x))∥y∗(x)∥G2

yxg(x, y
∗(x))∥y∗(x) ≤

L

µ
,

and Dy∗(x) is also Lipschitz as

∥Dy∗(x1)− Γ
y∗(x1)
y∗(x2)

Dy∗(x2)Γ
x2
x1
∥y∗(x1)

≤ ∥H−1
y g(x1, y

∗(x1))− Γ
y∗(x1)
y∗(x2)

H−1
y g(x2, y

∗(x2))Γ
y∗(x2)
y∗(x1)

∥y∗(x1)∥G
2
yxg(x1, y

∗(x1))∥y∗(x1)

+ ∥H−1
y g(x2, y

∗(x2))∥x2∥Γ
y∗(x2)
y∗(x1)

G2
yxg(x1, y

∗(x1))− G2
yxg(x2, y

∗(x2))Γ
x2
x1
∥y∗(x2)

≤ L∥H−1
y g(x1, y

∗(x1))−H−1
y g(x2, y

∗(x1))∥y∗(x1) + L∥H−1
y g(x2, y

∗(x1))− Γ
y∗(x1)
y∗(x2)

H−1
y g(x2, y

∗(x2))Γ
y∗(x2)
y∗(x1)

∥y∗(x1)

+
1

µ
∥G2

yxg(x1, y
∗(x1))− G2

yxg(x2, y
∗(x1))Γ

x2
x1
∥y∗(x1) +

1

µ
∥Γy∗(x2)

y∗(x1)
G2
yxg(x2, y

∗(x1))− G2
yxg(x2, y

∗(x2))∥y∗(x1)

≤ Lρ

µ2
d(x1, x2) +

Lρ

µ2
d(y∗(x1), y

∗(x2)) +
ρ

µ
d(x1, x2) +

ρ

µ
d(y∗(x1), y

∗(x2))

≤
(L2ρ

µ3
+

2Lρ

µ2
+
ρ

µ

)
d(x1, x2).

(4.3) Now suppose we let c : [0, 1] → My, defined as c(t) := y∗(γ(t)) where γ : [0, 1] → Mx is a
geodesic that connects x1, x2, i.e., γ(0) = x1, γ(1) = x2. Then

d(y∗(x1), y
∗(x2)) =

∫ 1

0

∥c′(t)∥c(t)dt =
∫ 1

0

∥Dy∗(γ(t))[γ′(t)]∥c(t)dt ≤
L

µ

∫ 1

0

∥γ′(t)∥γ(t)dt =
L

µ
d(x1, x2),

where we use the fact that the manifold is complete.

(4.4) For the second claim, we first notice for any (invertible) linear operators A,B, A−1 −B−1 =
A−1(B − A)B−1 and thus ∥A−1 − B−1∥ ≤ ∥A−1∥∥A− B∥∥B−1∥ for some well-defined norm
∥ · ∥. Here substituting A = Γy2

y1
Hyg(x, y1)Γ

y1
y2

, B = Hyg(x, y2), we have

∥Γy2
y1
H−1

y g(x, y1)Γ
y1
y2

−H−1
y g(x, y2)∥y2

= ∥H−1
y g(x, y1)∥y2∥Γy2

y1
Hyg(x, y1)Γ

y1
y2

−Hyg(x, y2)∥y2∥H−1
y g(x, y2)∥y2

≤ ρ

µ2
d(y1, y2),

where we notice (Γy2
y1
Hy(x, y1)Γ

y1
y2
)−1 = Γy2

y1
Hy(x, y1)

−1Γy1
y2

and use the isometry property of
parallel transport. The same argument applies for ∥H−1g(x1, y)−H−1g(x2, y)∥y .

(4.5) we have

∥Γx2
x1
GF (x1)− GF (x2)∥x2

≤ ∥Γx2
x1
Gxf(x1, y

∗(x1))− Gxf(x2, y
∗(x2))∥x2

+ ∥Γx2
x1
G2
xyg(x1, y

∗(x1))− G2
xyg(x2, y

∗(x2))Γ
y∗(x2)
y∗(x1)

∥x2
∥H−1

y g(x1, y
∗(x1))∥y∗(x1)∥Gyf(x1, y

∗(x1))∥y∗(x1)

+ ∥G2
xyg(x2, y

∗(x2))∥x2∥Γ
y∗(x2)
y∗(x1)

H−1
y g(x1, y

∗(x1))−H−1
y g(x2, y

∗(x2))Γ
y∗(x2)
y∗(x1)

∥y∗(x2)∥Gyf(x1, y
∗(x1))∥y∗(x1)

+ ∥G2
xyg(x2, y

∗(x2))∥x2
∥H−1

y g(x2, y
∗(x2))∥y∗(x2)∥Γ

y∗(x2)
y∗(x1)

Gyf(x1, y
∗(x1))− Gyf(x2, y

∗(x2))∥y∗(x2).
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From Assumption 2, 3 and Lemma 4, we can obtain

∥Γx2
x1
Gxf(x1, y

∗(x1))− Gxf(x2, y
∗(x2))∥x2

≤ ∥Gxf(x1, y
∗(x1))− Gxf(x1, y

∗(x2))∥x1 + ∥Γx2
x1
Gxf(x1, y

∗(x2))− Gxf(x2, y
∗(x2))∥x2

≤ Ld(y∗(x1), y
∗(x2)) + Ld(x1, x2) =

(L2

µ
+ L

)
d(x1, x2).

∥Γy∗(x2)
y∗(x1)

Gyf(x1, y
∗(x1))− Gyf(x2, y

∗(x2))∥y∗(x2)

≤ ∥Γy∗(x2)
y∗(x1)

Gyf(x1, y
∗(x1))− Gyf(x1, y

∗(x2))∥y∗(x2) + ∥Gyf(x1, y
∗(x2))− Gyf(x2, y

∗(x2))∥y∗(x2)

≤
(L2

µ
+ L

)
d(x1, x2).

Similarly, we have

∥Γx2
x1
G2
xyg(x1, y

∗(x1))− G2
xyg(x2, y

∗(x2))Γ
y∗(x2)
y∗(x1)

∥x2

≤ ∥G2
xyg(x1, y

∗(x1))− G2
xyg(x1, y

∗(x2))Γ
y∗(x2)
y∗(x1)

∥x1
+ ∥Γx2

x1
G2
xyg(x1, y

∗(x2))− G2
xyg(x2, y

∗(x2))∥x2

≤ (
ρL

µ
+ ρ)d(x1, x2)

and

∥Γy∗(x2)
y∗(x1)

H−1
y g(x1, y

∗(x1))−H−1
y g(x2, y

∗(x2))Γ
y∗(x2)
y∗(x1)

∥y∗(x2)

≤ ∥H−1
y g(x1, y

∗(x1))−H−1
y g(x2, y

∗(x1))∥y∗(x1) + ∥Γy∗(x2)
y∗(x1)

H−1
y g(x2, y

∗(x1))Γ
y∗(x1)
y∗(x2)

−H−1
y g(x2, y

∗(x2))∥y∗(x2)

≤
( ρ
µ2

+
ρL

µ3

)
d(x1, x2).

Combining all the results together, we can show

∥Γx2
x1
GF (x1)− GF (x2)∥x2

≤
(L2

µ
+ L+ (

ρL

µ
+ ρ)

M

µ
+ LM

( ρ
µ2

+
ρL

µ3

)
+
L

µ

(L2

µ
+ L

))
d(x1, x2)

=
(L
µ
+ 1

)(
L+

ρM

µ
+
ρLM

µ2
+
L2

µ

)
d(x1, x2),

which completes the proof.

C.4 On strong convexity of the lower-level problem

Lemma 5 (Convergence under strong convexity). Under Assumptions 1, 2, 3, suppose ηy < µ
L2ζ ,

where ζ ≥ 1 is a curvature constant defined in Lemma 3, then we have d2(ys+1
k , y∗(xk)) ≤

(1 + η2yζL
2 − ηyµ)d

2(ysk, y
∗(xk)).

Proof of Lemma 5. We apply the trigonometric distance bound from Lemma 3 to obtain

d2(ys+1
k , y∗(xk)) ≤ d2(ysk, y

∗(xk)) + η2yζ∥Gyg(xk, y
s
k)∥2ys

k
+ 2ηy⟨Gyg(xk, y

s
k),Exp

−1
ys
k
y∗(xk)⟩ys

k

≤ d2(ysk, y
∗(xk)) + η2yζ∥Gyg(xk, y

s
k)∥2ys

k

+ 2ηy
(
g(xk, y

∗(xk))− g(xk, y
s
k)−

µ

2
d2(ysk, y

∗(xk))
)

≤ (1 + η2yζL
2 − ηyµ)d

2(ysk, y
∗(xk)),

where the second inequality is due to geodesic strong convexity and the third inequality is due to
∥Gyg(xk, y

s
k)∥2ys

k
= ∥Gyg(xk, y

s
k) − Γ

ys
k

y∗(xk)
Gyg(xk, y

∗(xk))∥2ys
k
≤ L2d2(ysk, y

∗(xk)) and the fact
that y∗(xk) is optimal. Here, we require ηy < µ

L2ζ in order for 1 + η2yζL
2 − ηyµ < 1.
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C.5 Proof of Lemma 1

Proof of Lemma 1. Hessian inverse: for the Hessian inverse approximation, we let

Gf(x, y) = Gxf(x, y)− G2
xyg(x, y)

[
H−1

y g(x, y)[Gyf(x, y)]
]
.

It can be seen that GF (xk) = Gf(xk, y∗(xk)) and ĜhinvF (xk) = Gf(xk, yk+1). Then for any
x ∈ Ux, y1, y2 ∈ Uy , we have

∥Gf(x, y1)− Gf(x, y2)∥x
≤ ∥Gxf(x, y1)− Gxf(x, y2)∥x + ∥G2

xyg(x, y1)− G2
xyg(x, y2)Γ

y2
y1
∥x∥H−1

y g(x, y1)∥y1∥Gyf(x, y1)∥y
+ ∥G2

xyg(x, y2)∥x∥Γy2
y1
H−1

y g(x, y1)[Gyf(x, y1)]−H−1g(x, y2)[Gyf(x, y2)]∥y2

≤
(
L+

ρM

µ

)
d(y1, y2) + L∥Γy2

y1
H−1

y g(x, y1)−H−1
y g(x, y2)Γ

y2
y1
∥y2

∥Gyf(x, y1)∥y

+ L∥H−1
y g(x, y2)∥y∥Γy2

y1
Gyf(x, y1)− Gyf(x, y2)∥y2

≤
(
L+

ρM + L2

µ
+
LMρ

µ2

)
d(y1, y2),

where we use Assumption 2, 3 and Lemma 4.

