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Abstract. Most existing action recognition models are large convolu-
tional neural networks (CNNs) that work only with raw RGB frames as
input. However, practical applications require lightweight models that
directly process compressed videos. In this work, for the first time, such
a model is developed, which is lightweight enough to run in real-time
on embedded AI devices (e.g., 40FPS on a Jetson TX2) without sac-
rifices in recognition accuracy. Compared to existing compressed video
action recognition models, it is much more compact and faster thanks to
adopting a lightweight CNN backbone. Further, a number of novel com-
ponents are introduced to improve the effectiveness of the model: (1) A
new Aligned Temporal Trilinear Pooling (ATTP) module is formulated
to fuse three modalities in a compressed video namely I-frames, motion
vectors, and residuals. (2) To remedy the weaker motion vectors (com-
pared to optical flow computed from raw RGB streams) for representing
dynamic content, we introduce a temporal fusion method to explicitly in-
duce the temporal context, as well as knowledge distillation from a model
trained with optical flows via feature alignment. Importantly, in contrast
to existing models that either ignore B-frames or use them incorrectly,
our ATTP model employs correct but more complicated B-frame model-
ing, thus being compatible with a wider range of contemporary codecs.
Extensive experiments show that our ATTP outperforms the state-of-
the-art alternatives in both efficiency and accuracy.

Keywords: Lightweight action recognition, compressed videos, tempo-
ral trilinear pooling, knowledge distillation.

1 Introduction

Video analysis has drawn great attention from the computer vision commu-
nity recently due to an increasing demand for automated video content under-
standing. In particular, videos account for more than 75% of the global IP traf-
fic everyday [11]. With the advancements of deep learning methods, promising
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performance has been achieved on a variety of video analysis tasks, including
action recognition [19,32,6,37,10,40,8,9,2,29,38,39,42,46,51,7,41], semantic seg-
mentation [24,17], action localization [26,1], and deception detection [5,48].

However, existing convolutional neural network (CNN) based video analysis
models still do not meet the requirements of many real-world applications. This
is primarily due to two reasons. First, videos such as those on social media
sites like YouTube or on smartphones are stored in a compression format to
save space. Nevertheless, most existing models work only with uncompressed
raw RGB frames. This means that the compressed videos must be decoded first,
leading to extra costs on both processing time and storage. Second, most deep
video models, based on either two-streams [32,40] or 3D CNNs [37,2,29] are
slow (e.g., with high latency for calculating optical flows) and heavy (having
a large number of parameters), therefore unsuitable for either processing the
vast amount of videos produced everyday, or running on embedded AI devices
(e.g., smartphones). Although there are some recent efforts on lightweight video
models [3,25], these models do not work on compressed videos.

Recently, researchers start to address the problem of compressed video action
recognition [45,30,49,50]. These models take compressed videos (e.g., MPEG-4)
directly as input. Such a video contains only a few key frames and their offsets
(i.e., motion vectors and residual errors) for storage reduction. However, none of
these models is lightweight, and thus they still incur high latency and cannot run
on embedded AI devices for edge computing. Apart from the efficiency limitation,
existing models are also ineffective due to the fact that they either ignore B-
frames or use them incorrectly for extracting motion vectors and residuals. This
is despite the fact that in most video bit-streams, most of the frames (more than
60%) are encoded as B-frames to achieve the best compression rate.

In this paper, for the first time, a challenging video analysis task, called
Lightweight Action Recognition in Compressed Videos, is tackled to fill a gap in
video analysis – to the best of our knowledge, this task has not been studied
before. The key challenges of lightweight compressed video action recognition
are: 1) how to design a lightweight yet highly effective deep CNN model for ac-
tion recognition; 2) how to extract meaningful representations from compressed
videos that contain far less information than the raw RGB frames.

To address these challenges, we propose a lightweight model for compressed
video action recognition. Specifically, we adopt EfficientNet [36] as the back-
bone network to process the multiple modalities extracted from a compressed
video (including RGB I-frames I, motion vectors MV, and residuals R). To fuse
these modalities, we propose a novel Aligned Temporal Trilinear Pooling (ATTP)
scheme to exploit the complementary information contained in them. To remedy
the weaker motion vectors (compared to optical flow computed from raw RGB
streams) for representing the dynamic content, we introduce a temporal fusion
method to induce the temporal context explicitly. Further, since motion vectors
are much coarser than optical flow vectors, we adopt a knowledge distillation
strategy via feature alignment between our model and a model trained with op-
tical flow extracted from uncompressed videos. Finally, we overcome a limitation
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Fig. 1. Efficiency and accuracy comparison among various compressed video action
recognition methods on the benchmark dataset HMDB-51 [23] with the same platform
(i.e., Dell R730). State-of-the-art baselines include DMC-Net [30], CoViAR [45] and
DTMV-CNN [50]. The node size denotes the model size (parameters).

