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ABSTRACT

In inverse reinforcement learning (IRL), an agent seeks to replicate expert demon-
strations through interactions with the environment. Traditionally, IRL is treated
as an adversarial game, where an adversary searches over reward models, and a
learner optimizes the reward through repeated RL procedures. This game-solving
approach is both computationally expensive and difficult to stabilize. In this work,
we propose a novel approach to IRL by direct policy search: by exploiting a lin-
ear factorization of the return as the inner product of successor features and a
reward vector, we design an IRL algorithm by policy gradient descent on the gap
between the learner and expert features. Our non-adversarial method does not
require learning an explicit reward function and can be solved seamlessly with
existing RL algorithms. Remarkably, our approach works in state-only settings
without expert action labels, a setting which behavior cloning (BC) cannot solve.
Empirical results demonstrate that our method learns from as few as a single ex-
pert demonstration and achieves improved performance on various control tasks.

1 INTRODUCTION
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Figure 1: Comparing Mean Normalized Return on
10 tasks from DeepMind Control suite (Tunyasu-
vunakool et al., 2020) of our method SFM against
offline Behavior Cloning (Pomerleau, 1988),
the non-adversarial IRL method IQ-Learn (Garg
et al., 2021), and the state-only adversarial meth-
ods OPOLO (Zhu et al., 2020), MM (Swamy
et al., 2021) and GAIfO (Torabi et al., 2018),
where the agents are provided a single expert
demonstration. Our state-only non-adversarial
method SFM achieves a higher mean normalized
return. Error bars show the 95% bootstrap CIs.

In imitation learning (Abbeel & Ng, 2004;
Ziebart et al., 2008; Silver et al., 2016; Ho & Er-
mon, 2016; Swamy et al., 2021), the goal is to
learn a decision-making policy that reproduces
behavior from demonstrations. Rather than
simply mimicking the state-conditioned action
distribution as in behavior cloning (Pomerleau,
1988), interactive approaches like Inverse Rein-
forcement Learning (IRL; Abbeel & Ng, 2004;
Ziebart et al., 2008) have the more ambitious
goal of synthesizing a policy whose long-term
occupancy measure approximates that of the
expert demonstrator by some metric. As a re-
sult, IRL methods have proven to be more ro-
bust, particularly in a regime with few expert
demonstrations, and has lead to successful de-
ployments in real-world domains such as au-
tonomous driving (e.g., Bronstein et al., 2022;
Vinitsky et al., 2022; Igl et al., 2022). However,
this robustness comes at a cost: IRL approaches
tend to involve a costly bi-level optimization.

Specifically, modern formulation of many IRL
methods (e.g., Garg et al., 2021; Swamy et al.,

∗Correspondence to arnav-kumar.jain@mila.quebec.
Author order decided by chili-eating contest; result was inconclusive.

Our codebase is available at https://github.com/arnavkj1995/SFM.
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2021) involve a min-max game between an adversary that learns a reward function to maximally
differentiate between the agent and expert in the outer loop and a Reinforcement learning (RL)
subroutine over this adversarial reward in the inner loop. However, all such methods encounter a
set of well-documented challenges: (1) optimizing an adversarial game between the agent and the
expert can be unstable, often requiring multiple tricks to stabilize training (Swamy et al., 2022), (2)
the inner loop of this bi-level optimization involves repeatedly solving a computationally expensive
RL problem (Swamy et al., 2023), and (3) the reward function class must be specified in advance.
Moreover, many approaches to imitation learning require knowledge of the actions taken by the
demonstrator. This renders many forms of demonstrations unusable, such as videos, motion-capture
data, and generally any demonstrations leveraging an alternative control interface than the learned
policy (e.g., a human puppeteering a robot with external forces). As such, it is desirable to build IRL
algorithms where the imitation policies learn from only expert states.

These challenges lead us to the following research question: Can a non-adversarial approach to
occupancy matching recover the expert’s behavior without action labels? To address this question,
we revisit the earlier approaches to feature matching (Abbeel & Ng, 2004; Ziebart et al., 2008;
Syed & Schapire, 2007; Syed et al., 2008), that is, matching the accumulation of discounted state
or state-action features along the expert’s trajectory. For this task, we propose to estimate expected
cumulative sum of features using Successor Features (SF; Barreto et al., 2017) – a low-variance,
fully online algorithm that employs temporal-difference learning. Leveraging the benefits of SFs,
we demonstrate that feature matching can be achieved by direct policy search via policy gradients.
In doing so, we present a new approach to IRL, called Successor Feature Matching (SFM), which
provides a remarkably simple algorithm for imitation learning.

Interestingly, when the learned features are action-independent, we show that SFM can imitate an
expert without knowledge of demonstrators’ actions. This accommodates a variety of expert demon-
stration formats, such as video or motion-capture, where action labels are naturally absent. Addi-
tionally, rather than manually pre-specifying a class of expert reward functions (Swamy et al., 2021),
SFM adaptively learns this class from data using unsupervised RL techniques. Our experiments val-
idate that SFM successfully learns to imitate from as little as a single expert demonstration. As a
result, SFM outperforms its competitors by 16% on mean normalized returns across a wide range
of tasks from the DMControl suite (Tunyasuvunakool et al., 2020) —as highlighted in Figure 1. To
summarize, the contributions of this work are as follows:

1. Occupancy matching via reduction to reinforcement learning. In this work, we propose an
algorithm for feature matching that can be achieved by direct policy search via policy gradients for
inverse RL. In doing so, our method Successor Feature Matching (SFM) achieves strong imitation
performance using any off-the-shelf RL algorithms.

2. Imitation from a single state-only demonstration. Our method learns with demonstrations
without expert action labels by using state-only features to estimate the SFs. To our knowledge,
SFM is the only online method capable of learning from a single unlabeled demonstration without
requiring an expensive and difficult-to-stabilize bilevel optimization (Swamy et al., 2022).

2 RELATED WORK

Inverse Reinforcement Learning (IRL) methods typically learn via adversarial game dynamics,
where prior methods assume base features are known upfront (Abbeel & Ng, 2004; Ziebart et al.,
2008; Syed & Schapire, 2007; Syed et al., 2008). The advent of modern deep learning architectures
led to methods that do not estimate expected features, but instead learn a more expressive reward
function that captures the differences between the expert and the agent (Ho & Ermon, 2016; Swamy
et al., 2021; Fu et al., 2018). The class of Moment Matching (MM; Swamy et al., 2021) methods
offers a general framework that unifies existing algorithms through the concept of moment matching,
or equivalently Integral Probability Metrics (IPM; Sun et al., 2019). In contrast to these methods, our
approach is non-adversarial and focuses on directly addressing the problem of matching expected
features. Furthermore, unlike prior methods in Apprenticeship Learning (AL; Abbeel & Ng, 2004)
and Maximum Entropy IRL (Ziebart et al., 2008), our work does not assume the knowledge of
base features. Instead, SFM leverages representation learning technique to extract relevant features
from the raw observations. The method most similar to ours is IQ-Learn (Garg et al., 2021), a
non-adversarial approach that utilizes an inverse Bellman operator to directly estimate the value
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function of the expert. Our method is also non-adversarial but offers a significant advantage over
IQ-Learn: it does not require knowledge of expert actions during training — providing a state-only
imitation learning algorithm (Torabi et al., 2019). However, many existing state-only methods also
rely on adversarial approaches (Torabi et al., 2018; Zhu et al., 2020). For instance, GAIfO (Torabi
et al., 2018) modifies the discriminator employed in GAIL (Ho & Ermon, 2016) to use state-only
inputs, while OPOLO (Zhu et al., 2020) combines a similar discriminator with an inverse dynamics
model to predict actions for expert transitions to regularize the agent. Similarly, R2I (Gangwani &
Peng, 2020) proposed learning an indirect function to enable imitation when the transition dynamics
change. In contrast, SFM is a non-adversarial method that learns from state-only demonstrations.

Successor Features (SF; Barreto et al., 2017) generalize the idea of the successor representa-
tion (Dayan, 1993) by modeling the expected cumulative state features discounted according to the
time of state visitation. Instead of employing successor features for tasks such as transfer learning
(Barreto et al., 2017; Lehnert et al., 2017; Barreto et al., 2018; Abdolshah et al., 2021; Wiltzer et al.,
2024b;a), representation learning (Le Lan et al., 2022; 2023b;a; Farebrother et al., 2023; Ghosh
et al., 2023), exploration (Zhang et al., 2017; Machado et al., 2020; Jain et al., 2023), or zero-shot
RL (Borsa et al., 2019; Touati & Ollivier, 2021; Touati et al., 2023; Park et al., 2024), our approach
harnesses SFs for IRL, aiming to match expected features of the expert. Within the body of work on
imitation learning, SFs have been leveraged to pre-train behavior foundation models capable of rapid
imitation (Pirotta et al., 2024) and within adversarial IRL typically serves as the basis for estimating
the value function that best explains the expert (Lee et al., 2019; Filos et al., 2021; Abdulhai et al.,
2022). In contrast, our work seeks to directly match SFs through a policy gradient update without
requiring large, diverse datasets or costly bilevel optimization procedures.