Conjugate gradient: we let v∗k = H−1
y g(xk, y

∗(xk))[Gyf(xk, y
∗(xk))] ∈ Ty∗(xk)My and let v̂∗k =

H−1
y g(xk, yk+1)[Gyf(xk, yk+1)] ∈ Tyk+1

My . We first bound

∥ĜcgF (xk)− GF (xk)∥xk

≤ ∥Gxf(xk, yk+1)− Gxf(xk, y
∗(xk))∥xk

+ ∥G2
xyg(xk, yk+1)∥xk

∥v̂Tk − Γ
yk+1

y∗(xk)
v∗k∥yk+1

+ ∥G2
xyg(xk, y

∗(xk))− G2
xyg(xk, yk+1)Γ

yk+1

y∗(xk)
∥xk

∥v∗k∥y∗(xk)

≤ Ld(y∗(xk), yk+1) + L∥v̂Tk − Γ
yk+1

y∗(xk)
v∗k∥yk+1

+ ρ d(y∗(xk), yk+1)∥v∗k∥y∗(xk)

≤
(
L+ κρM

)
d(y∗(xk), yk+1) + L∥v̂Tk − Γ

yk+1

y∗(xk)
v∗k∥yk+1

,

where ∥v∗k∥y∗(xk) ≤M/µ. From standard convergence result eq. 6.19 in [8], we have

∥v̂Tk − v̂∗k∥2yk+1
≤ 4κl

(√κl − 1
√
κl + 1

)2T

∥v̂0k − v̂∗k∥2yk+1
.

This leads to

∥v̂Tk − Γ
yk+1

y∗(xk)
v∗k∥yk+1

(4)

≤ ∥v̂Tk − v̂∗k∥yk+1
+ ∥Γyk+1

y∗(xk)
v∗k − v̂∗k∥yk+1

≤ 2
√
κl

(√κl − 1
√
κl + 1

)T

∥v̂0k − v̂∗k∥yk+1
+ ∥Γyk+1

y∗(xk)
v∗k − v̂∗k∥yk+1

≤ 2
√
κl

(√κl − 1
√
κl + 1

)T

∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥yk+1

+
(
1 + 2

√
κl

(√κl − 1
√
κl + 1

)T)
∥Γyk+1

y∗(xk)
v∗k − v̂∗k∥yk+1

≤ 2
√
κl

(√κl − 1
√
κl + 1

)T

∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥yk+1

+
(
1 + 2

√
κl

)(
κl +

Mκρ
µ

)
d
(
y∗(xk), yk+1

)
, (5)

where in the last inequality, we use the definition of v∗k and v̂∗k and the Lipschitzness assumptions.
Combining the results yield the desired result.

Neumann series: let Ĥk(y) := γ
∑T−1

i=0 (id− γHyg(xk, y))
i. Then we can bound

∥ĜnsF (xk)− GF (xk)∥xk

≤ Ld(y∗(xk), yk+1)

+ ∥G2
xyg(xk, yk+1)∥xk

∥Ĥk(yk+1)− Γ
yk+1

y∗(xk)
H−1

y g(xk, y
∗(xk))Γ

y∗(xk)
yk+1

∥yk+1
∥Gyf(xk, yk+1)∥yk+1

+ ∥G2
xyg(xk, yk+1)∥xk

∥H−1
y g(xk, y

∗(xk))∥y∗(xk)∥Γ
y∗(xk)
yk+1

Gyf(xk, yk+1)− Gyf(xk, y
∗(xk))∥y∗(xk)
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+ ∥G2
xyg(xk, yk+1)− G2

xyg(xk, y
∗(xk))Γ

y∗(xk)
yk+1

∥xk
∥H−1

y g(xk, y
∗(xk))∥y∗(xk)∥Gyf(xk, y

∗(xk))∥y∗(xk)

≤ (L+ κlL+ κρM)d(y∗(xk), yk+1) + LM∥Ĥk(yk+1)− Γ
yk+1

y∗(xk)
H−1

y g(xk, y
∗(xk))Γ

y∗(xk)
yk+1

∥yk+1
.

We now bound

∥Ĥk(yk+1)− Γ
yk+1

y∗(xk)
H−1

y g(xk, y
∗(xk))Γ

y∗(xk)
yk+1

∥yk+1

≤ ∥Ĥk(yk+1)−H−1
y g(xk, yk+1)∥yk+1

+ ∥H−1
y g(xk, yk+1)− Γ

yk+1

y∗(xk)
H−1

y g(xk, y
∗(xk))Γ

y∗(xk)
yk+1

∥yk+1

≤ ∥γ
∞∑
i=T

(id− γHyg(xk, yk+1))
i∥yk+1

+
κρ
µ
d(y∗(xk), yk+1)

≤ (1− γµ)T

µ
+
κρ
µ
d(y∗(xk), yk+1),

where we use the lower bound on Hyg(xk, yk+1). Substituting the results back the bound yields the
desired result.

Automatic differentiation: Given ys+1
k = Expys

k
(−ηyGyg(xk, y

s
k)), we can show its differential is

Dxk
ys+1
k = Pys+1

k

(
Dxk

ysk − ηyG2
yxg(xk, y

s
k)− ηyHyg(xk, y

s
k)Dxk

ysk
)
+ Es

k

= Pys+1
k

(
(id− ηyHyg(xk, y

s
k))Dxk

ysk − ηyG2
yxg(xk, y

s
k)
)
+ Es

k

where

∥Es
k∥ys+1

k
≤ C3∥(id− ηyHyg(xk, y

s
k))Dxk

ysk − ηyG2
yxg(xk, y

s
k)∥ys

k
∥Gyf(xk, y

s
k)∥ys

k

≤ η2yC3

(
(1− ηyµ)C1 + ηyL

)
∥Gyf(xk, y

s
k)∥ys

k
.

In addition, we notice ĜadF (xk) = Gxf(xk, y
S
k ) + (Dxk

ySk )
†[Gyf(xk, y

S
k )] and we can bound

∥ĜadF (xk)− GF (xk)∥xk

≤ ∥Gxf(xk, y
S
k )− Gxf(xk, y

∗(xk))∥xk
+ ∥(Dxk

ySk )
† − (Dxk

y∗(xk))
†Γ

y∗(xk)

yS
k

∥xk
∥Gyf(xk, y

S
k )∥yS

k

+ ∥Dxk
y∗(xk)∥y∗(xk)∥Γ

y∗(xk)

yS
k

Gyf(xk, y
S
k )− Gyf(xk, y

∗(xk))∥y∗(xk)

≤ (L+ Lκl)(1 + η2yζL
2 − ηyµ)

S
2 d(y∗(xk), y

0
k) +M∥ΓyS

k

y∗(xk)
Dxk

y∗(xk)−Dxk
ySk ∥yS

k
, (6)

where the second inequality uses Lemma 4.2. Then we bound

∥Γys+1
k

y∗(xk)
Dxk

y∗(xk)−Dxk
ys+1
k ∥ys+1

k

≤ ∥Γys+1
k

y∗(xk)
Dxk

y∗(xk)− Pys+1
k

(
(id− ηyHyg(xk, y

s
k))[Dxk

ysk]− ηyG2
yxg(xk, y

s
k)
)
∥ys+1

k

+ η2yC3

(
(1− ηyµ)C1 + ηyL

)
∥Gyf(xk, y

s
k)∥ys

k

=
∥∥Γys+1

k

y∗(xk)

(
Dxk

y∗(xk) + ηyHyg(xk, y
∗(xk))Dxk

y∗(xk) + ηyG2
yxg(xk, y

∗(xk))
)

− Pys+1
k

(
(id− ηyHyg(xk, y

s
k))[Dxk

ysk]− ηyG2
yxg(xk, y

s
k)
)∥∥

ys+1
k

+ η2yC3

(
(1− ηyµ)C1 + ηyL

)
∥Gyf(xk, y

s
k)∥ys

k

=
∥∥Γys

k

ys+1
k

Γ
ys+1
k

y∗(xk)

(
Dxk

y∗(xk)− ηyHyg(xk, y
∗(xk))Dxk

y∗(xk)− ηyG2
yxg(xk, y

∗(xk))
)

− Γ
ys
k

ys+1
k

Pys+1
k

(
(id− ηyHyg(xk, y

s
k))[Dxk

ysk]− ηyG2
yxg(xk, y

s
k)
)∥∥

ys
k

+ η2yC3

(
(1− ηyµ)C1 + ηyL

)
∥Gyf(xk, y

s
k)∥ys

k

≤
∥∥Γys

k

y∗(xk)
(id− ηyHyg(xk, y

∗(xk)))[Dxk
y∗(xk)]− ηyΓ

ys
k

y∗(xk)
G2
yxg(xk, y

∗(xk))

−
(
(id− ηyHyg(xk, y

s
k))[Dxk

ysk]− ηyG2
yxg(xk, y

s
k)
)∥∥

ys
k

+ (ηyC2 + η2yC3)
(
(1− ηyµ)C1 + ηyL

)
∥Gyf(xk, y

s
k)∥ys

k

=
∥∥∥Γys

k

y∗(xk)
(id− ηyHyg(xk, y

∗(xk)))[Dxk
y∗(xk)− Γ

y∗(xk)
ys
k

Dxk
ysk]
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+ ηy
(
Hyg(xk, y

s
k)− Γ

ys
k

y∗(xk)
Hyg(xk, y

∗(xk)))Γ
y∗(xk)
ys
k

)
[Dxk

ysk] + ηyG2
yxg(xk, y

s
k)− Γ

ys
k

y∗(xk)
G2
yxg(xk, y

∗(xk))
∥∥∥
ys
k

+ (ηyC2 + η2yC3)
(
(1− ηyµ)C1 + ηyL

)
∥Gyf(xk, y

s
k)∥ys

k

≤ (1− ηyµ)∥Γ
ys
k

y∗(xk)
Dxk

y∗(xk)−Dxk
ysk∥ys

k
+ ηy(κl + 1)ρd(ysk, y

∗(xk))

+ (ηyC2 + η2yC3)
(
(1− ηyµ)C1 + ηyL

)
∥Gyf(xk, y

s
k)∥ys

k

≤ (1− ηyµ)∥Γ
ys
k

y∗(xk)
Dxk

y∗(xk)−Dxk
ysk∥ys

k
+ ηy(κl + 1)ρ(1 + η2yζL

2 − ηyµ)
s
2 d(y0k, y

∗(xk))

+ ηy(C2 + ηyC3)
(
(1− ηyµ)C1 + ηyL

)
∥Gyf(xk, y

s
k)∥ys

k

≤ (1− ηyµ)∥Γ
ys
k

y∗(xk)
Dxk

y∗(xk)−Dxk
ysk∥ys

k

+ ηy

(
(κl + 1)ρ+ (C2 + ηyC3)L

(
(1− ηyµ)C1 + ηyL

))
(1 + η2yζL

2 − ηyµ)
s
2 d(y0k, y

∗(xk)),

where the first equality uses the expression of Dxk
y∗(xk) (Proposition 1). The second last in-

equality follows from Lemma 5 and the last inequality is due to the smoothness of Riemannian
gradient and Lemma 5, i.e., ∥Gyf(xk, y

s
k)∥ys

k
= ∥Γys

k

y∗(xk)
Gyf(xk, y

∗(xk)) − Gyf(xk, y
s
k)∥ys

k
≤

Ld(ysk, y
∗(xk)) ≤ L(1 + η2yζL

2 − ηyµ)
s
2 d(y0k, y

∗(xk)).