of existing models [45,30,49,50] in that they either ignore the B-frames or utilize
them incorrectly. This is because computing motion vectors and residuals from
the B-frames is far more challenging than from the alternatives (i.e., P-frames).
In this work, by employing correct but more complicated B-frame modeling, our
proposed model is applicable to all modern video codecs (e.g., H.264 & HEVC).
The result of introducing these new components is a lightweight yet powerful ac-
tion recognition model: it outperforms the state-of-the-art alternatives in both
efficiency and accuracy, as shown in Fig. 1.

Our contributions are four-fold: (1) For the first time, we address the chal-
lenging problem of lightweight compressed video action recognition. (2) We pro-
pose a trilinear pooling module for fusing the multiple modalities extracted from
compressed videos. (3) To work with the weak motion vectors, we propose a tem-
poral fusion method to explicitly induce the temporal context, and also boost the
backbone trained with motion vectors by distillation with feature alignment. (4)
We are the first to exploit both B-frames and P-frames from compressed videos
in the correct manner, making our model more compatible with contemporary
video codecs. The efficiency test on a fast embedded AI computing device (i.e.,
Jetson TX2) indicates that our ATTP model can perform video action recog-
nition at about 40FPS (see Table 1). Moreover, as shown in Fig. 1, our ATTP
model achieves the best performance but with significantly fewer parameters, as
compared to the state-of-the-art methods. This observation is supported by the
extensive results reported on two benchmarks widely used for action recognition
(see Table 2). To our best knowledge, the proposed model is the first end-to-end
lightweight one that can perform real-time action recognition on resource-limited
devices without sacrifices in recognition accuracy.
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2 Related Work

Conventional Video Action Recognition Most recent action recognition
models [19,32,6,37,10,40,8,9,2,29,38,39,42,46,51,7,41] are based on large CNNs
[22]. One of the early models is the two-stream network [32], which is proposed
to utilize two CNNs to model raw video frames and optical flow, respectively.
Various improved versions [32,40,10,8,9], such as the Temporal Segment Network
(TSN) [40], are designed to capture the long-range temporal structure, but they
still rely on the optical flow stream, which is expensive to compute. C3D [37]
is proposed to model the temporal structure with 3D CNNs. It avoids using
optical flow as input. However, it is still much larger than a 2D CNN due to the
3D convolution operations. I3D [2] integrates 3D convolution into a two-stream
network and benefits from 2D CNN pre-trained by inflating 2D CNN into a 3D
one. One of the key limitations of these models is that they are too heavy for
efficient large-scale video analysis. This is particularly true when most videos are
stored in compression formats (e.g., MPEG-4 [31] & H.264 [44]), and thus need
to be decoded first for these models to run. The recent efforts on lightweight
action recognition model design [3,51,25] only partially address the problem,
but still cannot work with compressed videos directly. In contrast, our model is
lightweight and also addresses the compressed video action recognition problem.
Compressed Video Action Recognition Due to the limitation of stor-
age space and transfer speed, videos are generally stored and transmitted in a
compressed data format. The compression standards, including MPEG-4 [31],
H.264/AVC [44], and HEVC [35] (listed in chronological order), commonly use
the motion compensation technique that reduces the video data size based on mo-
tion estimation from adjacent frames. There are several approaches that leverage
useful information from compressed videos for the action recognition task. [18]
developed highly efficient video features using motion information based on
handcrafted features. DTMC-CNN [49,50] distills the knowledge from optical
flows to motion vectors, but the raw video frames are still used for action recogni-
tion. CoViAR [45] takes only compressed videos as input, but the whole training
process is not end-to-end since multiple modalities are handled separately. Re-
cently, DMC-Net [30] improves CoViAR [45] and achieves state-of-the-art results
by adding an optical flow generation network, but both models [45,30] employ
the large ResNet-152 [13] as the CNN backbone, which has too many parame-
ters with very high computational cost. Note that both DMC-Net and CoViAR
ignore B-frames when extracting motion vectors from compressed videos, while
B-frames cover more than 60 percent of total frames in videos. They need to
make transformation into old codecs and thus are not compatible with most re-
cent video codecs. Compared to these models, our proposed model is much more
lightweight yet more effective in terms of recognition accuracy. It is also more
generally applicable by correctly exploiting both B-frames and P-frames. Note
that DTMV-CNN [50] also uses B-frames, but in an incorrect way by treating
B-frames as P-frames and only considers forward reference. Further, it needs ac-
cess to both raw and compressed videos to compute motion vectors. In contrast,
using compressed videos alone, our ATTP is clearly superior (see Fig. 1).
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Fig. 2. (a) A modern GOP structure (I-B-B-P-B-B· · · ), which is capable of getting a
high amount of data compression. (b) An outdated GOP structure (I-P-P-P-P-P· · · ),
which consists of only P-frames and is not used today. Bold arrows denote reference
dependencies, and thin arrows denote time flows (from left to right).