3 PRELIMINARIES

Reinforcement Learning (RL; Sutton & Barto, 2018) considers a Markov Decision Process
(MDP) defined by M = (S,A, P, r, γ, P0), where S and A denote the state and action spaces,
P : S × A → ∆(S) denotes the transition kernel, r : S → R is the reward function, γ ∈ [0, 1)
is the discount factor, and P0 ∈ ∆(S) is the initial state distribution. Starting from the initial
state S0 ∼ P0(·) an agent takes actions according to its policy π : S → ∆(A) producing tra-
jectories {S0, A1, S1, . . . } ∼ Prπ — the probability measure over trajectories where S0 ∼ P0,
At ∼ π(· | St), and St+1 ∼ P (· | St, At). We write Eπ to denote expectations with respect to states
and actions sampled under Prπ . The performance of a policy π can be measured as the cumulative
discounted sum of rewards obtained from an initial state, given by

J(π; r) = ES∼P0(·),A∼π(·|S)

[
Eπ

[ ∞∑
k=0

γk r(St+k) | St = S,At = A
]

︸ ︷︷ ︸
Qπ

r (S,A)

]
, (1)

where Qπ
r : S × A → R is referred to as the action-value function. When the reward function is

unambiguous, we write J(π) and Qπ in place of J(π; r) and Qπ
r .

Successor Features (SF; Barreto et al., 2017; 2020) allow us to linearly factorize the action-value
function as Qπ

r (s, a) = ψψψπ(s, a)⊤wr with the components: (1) ψψψπ : S × A → Rd being the
expected discounted sum of state featuresψψψπ(s, a) = Eπ

[∑∞
k=0 γ

kϕ(St+k) |St = s,At = a
]

after
applying the feature map ϕ : S → Rd, and (2) wr ∈ Rd being a linear projection of the reward
function r onto the components of ϕ defined as wr = (Covπ [ϕ(S)])

−1 Eπ [r(S)ϕ(S)] (Touati &
Ollivier, 2021). In practice, we can learn a parametric model ψψψπ

θ ≈ ψψψπ via Temporal Difference
(TD) learning (Sutton, 1988) by minimizing the following least-squares TD objective,

LSF (θ; θ̄) = E(S,A,S′)∼B, A′∼π(·|S′)

[
∥ϕ(S) + γψψψπ

θ̄ (S
′, A′)−ψψψπ

θ (S,A)∥22
]
, (2)

where the tuple (S,A, S′) is a state-action-next-state transition sampled from dataset B. The param-
eters θ̄ denote the “target parameters” that are periodically updated from θ by either taking a direct
copy or a moving average of θ (Mnih et al., 2015).

Inverse Reinforcement Learning (IRL; Ng et al., 2000; Abbeel & Ng, 2004; Ziebart et al.,
2008) is the task of deriving behaviors using demonstrations through interacting with the environ-
ment. In contrast to RL where the agent improves its performance using the learned reward, Inverse
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Reinforcement Learning (IRL) involves learning without access to the reward function; good per-
formance is signalled by expert demonstrations. As highlighted in Swamy et al. (2021), this corre-
sponds to minimizing an Integral Probability Metric (IPM) (Sun et al., 2019) between the agent’s
state-visitation occupancy and the expert’s which is framed to minimize the imitation gap given by:

J(πE)− J(π) ≤ sup
f∈Fϕ

(
Eπ

[ ∞∑
t=0

γtf(St)
]
− EπE

[ ∞∑
t=0

γtf(St)
])

(3)

where Fϕ : S → R denotes the class of reward basis functions. Under this taxonomy, the agent
being the minimization player selects a policy π ∈ Π to compete with a discriminator that picks a
reward moment function f ∈ Fϕ to maximize the imitation gap. This leads to a natural framing as
a min-max game minπ maxf∈Fϕ

J(πE)− J(π).
By restricting the class of reward basis functions to be within span of some base-features ϕ such that
Fϕ ∈ {f(s) = ϕ(s)Tw : ∥w∥2 ≤ B}, the imitation gap becomes:

J(πE)− J(π) ≤ sup
∥w∥2≤B

EπE

[ ∞∑
t=0

γtϕ(St)
⊤w
]
− Eπ

[ ∞∑
t=0

γtϕ(St)
⊤w
]

= sup
∥w∥2≤B

(
ES∼P0(·),A∼πE(·|S)

[
ψψψπE (S,A)

]
− ES∼P0(·),A∼π(·|S)

[
ψψψπ(S,A)

])⊤
w,

(4)
where ψψψE(s, a) denotes the successor features of the expert policy πE for a given state s and ac-
tion a. Under this assumption, the agent that matches the successor features with the expert will
minimize the performance gap across the class of restricted basis reward functions. A vector w⋆

optimizing the supremum in (4) is referred to as a witness—it describes a reward function that most
clearly witnesses the distinction between π and the expert demonstrations. Solving the objective
of matching expected features between the agent and the expert has been studied in prior meth-
ods where previous approaches often resort to solving an adversarial game (Ziebart et al., 2008;
Abbeel & Ng, 2004; Syed & Schapire, 2007; Syed et al., 2008). In the sequel, we introduce a non-
adversarial approach that updates the policy to align the SFs between the expert and the agent, and
does not require optimizing an explicit reward function to capture the behavioral divergence.

Naturally, the aforementioned assumption requires that ϕ induces a class Fϕ that is rich enough to
contain the expert’s underlying reward function. It is not generally possible to ensure this without
privileged information—instead, we jointly learn features ϕ using recent advances in representation
learning for RL (e.g., Farebrother et al., 2023; Park et al., 2024). We posit that such features, which
are meant to distinguish between a diverse set of behaviors, will be rich enough to include the
expert’s reward in their span. Our experimental results validate that indeed this can be achieved.

4 SUCCESSOR FEATURE MATCHING

In this section, we describe Successor Feature Matching (SFM) — a state-only, non-adversarial
algorithm for matching expected features between the agent and expert. The key concept underlying
SFM is that, leveraging successor features, the witness w in equation 4 can be approximated in
closed form, yielding a reward function for RL policy optimization. Specifically, the difference
in successor features between the agent and expert can itself act as the witness w—in this case,
w is parallel to the feature matching objective, implying that this witness maximally discriminates
between the agent and expert’s performance. Concretely, we have that,

w⋆
π→πE

:= B
ψ̂̂ψ̂ψE − ψ̂̂ψ̂ψπ∥∥ψ̂̂ψ̂ψE − ψ̂̂ψ̂ψπ

∥∥
2

∈ argmax
∥w∥2≤B

(
ψ̂̂ψ̂ψE − ψ̂̂ψ̂ψπ

)⊤
w, where

ψ̂̂ψ̂ψE := ES∼P0(·), A∼πE(·|S)

[
ψψψE(S,A)

]
and ψ̂̂ψ̂ψπ := ES∼P0(·), A∼π(·|S)

[
ψψψπ(S,A)

]
.

(5)

Remarkably, this observation allows us to bypass the adversarial reward learning component of IRL
by directly estimating the imitation-gap-maximizing reward function r⋆πµ→πE

given by

r⋆πµ→πE
(x) = ϕ(x)⊤w⋆

π→πE
∝ ϕ(x)⊤

(
ψ̂̂ψ̂ψE − ψ̂̂ψ̂ψπ

)
. (6)
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Algorithm 1 Successor Feature Matching (SFM)
Require: Expert demonstrations τE = {si0, ai0, . . . , siT−1, a

i
T−1}Mi=1

Require: Base feature loss Lfeat and initialized parameters θfeat = (ϕ, f)
Require: Initialized actor πµ, SF network and target ψψψθ,ψψψθ̄

, replay buffer B
1: while Training do
2: Rollout πµ and add transitions to replay buffer B
3: Update expected features of expert ψ̂̂ψ̂ψE with EMA using (7)
4: Sample independent minibatches D,D′ ⊂ S ×A× S from B
5: Update SF network via ∇θE(S,A,S′)∼D,A′∼πµ(·|S′)

[
∥ϕ(S) +ψψψθ̄(S

′, A′)−ψψψθ(S,A)∥22
]

6: Estimate witness ŵ = ψ̂̂ψ̂ψE − ψ̂̂ψ̂ψπ using Proposition 1 and minibatch D′.
7: Update actor via∇µU(πµ; s 7→ ϕ(s)⊤ŵ) using Proposition 2 and minibatch D
8: Update base feature function via∇θfeatLfeat(θfeat)
9: end while

This insight enables us to replace the costly bi-level optimization of IRL in favor of solving a single
RL problem. The remaining challenge, however, is determining how to estimate w⋆

π→πE
.

A natural first step in estimatingw⋆
π→πE

is to leverage the provided expert demonstrations consisting
of M trajectories {τ i = (si1, . . . , s

i
Ti
)}Mi=1. These demonstrations allow us to compute ψ̂̂ψ̂ψE as,

ψ̂̂ψ̂ψE =
1

M

M∑
i=1

Ti∑
t=1

γt−1ϕ(sit). (7)

A naı̈ve approach might then attempt to estimate ψ̂̂ψ̂ψπ from initial states—however, this proves to
be challenging, as it precludes bootstrapped TD estimates, and Monte Carlo estimators have pro-
hibitively high variance for γ near 1. Instead, we leverage a key result that allows us to estimate this
quantity more effectively by bootstrapping from arbitrary transitions from the environment.
Proposition 1. Let B denote a buffer of trajectories sampled from arbitrary stationary Markovian
policies in the given MDP with initial state distribution P0. For any stochastic policy π,

ψ̂̂ψ̂ψπ = (1− γ)−1E(S, S′)∼B

[
EA∼π(·|S)

[
ψψψπ(S,A)

]
− γEA′∼π(·|S′)

[
ψψψπ(S′, A′)

]]
. (8)

The proof of Proposition 1 is deferred to Appendix A. Notably, a key aspect of this estimator is its
ability to use samples from a different state-visitation distribution, effectively allowing us to use a
replay buffer B of the agent’s experience to estimate ψ̂̂ψ̂ψπ .