Finally, applying the bound recursively, we obtain

∥ΓyS
k

y∗(xk)
Dxk

y∗(xk)−Dxk
ySk ∥yS

k
≤ (1− ηyµ)

S∥Γy0
k

y∗(xk)
Dxk

y∗(xk)−Dxk
y0k∥y0

k

+ ηyC̃

S−1∑
s=0

(1− ηyµ)
S−1−s(1 + η2yζL

2 − ηyµ)
s
2 d(y0k, y

∗(xk))

≤ κl(1− ηyµ)
S + ηyC̃

S−1∑
s=0

(1 + η2yζL
2 − ηyµ)

S−1− s
2 d(y0k, y

∗(xk))

≤ κl(1− ηyµ)
S + ηyC̃

(1 + η2yζL
2 − ηyµ)

S−1
2

1− (1 + η2yζL
2 − ηyµ)

1
2

d(y0k, y
∗(xk))

≤ κl(1− ηyµ)
S +

2C̃

µ− ηyζL2
(1 + η2yζL

2 − ηyµ)
S−1
2 d(y0k, y

∗(xk)),

where we let C̃ := (κl + 1)ρ+ (C2 + ηyC3)L
(
(1− ηyµ)C1 + ηyL

)
and we note that Dxk

y0k = 0.

Combining the above result with (6) gives

∥ĜadF (xk)− GF (xk)∥xk

≤ (L+ Lκl)(1 + η2yζL
2 − ηyµ)

S
2 d(y∗(xk), y

0
k) +M∥ΓyS

k

y∗(xk)
Dxk

y∗(xk)−Dxk
ySk ∥yS

k

≤
( 2MC̃

µ− ηyζL2
+ L(1 + κl)

)
(1 + η2yζL

2 − ηyµ)
S−1
2 d(yk, y

∗(xk)) +Mκl(1− ηyµ)
S ,

where we use the fact that 1 + η2yζL
2 − ηyµ ≤ 1.

C.6 Proof of Theorem 1

Proof of Theorem 1. By smoothness of F (x) (Lemma 4.5), we have

F (xk+1)− F (xk) ≤ −ηx⟨GF (xk), ĜF (xk)⟩xk
+
η2xLF

2
∥ĜF (xk)∥2xk

≤ −
(ηx
2

− η2xLF

)
∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF

)
∥GF (xk)− ĜF (xk)∥2xk

. (7)

Now we consider the different hypergradient estimator separately.

1. Hessian inverse: Let Chinv := L+ κρM + κlL+ κlκρM .

∥GF (xk)− ĜhinvF (xk)∥2xk
≤ C2

hinvd
2(y∗(xk), yk+1) ≤ C2

hinv(1 + η2yζL
2 − ηyµ)

Sd2(y∗(xk), yk),
(8)
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where we notice yk+1 = ySk and apply Lemma 5. Furthermore,

d2(yk, y
∗(xk))

≤ 2d2(ySk−1, y
∗(xk−1)) + 2d2(y∗(xk), y

∗(xk−1))

≤ 2(1 + η2yζL
2 − ηyµ)

Sd2(y∗(xk−1), yk−1) + 2η2xκ
2
l ∥ĜhinvF (xk−1)∥2xk

≤ 2(1 + η2yζL
2 − ηyµ)

Sd2(y∗(xk−1), yk−1) + 4η2xκ
2
l ∥ĜhinvF (xk−1)− GF (xk−1)∥2xk−1

+ 4η2xκ
2
l ∥GF (xk−1)∥2xk−1

≤ 2(1 + η2yζL
2 − ηyµ)

Sd2(y∗(xk−1), yk−1) + 4η2xκ
2
lC

2
hinv(1 + η2yζL

2 − ηyµ)
Sd2(y∗(xk−1), yk−1)

+ 4η2xκ
2
l ∥GF (xk−1)∥2xk−1

= 2(1 + 2η2xκ
2
lC

2
hinv)(1 + η2yζL

2 − ηyµ)
Sd2(y∗(xk−1), yk−1) + 4η2xκ

2
l ∥GF (xk−1)∥2xk−1

(9)

where we apply Lemma 5 and 4.3 in the second inequality.

Construct a Lyapunov function Rk := F (xk) + d2(yk, y
∗(xk)). Then,

Rk+1 −Rk = F (xk+1)− F (xk) +
(
d2(yk+1, y

∗(xk+1))− d2(yk, y
∗(xk))

)
≤ −

(ηx
2

− η2xLF

)
∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF

)
∥GF (xk)− ĜhinvF (xk)∥2xk

+
((

(2 + 4η2xκ
2
lC

2
hinv)(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(y∗(xk), yk) + 4η2xκ

2
l ∥GF (xk)∥2xk

)
≤ −

(ηx
2

− η2xLF − 4η2xκ
2
l

)
∥GF (xk)∥2xk

+
((

2 + C2
hinv(

ηx
2

+ η2xLF ) + 4η2xκ
2
lC

2
hinv

)
(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(y∗(xk), yk)

≤ −
(ηx
2

− 5η2xLF

)
∥GF (xk)∥2xk

+
((

2 + C2
hinv(

ηx
2

+ 5η2xLF )
)
(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(y∗(xk), yk)

where we combine (7) and (9) in the first inequality and use κ2l ≤ LF in the third inequality. Now
setting ηx = 1

20LF
, we can simplify the inequality as

Rk+1 −Rk ≤ − 1

80LF
∥GF (xk)∥2xk

+
(
(2 +

3C2
hinv

80LF
)(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(y∗(xk), yk)

≤ − 1

80LF
∥GF (xk)∥2xk

where we choose S ≥ log( 80LF

160LF+3C2
hinv

)/ log(1 + η2yζL
2 − ηyµ) = Θ̃(κ2l ζ) for the last inequality.

Summing over k = 0, ...K − 1 yields

1

K

K−1∑
k=0

∥GF (xk)∥2xk
≤ 80LF (R0 −RK)

K
≤ 80LF∆0

K
,

which suggests mink=0,...,K−1 ∥GF (xk)∥2xk
≤ 80LF∆0

K .

2. Conjugate gradient: Let Ccg := L+ κρM + L
(
1 + 2

√
κl
)(
κl +

Mκρ

µ

)
. Then we can show

∥GF (xk)− ĜcgF (xk)∥2xk

≤ 2C2
cg(1 + η2yζL

2 − ηyµ)
Sd2(y∗(xk), yk) + 8L2κl

(√κl − 1
√
κl + 1

)2T

∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥2yk+1

, (10)

where it follows from Lemma 1 and Lemma 5. Then following similar analysis as in Hessian inverse
case

d2(yk+1, y
∗(xk+1)) ≤ 2(1 + η2yζL

2 − ηyµ)
Sd2(y∗(xk), yk) + 4η2xκ

2
l ∥ĜcgF (xk)− GF (xk)∥2xk
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+ 4η2xκ
2
l ∥GF (xk)∥2xk

≤ (2 + 8η2xκ
2
lC

2
cg)(1 + η2yζL

2 − ηyµ)
Sd2(y∗(xk), yk)

+ 32η2xκ
3
lL

2
(√κl − 1
√
κl + 1

)2T ∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥2yk+1

+ 4η2xκ
2
l ∥GF (xk)∥2xk

.

(11)

Further, noticing v̂0k = Γ
yk+1
yk v̂Tk−1, we bound ∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥yk+1

= ∥v̂Tk−1 − Γyk
yk+1

Γ
yk+1

y∗(xk)
v∗k∥yk

as

∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥yk+1

≤ ∥v̂Tk−1 − Γyk

y∗(xk)
v∗k∥yk

+
MC0D̄

µ
d(yk+1, y

∗(xk))

≤ ∥v̂Tk−1 − Γyk

y∗(xk−1)
v∗k−1∥yk

+
∥∥v∗k − Γy∗(xk)

yk
Γyk

y∗(xk−1)
v∗k−1

∥∥
yk

+
MC0D̄

µ
d(yk+1, y

∗(xk))

≤ ∥v̂Tk−1 − Γyk

y∗(xk−1)
v∗k−1∥yk

+
∥∥v∗k − Γ

y∗(xk)
y∗(xk−1)

v∗k−1

∥∥
yk

+
MC0D̄

µ

(
d(yk, y

∗(xk)) + d(yk+1, y
∗(xk))

)
≤ 2

√
κl
(√κl − 1
√
κl + 1

)T ∥v̂0k−1 − Γyk

y∗(xk−1)
v∗k−1∥yk

+ (1 +
√
κl)(κl +

Mκρ
µ

)d(y∗(xk−1), yk)

+
∥∥v∗k − Γ

y∗(xk)
y∗(xk−1)

v∗k−1

∥∥
yk

+
2MC0D̄

µ
d(yk, y

∗(xk))

≤ 2
√
κl
(√κl − 1
√
κl + 1

)T ∥v̂0k−1 − Γyk

y∗(xk−1)
v∗k−1∥yk

+ 2
√
κl(κl +

Mκρ
µ

)(1 + η2yζL
2 − ηyµ)

S
2 d(y∗(xk−1), yk−1)

+
∥∥v∗k − Γ

y∗(xk)
y∗(xk−1)

v∗k−1

∥∥
yk

+
2MC0D̄

µ
d(yk, y

∗(xk)) (12)

where we use Lemma 2 in the first and third inequalities. The second last inequality follows from (5)
and d(yk+1, y

∗(xk)) ≤ d(yk, y
∗(xk)). The last inequality follows from Lemma 5 and κl ≥ 1. Now

we bound

∥v∗k − Γ
y∗(xk)
y∗(xk−1)

v∗k−1∥y∗(xk)

=
∥∥H−1

y g(xk, y
∗(xk))[Gyf(xk, y

∗(xk))]− Γ
y∗(xk)
y∗(xk−1)

H−1
y g(xk−1, y

∗(xk−1))[Gyf(xk−1, y
∗(xk−1))]

∥∥
y∗(xk)