Multi-Modal Pooling Pooling methods are required in two-stream networks
[32,40] as well as other feature fusion models. [40] utilizes average pooling. [27]
proposed bilinear pooling to model local parts of an object: two feature repre-
sentations are learned separately and then multiplied using the outer product to
obtain the holistic representation. [43] combines the two-stream network with a
compact bilinear representation [12]. However, most of existing pooling models
can combine only two features, while in compressed videos, more than two modal-
ities exist. To address such a challenging problem, we propose a novel Aligned
Temporal Trilinear Pooling module to exploit the complementary information
contained in the three modalities extracted from compressed videos.

Lightweight Neural Networks Recently, lightweight neural networks includ-
ing SqeezeNet [16], Xception [4], ShuffleNet [28], MobileNet [15] and Efficient-
Net [36] have been proposed, with the number of parameters and computational
cost being reduced significantly. Since we focus on lightweight action recognition,
they all can be used as the backbone network. In this work, EfficientNet [36]
is selected. Note that a lightweight backbone typically leads to performance
degradation in action recognition, and hence the temporal fusion and knowledge
distillation model designs are introduced in our ATTP model.

3 Methodology

3.1 Modeling Compressed Representation

Modern compression codecs use motion compensation to convert successive
raw video frames into several groups of pictures (GOPs), where each GOP con-
tains one I-frame (Intra-coded frame), one or more P-frames (Predicted frames),
and one or more B-frames (Bi-directional predicted frames). From Fig. 2 (a),
we can see an example GOP frame pattern used by modern compression codecs.
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I-frame (I) is the first frame in the GOP, which is compressed with image com-
pression codecs (e.g., JPEG). P-frames hold the changes in the images w.r.t. the
preceding frame and thus save the storage space, while B-frames save even more
space by using differences between the current frame and both the preceding and
following frames to represent their content. Consequently, images from B-frames
and P-frames are stored in a compressed format and are reconstructed using
these encoded offsets, namely motion vectors (MV) and residuals (R). Let x,
y, and z denote the coordinates in the three dimensions. The relation between
video frames, motion vectors, and residuals can be formalized as:

gI(x, y, z) = fI(x, y, z)

gP(x, y, z) = fPref
(x+mvP(x, y, 0), y +mvP(x, y, 1), z) + rP(x, y, z)

gB(x, y, z) = fBref
(x+mvB(x, y, 0), y +mvB(x, y, 1), z) + rB(x, y, z),

(1)

where gF ∈ Rh×w×3 denotes the reconstructed image of the F-frame (F = I, P,
or B) and fF ∈ Rh×w×3 denotes its counterpart in raw image, with h and w
being respectively the height and width. Moreover, mvP (or mvB) ∈ Rh×w×2

describes the predicted block-level motion trajectories from the reference frame
to the current P-frame (or B-frame). For each position (x, y) in mv, mv(x, y, 0)
and mv(x, y, 1) depict the horizontal and vertical movements. In addition, rP (or
rB) ∈ Rh×w×3 is the RGB-like image describing the residual error between the
original P-frame (or B-frame) and its predicted frame. fPref

and fBref
are frames

referenced by P-frames and B-frames. fPref
denotes the previous I or P-frame

of the current P-frame, and its motion vector contains only backward reference.
Note that B-frame has both forward and backward motion information, and
different codecs choose different fPref

. Since both MV and R are available in
compressed videos, we can readily extract them.