With estimates of ψ̂̂ψ̂ψE and ψ̂̂ψ̂ψπ in hand, one might be tempted to apply any RL algorithm to optimize
r⋆π→πE

. However, this approach overlooks the structure provided by the learned successor features.
Instead, we show how these features can be directly leveraged to derive a novel policy gradient
method that optimizes the policy to directly match the difference in features.

4.1 A POLICY GRADIENT METHOD FOR SUCCESSOR FEATURE MATCHING

Instead of directly optimizing the reward function r⋆π→πE
, we now derive a policy gradient (Sut-

ton et al., 1999) that directly aligning the successor features of the agent and expert. To this end,
we leverage our learned successor features — which are already required for estimating the wit-
ness w⋆

π→πE
— to calculate the value-function under the reward r⋆π→πE

, eliminating the need for a
separate critic to estimate Qπ

r⋆π→πE
. This defines the following off-policy policy gradient objective

(Degris et al., 2012) for the policy πµ parametrized by µ:

U(πµ; r
⋆
πµ→πE

) = ES∼ρβ ,A∼πµ(·|S)

[
ψψψ

πµ

θ (S,A)⊤w⋆
πµ→πE︸ ︷︷ ︸

Q
πµ
r⋆πµ→πE

]
, (9)

where β : S → ∆(A) is a policy different from πµ. In practice, we can view ρβ as being a replay
buffer B containing experience collected throughout training. Given this objective, we now derive
the policy gradient with respect to µ in the following result with the proof given in Appendix A.
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Proposition 2. For stochastic policies π : S → ∆(A) the policy gradient under which the return
most steeply increases for the reward function r⋆πµ→πE

defined in equation 6 is given by,

∇µU(πµ; r
⋆
πµ→πE

) =
(
w⋆

πµ→πE

)⊤ (ES∼ρβ ,A∼πµ(·|S)

[
∇µ log πµ(A | S) ψψψ

πµ

θ (S,A)
])
. (10)

Alternatively, for deterministic policies π : S → A, the deterministic policy gradient (Silver et al.,
2014) for the reward function r⋆πµ→πE

defined in equation 6 is given by,

∇µU(πµ; r
⋆
πµ→πE

) =
(
w⋆

πµ→πE

)⊤ (ES∼ρβ

[
∇µπµ(S) ∇Aψψψ

πµ

θ (S,A)
])
. (11)

From Proposition 2 we can see that the SFM policy gradient operates by directly optimizing the
alignment between the agent’s successor features and the expert’s by changing the policy in the di-
rection that best alignsψψψπµ withψψψE . This approach simplifies policy optimization by leveraging the
computed successor features to directly guide the alignment of the agent’s feature occupancy with
that of the expert. Furthermore, Proposition 2 along with Equation 2 provide drop-in replacements
to the actor and critic losses found in many popular methods (e.g., Fujimoto et al., 2018; 2023;
Haarnoja et al., 2018) allowing for the easy integration of SFM with most actor-critic methods.

The overall SFM policy gradient method, summarized in Algorithm 1, encompasses both estimating
the witness w⋆

π→πE
as well as the policy optimization procedure to reduce the imitation gap using

this witness. However, so far, we have assumed access to base features ϕ when estimating the
successor features. In the following, we describe how these features, too, can be learned from data.

4.2 BASE FEATURE FUNCTION

We described in §3 that SFs depends on a base feature function ϕ : S → Rd. In this work, SFM
learns the base features jointly while learning the policy. Base feature methods are parameterized
by pairs θfeat = (ϕ, f) together with a loss Lfeat, where ϕ : S → Rd is a state feature map, f is an
auxiliary object that may be used to learn ϕ, and Lfeat is a loss function defined for ϕ and f.

Before discussing the learning of base features, we note an important point: when we don’t have ac-
cess to expert actions, we can still compute ψ̂̂ψ̂ψπ and the policy gradient by using action-independent
base features. While our method can handle problems where rewards depend on both states and
actions (requiring expert action labels), in many practical applications expert actions are unavail-
able. As our experiments in §5 demonstrate, SFM can effectively learn imitation policies without
requiring access to expert actions substantially broadening the applicability of our approach.

Below, we briefly outline the base feature methods considered in this work.

Random Features (Random): Here, ϕ is a randomly-initialized neural network, and f is discarded.
The network ϕ remains fixed during training (Lfeat ≡ 0).

Autoencoder Features (AE): Here, ϕ : S → Rd compresses states to latents in Rd, and f : Rd → S
tries to reconstruct the state from the latent. The loss Lfeat is given by the AE loss LAE,

LAE(θfeat) = ES∼B
[
∥f(ϕ(S))− S∥22

]
, θfeat = (ϕ, f). (12)

Inverse Dynamics Model (IDM; Pathak et al., 2017): Here, f : Rd × Rd → A is a function that
tries to predict the action that lead to the transition between embeddings ϕ : S → Rd of consecutive
states. The loss Lfeat is given by the IDM loss LIDM,

LIDM(θfeat) = E(S,A,S′)∼B
[
∥f(ϕ(S), ϕ(S′))−A∥22

]
, θfeat = (ϕ, f). (13)

Forward Dynamics Model (FDM): Here, f : Rd × A → S is a function that tries to predict the
next state in the MDP given the embedding of the current state and the chosen action. The loss Lfeat

is given by the FDM loss LFDM,

LFDM(θfeat) = E(S,A,S′)∼B
[
∥f(ϕ(S), A)− S′∥22

]
, θfeat = (ϕ, f). (14)

Hilbert Representations (HR; Park et al., 2024): The feature map ϕ : S → Rd of HR is meant
to estimate a temporal distance: the idea is that the difference between state embeddings f∗ϕ(s, g) =

6
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∥ϕ(s) − ϕ(g)∥ approximates the amount of timesteps required to traverse between the state s ∈ S
and randomly sampled goal g ∈ S. Here, f is discarded, and Lfeat is the HR loss LHR,

LHR(θfeat) = E(S,S′)∼B, G∼B
[
ℓ2τ
(
−1(S ̸= G)− γsg{f∗ϕ(S′, G)}+ f∗ϕ(S,G)

)]
, θfeat = (ϕ, ∅),

(15)
where sg denotes the stop-gradient operator, γ is the discount factor, and ℓ2τ is the τ -expectile
loss (Newey & Powell, 1987), as a proxy for the max operator in the Bellman backup (Kostrikov
et al., 2022). In practice, sg{f∗ϕ(S′, G)} is replaced by f∗

ϕ̄
(S′, G), where ϕ̄ is a delayed target

network tracking ϕ, much like a target network in DQN (Mnih et al., 2015).

Finally, our framework does not preclude the use of adversarially-trained features, although we
maintain that a key advantage of the framework is that it does not require adversarial training. To
demonstrate the influence of such features, we consider training base features via IRL.

Adversarial Representations (Adv): The embedding ϕ : S → Rd is trained to maximally distin-
guish the features on states visited by the learned policy from the expert policy. That is, Lfeat is
given by LAdv which adversarially maximizes an imitation gap similar to equation 4,

LAdv(θfeat) = −
∥∥Eπ

[
ϕ(S)

]
− EπE

[
ϕ(S′)

]∥∥2
2
, θfeat = (ϕ, ∅). (16)

In our experiments, we evaluated SFM with each of the base feature methods discussed above. A
comparison of their performance is given in Figure 7. Our SFM method adapts familiar determin-
istic policy gradient algorithms, particularly TD3 (Fujimoto et al., 2018) and TD7 (Fujimoto et al.,
2023), for policy optimization through the actor loss of equation 11. We further provide results for
stochastic policy gradient methods in Appendix B.1. Full implementation details are provided in
Appendix C, and we now demonstrate the performance of SFM in the following section.

5 EXPERIMENTS

Through our experiments, we aim to analyze (1) how well SFM performs relative to competing
non-adversarial and state-only adversarial methods at imitation from a single expert demonstration,
(2) the robustness of SFM and its competitors to their underlying policy optimizer, and (3) which
features lead to strong performance for SFM. Our results are summarized in Figures 2, 4, and 7,
respectively, and are discussed in the subsections below. Ultimately, our results confirm that SFM
indeed outperforms its competitors, achieving state-of-the-art performance on a variety of single-
demonstration tasks, even surpassing the performance of agents that have access to expert actions.

5.1 EXPERIMENTAL SETUP

We evaluate our method 10 environments from the DeepMind Control (DMC; Tunyasuvunakool
et al., 2020) suite. Following the investigation in Jena et al. (2020) which showed that the IRL
algorithms are prone to biases in the learned reward function, we consider infinite horizon tasks
where all episodes are truncated after 1000 steps in the environment. For each task, we collected
expert demonstrations by training a TD3 (Fujimoto et al., 2018) agent for 1M environment steps.
In our experiments, the agent is provided with a single expert demonstration which is kept fixed
during the training phase. The agents are trained for 1M environment steps and we report the mean
performance across 10 seeds with 95% confidence interval shading following the best practices in
RLiable (Agarwal et al., 2021). For the RLiable plots, we use the returns obtained by a random
policy and the expert policy to compute the normalized returns. Our implementation of SFM is in
Jax (Bradbury et al., 2018) and it takes about ∼2.5 hours for one run on a single NVIDIA A100
GPU. We provide implementation details in Appendix C and hyperparameters in Appendix D.