≤M∥H−1
y g(xk, y

∗(xk))− Γ
y∗(xk)
y∗(xk−1)

H−1
y g(xk−1, y

∗(xk−1))Γ
y∗(xk−1)
y∗(xk)

∥y∗(xk)

+
1

µ
∥Γy∗(xk−1)

y∗(xk)
Gyf(xk, y

∗(xk))− Gyf(xk−1, y
∗(xk−1))∥y∗(xk−1)

≤M∥H−1
y g(xk, y

∗(xk))−H−1
y g(xk−1, y

∗(xk))∥y∗(xk)

+M∥H−1
y g(xk−1, y

∗(xk))− Γ
y∗(xk)
y∗(xk−1)

H−1
y g(xk−1, y

∗(xk−1))Γ
y∗(xk−1)
y∗(xk)

∥y∗(xk)

+
1

µ
∥Γy∗(xk−1)

y∗(xk)
Gyf(xk, y

∗(xk))− Gyf(xk, y
∗(xk−1))∥y∗(xk−1)

+
1

µ
∥Gyf(xk, y

∗(xk−1))− Gyf(xk−1, y
∗(xk−1))∥y∗(xk−1)

≤ Mκρ
µ

d(xk, xk−1) +
Mκρ
µ

κld(xk, xk−1) +
L

µ
κld(xk, xk−1) +

L

µ
d(xk, xk−1)

= ηxCv∥ĜcgF (xk−1)− GF (xk−1)∥xk−1
+ ηxCv∥GF (xk−1)∥xk−1

(13)

where we let Cv :=
Mκρ

µ +
Mκρκl

µ + κ2l + κl. Combining (13) and (12), we obtain

∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥2yk+1

≤ 20κl
(√κl − 1
√
κl + 1

)2T ∥v̂0k−1 − Γyk

y∗(xk−1)
v∗k−1∥2yk

+ 20κl(κl +
Mκρ
µ

)2(1 + η2yζL
2 − ηyµ)

Sd(y∗(xk−1), yk−1)
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+ 5η2xC
2
v∥ĜcgF (xk−1)− GF (xk−1)∥2xk−1

+ 5η2xC
2
v∥GF (xk−1)∥2xk−1

+
5M2C2

0D̄
2

µ2
d2(yk, y

∗(xk)).

(14)

Now we define a Lyapunov function Rk := F (xk) + d2(yk, y
∗(xk)) + ∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

. Then

Rk+1 −Rk

= (F (xk+1)− F (xk)) +
(
d2(yk+1, y

∗(xk+1))− d2(yk, y
∗(xk))

)
+
(
∥v̂0k+1 − Γ

yk+2

y∗(xk+1)
v∗k+1∥2yk+2

− ∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥2yk+1

)
≤ −

(ηx
2

− η2xLF

)
∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF

)
∥GF (xk)− ĜcgF (xk)∥2xk

+ d2(yk+1, y
∗(xk+1))− d2(yk, y

∗(xk))

+
(
20κl

(√κl − 1
√
κl + 1

)2T − 1
)
∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

+ 20κl(κl +
Mκρ
µ

)2(1 + η2yζL
2 − ηyµ)

Sd2(y∗(xk), yk)

+ 5η2xC
2
v∥ĜcgF (xk)− GF (xk)∥2xk

+ 5η2xC
2
v∥GF (xk)∥2xk

+
5M2C2

0D̄
2

µ2
d2(yk+1, y

∗(xk+1))

= −
(ηx
2

− η2xLF − 5η2xC
2
v

)
∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF + 5η2xC
2
v

)
∥GF (xk)− ĜcgF (xk)∥2xk

+
(5M2C2

0D̄
2

µ2
+ 1

)
d2(yk+1, y

∗(xk+1)) +
(
20κl(κl +

Mκρ
µ

)2(1 + η2yζL
2 − ηyµ)

S − 1
)
d2(y∗(xk), yk)

+
(
20κl

(√κl − 1
√
κl + 1

)2T − 1
)
∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

≤ −
(ηx
2

− η2xLF − 5η2xC
2
v − 4η2xκ

2
l (
5M2C2

0D
2

µ2
+ 1)

)
∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF + 5η2xC
2
v

)
∥GF (xk)− ĜcgF (xk)∥2xk

+
(((5M2C2

0D
2

µ2
+ 1

)
(2 + 8η2xκ

2
lC

2
cg) + 20κl

(
κl +

Mκρ
µ

)2)
(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(yk, y

∗(xk))

+
((

32η2xκ
3
lL

2(
5M2C2

0D̄
2

µ2
+ 1) + 20κl

)(√κl − 1
√
κl + 1

)2T − 1
)
∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

≤ −
(ηx
2

− 6η2xΛ
)
∥GF (xk)∥2xk

+
(ηx
2

+ 6η2xΛ
)
∥GF (xk)− ĜcgF (xk)∥2xk

+
(((5M2C2

0D̄
2

µ2
+ 1

)
(2 + 8η2xκ

2
lC

2
cg) + 20κl

(
κl +

Mκρ
µ

)2)
(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(yk, y

∗(xk))

+
((

32η2xκ
3
lL

2(
5M2C2

0D̄
2

µ2
+ 1) + 20κl

)(√κl − 1
√
κl + 1

)2T − 1
)
∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

≤ − 1

96Λ
∥GF (xk)∥2xk

+
((

32η2xκ
3
lL

2(
5M2C2

0D̄
2

µ2
+ 1) + 20κl +

L2κl
4Λ

)(√κl − 1
√
κl + 1

)2T − 1
)
∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

+
(((5M2C2

0D̄
2

µ2
+ 1

)
(2 + 8η2xκ

2
lC

2
cg) + 20κl

(
κl +

Mκρ
µ

)2
+
C2

cg

16Λ

)
(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(yk, y

∗(xk))

≤ − 1

96Λ
∥GF (xk)∥2xk

where we use (7), (14) in the first inequality and (11) in the second inequality. In the third inequality,
we let Λ := C2

v + κ2l (
5M2C2

0 D̄
2

µ +1) and because LF = Θ(κ3l ) and Λ = Θ(κ4l ), we can without loss
of generality have LF ≤ Λ. We also choose ηx = 1

24Λ and use (10) for the fourth inequality. The last
inequality follows by choosing

S ≥ − log
((5M2C2

0D̄
2

µ2
+ 1

)
(2 + 8η2xκ

2
lC

2
cg) + 20κl

(
κl +

Mκρ
µ

)2)
/ log(1 + η2yζL

2 − ηyµ) = Θ̃(κ2l ζ)

T ≥ −1

2
log

(
32η2xκ

3
lL

2(
5M2C2

0D̄
2

µ2
+ 1) + 20κl

)
/ log

(√κl − 1
√
κl + 1

)
= Θ̃(

√
κl).
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Finally, telescoping the inequality, we obtain

1

K

K−1∑
k=0

∥GF (xk)∥xk
≤ 96ΛR0

K
=

96Λ

K

(
F (xk) + d2(y0, y

∗(x0)) + ∥v∗0∥2y∗(x0)

)
,

where we use the fact that v̂0k = 0 and the isometry property of parallel transport.

3. Truncated Neumann series: Let Cns := L + κlL + κρM + κlκρM . Here we notice that
Cns = Chinv. Then by Lemma 1, we see

∥ĜnsF (xk)−GF (xk)∥2xk
≤ 2C2

ns(1+ η2yζL
2 − ηyµ)

Sd2(y∗(xk), yk) + 2κ2lM
2(1− γµ)2T . (15)

Similar in the previous analysis,

d2(yk+1, y
∗(xk+1)) ≤ 2(1 + η2yζL

2 − ηyµ)
Sd2(y∗(xk), yk) + 4η2xκ

2
l ∥ĜnsF (xk)− GF (xk)∥2xk

+ 4η2xκ
2
l ∥GF (xk)∥2xk

(16)

Let the Lyapunov function be Rk := F (xk) + d2(yk, y
∗(xk)). Then

Rk+1 −Rk

≤ −
(ηx
2

− η2xLF − 4η2xκ
2
l

)
∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF + 4η2xκ
2
l

)
∥GF (xk)− ĜnsF (xk)∥2xk

+
(
2(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(yk, y

∗(xk))

≤ − 1

80LF
∥GF (xk)∥2xk

+
((
2 +

3C2
ns

40LF

)
(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(yk, y

∗(xk))

+
3

40LF
κ2lM

2(1− γµ)2T

where we set ηx = 1
20LF

and apply (15) in the second inequality.

Now setting S ≥ log( 40LF

80LF+3C2
ns
)/ log(1 + η2yζL

2 − ηyµ) = Θ̃(κ2l ζ) and telescoping the results
yields

1

K

K−1∑
k=0

∥GF (xk)∥2xk
≤ 80LFR0

K
+ 6κ2lM

2(1− γµ)2T ≤ 80LFR0

K
+
ϵ

2

where we set T ≥ − 1
2 log(

12κ2
l M

2

ϵ )/ log(1− γµ) = Θ̃(κ log( 1ϵ )).

4. Automatic differentiation: Let Cad := 2MC̃
µ−ηyζL2 + L(1 + κl). Then

∥GF (xk)− ĜadF (xk)∥2xk
≤ 2C2

ad(1 + η2yζL
2 − ηyµ)

S−1d2(yk, y
∗(xk)) + 2M2κ2l (1− ηyµ)

2S

and similarly

d2(yk+1, y
∗(xk+1)) ≤ 2(1 + η2yζL

2 − ηyµ)
Sd2(y∗(xk), yk) + 4η2xκ

2
l ∥ĜadF (xk)− GF (xk)∥2xk

+ 4η2xκ
2
l ∥GF (xk)∥2xk

Let the Lyapunov function be Rk := F (xk) + d2(yk, y
∗(xk)). Then

Rk+1 −Rk ≤ −
(ηx
2

− η2xLF − 4η2xκ
2
l

)
∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF + 4η2xκ
2
l

)
∥GF (xk)− ĜadF (xk)∥2xk

+
((

2(1 + η2yζL
2 − ηyµ)

S−1 − 1
)
d2(yk, y

∗(xk))
)

≤ − 1

80LF
∥GF (xk)∥2xk

+
((

(2 +
3C2

ad

40LF
)(1 + η2yζL

2 − ηyµ)
S−1 − 1

)
d2(yk, y

∗(xk))

+
3

40LF
M2κ2l (1− ηyµ)

2S

≤ − 1

80LF
∥GF (xk)∥2xk

+
3

40LF
M2κ2l (1− ηyµ)

2S
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where we set ηx = 1
20LF

and choose S ≥ log 40LF

80LF+3C2
ad
/ log(1 + η2yζL

2 − ηyµ) + 1 = Θ̃(κ2l ζ).
Telescoping the result gives

1

K

K−1∑
k=0

∥GF (xk)∥2xk
≤ 80LFR0

K
+ 6M2κ2l (1− ηyµ)

2S ≤ 80LFR0

K
+
ϵ

2
,

by choosing S ≥ 1
2 log(

ϵ
12M2κ2

l
) log(1− ηyµ) = Θ̃(κ2l ζ log(

1
ϵ )). Hence we set S ≥ Θ̃(κ2l ζ log(

1
ϵ ))

for both conditions to hold.