However, since B-frames require a higher computational cost to compress
than P-frames, earlier codecs such as MPEG-4 [31] use only P-frames for low-cost
applications by default, where P-frames substitute all B-frames since they are ca-
pable of getting the highest computational efficiency (see Fig. 2 (b)). Because of
the complicated modeling of B-frames, existing compressed video action recog-
nition works [45,30] extract motion vectors and residual representations from
only P-frames and thus are only applicable to the outdated MPEG-4 standard,
and Zhang et al. [49,50] simply treat B-frames as P-frames. All these methods
only consider forward reference, and at least half of the temporal information is
thus ignored. When applied to the modern video codecs such as H.264 [44] and
HEVC [35], these methods cannot take advantage of both forward and backward
motion information induced by B-frames, which thus limits their performance.
Note that CoViAR [45] and DMC-Net [30] even need to re-encode the com-
pressed videos using the MPEG-4 codec for avoiding handling B-frames, which
leads to extra cost on both processing time and storage.

3.2 Lightweight Video Action Recognition with Multiple Modalities

We now formally define the lightweight video action recognition problem
as follows. Given the three modalities (i.e., I, MV, and R) extracted from a
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Fig. 3. (a) Overview of our Aligned Temporal Trilinear Pooling (ATTP). Note that
optical flow is only used at the training phase, but not at the test phase. (b) Complete
design of the Trilinear Pooling (TP) module.

compressed video, our goal is to perform high-speed action recognition using a
model with fewer parameters. Recent works utilize different CNNs to process
the modalities independently. For example, in [45], ResNet-152 [13] is used to
process I, which is effective but has extremely high computational cost and
require large storage space (see Table 1). In this paper, we adopt a lightweight
network LiteNet instead: LiteNetI , LiteNetMV , and LiteNetR take I, MV, and
R as inputs, respectively. Each of them has the same EfficientNet [36] network
architecture. Note that the three modalities are only fused at the test phase
in [45], and by doing so, the interactions between different modalities are not
fully explored during training for action recognition. More effective multi-modal
fusion is thus needed. To that end, we propose our Aligned Temporal Trilinear
Pooling (ATTP) framework (see Fig. 3(a)), which is detailed next.

3.3 Trilinear Pooling

We propose a novel trilinear pooling module to model three-factor variations
together. This is motivated by bilinear pooling models [27,47], which are initially
proposed to model two-factor variations, such as “style” and “content”. For
lightweight video action recognition, we generalize the bilinear pooling method
to fuse the three modalities extracted from compressed videos.

Specifically, a feature vector is denoted as x ∈ Rc, where c is the dimensions
of the feature x. The bilinear combination of two feature vectors with the same
dimension x ∈ Rc and y ∈ Rc is defined as xyT ∈ Rc×c [27]. In general, given two
representation matricesX = [x1;x2; · · · ;xK ] ∈ Rc×K and Y = [y1; y2; · · · ; yK ] ∈
Rc×K for two frames, a pooling layer takes the following bilinear combination:

fBP(X,Y ) =
1

K

K∑
i=1

xiy
T
i =

1

K
XY T. (2)

It can be seen clearly that the above bilinear pooling allows the outputs (X
and Y ) of the feature extractor to be conditioned on each other by considering all
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their pairwise interactions in the form of a quadratic kernel expansion. However,
this results in very high-dimensional features with a large number of parameters
involved. To address this problem, Multi-modal Factorized Bilinear (MFB) [47]
introduces an efficient attention mechanism into the original bilinear pooling
based on the Hadamard product. Let D be the number of projection matrices.
The MFB model w.r.t. projection i (i = 1, ..., D) is defined as:

fMFB(x, y)i = xTUiV
T
i y = 1

T(UT
i x� V T

i y), (3)

where Ui ∈ Rc×d and Vi ∈ Rc×d are projection matrices, � is the Hadamard
product, 1 ∈ Rd is an all-one vector, and d denotes the dimension of these
factorized matrices. Therefore, we only need to learn U = [U1;U2; · · · ;UD] ∈
Rc×d×D and V = [V1;V2; · · · ;VD] ∈ Rc×d×D.