Baselines. Our baselines include a state-only version of moment matching (MM; Swamy et al.,
2021), which is an adversarial IRL approach where the integral probability metric (IPM) is replaced
with the Jenson-Shannon divergence (which was shown to achieve better or comparable performance
with GAIL (Swamy et al., 2022)). We implemented state-only MM by changing the discriminator
network to depend only on the state and not on actions. Furthermore, we replace the RL optimizer
in MM to TD7 (Fujimoto et al., 2023) to keep parity with SFM. We compare SFM to another state-
only baseline GAIfO (Torabi et al., 2018) where the discriminator learns to distinguish between the
state transitions of the expert and the agent. Since, to our knowledge, no official implementation of
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Figure 2: RLiable (Agarwal et al., 2021) plots of the proposed method SFM with an offline method
BC, a non-adversarial method IQ-Learn that uses expert action labels and adversarial state-only
methods: OPOLO, MM and GAIfO across 10 tasks from DMControl suite.
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Figure 3: Per-task learning curves of IRL methods with the TD7 (Fujimoto et al., 2023) policy
optimizer on single-demonstration imitation in DMC. Notably, IQ-Learn and BC require access to
expert actions, while (state-only) MM, GAIfO, and SFM learn from expert states alone. Results are
averaged across 10 seeds, and are shown with 95% confidence intervals.

GAIfO is available, we implemented our version of GAIfO with a similar architecture to the MM
framework. Here, we replace their use of TRPO (Schulman et al., 2015) with either TD3 or TD7 to
maintain parity. Additionally, for adversarial approaches, we impose a gradient penalty (Gulrajani
et al., 2017) on the discriminator, learning rate decay, and Optimistic Adam (Daskalakis et al., 2018)
to help stabilize training. We also compare with OPOLO (Zhu et al., 2020) and use the official im-
plementation for our experiments. Apart from state-only adversarial approaches, we compare with
behavior cloning (BC; Pomerleau, 1988) which is a supervised learning based imitation learning
method trained to match actions taken by the expert. Lastly, we compare SFM with IQ-Learn (Garg
et al., 2021) – a non-adversarial IRL algorithm which learns the Q-function using inverse Bellman
operator (Piot et al., 2016). Notably, BC and IQ-Learn require the expert action labels.

5.2 RESULTS

Quantitative Results Figure 2 presents the RLiable plots (Agarwal et al., 2021) aggregated over
DMC tasks. We observe that SFM learns to solve the task with a single demonstration and sig-
nificantly outperforms the non-adversarial BC (Pomerleau, 1988) and IQ-Learn (Garg et al., 2021)
baselines. Notably, SFM achieves this without using the action labels from the demonstrations. We
believe behavior cloning (BC) fails in this regime of few expert demonstrations as the agent is un-
predictable upon encountering states not in the expert dataset (Ross & Bagnell, 2010). We further
observe that SFM outperforms our implementation of state-only adversarial baselines.Furthermore,
SFM has a significantly lower optimality gap, indicating that the baselines are more likely to per-
form much worse than the expert. Among the state-only adversarial approaches, GAIfO leverages a
more powerful discriminator based on the state transition as compared to only states used in MM and
thereby performs better. To further analyze the gains, we report the average returns across each task
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Figure 4: Performance of state-only IRL algorithms under the weaker TD3 policy optimizer.
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Figure 5: Effect of different base features on the performance of SFM. Here, we compare with
Random, Inverse Dynamics Model (IDM), Hilbert Representations (Hilp), Autoencoder (AE), Ad-
versarial (Adv) and Forward Dynamics Models (FDM). FDM was found to work best across DMC
tasks. Note that all base feature functions were jointly learned during training.

in Figure 3. We observe that OPOLO does well on walker and cheetah domains; however, it strug-
gles with the quadruped domain where we posit its reliance on a learned inverse dynamics model
becomes problematic due to the challenges of accurately modeling these more complex dynamics.
We observe that SFM converges faster when compared to leading methods, suggesting improved
sample efficiency relative to its competitors. SFM does not use techniques like gradient penalties
which are often required when training adversarial methods (Swamy et al., 2021; Ren et al., 2024).
Lastly, SFM outperforms MM and GAIfO on most tasks across the quadruped and walker domains.

Robustness with weaker policy optimizers In this work, the network architecture for SFM and
the state-only baselines is inspired from TD7 (Fujimoto et al., 2023). TD7 is a recent algorithm
presenting several tricks to attain improved performance relative to its celebrated predecessor TD3.
To evaluate how robust these methods are to the quality of the RL algorithm, we also study the
performance characteristics when employing the relatively weaker TD3 optimizer. The RLiable
plots in Figure 4 present the efficacy of SFM to learn with the less performant TD3 optimizer.
Remarkably, the performance of SFM (TD3) is similar to the SFM (Figure 2) demonstrating the
efficacy of our non-adversarial method to learn with other off-the-shelf RL algorithms. However,
the adversarial baselines did not perform as well when deployed with TD3. To further understand
the performance difference, in Figure 6 we see that SFM attains significant performance gains across
tasks in the quadruped domain. In contrast, the adversarial state-only baselines perform similarly on
tasks in the cheetah and walker domains for both RL optimizers.

Ablation over base features In Figure 7, we study the performance of SFM with various base
feature ϕ. As discussed in §4.2, we experiment with Random Features, Inverse Dynamics Mod-
els (IDM; Pathak et al., 2017), Hilbert Representations (Hilp; Park et al., 2024), Forward Dynamics
Model (FDM), Autoencoder (AE), and Adversarial (Adv) features. Through our experiments, we
observe that FDM achieves superior results when compared with other base feature functions (Fig-
ure 5). In Figure 7 and Table 3, we see that, IDM features performed similarly to FDM on walker
and cheetah domains, but did not perform well on quadruped tasks. We believe it is challenging to
learn IDM features on quadruped domain which has been observed in prior works (Park et al., 2024;
Touati et al., 2023). Similar trends were observed for Hilp features and we suspect that learning the
notion of temporal distance during online learning is challenging as the data distribution changes
while training. Random features performed well on quadruped domain, but did not perform well on
cheetah and walker tasks. Autoencoder (AE) and adversarial (Adv) features did well across RLiable
metrics, however FDM features achieved better performance– we suspect that leveraging structure
from the dynamics leads to superior performance. Moreover, learning adversarial features required
tricks like gradient penalty and learning rate decay. We believe SFM can leverage any representa-
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tion learning technique to obtain base features and a potential avenue for future work is to leverage
pretrained features for more complex tasks to speed up learning.

6 DISCUSSION

We introduced SFM—a novel non-adversarial method for IRL that requires no expert action labels.
Our method learns to match the expert’s successor features, derived from adaptively learned base
features, using direct policy search as opposed to solving a minmax adversarial game. Through
experiments on several standard imitation learning benchmarks, we have shown that state-of-the-art
imitation is achievable with a non-adversarial approach, thereby providing an affirmative answer to
our central research question.

Consequently, SFM is no less stable to train than its online RL subroutine. This is not the case with
adversarial methods, which involve complex game dynamics during training. Much like the rich
literature on GANs (Goodfellow et al., 2014; Gulrajani et al., 2017; Kodali et al., 2018), adversarial
IRL methods often require several tricks to stabilize the optimization, such as gradient penalties,
bespoke optimizers, and careful hyperparameter tuning.

Beyond achieving state-of-the-art performance, SFM demonstrated an unexpected feat: it is excep-
tionally robust to the policy optimization subroutine. Notably, when using the weaker TD3 policy
optimizer, SFM performs almost as well as it does with the relatively stronger TD7 optimizer. This
is in stark contrast to the baseline methods, which performed considerably worse under the weaker
policy optimizer. As such, we expect that SFM can be broadly useful and easier to deploy on
resource-limited systems, which is often a constraint in robotics applications.

Interestingly, SFM follows a recent trend in model alignment that foregoes explicit reward modeling
for direct policy search. This was famously exemplified in RLHF with DPO (Rafailov et al., 2024)
and its subsequent extensions (Azar et al., 2024; Munos et al., 2024). It is worth noting that SFM,
unlike DPO, does require modeling state features. However, the state features modeled by SFM are
task-agnostic, and we found in particular that state embeddings for latent dynamics models suffice.
We emphasize that this is a reflection of the more complicated dynamics inherent to general RL
problems, unlike natural language problems which have trivial dynamics.

SFM is not the first non-adversarial IRL method; we note that IQ-Learn (Garg et al., 2021) similarly
reduces IRL to RL. However, we showed that SFM substantially outperforms IQ-Learn in practice,
and more importantly, it does so without access to expert action labels. Indeed, to our knowledge,
SFM is the first non-adversarial state-only interactive IRL method. This opens the door to exciting
possibilities, such as imitation learning from video and motion-capture data, which would not be
possible for methods that require knowledge of the expert’s actions. We believe that the simpler,
non-adversarial nature of SFM training will be highly useful for scaling to such problems.

Limitations While SFM is simpler than IRL methods, it still doesn’t theoretically alleviate the
exploration problem that IRL methods encounter. A promising direction of future work could com-
bine SFM with resets (Swamy et al., 2023) or hybrid IRL (Ren et al., 2024) to improve sample
efficiency. Alternatively, SFM can leverage existing exploration algorithms with certain methods
leveraging successor features being particularly amenable (e.g., Machado et al., 2020).
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tional Sciences and Engineering Research Council of Canada (NSERC), Calcul Québec, Canada
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David Silver, and Tom Schaul. Universal successor features approximators. In International
Conference on Learning Representations (ICLR), 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Eli Bronstein, Mark Palatucci, Dominik Notz, Brandyn White, Alex Kuefler, Yiren Lu, Supratik
Paul, Payam Nikdel, Paul Mougin, Hongge Chen, et al. Hierarchical model-based imitation
learning for planning in autonomous driving. In International Conference on Intelligent Robots
and Systems (IROS), 2022.