C.7 Proof of Corollary 1

The computational cost of gradient and Hessian for each method for approximating the hypergradient
are as follows.

Corollary 1. The complexities of reaching an ϵ-stationary solution are

• Hessian inverse: Gf = O(κ3l ϵ
−1), Gg = Õ(κ5l ζϵ

−1), JVg = O(κ3l ϵ
−1), HVg = NA.

• Conjugate gradient: Gf = O(κ4l ϵ
−1), Gg = Õ(κ6l ζϵ

−1), JVg = O(κ4l ϵ
−1), HVg =

Õ(κ4.5l ϵ−1).

• Truncated Neumann series: Gf = O(κ3l ϵ
−1), Gg = Õ(κ5l ζϵ

−1), JVg = O(κ3l ϵ
−1),

HVg = Õ(κ4l ϵ
−1 log(ϵ−1)).

• Automatic differentiation: Gf = O(κ3l ϵ
−1), Gg = Õ(κ5l ζϵ

−1 log(ϵ−1)), JVg =

Õ(κ5l ζϵ
−1 log(ϵ−1)), HVg = Õ(κ5l ζϵ

−1 log(ϵ−1)).

Proof of Corollary 1. From the convergence established in Theorem 1, we see the iterations in order
to reach ϵ-stationary solution are given by

• (Hessian inverse) K = O(LF ϵ
−1) = O(κ3l ϵ

−1), S = Õ(κ2l ζ).

• (Conjugate gradient) K = O(Λϵ−1) = O(κ4l ϵ
−1), S = Õ(κ2l ζ), T = Õ(

√
κl).

• (Truncated Neumann series) K = O(κ3l ϵ
−1), S = Õ(κ2l ζ), T = Õ(κl log(ϵ

−1)).

• (Automatic differentiation) K = O(κ3l ϵ
−1), S = Õ

(
κ2l ζ log(ϵ

−1)
)
.

Then based on Algorithm 1, the gradient complexities are Gf = 2K and Gg = KS and cross-
derivative and Hessian product complexities are JVg = K,HVg = KT for CG and NS and
JVg = KS, HVg = KS for AD (which we approximate based on the analysis in Lemma 1). We
notice here for the Hessian inverse, because we do not compute Hessian vector product, we write NA
for Hessian vector product based on the Neumann series. This completes the proof.

D Proofs for Section 3.3

We first show Lemma 4 holds for each fi(x, y), gi(x, y). Further, the variance of the estimate can be
bounded as follows. We here use [·] to denote all possible derivatives, including x, y, xy, yx.

Lemma 6. Under Assumption 4, we have for any x, y ∈ U , (1) E∥G[·]fi(x, y)−G[·]f(x, y)∥2[·] ≤M2.
(2) E∥G2

[·]gi(x, y)− G2
[·]g(x, y)∥

2
[·] ≤ L2. (3) E∥H−1

y gi(x, y)−H−1
y g(x, y)∥2y ≤ µ−2.

For notation, denote the filtration Fk := {y0, x0, y1, x1, ..., xk, yk+1} and here we let Ek := E[·|Fk].
With a slight abuse of notation, we further consider Fs

k := {y0, x0, y1, x1, ..., yk, y1k, ..., ysk} and
correspondingly let Es

k := E[·|Fs
k ].
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Lemma 7 (Convergence under strong convexity and stochastic setting). Under stochastic setting and
under the Assumption that g is geodesic strongly convex, we can show Es

kd
2(ys+1

k , y∗(xk)) ≤
(1 + η2yζL

2 − ηyµ)d
2(ysk, y

∗(xk)) +
η2
yζM

2

|B1| and Ek−1d
2(yk+1, y

∗(xk)) ≤ (1 + η2yζL
2 −

ηyµ)
Sd2(yk, y

∗(xk)) +
ηyζM

2

µ−ηyζL2
1

|B1| .

Lemma 8. Under Assumption 4, we can bound Ek∥ĜF (xk) − GF (xk)∥2xk
≤ 4M2+16M2κ2

l

|B2| +
8M2κ2

l

|B3| +
16M2κ2

l

|B4| + 2C2
hinvd

2(yk+1, y
∗(xk)).

D.1 Proofs for the lemmas

Proof of Lemma 6. Here we only prove one and the rest follows exactly. Due to the unbiasedness of
the stochastic estimate, we have

E∥Gxfi(x, y)− Gf(x, y)∥2x = E∥Gxfi(x, y)∥2x − ∥Gxf(x, y)∥2x ≤ E∥Gxfi(x, y)∥2x ≤M2

where we use Assumption 4.

Proof of Lemma 7. Similarly from the proof of Lemma 5, we take expectation over Fs
k

Es
kd

2(ys+1
k , y∗(xk))

≤ Es
k

[
d2(ysk, y

∗(xk)) + η2yζEs
k∥GygB1

(xk, y
s
k)∥2ys

k
+ 2ηy⟨GygB1

(xk, y
s
k),Exp

−1
ys
k
y∗(xk)⟩ys

k

]
≤ d2(ysk, y

∗(xk)) + η2yζEs
k∥GygB1

(xk, y
s
k)− Gyg(xk, y

s
k)∥2ys

k
+ η2yζ∥Gyg(xk, y

s
k)∥2ys

k

+ 2ηy⟨Gyg(xk, y
s
k),Exp

−1
ys
k
y∗(xk)⟩ys

k

≤ (1 + η2yζL
2 − ηyµ)d

2(ysk, y
∗(xk)) + η2yζEs

k

1

|B1|2
∑
i∈B1

Es
k∥Gygi(xk, y

s
k)− Gyg(xk, y

s
k)∥2ys

k

≤ (1 + η2yζL
2 − ηyµ)d

2(ysk, y
∗(xk)) +

η2yζM
2

|B1|
,

where we use the strong convexity and the fact that E∥GygB1
(x, y) − Gyg(x, y)∥2y =

1
|B1|2E∥

∑
i∈B1

(Gygi(x, y)−Gyg(x, y))∥2y = 1
|B1|2

∑
i∈B1

E∥Gygi(x, y)−Gyg(x, y)∥2y in the third
inequality and Lemma 6 in the last inequality. Further, we telescope the inequality and taking the
expectation Ek−1 gets

Ek−1d
2(ySk , y

∗(xk)) ≤ (1 + η2yζL
2 − ηyµ)

Sd2(yk, y
∗(xk)) +

η2yζM
2

|B1|

S−1∑
s=0

(1 + η2yζL
2 − ηyµ)

s

≤ (1 + η2yζL
2 − ηyµ)

Sd2(yk, y
∗(xk)) +

ηyζM
2

µ− ηyζL2

1

|B1|
,

where we use the fact that
∑S−1

s=0 θ
s ≤ 1

1−θ for 0 < θ < 1.

Proof of Lemma 8. Recall that GF (xk) = Gxf(x, y
∗(x)) −

G2
xyg(x, y

∗(x))
[
H−1

y g(x, y∗(x))[Gyf(x, y
∗(x))]

]
. Then

Ek∥ĜF (xk)− GF (xk)∥2xk

≤ 2Ek∥ĜF (xk)− ĜhinvF (xk)∥2xk
+ 2∥ĜhinvF (xk)− GF (xk)∥2xk

≤ 2Ek∥ĜF (xk)− ĜhinvF (xk)∥2xk
+ 2C2

hinvd
2(yk+1, y

∗(xk)) (17)

where the second inequality uses Lemma 1. Now we bound the first term Ek∥ĜF (xk) −
ĜhinvF (xk)∥2xk

as follows.

First we bound

Ek∥H−1
y gB4

(xk, yk+1)[GyfB2
(xk, yk+1)]−H−1

y g(xk, yk+1)[Gyf(xk, yk+1)]∥2yk+1
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≤ 2Ek∥H−1
y g(xk, yk+1)[GyfB2(xk, yk+1)− Gyf(xk, yk+1)]∥2yk+1

+ 2Ek∥(H−1
y gB4(xk, yk+1)−H−1

y g(xk, yk+1))[GyfB2(xk, yk+1)]∥2yk+1

≤ 2∥H−1
y g(xk, yk+1)∥2yk+1

Ek∥GyfB2
(xk, yk+1)− Gyf(xk, yk+1)∥2yk+1

+ 2Ek∥H−1
y gB4

(xk, yk+1)−H−1
y g(xk, yk+1)∥2yk+1

Ek∥GyfB2
(xk, yk+1)∥2yk+1

≤ 2M2

µ2

( 1

|B2|
+

1

|B4|
)

where we notice that ∥GyfB2
(xk, yk+1)∥yk+1

≤ 1
|B2|

∑
i∈B2

∥Gyfi(xk, yk+1)∥yk+1
≤M .

Hence, we can bound

Ek∥ĜF (xk)− ĜhinvF (xk)∥2xk

≤ 2Ek∥GxfB2(xk, yk+1)− Gxf(xk, yk+1)∥2xk
+

8M2

µ2

( 1

|B2|
+

1

|B4|
)
Ek∥G2

xygB3(xk, yk+1)∥2xk

+ 4Ek∥G2
xyg(xk, yk+1)− G2

xygB3
(xk, yk+1)∥2xk

∥H−1
y g(xk, yk+1)[Gyf(xk, yk+1)]∥2yk+1

≤ 2M2

|B2|
+ 8M2κ2l

( 1

|B2|
+

1

|B4|
)
+

4M2κ2l
|B3|

, (18)

where we use Lemma 6 in the last inequality. Combining (18) with (17) yields the desired result.

D.2 Proof of Theorem 2

Proof of Theorem 2. From the smoothness of F (x) (i.e., (7)) and taking full expectation we obtain,

E[F (xk+1)− F (xk)] ≤ −
(ηx
2

− η2xLF

)
E∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF

)
E∥GF (xk)− ĜF (xk)∥2xk

.

Further, we can bound

Ed2(yk+1, y
∗(xk+1))

≤ 2Ed2(yk+1, y
∗(xk)) + 4η2xκ

2
lE∥ĜF (xk)− GF (xk)∥2xk

+ 4η2xκ
2
lE∥GF (xk)∥xk

≤ 2(1 + η2yζL
2 − ηyµ)

SEd2(yk, y∗(xk)) +
2ηyζM

2

µ− ηyζL2

1

|B1|
+ 4η2xκ

2
lE∥GF (xk)∥xk

+ 4η2xκ
2
lE∥ĜF (xk)− GF (xk)∥2xk

where we use Lemma 7 and 8 in the second inequality.