Inspired by MFB, we propose a novel trilinear pooling method, which aims to
fuse three feature vectors (x, y, and z). Unlike bilinear pooling that can combine
only two feature vectors, our Trilinear Pooling method fuse x, y and z using the
Hadamard product:

fTP(x, y, z) = 1
T(UTx� V Ty �WTz), (4)

where W is also a projection matrix W = [W1;W2; · · · ;WD] ∈ Rc×d×D, and fTP

denotes the output of trilinear pooling. Note that our trilinear pooling becomes
MFB if all elements in W and z are fixed as 1. When the inputs are generalized
to feature maps (i.e., X = [xi], Y = [yi], Z = [zi] ∈ Rc×K), every position of
these feature maps makes up one group of inputs, and the outputs of them are
summed element-wised as follows:

fTP(X,Y, Z) =

K∑
i=1

fTP(xi, yi, zi). (5)

We thus utilize trilinear pooling to obtain the multi-modal representation of the
t-th GOP by fusing I-frame It, motion vector MVt and residual Rt (see Fig. 3(b)):

fTP(It,MVt,Rt) =

K∑
i=1

fTP(It,i,MVt,i,Rt,i), (6)

where It, MVt and Rt are the output feature maps from LiteNetI , LiteNetMV

and LiteNetR, respectively. We set LiteNet as EfficientNet. For each GOP t,
the I-frame is selected as It, while one MVt and one Rt are randomly selected.
As in [21], the trilinear vector is then processed with a signed square root step
(f ← sign(f)

√
|f |), followed by l2 normalization (f ← f/||f ||).

3.4 Temporal Trilinear Pooling

Motion vector is initially introduced to represent the temporal structure as
the optical flow does. However, compared to the high-resolution optical flow, mo-
tion vector is much coarser: Since it only describes the movement on macroblock-
level (e.g., 16*16 pixels), all values within the same macroblock are identical. Al-
though we have proposed to use trilinear pooling to address this drawback, the
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temporal information still needs to be explicitly explored. We note that, because
residuals represent the difference between frames, they are strongly correlated
with motion vectors. Therefore, we propose to model the motion vectors and the
residuals jointly. Note that the fusion of It, MVt and Rt within only one GOP
is not enough to capture the temporal information. We thus further choose to
include the adjacent GOP’s information. Specifically, in addition to calculating
fTP(It,MVt,Rt) by trilinear pooling, we also combine MVt and Rt with It+∆t
(i.e., the I-frame in the adjacent GOP). The output of temporal trilinear pooling
(TTP) is defined as (see Fig. 3(a)):

fTTP(t) = fTP(t, 0) + fTP(t,∆t), (7)

where fTP(t,∆t) denotes fTP(It+∆t,MVt,Rt) for notation simplicity. In this
paper, we sample the offset ∆t from {−1, 1} during the training stage. Dur-
ing the test stage, ∆t is fixed as 1 for the first GOP and −1 for other GOPs.
This temporal fusion method solves the temporal representation drawback with-
out introducing extra parameters, which is efficient and lightweight. The TTP
representation is further put into a fully connected layer to calculate the classi-
fication scores s(t) = PT fTTP(t), where P ∈ RD×C is learnable parameters and
C is the number of categories.

3.5 Feature Alignment

Since motion vectors can only be regarded as a blurred version of optical flow,
we choose to boost them with optical flow by feature alignment based knowl-
edge distillation. Specifically, we employ another lightweight network LiteNetOF
which takes optical flow information as input, and align the features generated
by LiteNetMV to those by LiteNetOF , as illustrated in Fig. 3(a). Different from
the original method [14] that transfers knowledge from complex models to simple
models, our feature alignment sets LiteNetMV and LiteNetOF to be the same
lightweight network. Notably, we find that our feature alignment performs bet-
ter than conventional knowledge distillation based on classification probability
alignment. Moreover, our feature alignment is also much more efficient in the
training phase since we do not need a large CNN as a teacher.

Our feature alignment module tries to minimize the difference between fea-
tures generated by LiteNetMV and those by LiteNetOF . Note that Zhang et
al. [49,50] utilized all layers for knowledge distillation from the teacher network
to the student network, while we only exploit features before the fully-connected
(FC) layer and those after the FC layer for feature alignment (which is more

efficient and thus more suitable for lightweight action recognition). Let f
(3d)
MV (or

f
(3d)
OF ) be features before the FC layer of LiteNetMV (or LiteNetOF ) and f

(fc)
MV

(or f
(fc)
OF ) as features after the FC layer of LiteNetMV (or LiteNetOF ). The loss

for feature alignment is given by:

LAlign = ||f (3d)MV − f
(3d)
OF ||

2 + ||f (fc)MV − f
(fc)
OF ||

2. (8)
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Given that video action recognition is essentially a multi-class classification
problem, we utilize the standard cross-entropy loss for training the TTP module:

LTTP (t) = − log softmax(sgt(t)), (9)

where sgt(t) is the predicted score for t-th GOP with respect to its ground-truth
class label. The total loss of our Aligned Temporal Trilinear Pooling (ATTP)
model is defined as follows:

LATTP = LTTP + λLAlign. (10)

where λ is the weight parameter (we empirically set λ = 1 in this work).