Robert Dadashi, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans, and Marc G Bellemare.
The value function polytope in reinforcement learning. In International Conference on Machine
Learning (ICML), 2019.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
optimism. In International Conference on Learning Representations (ICLR), 2018.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4):613–624, 1993.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor critic. In International
Conference on Machine Learning (ICML), 2012.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learn-
ing with auxiliary tasks. In International Conference on Learning Representations (ICLR), 2023.

11

http://github.com/google/jax
http://github.com/google/jax


Published as a conference paper at ICLR 2025

Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine, Natasha Jaques, and Gregory Farquhar. PsiPhi-
learning: Reinforcement learning with demonstrations using successor features and inverse tem-
poral difference learning. In International Conference on Machine Learning (ICML), 2021.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In International Conference on Learning Representations (ICLR), 2018.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning (ICML), 2018.

Scott Fujimoto, David Meger, and Doina Precup. An equivalence between loss functions and non-
uniform sampling in experience replay. In Neural Information Processing Systems (NeurIPS),
2020.

Scott Fujimoto, Wei-Di Chang, Edward J. Smith, Shixiang Shane Gu, Doina Precup, and David
Meger. For SALE: State-action representation learning for deep reinforcement learning. In Neural
Information Processing Systems (NeurIPS), 2023.

Tanmay Gangwani and Jian Peng. State-only imitation with transition dynamics mismatch. In
International Conference on Learning Representations (ICLR), 2020.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. IQ-learn:
Inverse soft-q learning for imitation. In Neural Information Processing Systems (NeurIPS), 2021.

Dibya Ghosh, Chethan Anand Bhateja, and Sergey Levine. Reinforcement learning from passive
data via latent intentions. In International Conference on Machine Learning (ICML), 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Neural Information Pro-
cessing Systems (NeurIPS), 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Neural Information Processing Systems (NeurIPS), 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Neural Information
Processing Systems (NeurIPS), 2016.

Maximilian Igl, Daewoo Kim, Alex Kuefler, Paul Mougin, Punit Shah, Kyriacos Shiarlis, Dragomir
Anguelov, Mark Palatucci, Brandyn White, and Shimon Whiteson. Symphony: Learning realistic
and diverse agents for autonomous driving simulation. In International Conference on Robotics
and Automation (ICRA), 2022.

Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum state entropy explo-
ration using predecessor and successor representations. In Neural Information Processing Systems
(NeurIPS), 2023.

Rohit Jena, Siddharth Agrawal, and Katia Sycara. Addressing reward bias in adversarial imitation
learning with neutral reward functions. CoRR, abs/2009.09467, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

Naveen Kodali, James Hays, Jacob Abernethy, and Zsolt Kira. On convergence and stability of
GANs. In International Conference on Learning Representations (ICLR), 2018.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations (ICLR), 2022.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G. Bellemare. On
the generalization of representations in reinforcement learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

12



Published as a conference paper at ICLR 2025

Charline Le Lan, Joshua Greaves, Jesse Farebrother, Mark Rowland, Fabian Pedregosa, Rishabh
Agarwal, and Marc G. Bellemare. A novel stochastic gradient descent algorithm for learning
principal subspaces. In International Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2023a.

Charline Le Lan, Stephen Tu, Mark Rowland, Anna Harutyunyan, Rishabh Agarwal, Marc G. Belle-
mare, and Will Dabney. Bootstrapped representations in reinforcement learning. In International
Conference on Machine Learning (ICML), 2023b.

Donghun Lee, Srivatsan Srinivasan, and Finale Doshi-Velez. Truly batch apprenticeship learning
with deep successor features. In International Joint Conference on Artificial Intelligence (IJCAI),
2019.

Lucas Lehnert, Stefanie Tellex, and Michael L Littman. Advantages and limitations of using suc-
cessor features for transfer in reinforcement learning. CoRR, abs/1708.00102, 2017.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. In AAAI Conference on Artificial Intelligence, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.
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Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

13



Published as a conference paper at ICLR 2025

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. De-
terministic policy gradient algorithms. In International Conference on Machine Learning (ICML),
2014.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. Provably efficient imitation learning
from observation alone. In International Conference on Machine Learning (ICML), 2019.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Neural Information Processing
Systems (NeurIPS), 1999.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and match-
ing: A game-theoretic framework for closing the imitation gap. In International Conference on
Machine Learning (ICML), 2021.

Gokul Swamy, Nived Rajaraman, Matt Peng, Sanjiban Choudhury, Drew Bagnell, Steven Wu,
Jiantao Jiao, and Kannan Ramchandran. Minimax optimal online imitation learning via replay
estimation. In Neural Information Processing Systems (NeurIPS), 2022.

Gokul Swamy, David Wu, Sanjiban Choudhury, Drew Bagnell, and Steven Wu. Inverse reinforce-
ment learning without reinforcement learning. In International Conference on Machine Learning
(ICML), 2023.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. In Neural
Information Processing Systems (NeurIPS), 2007.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear pro-
gramming. In International Conference on Machine Learning (ICML), 2008.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
CoRR, abs/1807.06158, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from obser-
vation. In International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In Neural
Information Processing Systems (NeurIPS), 2021.
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A PROOFS

Before proving Proposition 1, we begin by proving some helpful lemmas. First, we present a simple
generalization of a result from Garg et al. (2021).

Lemma 1. Let µ denote any discounted state-action occupancy measure for an MDP with state
space S and initial state distribution P0, and let V denote a vector space. Then for any f : S → V ,
the following holds,

E(S,A)∼µ

[
f(S)− γES′∼P (·|S,A)[f(S

′)]
]
= (1− γ)ES∼P0

[f(S)] .

Proof. Firstly, any discounted state-action occupancy measure µ is identified with a unique policy
πµ as shown by Ho & Ermon (2016). So, µ is characterized by

µ(dsda) = (1− γ)πµ(da | s)
∞∑
t=0

γtpµt (ds),

where pµt (S) = Prπµ(St ∈ S) is the state-marginal distribution under policy πµ at timestep t.
Expanding the LHS of the proposed identity yields

E(S,A)∼µ

[
f(S)− (1− γ)γES′∼P (·|S,A)[f(S

′)]
]

= (1− γ)
∞∑
t=0

γtES∼pµ
t
[f(S)]− γE(S,A)∼µES′∼P (·|S,A)[f(S

′)]

= (1− γ)
∞∑
t=0

γtES∼pµ
t
[f(S)]− (1− γ)

∞∑
t=0

γt+1ES∼pµ
t
EA∼πµ(·|S)ES′∼P (·|S,A)[f(S

′)]

= (1− γ)
∞∑
t=0

γtES∼pµ
t
[f(S)]− (1− γ)

∞∑
t=0

γt+1ES∼pµ
t+1

[f(S)]

= (1− γ)
∞∑
t=0

γtES∼pµ
t
[f(S)]− (1− γ)

∞∑
t=1

γtES∼pµ
t
[f(S)]

= (1− γ)ES∼P0
[f(S)],

since pµ0 = P0 (the initial state distribution) for any µ.

Intuitively, we will invoke Lemma 1 with f denoting the successor features to derive an expression
for the initial state successor features via state transitions sampled from a replay buffer.

Proposition 1. Let B denote a buffer of trajectories sampled from arbitrary stationary Markovian
policies in the given MDP with initial state distribution P0. For any stochastic policy π,

ψ̂̂ψ̂ψπ = (1− γ)−1E(S, S′)∼B

[
EA∼π(·|S)

[
ψψψπ(S,A)

]
− γEA′∼π(·|S′)

[
ψψψπ(S′, A′)

]]
. (8)

Proof. Suppose B contains rollouts from policies {πk}Nk=1 for some N ∈ N. Each of these policies
πk induces a discounted state-action occupancy measure µk. Since the space of all discounted state-
action occupancy measures is convex (Dadashi et al., 2019), it follows that µ = 1

N

∑N
k=1 µk is itself

a discounted state-action occupancy measure.

Consider the function f : S → Rd given by f(s) = EA∼π(·|s)ψψψ
π(s,A). We have
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E(S,S′)∼B[f(S)− γf(S′)]

= Ek∼Uniform({1,...,N})E(S,A)∼µk,S′∼P (·|S,A)[f(S)− γf(S′)]

= E(S,A)∼µ,S′∼P (·|S,A)[f(S)− γf(S′)]

= E(S,A)∼µ

[
f(S)− γES′∼P (·|S,A)[f(S

′)]
]

= (1− γ)ES∼P0
[f(S)],

where the final step invokes Lemma 1, which is applicable since µ is a discounted state-action occu-
pancy measure. The claim then follows by substituting f(S) for EA∼π(·|S)ψψψ

π(S,A) and multipying
through by (1− γ)−1.