Next, we construct a Lyapunov function as Rk := F (xk) + d2(yk, y
∗(xk)). Then

E[Rk+1 −Rk]

≤ E[F (xk+1)− F (xk)] + E[d2(yk+1, y
∗(xk+1)− d2(yk, y

∗(xk))]

≤ −
(ηx
2

− η2xLF − 4η2xκ
2
l

)
E∥GF (xk)∥2xk

+
(ηx
2

+ η2xLF + 4η2xκ
2
l

)
E∥GF (xk)− ĜF (xk)∥2xk

+
((

2(1 + η2yζL
2 − ηyµ)

S − 1
)
Ed2(yk, y∗(xk)) +

2ηyζM
2

µ− ηyζL2

1

|B1|

)
= − 1

80LF
E∥GF (xk)∥2xk

+
3

80LF
E[Ek∥GF (xk)− ĜF (xk)∥2xk

]

+
((

2(1 + η2yζL
2 − ηyµ)

S − 1
)
Ed2(yk, y∗(xk)) +

2ηyζM
2

µ− ηyζL2

1

|B1|

)
≤ − 1

80LF
E∥GF (xk)∥2xk

+
3

80LF

(4M2 + 16M2κ2l
|B2|

+
8M2κ2l
|B3|

+
16M2κ2l
|B4|

)
+

3C2
hinv

40LF
Ed2(yk+1, y

∗(xk))

+
((

2(1 + η2yζL
2 − ηyµ)

S − 1
)
Ed2(yk, y∗(xk)) +

2ηyζM
2

µ− ηyζL2

1

|B1|

)
≤ − 1

80LF
E∥GF (xk)∥2xk

+
(
(2 +

3C2
hinv

40LF
)(1 + η2yζL

2 − ηyµ)
S − 1

)
Ed2(yk, y∗(xk))+
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+
3

80LF

(4M2 + 16M2κ2l
|B2|

+
8M2κ2l
|B3|

+
16M2κ2l
|B4|

)
+

(3C2
hinv

40LF
+ 2

) ηyζM
2

µ− ηyζL2

1

|B1|

≤ − 1

80LF
E∥GF (xk)∥2xk

+
3

80LF

(4M2 + 16M2κ2l
|B2|

+
8M2κ2l
|B3|

+
16M2κ2l
|B4|

)
+

(3C2
hinv

40LF
+ 2

) ηyζM
2

µ− ηyζL2

1

|B1|

where we choose ηx = 1
20LF

in the first equality and S ≥ log( 40LF

80LF+3C2
hinv

)/ log(1+η2yζL
2−ηyµ) =

Θ̃(κ2l ζ) for the last inequality. Telescoping the result gives

1

K

K−1∑
k=0

E∥GF (xk)∥2xk
≤ 80LFR0

K
+
(12M2 + 48M2κ2l

|B2|
+

24M2κ2l
|B3|

+
48M2κ2l
|B4|

)
+ (6C2

hinv + 160LF )
ηyζM

2

µ− ηyζL2

1

|B1|

≤ 80LFR0

K
+
ϵ

2
,

where the last inequality follows from the choice that |B1| ≥ (24C2
hinv + 640LF )

8ηyζM
2

µ−ηyζL2 /ϵ =

Θ(κ4l /ϵ), |B2| ≥ 144M2+576M2κ2
l

ϵ = Θ(κ2l /ϵ), |B3| ≥ 288M2κ2
l

ϵ = Θ(κ2l /ϵ), |B4| ≥ 576M2κ2
l

ϵ =

Θ(κ2l /ϵ) in the last inequality.

In order to reach ϵ-stationary solution, we require K = O(κ3l ϵ
−1) and thus the (stochastic) gradient

complexity for f is Gf = 2K|B2| = O(κ5l ϵ
−2) and for g is Gg = KS|B1| = Õ(κ9l ζϵ

−2). The
complexity for cross-derivative is K|B3| = O(κ5l ϵ

−2).

E Proofs for Section 3.4

Proof of Theorem 3. We first give a complete proof for the Hessian inverse estimator as follows. For
the other estimators, we only provide a proof sketch.

Proof for HINV. (1) First, we derive the convergence under strong convexity using retraction. By
the trigonometric distance bound

d2(ys+1
k , y∗(xk))

≤ d2(ysk, y
∗(xk)) + ζd2(ysk, y

s+1
k )− 2⟨Exp−1

ys
k
ys+1
k ,Exp−1

ys
k
y∗(xk)⟩ys

k

≤ d2(ysk, y
∗(xk)) + η2yζc∥Gyg(xk, y

s
k)∥2ys

k
− 2⟨Exp−1

ys
k
ys+1
k − Retr−1

ys
k
ys+1
k ,Exp−1

ys
k
y∗(xk)⟩ys

k

+ 2ηy⟨Gyg(xk, y
s
k),Exp

−1
ys
k
y∗(xk)⟩ys

k

≤ d2(ysk, y
∗(xk)) + η2yζc∥Gyg(xk, y

s
k)∥2ys

k
+ 2ηy⟨Gyg(xk, y

s
k),Exp

−1
ys
k
y∗(xk)⟩ys

k

+ 2D̄∥Exp−1
ys
k
ys+1
k − Retr−1

ys
k
ys+1
k ∥ys

k

≤ d2(ysk, y
∗(xk)) + η2y(ζc+ 2D̄cR)∥Gyg(xk, y

s
k)∥2ys

k
+ 2ηy⟨Gyg(xk, y

s
k),Exp

−1
ys
k
y∗(xk)⟩ys

k

≤
(
1 + η2y(ζc+ 2D̄cR)L

2 − µηy
)
d2(ysk, y

∗(xk))

where we use Assumption 5 in the second inequality and fourth inequality. We require ηy <
µ

(ζc+2D̄cR)L2 in order to achieve linear convergence. For simplicity, we let τ = µηy−η2y(ζc+2D̄cR).

This leads to d2(ys+1
k , y∗(xk)) ≤ (1− τ)d2(ysk, y

∗(xk)).

(2) Next, we notice the bound on hypergradient approximation error still holds as ∥ĜhinvF (xk)−
GF (xk)∥xk

≤ Chinvd
(
y∗(xk), yk+1

)
, where Chinv = L + κρM + κlL + κlκρM . Further, by

L-smoothness,

F (xk+1)− F (xk)

≤ ⟨GF (xk),Exp−1
xk
xk+1⟩xk

+
LF

2
d2(xk, xk+1)
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≤ ⟨GF (xk),Exp−1
xk
xk+1 − Retr−1

xk
xk+1⟩xk

− ηx⟨GF (xk), ĜF (xk)⟩xk
+
cLF η

2
x

2
∥ĜF (xk)∥2xk

≤
(
2κlMcR +

cLF

2

)
η2x∥ĜF (xk)∥2xk

− ηx⟨GF (xk), ĜF (xk)⟩xk

≤ (4κlMcR + cLF )η
2
x∥ĜF (xk)− GF (xk)∥2xk

+ (4κlMcR + cLF )η
2
x∥GF (xk)∥2xk

+
ηx
2
∥GF (xk)− ĜF (xk)∥2xk

− ηx
2
∥GF (xk)∥2xk

= −
(ηx
2

− (4κlMcR + cLF )η
2
x

)
∥GF (xk)∥2xk

+
(ηx
2

+ (4κlMcR + cLF )η
2
x

)
∥GF (xk)− ĜF (xk)∥2xk

.

where in the third inequality, we bound ∥GF (xk)∥xk
≤M + L

µM ≤ 2LM
µ .

(3) Then we can bound

d2(yk, y
∗(xk)) ≤ 2d2(ySk−1, y

∗(xk−1)) + 2d2(y∗(xk), y
∗(xk−1))

≤ 2(1− τ)Sd2(y∗(xk−1), yk−1) + 2η2xκ
2
l c∥ĜhinvF (xk−1)∥2xk

≤ 2(1 + 2η2xκ
2
lC

2
hinvc)(1− τ)Sd2(y∗(xk−1), yk−1) + 4η2xκ

2
l c∥GF (xk−1)∥2xk−1

,

where the last inequality follows similarly as (9).

Let a Lyapunov function be Rk := F (xk) + d2(yk, y
∗(xk)). Then

Rk+1 −Rk

≤ −
(ηx
2

− (4κlMcR + cLF )η
2
x

)
∥GF (xk)∥2xk

+
(ηx
2

+ (4κlMcR + cLF )η
2
x

)
∥GF (xk)− ĜF (xk)∥2xk

+
((

(2 + 4η2xκ
2
lC

2
hinvc)(1− τ)S − 1

)
d2(y∗(xk), yk) + 4η2xκ

2
l c∥GF (xk)∥2xk

)
≤ −

(ηx
2

− (4κlMcR + cLF )η
2
x − 4η2xκ

2
l c
)
∥GF (xk)∥2xk

+
((

2 + C2
hinv(

ηx
2

+ (4κlMcR + cLF )η
2
x) + 4η2xκ

2
lC

2
hinvc

)
(1− τ)S − 1

)
d2(y∗(xk), yk)

≤ −
(ηx
2

− L̃F η
2
x

)
∥GF (xk)∥2xk

+
((

2 + C2
hinv(

ηx
2

+ L̃F η
2
x)
)
(1− τ)S − 1

)
d2(y∗(xk), yk)

≤ − 1

16L̃F

∥GF (xk)∥2xk

where we use κ2l c̄ ≤ LF c̄ and let L̃F := 4κlcRM + 5c̄LF in the second last inequality, and we
choose ηx = 1

4L̃F
, S ≥ log

(
16L̃F

32L̃F+3C2
hinv

)
/ log(1 − τ) = Θ̃(κ2l ζ), in the last inequality. Then

telescoping the results yields Finally, we sum over k = 0, ...,K − 1, which leads to

1

K

K−1∑
k=0

∥GF (xk)∥2xk
≤ 16L̃FR0

K
.

Thus in order to achieve ϵ-stationary solution, we require K = O(L̃F ϵ
−1) = O(κ3l ϵ

−1) and hence
the order of gradient and second-order complexities remain unchanged.

Extensions to other estimators. To extend the proof to other hypergradient estimators, we first
notice that the convergence of inner iterations for solving lower-level problems is agnostic to the
choice of hypergradient estimators, i.e.,

d2
(
ys+1
k , y∗(xk)

)
≤ (1− τ)d2

(
ysk, y

∗(xk)
)
, τ = µηy − η2y(ζc̄+ 2DcR).