4 Experiments

4.1 Datasets and Settings

In this paper, the main results are reported on two widely-used benchmark
datasets, namely HMDB-51 [23] and UCF-101 [33], as in [40,45,30] for direct
comparison. HMDB-51 contains 6,766 videos from 51 action categories, while
UCF-101 contains 13,320 videos from 101 action categories. Both benchmark
datasets have three officially given training/test splits. In HMDB-51, each train-
ing/test split consists of 3,570 training clips and 1,530 testing clips. In UCF-101,
each training/test split consists of approximately 9,600 clips in the training split
and 3,700 clips in the test split. Since each video in these two datasets is a short
clip belonging to a single category, we employ top-1 accuracy on video-level class
predictions (for the test split of each dataset) as the evaluation metric.

As in [40,45], we resize frames in all videos to 340 × 256. In order to imple-
ment our proposed model on resource-limited devices, we choose the EfficientNet
B1 [36] pre-trained on ImageNet as the core CNN module to extract the repre-
sentations of I-frames, motion vectors, and residuals. All the parameters of the
projection layers are randomly initialized.

4.2 Efficiency Test Results

We firstly demonstrate the per-frame running time and FPS of our model
in both limited-resource and sufficient-resource environments. We make com-
parisons to the state-of-the-art CoViAR [45] and DMC-Net [30] since they also
exploit compressed videos for action recognition. Note that CoViAR does not
use optical flow, while DMC-Net uses optical flow but only during the training
phase like our model. However, both CoViAR and DMC-Net utilize ResNet-152
for I-frames and two ResNet-18 for motion vectors and residuals independently,
which means their models are much larger in size and slower to run.

We compare the efficiency of the three models (CoViAR, DMC-Net, and our
ATTP model) under precisely the same test setting. On the Dell R730 platform,
the preprocessing phase (including loading networks) is mainly run on two Intel
Xeon Silver 4110 CPUs, and the CNN forwarding phase (including extracting
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Table 1. Comparison of per-frame inference efficiency. Following CoViAR [45] and
DMC-Net [30], we forward multiple CNNs concurrently. CoViAR and DMC-Net cannot
run on Jetson TX2 due to out of memory (OOM).

Method Platform
Time(ms) FPS

Preprocess CNN Preprocess CNN

ATTP (ours) Jetson 12.2 24.6 82.1 40.7
CoViAR Jetson OOM OOM OOM OOM
DMC-Net Jetson OOM OOM OOM OOM

ATTP (ours) R730 0.6 4.3 1587.3 233.6
CoViAR R730 7.8 5.1 127.6 194.9
DMC-Net R730 7.8 7.0 127.6 142.9

motion vectors and residuals) is mainly run on one TITAN Xp GPU. As shown in
Table 1, our ATTP model runs faster among three models in both preprocessing
and CNN phases on the Dell R730 platform. The preprocessing time on contrast
is particularly stark. This is due to that both CoViAR and DMC-Net have three
large networks with lots of parameters, resulting in massive cost on loading the
networks. For the efficiency test on the resource-limited device, the experiments
are conducted on the Nvidia Jetson TX2 platform. The preprocessing phase
runs on Dual-core Denver 2 64-bit CPU, and the CNN forward phase runs on
the GPU. The results in Table 1 demonstrate that CoViAR and DMC-Net are
too large to be employable on this device, while our ATTP framework fits well in
the embedded environment and runs very fast. These results thus show clearly
that our ATTP model outperforms the other two models on efficiency and is the
only one that is suitable for embedded AI devices.