Proposition 2. For stochastic policies π : S → ∆(A) the policy gradient under which the return
most steeply increases for the reward function r⋆πµ→πE

defined in equation 6 is given by,

∇µU(πµ; r
⋆
πµ→πE

) =
(
w⋆

πµ→πE

)⊤ (ES∼ρβ ,A∼πµ(·|S)

[
∇µ log πµ(A | S) ψψψ

πµ

θ (S,A)
])
. (10)

Alternatively, for deterministic policies π : S → A, the deterministic policy gradient (Silver et al.,
2014) for the reward function r⋆πµ→πE

defined in equation 6 is given by,

∇µU(πµ; r
⋆
πµ→πE

) =
(
w⋆

πµ→πE

)⊤ (ES∼ρβ

[
∇µπµ(S) ∇Aψψψ

πµ

θ (S,A)
])
. (11)

Proof. That ∇µU(πµ; r
⋆
πµ→πE

) is the direction that most steeply increases the return under the
reward function r⋆πµ→πE

is established in Degris et al. (2012). It remains to derive an expression
for ∇µU(πµ; r

⋆
πµ→πE

). Since r⋆πµ→πE
is linear in the base features, given an estimate ψψψθ of the

successor features for policy πµ, the action-value function is given by

Qθ(s, a) = ψψψθ(s, a)
⊤w⋆

πµ→πE
.

Then, we have that

∇µU(πµ; r
⋆
πµ→πE

) = ES∼ρβ∇µ

∫
A
πµ(a | S)Qθ(S, a)

= ES∼ρβ∇µ

∫
A
πµ(a | S)ψψψθ(S, a)

⊤w⋆
πµ→πE

.

(17)

When πµ is stochastic, the log-derivative trick yields

∇µU(πµ; r
⋆
πµ→πE

) = ES∼ρβEA∼π(·|S)

[
∇µ log πµ(A | S)ψψψθ(S,A)

⊤w⋆
πµ→πE

]
= (w⋆

πµ→πE
)⊤
(
ES∼ρβEA∼π(·|S) [∇µ log πµ(A | S)ψψψθ(S,A)]

)
.

Alternatively, for deterministic policies πµ (where, with notational abuse, we write πµ(s) ∈ A), the
deterministic policy gradient theorem (Silver et al., 2014) gives

∇µU(πµ; r
⋆
πµ→πE

) = E
S∼ρβ

[
∇µπµ(S)∇a[ψψψθ(S, a)

⊤w⋆
πµ→πE

]|a=πµ(S)

]
= E

S∼ρβ

[
∇µπµ(S)∇aψψψθ(S, a)

⊤|a=πµ(S)w
⋆
πµ→πE

]
= (w⋆

πµ→πE
)⊤
(

E
S∼ρβ

[
∇µπµ(S)∇aψψψθ(S, a)

⊤|a=πµ(S)w
⋆
πµ→πE

])
.

as claimed.

17



Published as a conference paper at ICLR 2025

B EXTENDED RESULTS

In this section, we provide the tables with average returns across tasks from DMControl Suite (Table
1, 2 & 3) and per-environment training runs for our study with weak policy optimizers and base
feature functions ((Fig. 6 & 7).

Task BC IQ-Learn OPOLO MM GAIfO SFM
Cheetah Run 77.0 ± 11.1 1.4 ± 1.4 747.5 ± 6.7 781.6 ± 30.7 777.2 ± 45.0 648.8 ± 35.9
Cheetah Walk 371.1 ± 163.3 5.7 ± 6.9 919 ± 26.3 895.6 ± 128.2 885.2 ± 236.2 945.1 ± 33.9
Quadruped Jump 150.8 ± 29.7 260.7 ± 12.0 198.9 ± 50.6 489.4 ± 104.6 505.8 ± 192.3 799.1 ± 47.8
Quadruped Run 52.1 ± 22.4 174.7 ± 7.7 291.5 ± 43.9 433.9 ± 347.4 289.4 ± 227.3 671.7 ± 65.9
Quadruped Stand 351.6 ± 68.5 351.1 ± 25.7 378.7 ± 37.3 752.2 ± 271.9 804.7 ± 211.5 941.6 ± 25.7
Quadruped Walk 119.0 ± 40.9 171.6 ± 11.2 391.8 ± 57.9 844.7 ± 138.7 656.1 ± 321.2 759.9 ± 177.5
Walker Flip 39.6 ± 17.7 25.0 ± 2.2 913.6 ± 2.5 249.1 ± 230.8 544.0 ± 313.1 856.9 ± 64.5
Walker Run 24.5 ± 6.1 22.4 ± 1.6 706.2 ± 7.9 496.8 ± 264.3 690.7 ± 101.9 653.6 ± 26.7
Walker Stand 168.5 ± 48.9 181.1 ± 135.8 846.2 ± 256.9 574.2 ± 209.3 810.4 ± 250.3 909.4 ± 96.9
Walker Walk 35.1 ± 29.6 25.3 ± 2.6 738.9 ± 399.7 725.3 ± 234.8 792.8 ± 242.2 916.5 ± 43.4

Table 1: Returns achieved by BC, IQ-Learn, OPOLO, state-only MM, GAIfO and SFM across tasks
on the DMControl Suite. The average returns and standard deviation across 10 seeds are reported.
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Figure 6: Comparison of state-only IRL methods using the weaker TD3 policy optimizer. Notably,
only SFM consistently maintains strong performance with the weaker policy optimizer.

Environment MM (TD3) GAIfO (TD3) SFM (TD3)
Cheetah Run 439.6 ± 138.6 674.0 ± 27.7 514.7 ± 77.9
Cheetah Walk 859.6 ± 165.3 873.9 ± 58.2 829.7 ± 226.3
Quadruped Jump 308.8 ± 115.9 334.3 ± 159.8 821.6 ± 27.5
Quadruped Run 107.0 ± 22.8 94.4 ± 23.1 705.6 ± 57.3
Quadruped Stand 449.7 ± 206.1 381.8 ± 216.0 946.3 ± 20.5
Quadruped Walk 201.0 ± 175.8 347.3 ± 246.4 829.3 ± 86.9
Walker Flip 328.7 ± 287.8 774.4 ± 276.1 865.5 ± 37.7
Walker Run 530.2 ± 163.1 600.9 ± 105.0 606.5 ± 30.2
Walker Stand 575.8 ± 245.8 764.8 ± 220.7 934.0 ± 49.6
Walker Walk 395.1 ± 351.1 769.7 ± 258.1 880.1 ± 75.8

Table 2: Comparison of state-only IRL methods using the weaker TD3 policy optimizer. This table
presents returns achieved by state-only MM (TD3), GAIfO (TD3) and SFM (TD3) across tasks on
the DMControl Suite. The average returns and standard deviation across 10 seeds are reported.
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Figure 7: Effect of different base feature functions on the performance of the agent. Here, we com-
pare with Random, Inverse Dynamics Model (IDM) (Pathak et al., 2017), Hilbert Representations
(Hilp) (Park et al., 2024), Autoencoder (AE), Adversarial representations (Adv) and Forward Dy-
namics Models (FDM). FDM was found to work best across DMC tasks. Note that all base feature
functions were jointly learned during training.

Environment Random AE Hilp IDM FDM Adv
Cheetah Run 484.4 ± 45.4 585.7 ± 93.6 417.8 ± 118.8 622.0 ± 69.5 648.8 ± 35.9 374.1 ± 113.7
Cheetah Walk 823.8 ± 107.6 938.4 ± 18.8 944.5 ± 18.6 908.2 ± 88.4 945.1 ± 33.9 812.5 ± 244.5
Quadruped Jump 744.4 ± 79.0 678.0 ± 126.6 101.5 ± 78.5 151.3 ± 59.0 799.1 ± 47.8 679.7 ± 144.1
Quadruped Run 356.8 ± 92.7 493.4 ± 57.6 311.8 ± 94.5 118.0 ± 86.1 671.7 ± 65.9 737.0 ± 196.8
Quadruped Stand 914.0 ± 33.1 895.3 ± 94.2 259.1 ± 102.0 222.0 ± 63.3 941.6 ± 25.7 858.4 ± 140.3
Quadruped Walk 402.8 ± 68.7 489.7 ± 68.4 166.0 ± 138.8 129.0 ± 145.6 759.9 ± 177.5 849.1 ± 140.8
Walker Flip 341.8 ± 204.4 765.5 ± 101.8 771.9 ± 197.0 912.8 ± 36.9 856.9 ± 64.5 565.1 ± 439.9
Walker Run 506.6 ± 181.8 632.2 ± 41.7 615.7 ± 53.8 589.5 ± 139.0 653.6 ± 26.7 620.5 ± 158.2
Walker Stand 715.9 ± 160.9 836.2 ± 140.0 934.8 ± 42.8 960.6 ± 22.9 909.4 ± 96.9 964.2 ± 31.8
Walker Walk 243.8 ± 189.7 752.5 ± 164.9 821.8 ± 242.5 936.3 ± 48.8 916.5 ± 43.4 849.6 ± 289.8

Table 3: Effect of different base feature functions on the performance of the agent. Here, we com-
pare with Random, Inverse Dynamics Model (IDM) (Pathak et al., 2017), Hilbert Representations
(Hilp) (Park et al., 2024), Autoencoder (AE), Adversarial representations (Adv), and Forward Dy-
namics Models (FDM). The table reports the returns achieved by each base feature function when
trained with SFM across tasks on the DMControl Suite. The average returns and standard deviation
across 10 seeds are reported. FDM was found to work best across DMC tasks. Note that all base
feature functions were jointly learned during training.
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B.1 SFM WITH STOCHASTIC POLICY

To extend SFM to stochastic policies, we propose having an agent comprising of a stochastic actor
parameterized to predict the mean and standard deviation of a multi-variate gaussian distribution.
Here, for a given state s, the action is sampled using a ∼ πµ(·|s) = N (mµ(s), diag(σ

2
µ(s)), where

mµ : S → Rn and σ2
µ : S → Rn

+, for A = Rn. The SF network architecture ψθ is the same as the
SFM (TD3) variant, where the network estimates the SF for a state-action pair. The SF-network can
be updated using 1-step TD error using the base features of the current state similar to equation 2.
The actor is updated using the update rule described in Proposition 2 where we estimate the policy
gradient via reparameterization trick with Gaussian policies– particularly, we consider the class of
Gaussian policies with diagonal covariance as in Haarnoja et al. (2018). Finally, to prevent the
policy from quickly collapsing to a nearly-deterministic one, we also include a policy entropy bonus
in our actor updates. We conduct experiments over the tasks from DMControl suite and present
environment plots in Figure 8 and returns achieved in Table 4. We provide the implementations of
SFM with stochastic policy in Appendix C.3
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Figure 8: Comparison of variants of SFM with TD7, TD3 and an entropy regularized stochastic
policy. We observe that SFM can be trained with stochastic polices. However, the variants with
deterministic policy optimizers work better on some tasks than the stochastic policy.