(1) Hypergradient approximation error. For hypergradient estimator based on Hessian inverse,
conjugate gradient, truncated Neumann series, the hypegradient approximation error remains the
same as in Lemma 1, given no retraction is involved in the computation. That is,

• CG: ∥ĜcgF (xk)−GF (xk)∥xk
≤ Ccgd(y

∗(xk), yk+1)+2L
√
κl
(√

κl−1√
κl+1

)T ∥v̂0k−Γ
yk+1

y∗(xk)
v∗k∥yk+1

,

where Ccg = L+ κρM + L(1 + 2
√
κl)(κl +

Mκρ

µ ).
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• NS: ∥ĜnsF (xk)− GF (xk)∥xk
≤ Cnsd(y

∗(xk), yk+1) + κlM(1− γµ)T , where Cns = Chinv.

For hypergradient based on automatic differentiation (AD), we first show that there exists a con-
stant C4 (that depends on C3, c̄, cR) such that DxRetrx(u) = PRetrx(u)(id + Dxu) + E . with
∥E∥Retrx(u) ≤ C4∥Dxu∥x∥u∥x. Such a result can be derived by bounding the difference between
retraction and exponential map. Then we follow the analysis for Lemma 1 as follows. Given
ys+1
k = Retrys

k
(−ηyGyg(xk, y

s
k)), we have

Dxk
ys+1
k = Pys+1

k

(
(id− ηyHyg(xk, y

s
k))Dxk

ysk − ηyG2
yxg(xk, y

s
k)
)
+ Es

k

where ∥Es
k∥ys+1

k
≤ η2yC4

(
(1−ηyµ)C1+ηyL

)
∥Gyf(xk, y

s
k)∥ys

k
. The rest of the proof follows exactly

from Lemma 1, where we replace the convergence of inner iteration with the updated rate. This gives

∥ĜadF (xk)− GF (xk)∥xk

≤
( 2MC̃ ′

µ− ηy(ζc̄+ 2DcR)
+ L(1 + κl)

)
(1− τ)

S−1
2 d(yk, y

∗(xk)) +Mκl(1− ηyµ)
S ,

where C̃ ′ := (κl + 1)ρ+ (C2 + ηyC4)L
(
(1− ηyµ)C1 + ηyL

)
In summary

• AD: ∥ĜadF (xk)−GF (xk)∥xk
≤ Cad(1− τ)

S−1
2 d(yk, y

∗(xk))+Mκl(1−ηyµ)S , where Cad :=
2MC̃′

µ−ηy(ζc̄+2DcR) + L(1 + κl).

(2) Objective decrement. This part is also the same across all hypergradient estimators, i.e.,

F (xk+1)− F (xk)

≤ −
(ηx
2

− (4κlMcR + c̄LF )η
2
x

)
∥GF (xk)∥2xk

+
(ηx
2

+ (4κlMcR + c̄LF )η
2
x

)
∥GF (xk)− ĜF (xk)∥2xk

(3) Lyapunov function decrement. The definition of Lyapunov function depends on the choice of
hypergradient estimator.

For CG, we define Rk := F (xk) + d2(yk, y
∗(xk)) + ∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

. Then following similar
analysis, we first bound

d2(yk+1, y
∗(xk+1)) ≤ (2 + 8η2xκ

2
lC

2
cg)(1− τ)Sd2(y∗(xk), yk)

+ 32η2xκ
3
lL

2
(√κl − 1
√
κl + 1

)2T ∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥2yk+1

+ 4η2xκ
2
l c̄∥GF (xk)∥2xk

.

(19)

and

∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥yk+1

≤ 2
√
κl
(√κl − 1
√
κl + 1

)T ∥v̂0k−1 − Γyk

y∗(xk−1)
v∗k−1∥yk

+ 2
√
κl(κl +

Mκρ
µ

)(1− τ)
S
2 d(y∗(xk−1), yk−1)

+
∥∥v∗k − Γ

y∗(xk)
y∗(xk−1)

v∗k−1

∥∥
yk

+
2MC0D

µ
d(yk, y

∗(xk))

Then similarly,

∥v∗k − Γ
y∗(xk)
y∗(xk−1)

v∗k−1∥y∗(xk) ≤ Cvd(xk, xk−1)

≤ ηxc̄Cv∥ĜcgF (xk−1)− GF (xk−1)∥xk−1
+ ηxc̄Cv∥GF (xk−1)∥xk−1

where in the second inequality, we use the bound between retraction and exponential map as well as
triangle inequality. Then combining the above two results, gives

∥v̂0k − Γ
yk+1

y∗(xk)
v∗k∥2yk+1
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≤ 20κl
(√κl − 1
√
κl + 1

)2T ∥v̂0k−1 − Γyk

y∗(xk−1)
v∗k−1∥2yk

+ 20κl(κl +
Mκρ
µ

)2(1− τ)Sd(y∗(xk−1), yk−1)

+ 5c̄η2xC
2
v∥ĜcgF (xk−1)− GF (xk−1)∥2xk−1

+ 5c̄η2xC
2
v∥GF (xk−1)∥2xk−1

+
5M2C2

0D
2

µ2
d2(yk, y

∗(xk)).

Then we can show

Rk+1 −Rk

≤ −
(ηx
2

− η2xL̃F − 5η2xc̄C
2
v

)
∥GF (xk)∥2xk

+
(ηx
2

+ η2xL̃F + 5η2xc̄C
2
v

)
∥GF (xk)− ĜcgF (xk)∥2xk

+
(5M2C2

0D
2

µ2
+ 1

)
d2(yk+1, y

∗(xk+1)) +
(
20κl(κl +

Mκρ
µ

)2(1− τ)S − 1
)
d2(y∗(xk), yk)

+
(
20κl

(√κl − 1
√
κl + 1

)2T − 1
)
∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

≤ −
(ηx
2

− 6η2xΛ̃
)
∥GF (xk)∥2xk

+
(ηx
2

+ 6η2xΛ̃
)
∥GF (xk)− ĜcgF (xk)∥2xk

+
(((5M2C2

0D
2

µ2
+ 1

)
(2 + 8η2xκ

2
lC

2
cg) + 20κl

(
κl +

Mκρ
µ

)2)
(1 + η2yζL

2 − ηyµ)
S − 1

)
d2(yk, y

∗(xk))

+
((

32η2xκ
3
lL

2(
5M2C2

0D
2

µ2
+ 1) + 20κl

)(√κl − 1
√
κl + 1

)2T − 1
)
∥v̂0k − Γ

yk+1

y∗(xk)
v∗k∥2yk+1

≤ − 1

96Λ̃
∥GF (xk)∥2xk

where we let Λ̃ := C2
v c̄ + κ2l (

5M2C2
0D

2

µ + c̄) and without loss of generality L̃F ≤ Λ̃. The second
inequality is by (19). The last inequality is by appropriately choosing S, T , which is on the same
order as the exponential map case. Then telescoping the result yields

1

K

K−1∑
k=0

∥GF (xk)∥2xk
≤ 96Λ̃R0

K
.

For NS, we define Rk = F (xk) + d2(yk, y
∗(xk)) and derive

d2(yk+1, y
∗(xk+1)) ≤ 2(1− τ)Sd2(y∗(xk), yk) + 4η2xκ

2
l c̄∥ĜnsF (xk)− GF (xk)∥2xk

+ 4η2xκ
2
l c̄∥GF (xk)∥2xk

Then we can follow exactly the same proof as HINV that

1

K

K−1∑
k=0

∥GF (xk)∥2xk
≤ 16L̃FR0

K
+
ϵ

2

by appropriately choosing S, T and ηx.

For AD, we define Rk := F (xk) + d2(yk, y
∗(xk)). Then following the same analysis except for the

choice of S, we can show,

1

K

K−1∑
k=0

∥GF (xk)∥2xk
≤ 16L̃FR0

K
+
ϵ

2

Thus the proof is now complete.

F Tangent space conjugate gradient

In Algorithm 3, we show the tangent space conjugate gradient algorithm for solving the linear system
H[v] = G. Similar to [40], we set the initialization to be the transported output of v̂Tk−1 from last
iteration, where v̂T−1 = 0, which is beneficial for convergence analysis. For practical purposes, we
notice setting v0 = 0 provides sufficient accurate solution without the expensive parallel transport
operation.
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Algorithm 3 Tangent space conjugate gradient TSCG(H,G, v0, T )

1: Set r0 = G ∈ TxM, p0 = r0.
2: for t = 0, ..., T − 1 do
3: Compute r̄t+1 = H[vt].
4: αt+1 =

∥rt∥2
x

⟨pt,H[pt]⟩x .
5: vt+1 = vt + αt+1pt.
6: rt+1 = rt − αt+1H[pt].
7: βt+1 =

∥rt+1∥2
x

∥rt∥2
x

.
8: pt+1 = rt+1 + βt+1pt.
9: end for

10: Output: vT

Algorithm 4 Riemannian bilevel solver for min-max optimization

1: Initialize x0 ∈ Mx, y0 ∈ My .
2: for k = 0, ...,K − 1 do
3: y0k = yk.
4: for s = 0, ..., S − 1 do
5: ys+1

k = Expys
k
(−ηy Gyg(xk, y

s
k)).

6: end for
7: Update xk+1 = Expxk

(
− ηxGxf(xk, yk+1)

)
, where yk+1 = ySk .

8: end for

G Extensions: on Riemannian mix-max and compositional optimization

The bilevel optimization considered in the paper (1) generalizes the two other widely studied problems,
namely the min-max optimization and compositional optimization.

G.1 Min-max optimization on Riemannian manifolds

Riemannian min-max problems have gained increasing interest over the recent years [37, 41, 27, 73,
67, 25, 56, 35], which takes the form of

min
x∈Mx

max
y∈My

f(x, y),

and can be seen as a special case of bilevel optimization problem (1) where g(x, y) = −f(x, y).
Because the problem is nonconvex in x, the order of minimization and maximization matters [73, 25].
Nevertheless, under the assumption where f is geodesic strongly convex in y, the optimal solution x∗
satisfies GF (x∗) = 0, where GF (x) = Gxf(x, y

∗(x)) due to Gyf(x, y
∗(x)) = Gyg(x, y

∗(x)) = 0.
Thus Algorithm 1 reduces to alternating gradient descent ascent over Riemannian manifolds, as
outlined in Algorithm 4.

Here we adapt the convergence analysis to the min-max optimization setting. Given we no longer
require second-order derivatives, we restate assumptions for functions f , g below.

Assumption 6. (1) Assumption 1 holds. (2) Function f(x, y), g(x, y) have L-Lipschitz Riemannian
gradients. (3) Further, g(x, y) is µ-geodesic strongly convex in y.