4.3 Comparative Results on Accuracy

Now we make a comprehensive comparison between our ATTP method and
other state-of-the-art action recognition methods. To this end, we compute not
only the top-1 accuracy but also the efficiency (i.e., parameters and GFLOPs) as
the evaluation metrics for action recognition. In our experiments, the compared
methods can be divided into two groups: 1) Raw-Video Based Methods:
LRCN [6] and Composite LSTM [34] utilize RNNs to process the optical flow
information, while Two-stream [32] adopts two-way CNNs to process the opti-
cal flow information. ResNet-152 [13], C3D [37], I3D (RGB-only) [2], P3D [29]
and TSN (RGB-only) [40] employ large CNN models over RGB frames without
using other information. ECO [51] and TSM [25] make efforts on lightweight
video analysis models, but these models do not work on compressed videos. 2)
Compressed-Video Based Methods: DTMV-CNN [50] integrates both com-
pressed videos and raw ones into a single two-stream network, while CoViAR [45]
and DMC-Net [30] are among the most closely related models (w.r.t. our ATTP
model) that only exploit compressed videos for action recognition. In particu-
lar, DMC-Net, DTMV-CNN, and our ATTP model use optical flow during the
training phase (but not during the test phase).
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Table 2. Comparative results on the two benchmark datasets for both raw-video based
methods and compressed-video based ones. “CV.” denotes the usage of compressed
videos for action recognition. “OF.” denotes the usage of optical flow. ‡ indicates that
the model only uses RGB frames.

Model
Setting Efficiency Accuracy

CV. OF. Param.(M) GFLOPs HMDB UCF

LRCN [6] N Y 114.8 15.5 – 82.7
Comp. LSTM [34] N Y – – 44.0 84.3
Two-Stream [32] N Y 46.6 3.3 59.4 88.0
ResNet-152 [13] N N 60.2 11.3 48.9 83.4
C3D [37] N N 78.4 38.5 51.6 82.3

I3D‡ [2] N N 24 108 49.8 84.5
P3D [29] N N 98 – – 88.6

TSN‡ [40] N N 28.2 4.3 – 85.7
ECO (4 frames) [51] N N 23.8 16 61.7 90.3
TSM (Kinetics) [25] N N 24.3 33 64.7 91.7

DTMV-CNN [50] Both Y 181.3 83.4 55.3 87.5
CoViAR [45] Y N 83.6 14.9 59.1 90.4
DMC-Net [30] Y Y 83.6 15.1 62.8 90.9

ATTP (ours) Y Y 23.4 3.0 62.9 91.1

The comparative results are shown in Table 2. We have the following obser-
vations: (1) Our ATTP model is the most efficient for video action recognition.
Specifically, it contains only 23.4 ×106 parameters and has only average 3.0
GFLOPs over all frames. (2) Among all compressed video action recognition
methods (including CoViAR and DMC-Net), our model performs the best w.r.t.
both efficiency and accuracy. (3) As compared to the strongest baseline DMC-
Net, although our model only achieves marginal improvement on accuracy, this
is obtained with much fewer parameters and only one-tenth of GFLOPS. This
is mainly due to its ability to more effectively fuse multiple modalities using
the proposed trilinear pooling module. (4) As compared to CoViAR, our model
saves nearly 70% of the storage with a clear advantage on accuracy. To better
understand the reason why our lighter model can yield more accurate recogni-
tion, in our ablation study (to be presented next), it is noted that “I+MV+R”
in Table 3 is essentially CoViAR by using EfficientNet as the core CNN module.
Under such a fair comparison setting (same CNN backbone), our model consis-
tently yields accuracy improvements over CoViAR on all dataset splits. (5) Our
model achieves even higher (or comparable) accuracies w.r.t. recent raw-video
based models (TSM uses the external Kinetics [20] for pre-training), showing its
potential for directly analyzing compressed video for action recognition.

4.4 Ablation Study

Ablation Study over Different Modalities We conduct experiments to show
the benefits of using our ATTP model compared with single modality and other
fusion options. Specifically, we uniformly use three EfficientNet networks to pro-
cess the three components (I, MV, and R) extracted from compressed videos
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Table 3. Ablative results (%) for our ATTP model using different modalities on the
two benchmarks (each has three splits).

Dataset HMDB-51 UCF-101

Splits S1 S2 S3 Avg. S1 S2 S3 Avg.