Environment SFM (TD7) SFM (TD3) SFM (Stochastic)
Cheetah Run 648.8 ± 35.9 514.7 ± 77.9 500.9 ± 136.3
Cheetah Walk 945.1 ± 33.9 829.7 ± 226.3 918.8 ± 21.7
Quadruped Jump 799.1 ± 47.8 821.6 ± 27.5 764.0 ± 84.8
Quadruped Run 671.7 ± 65.9 705.6 ± 57.3 614.9 ± 113.4
Quadruped Stand 941.6 ± 25.7 946.3 ± 20.5 829.5 ± 224.1
Quadruped Walk 759.9 ± 177.5 829.3 ± 86.9 821.9 ± 56.3
Walker Flip 856.9 ± 64.5 865.5 ± 37.7 830.4 ± 45.4
Walker Run 653.6 ± 26.7 606.5 ± 30.2 630.6 ± 17.5
Walker Stand 909.4 ± 96.9 934.0 ± 49.6 925.7 ± 38.9
Walker Walk 916.5 ± 43.4 880.1 ± 75.8 916.3 ± 43.9

Table 4: Comparison of SFM with a stochastic policy and variants based on deterministic policy
optimizers (TD3 & TD7). The table reports the returns achieved by each base feature function when
trained with SFM across tasks on the DMControl Suite. The average returns and standard deviation
across 10 seeds are reported.
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C IMPLEMENTATION DETAILS

Since SFM does not involve learning an explicit reward function and cannot leverage an off-the-
shelf RL algorithm to learn a Q-funtion, we propose a novel architecture for our method. SFM is
composed of 3 different components- actor πµ, successor features (SF) network ψψψθ, base feature
function ϕ and f . Taking inspiration from state-of-the-art RL algorithms, we maintains target net-
works. Since, SF network acts similarly to a critic in actor-critic like algorithms, SFM comprises
of two networks to estimate the SF (Fujimoto et al., 2018). Here, instead taking a minimum over
estimates of SF from these two networks, our method performed better with average over the two
estimates of SF. To implement the networks of SFM, we incorporated several components from the
TD7 (Fujimoto et al., 2023), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018) algo-
rithm which are described in this section. Moreover, SFM does not require techniques like gradient
penalty (Gulrajani et al., 2017), the OAdam optimizer (Daskalakis et al., 2018) and a learning rate
scheduler.

C.1 TD7-BASED NETWORK ARCHITECTURE

The architecture used in this work is inspired from the TD7 (Fujimoto et al., 2023) algorithms for
continuous control tasks (Pseudo 1). We will describe the networks and sub-components used below:

• Two functions to estimate the SF (ψψψθ1 , ψψψθ2 )
• Two target functions to estimate the SF (ψψψθ̄1 , ψψψθ̄2 )
• A policy network πµ
• A target policy network πµ̄
• An encoder with sub-components fν , gν
• A target encoder with sub-components fν̄ , gν̄
• A fixed target encoder with sub-components f¯̄ν , g¯̄ν
• A checkpoint policy πc and the checkpoint encoder fc
• A base feature function ϕ

Encoder: The encoder comprises of two sub-networks to output state and state-action embedding,
such that zs = fν(s) and zsa = gν(z

s, a). The encoder is updated using the following loss:

LEncoder(fν , gν) =
(
gν(fν(s), a)− |fν(s′)|×

)2
(18)

=
(
zsa − |zs

′
|×
)2
, (19)

where s, a, s′ denotes the sampled transitions and | . |× is the stop-gradient operation. Also, we
represent z̄s = fν̄(s), z̄sa = gν̄(z̄

s, a), ¯̄zs = f¯̄ν(s), and ¯̄zsa = g¯̄ν(¯̄z
s, a).

SF network: Motivated by standard RL algorithms (Fujimoto et al., 2018; 2023), SFM uses a pair
of networks to estimate the SF. The network to estimate SF are updated with the following loss:

LSF(ψψψθi) = ∥target−ψψψθi(z̄
sa, z̄s, s, a)∥22, (20)

target = ϕ(s) +
1

2
γ ∗ clip([ψψψθ̄1(x) +ψψψθ̄2(x)],ψψψmin,ψψψmax), (21)

x = [¯̄zs
′a′
, ¯̄zs

′
, s′, a′] (22)

a′ = πµ̄(¯̄z
s′ , s′) + ϵ,where ϵ ∼ clip(N (0, σ2),−c, c). (23)

Here, instead of taking the minimum over the SF networks for bootstrapping at the next state (Fuji-
moto et al., 2018), the mean over the estimates of SF is used. The action at next state a′ is samples
similarly to TD3 (Fujimoto et al., 2018) and the same values of (zs, zsa) are used for each SF net-
work. Moreover, the algorithm does clipping similar to TD7 (Fujimoto et al., 2023) on the predicted
SF at the next state which is updated using target (equation 32) at each time step, given by:

ψψψmin ← min(ψψψmin, target) (24)
ψψψmax ← min(ψψψmax, target) (25)
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Policy: SFM uses a single policy network which takes [zs, s] as input and is updated using the
following loss function described in §4.

Upon every target update frequency training steps, the target networks are updated by cloning
the current network parameters and remains fixed:

(θ1, θ2)← (θ̄1, θ̄2) (26)
µ← µ̄ (27)

(ν1, ν2)← (ν̄1, ν̄2) (28)
(ν̄1, ν̄2)← (¯̄ν1, ¯̄ν2) (29)

(30)

Moreover, the agent maintains a checkpointed network similar to TD7 (Refer to Appendix F of
TD7 (Fujimoto et al., 2023) paper). However, TD7 utilizes the returns obtained in the environment
for checkpointing. Since average returns is absent in the IRL tasks, it is not clear how to checkpoint
policies. Towards this end, we propose using the negative of Mean Squared Error (MSE) between
the SF of trajectories generated by agent and the SF of demonstrations as a proxy of checkpointing.
To highlight some differences with the TD7 (Fujimoto et al., 2023) algorithm, SFM does not utilize
a LAP (Fujimoto et al., 2020) and Huber loss to update SF network, and we leave investigating them
for future research.
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Pseudo 1. SFM (TD7) Network Details

Variables:
phi_dim = 128
zs_dim = 256

Value SF Network:
▷ SFM uses two SF networks each with similar architechture and forward pass.
l0 = Linear(state_dim + action_dim, 256)
l1 = Linear(zs_dim * 2 + 256, 256)
l2 = Linear(256, 256)
l3 = Linear(256, phi_dim)

SF Network ψψψθ Forward Pass:
input = concatenate([state, action])
x = AvgL1Norm(l0(inuput))
x = concatenate([zsa, zs, x])
x = ELU(l1(x))
x = ELU(l2(x))
sf = l3(x)

Policy π Network:
l0 = Linear(state_dim, 256)
l1 = Linear(zs_dim + 256, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim)

Policy π Forward Pass:
input = state
x = AvgL1Norm(l0(input))
x = concatenate([zs, x])
x = ReLU(l1(x))
x = ReLU(l2(x))
action = tanh(l3(x))

State Encoder f Network:
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, zs_dim)

State Encoder f Forward Pass:
input = state
x = ELU(l1(input))
x = ELU(l2(x))
zs = AvgL1Norm(l3(x))

State-Action Encoder g Network:
l1 = Linear(action_dim + zs_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, zs_dim)

State-Action Encoder g Forward Pass:
input = concatenate([action, zs])
x = ELU(l1(input))
x = ELU(l2(x))
zsa = l3(x)
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C.2 TD3-BASED NETWORK ARCHITECTURE

The architecture used in this work is inspired from the TD3 (Fujimoto et al., 2018) algorithms for
continuous control tasks (Pseudo 2). We will describe the networks and sub-components used below:

• Two functions to estimate the SF (ψψψθ1 , ψψψθ2 )
• Two target functions to estimate the SF (ψψψθ̄1 , ψψψθ̄2 )
• A policy network πµ
• A base feature function ϕ

SF network: Motivated by standard RL algorithms (Fujimoto et al., 2018; 2023), SFM uses a pair
of networks to estimate the SF. The network to estimate SF are updated with the following loss:

LSF(ψψψθi) = ∥target−ψψψθi(s, a)∥22, (31)

target = ϕ(s) +
1

2
γ ∗ (ψψψθ̄1(x) +ψψψθ̄2(x)), (32)

x = [s′, a′] (33)

a′ = πµ(s
′) + ϵ,where ϵ ∼ clip(N (0, σ2),−c, c). (34)

Here, instead of taking the minimum over the SF networks for bootstrapping at the next state (Fuji-
moto et al., 2018), the mean over the estimates of SF is used. The action at next state a′ is samples
similarly to TD3 (Fujimoto et al., 2018). Lastly, target networks to estimate SF is updated via polyak
averaging (with polyak factor of .995, given by

θ̄i ← αθ̄i + (1− α)θi, for i = 1, 2. (35)

Policy: SFM uses a single deterministic policy network which takes state s to predict action a.