Under the min-max setup and Assumption 6, we see GF (x) = Gxf(x, y
∗(x)) and thus the Lipschitz

constant can be derived as LF = (κl + 1)L = Θ(κl). Further we can directly apply Theorem 1 for
the Hessian inverse with Chinv = L, which leads to the following convergence result.

Theorem 4. Under Assumption 6, choosing S ≥ Θ̃(κ2l ζ), ηx = 1
20LF

, we have

mink=0,...,K−1 ∥GF (xk)∥2xk
≤ 80(κl+1)L∆0

K and to reach ϵ-stationary solution, we require gra-
dient complexities as Gf = O(κlϵ

−1) and Gg = Õ(κ3l ζϵ
−1).
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G.2 Compositional optimization on Riemannian manifolds

Compositional problems on Riemannian manifolds have been considered in [36, 70], which requires
to solve

min
x∈Mx

ψ(ϕ(x)), (20)

where ψ : My → R and ϕ : Mx → My. It is worth noting that in both works [36, 70], the inner
function ϕ : Mx → Rd is vector-valued. In contrast, we consider a general manifold-valued function
ϕ. Because the function ϕ can be potentially complex and may be stochastic, we follow [11] to
reformulate (20) into a bilevel optimization problem by letting

f(x, y) := ψ(y∗(x)), s.t. y∗(x) = argmin
y∈My

{g(x, y) := 1

2
d2(ϕ(x), y)}.

As long as the squared Riemannian distance is geodesic strongly convex, the reformulation is
equivalent to the original problem (20). As formally stated in Lemma 9, this is satisfied for non-
positively curved space, like Euclidean space, hyperbolic manifold, SPD manifold with affine invariant
metric. For positively curved space, the strong convexity is guaranteed when restricting the domain
relative to the curvature.
Lemma 9. Let U ⊆ M has sectional curvature lower and upper bounded by κ− and κ+ respectively.
Further U has diameter upper bounded by D̄, which satisfies D̄ < π√

κ+
if κ+ > 0. Then let δ = 1

when κ+ ≤ 0 and δ =
√
κ+D̄

tan(
√
κ+D̄)

when κ+ > 0 and consider ζ be the same curvature constant as

in Lemma 3. Then function Hyg(x, y) has Riemannian Hessian bounded within [δ, ζ] in spectrum.

Proof of Lemma 9. The proof follows from Lemma 2 in [3]. Consider an arbitrary curve γ : [0, 1] →
M, and let f(x) = 1

2d
2(x, p), for some p ∈ M. From [3], we know that Hf(γ(t))[γ′(t)] =

−∇γ′(t)Exp
−1
γ(t)(p) and under the conditions, δ∥γ′(t)∥2γ(t) ≤ ⟨∇γ′(t)Exp

−1
γ(t)(p),−γ

′(t)⟩γ(t) ≤
ζ∥γ′(t)∥2γ(t), where we denote ∇ as the covariant derivative. This immediately leads to

δ∥γ′(t)∥2γ(t) ≤ ⟨γ′(t),Hf(γ(t))[γ′(t)]⟩γ(t) ≤ ζ∥γ′(t)∥2γ(t)
which completes the proof.

Thus, for positively curved manifold, if D̄ < π

2
√
κ+

, we have δ > 0, which ensures geodesic strong

convexity of the inner problem. As shown in Lemma 12 in [3], Gyd
2(ϕ(x), y) = 2Exp−1

y ϕ(x) and
the Riemannian gradient descent on y lead to

ys+1
k = Expys

k

(
− ηyExp

−1
ys
k
ϕ(xk)

)
,

which suggests ys+1
k lies on a geodesic that connects ysk and ϕ(xk). When S = 1 and when the

lower-level function g is vector-valued, the algorithm recovers the deterministic version of SCGD
[66].

However, unlike in the Euclidean space, the Riemannian Hessian does not simplify to the identity
operator, but rather the covariant derivative of inverse exponential map and the cross derivatives
G2
xyg(x, y) ̸= −(Dϕ(x))†.

Assumption 7. (1) Assumption 1 holds and further D̄ < π

2
√
κ+

if κ+ > 0. (2) Function f(x, y) has
Riemannian gradients that are bounded by M and are L-Lipschitz. (3) Function g has ρ-Lipschitz
Riemannian Hessian and cross derivatives.

We notice that for function g we only require second-order derivatives to be Lipschitz because the
first-order Lipschitzness can be inferred from Lemma 9.
Theorem 5. Under Assumption 7, Theorem 1 holds with L = ζ, µ = δ.

To prove the convergence, we only need to show Lemma 4 holds. It can be readily proved from
Lemma 9 and Assumption 7 that Lemma 4 holds with L = ζ, µ = δ. Hence the convergence follows
directly.
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H Experimental details

H.1 Synthetic problem

We first verify the lower-level problem is geodesic strongly convex.

Proposition 4. For any A,B ≻ 0, function f(M) = ⟨M,A⟩+ ⟨M−1,B⟩ is µ-geodesic strongly
convex in U ⊂ Sd++ with µ = λa,−λ− +

λb,−λ−
λ2
+

, where λa,−, λb,− are the minimum eigenvalue of
A,B and λ± are the bounds for maximum and minimum eigenvalues for M ∈ U .

The inverse of Riemannian Hessian of function f(M) = ⟨M,A⟩+ ⟨M−1,B⟩ is derived as, for any
symmetric U, H−1f(M)[U] = M1/2GM1/2 where G is the solution to the Lyapunov equation
G(M1/2AM1/2 +M−1/2BM−1/2) + (M1/2AM1/2 +M−1/2BM−1/2)G = M−1/2UM−1/2.

Proof of Proposition 4. We first derive the Euclidean gradient and Hessian as

∇f(M) = A−M−1BM−1, ∇2f(M)[U] = M−1UM−1BM−1 +M−1BM−1UM−1

for any U = U⊤. The Riemannian gradient and Hessian are derived as

Gf(M) = MAM−B

Hf(M)[U] = UM−1B+BM−1U+ {U∇f(M)M}S

= UM−1B+BM−1U+
1

2

(
UAM−UM−1B+MAU−BM−1U

)
=

1

2

(
UAM+MAU+UM−1B+BM−1U

)
where we let {A}S = (A+A⊤)/2. To show the function is geodesic strongly convex, it suffices
to show Hf(M) is positive definite, which is to show ⟨Hf(M)[U],U⟩M ≥ µ∥U∥2M > 0 for any
U = U⊤. To this end, we vectorize the Riemannian Hessian in terms of U as vec(2Hf(M)[U]) =
(MA⊗ I+ I⊗MA+BM−1 ⊗ I+ I⊗BM−1)vec(U), where ⊗ denotes the Kronecker product.
Then, we have

⟨Hf(M)[U],U⟩M
= tr(M−1UM−1Hf(M)[U])

=
1

2
vec(U)⊤(M−1 ⊗M−1)(MA⊗ I+ I⊗MA+BM−1 ⊗ I+ I⊗BM−1)vec(U)

=
1

2
vec(U)⊤(A⊗M−1 +M−1 ⊗A+M−1BM−1 ⊗M−1 +M−1 ⊗M−1BM−1)vec(U)

≥ (λa,−λm,− +
λb,−λm,−

λ2m,+

)vec(U)⊤(M⊤ ⊗M−1)vec(U) = µ∥U∥2M,

where we let λa,± be the maximum/minimum eigenvalues of A and similarly for λb,±, λm,±.

The Hessian inverse can be derived subsequently. This completes the proof.

H.2 Computational time for each hypergradient estimator

This section report the average runtime in seconds (over 10 runs) for single evaluation of hypergradient
using four different strategies (for Hypergradient estimation) for the synthetic problem (Section 4.1,
Figure 1). The hyper-parameters are set to be the same as the main experiment. We see in general
automatic differentiation (AD) is the most efficient strategy. Nevertheless, according to Figure 1(a), it
is less accurate compared to other strategies.

Table 3: Comparison of runtime for single computation of hypergradient.
HINV CG NS AD
0.0154 0.1037 0.1030 0.0053
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H.3 Hyperparameter selection

The selection of hyper-parameters is performed to reflect the best performance. The stepsize is
selected from the range [1e-3, 5e-3, 1e-2, 5e-2, 1e-1, 5e-1, 1] and for Neumann series is selected from
[0.1, 0.5, 1.0, 1.5, 2.0] and number of inner iterations is selected from [5, 10, 30, 50, 100]. Figure
1(d) shows the sensitivity of hypergradient error as we vary and the number of inner iterations.

H.4 Computational Complexity

This section lists out the computational complexity for each task considered in the experiment
section. In Table 4, we present an estimate of the per-iteration complexity of computing the gradient,
Hessian/Jacobian-vector products. We highlight that we only provide estimates of the complexities
given that there may not exist closed form expressions for the gradient and second-order derivatives.

Here, nv, nt denote the size of validation set and training set respectively. For meta learning, m
denotes the number tasks and n denotes the number of samples for each task. For domain adaptation,
m,n denote the number of samples for two domains, s denotes the number of Sinkhorn iterations.

Table 4: Per-iteration complexity estimate for each task
Hyper-rep (shallow) Meta learning Domain adaptation

x size d× r d× r m× n
y size r(r + 1)/2 d× r d× d
Gf O(nvd

2r + nvr
3) O(mnd2r) O(smn)

Gg O(ntr
4) O(mnd2r) O(d3 +md2 + nd2)

JVg O(nt(r
4 + d2r)) O(mnd2r) O(d3 +md2 + nd2 + smn)

HVg O(ntr
4) O(mndr2) O(d3 +md2 + nd2)

I Experiment Configurations

All the experiments are conducted on a single NVIDIA RTX 4060 GPU. All datasets used in the
paper are publicly available, which are properly cited in the main paper. We include detailed setups
for the experiments in the main paper as well as documented in code (provided as supplementary
material).

J Broader Impact

This paper proposes new algorithms and are of theoretical in nature. We do not foresee any immediate
negative societal impact that we feel obliged to report.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to Section 3 for theoretical developments and Section 4 for
empirical studies.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include discussions of limitations in the conclusion section, i.e., Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have included all the assumptions and complete proof in the paper. Please
refer to Section 3 and Section C, D, E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the implementation details for reproducing the experiments,
along with the code in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the code and data as supplementary material to ensure
reproducibility.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included the details in the experiment section.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported standard deviation in Figure 2(b) and (c). For Figure 1,
the results barely change as we vary the random seed. For Riemannian meta learning, it
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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error rates).
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they were calculated and reference the corresponding figures or tables in the text.
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Answer: [Yes]
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of execution in Appendix H.2.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]

Justification: The paper conform, in every respect, with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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Answer: [Yes]
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release data or models that have high risks for misuse.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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• The answer NA means that the paper does not use existing assets.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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