I 51.6 51.0 52.0 51.5 84.0 83.0 84.5 83.8
MV 45.2 44.8 44.9 45.0 70.1 70.5 73.2 71.3
R 48.2 45.6 48.5 47.4 81.7 81.1 82.0 81.6
I+MV+R 60.5 57.1 57.9 58.5 86.1 86.3 87.3 86.6
BP 60.9 57.7 58.4 59.0 87.3 87.1 88.4 87.6
TP 61.6 58.5 59.4 59.8 87.7 87.6 89.0 88.1
TTP 62.1 59.0 59.9 60.3 88.3 88.2 89.5 88.7
ATTP 64.3 61.8 62.6 62.9 91.0 90.9 91.5 91.1

and demonstrate all the ablative results on the two benchmarks by training
with different parts of our ATTP model. For single-modality based models, “I”,
“MV” and “R” denote the results obtained by using LiteNetI , LiteNetMV and
LiteNetR, respectively. For the late-fusion based model, “I+MV+R” indicates
that the output is fused by simply adding the score of the three CNNs together.
We also compare our ATTP model with existing bilinear pooling models, which
are the simplified version of our Trilinear Pooling. Since existing bilinear pooling
methods cannot be directly adapted to the three modalities, we readily apply
pairwise combination over them, and sum the three predicted classification scores
together like “I+MV+R”. Note that conventional bilinear pooling [27] and fac-
torized bilinear pooling [21] have too many parameters to be efficient, we resort
to compact bilinear pooling [12] (denoted as “BP”) with much fewer parame-
ters. Finally, “TP” denotes our Trilinear Pooling, “TTP” denotes our Temporal
Trilinear Pooling, and “ATTP” denotes our Aligned Temporal Trilinear Pooling.

As shown in Table 3, single-modality based models (i.e., I, MV, or R) could
not achieve good results without using multi-modal information, indicating that
the compressed video needs to be fully explored to obtain high accuracy. I and
R yield similar results because they both contain the RGB data: the I-frames
contain a small number of informative frames, while the residuals contain a large
number of less informative frames. Since the motion vectors only contain the mo-
tion information, MV could not perform as well as the other two. Moreover, for
multi-modal fusion, all bilinear/trilinear pooling methods outperform I+MV+R,
showing the power of pooling methods instead of linearly late fusion. Particu-
larly, our TP method yields %1 gains over BP, validating the effectiveness of our
pooling method. In addition, the improvements achieved by TTP over TP (and
those achieved by ATTP over TTP) clearly show the importance of boosting
motion vectors by inducing temporal context (and feature alignment).

Ablation Study over Different Types of Frames To show the contribution
of each type of frames to action recognition, we make comparison among four
versions of the late fusion model: (1) I – only I-frames are used to obtain the
single modality I; (2) I+P – both I-frames and P-frames are used to extract the
three modalities (i.e., I, MV, and R); (3) I+B – both I-frames and B-frames
are used to extract the three modalities; (4) I+P+B – all three types of frames
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Fig. 4. Left: Ablative results (%) obtained by exploiting different types of frames for
late fusion on the two benchmarks. Right: Ablative results (%) for our proposed feature
alignment method on the two benchmarks. Only the single modality MV is used.

are used to extract the three modalities. The ablative results in Fig. 4 (left)
show that: (a) The performance of action recognition continuously increases
when more types of frames are added, validating the contribution of each type
of frames. (b) The improvements achieved by I+B over I+P verify that B-frames
are more important than P-frames for action recognition.
Ablation Study for Feature Alignment To conduct the ablation study
for our proposed feature alignment method, we make comparisons among four
related methods: (1) W/O Feature Alignment – features are directly extracted
from motion vectors, without feature alignment; (2) Feature Alignment after FC
Layer – our proposed feature alignment method is used, but only the features
after the FC layer are aligned; (3) Knowledge Distillation – the knowledge dis-
tillation [14] method is used for feature alignment; (4) Our Feature Alignment –
our proposed feature alignment method defined in Eq. (8). The ablative results
are presented in Fig. 4 (right). It can be seen that: (1) The three feature align-
ment methods outperform the ‘W/O Feature Alignment’ method, validating the
effectiveness of feature alignment. (2) Our proposed feature alignment method
performs the best among the three feature alignment methods. This suggests
that aligning the features before and after the FC layer is more effective than
feature alignment after the FC Layer and even than knowledge distillation.

5 Conclusion

In this work, we address a key limitation of existing deep neural networks-
based video action recognition methods. That is, they either only work with
raw RGB video frames instead of the compressed video directly, or heavy in
model size and slow to run. We therefore proposed to address a more challenging
task, namely lightweight compressed video action recognition. By employing
EfficientNet as the backbone, we proposed a novel ATTP model to fuse the
multiple modalities for lightweight video action recognition. Importantly, for the
first time, our ATTP models the B-frames correctly, therefore being compatible
with a wider range of contemporary codecs. The comparative results on three
benchmark datasets show that our ATTP model outperforms the state-of-the-art
alternatives in both efficiency and accuracy.
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