Pseudo 2. SFM (TD3) Network Details

Variables:
phi_dim = 128

Value SF Network:
▷ SFM uses two SF networks each with similar architechture and forward pass.
l0 = Linear(state_dim + action_dim, 256)
l1 = Linear(256, 256)
l2 = Linear(256, phi_dim)

SF Network ψψψθ Forward Pass:
input = concatenate([state, action])
x = ReLU(l0(inuput))
x = ReLU(l1(x))
x = l2(x)

Policy π Network:
l0 = Linear(state_dim, 256)
l1 = Linear(256, 256)
l2 = Linear(256, action_dim)

Policy π Forward Pass:
input = state
x = ReLU(l0(input))
x = ReLU(l1(x))
action = tanh(l2(x))

C.3 SFM WITH STOCHASTIC POLICY

In light of Proposition 1, for a stochastic policy, Proposition 2 can again be used to update the policy
parameters. Indeed, following the proof of Proposition 2, we have that
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∇µJ(πµ; r
⋆
πµ→πE

) = E
s∼B

[
∇µ

∫
A
πµ(a | s)Qθ(s, a)da

]
= E

s∼B

[∫
A
ψψψθ(s, a)

⊤w⋆
πµ→πE

∇µπµ(a | s)da
]

=

d∑
i=1

(w⋆
πµ→πE

)i E
s∼B

[∫
A
ψψψθ,i(s, a)∇µπµ(a | s)da

]
.

(36)

The integral above can be estimated without bias by Monte Carlo, using the log-derivative (RE-
INFORCE) trick, or in the case of certain policy classes, the reparameterization trick (Kingma &
Welling, 2014; Haarnoja et al., 2018); the latter of which tends to result in less variance in practice
(Haarnoja et al., 2018), so we use it in our experiments. Towards this end, let Y denote a measurable
space with ϱ a probability measure over Y , and suppose there exists aµ : S × Y → A such that

πµ(· | s) = Law(aµ(s, ϵ)), ϵ ∼ ϱ.

Under such parameterizations, we have

∫
A
ψψψθ,i(s, a)∇µπµ(a | s) = ∇µEa∼πµ(·|s)[ψψψθ,i(s, a)]

= Eϵ∼ϱ[∇µψψψθ,i(s, aµ(s, ϵ))]

= Eϵ∼ϱ[∇µaµ(s, ϵ)∇aψψψθ,i(s, a)|a=aµ(s,ϵ)].

Example 1. Gaussian policies—that is, policies of the form s 7→ N (m(s),Σ(s)) for m : S → Rd

and Σ : S → Rd×d—can be reparameterized in the aforementioned manner. Taking Y = A = Rd

and ϱ = N (0, Id), construct the map aµ : S × Y → A by

aµ(s, ϵ) = mµ(s) + Σµ(s)ϵ.

Clearly, it holds that Law(aµ(s, ϵ)) = N (mµ(s),Σµ(s)), accommodating any Gaussian policy.

Altogether, our gradient estimate is computed as follows,

∇µJ(πµ; r
⋆
πµ→πE

) ≈
d∑

i=1

ŵi
1

N1

N1∑
j=1

∇µaµ(s1,j , ϵ1,j)∇aψψψθ,i(s1,j , a)|a=aµ(s1,j ,ϵ1,j)

ŵ = (1− γ)−1 1

N2

N2∑
j=1

[
ψψψθ(s2,j , aµ(s2,j , ϵ2,j))− γψψψθ̄(s

′
2,j , aµ(s

′
2,j , ϵ

′
2,j))

]
− ψ̂̂ψ̂ψE

{s1,j}N1
j=1

iid∼ B, {ϵ1,j}N1
j=1

iid∼ N (0, In)

{(s2,j , s′2,j)}
N2
j=1

iid∼ B, {ϵ2,j}N2
j=1

iid∼ N (0, In), {ϵ′2,j}
N2
j=1

iid∼ N (0, In).
(37)

We note that, to compute an unbiased gradient from samples, minibatches of (s, s′) pairs must be
sampled independently for the estimator ŵ of w⋆

πµ→πE
, and likewise action samples must be drawn

independently in the computation of ŵ.

Finally, to prevent the policy from quickly collapsing to a nearly-deterministic one, we also include
a policy entropy bonus in our actor updates. The architecture used in this work is inspired from the
SAC (Haarnoja et al., 2018) algorithms for continuous control tasks (Pseudo 3). We will describe
the networks and sub-components used below:

• Two functions to estimate the SF (ψψψθ1 , ψψψθ2 )
• Two target functions to estimate the SF (ψψψθ̄1 , ψψψθ̄2 )
• A policy network πµ
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• A base feature function ϕ

SF network: Motivated by standard RL algorithms (Fujimoto et al., 2018; 2023), SFM uses a pair
of networks to estimate the SF. The network to estimate SF are updated with the following loss:

LSF(ψψψθi) = ∥target−ψψψθi(s, a)∥22,

target = ϕ(s) +
1

2
γ ∗ (ψψψθ̄1(x) +ψψψθ̄2(x)),

x = [s′, a′]

a′ ∼ πµ(s′)

Here, instead of taking the minimum over the SF networks for bootstrapping at the next state (Fuji-
moto et al., 2018), the mean over the estimates of SF is used. The action at next state a′ is samples
similarly to TD3 (Fujimoto et al., 2018). Lastly, target networks to estimate SF is updated via polyak
averaging (with polyak factor of .995, given by

θ̄i ← αθ̄i + (1− α)θi, for i = 1, 2. (38)

Policy: SFM uses a single Gaussian policy network which takes state s to sample an action a as
described earlier.

Pseudo 3. SFM (Stochastic) Network Details

Variables:
phi_dim = 128

Value SF Network:
▷ SFM uses two SF networks each with similar architechture and forward pass.
l0 = Linear(state_dim + action_dim, 256)
l1 = Linear(256, 256)
l2 = Linear(256, phi_dim)

SF Network ψψψθ Forward Pass:
input = concatenate([state, action])
x = ReLU(l0(inuput))
x = ReLU(l1(x))
x = l2(x)

Policy π Network:
l0 = Linear(state_dim, 256)
l1 = Linear(256, 256)
lm = Linear(256, action_dim)
ls = Linear(256, action_dim)

Policy π Forward Pass:
input = state
x = ReLU(l0(input))
x = ReLU(l1(x))
mean = tanh(lm(x))
std = softplus(ls(x))

C.4 BASE FEATURES

Since we use a base feature function ϕ, we have two networks- 1) To provide the embedding for
the state, and 2) To predict the next state from the current state and action. Pseudo 4 provides the
description of the network architectures and the corresponding forward passes.

26



Published as a conference paper at ICLR 2025

Pseudo 4. Base Feature Network Details

Variables:
phi_dim = 128

Base Feature Network ϕ to encode state:
l0 = Linear(state_dim, 512)
l2 = Linear(512, 512)
l3 = Linear(512, phi_dim)

Base Feature ϕ Forward Pass:
input = state
x = Layernorm(l1(x))
x = tanh(x)
x = ReLU(x)
phi_s = L2Norm(l3(x))

FDM Network:
l0 = Linear(phi_dim + action_dim, 512)
l1 = Linear(512, 512)
l2 = Linear(512, action_dim)

FDM Network Forward Pass:
input = concatenate([phi_s, action])
x = ReLU(l0(x))
x = ReLU(l1(x))
action = tanh(l2(x))

C.5 STATE-ONLY ADVERSARIAL BASELINES

For the state-only MM method, we used the same architecture as TD7 (Fujimoto et al., 2023) or
TD3 (Fujimoto et al., 2018) for the RL subroutine. We kept the same architecture of the discrim-
inator as provided in the official implementation. However, we modified the discriminator to take
only states as inputs. Additionally, we used gradient penalty and learning rate decay to update the
discriminator, and OAdam optimizer (Daskalakis et al., 2018) for all networks. For GAIfO (Torabi
et al., 2018), we used the same architecture as state-only MM. However, the discriminator takes the
state-transition denoted as the state and next-state pair as input.
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D HYPERPARAMETERS

In Table 5, we provide the details of the hyperparameters used for learning. Many of our hyper-
paramters are similar to the TD7 (Fujimoto et al., 2023) algorithm. Important hyperparameters
include the discount factor γ for the SF network and tuned it with values γ = [0.98, 0.99, 0.995] and
report the ones that worked best in the table. Rest, our method was robust to hyperparameters like
learning rate and batch-size used during training.

Name Value
Batch Size 1024
Discount factor γ for SF .99
Actor Learning Rate 5e-4
SF network Learning Rate 5e-4
Base feature function learning Rate 5e-4
Network update interval 250
Target noise .2
Target Noise Clip .5
Action noise .1
Environments steps 1e6

Table 5: Hyper parameters used to train SFM.
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