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Oğuzhan Fatih Kar1 Mattia Rigotti2 Amir Zamir1

1Swiss Federal Institute of Technology (EPFL) 2IBM Research

ABSTRACT

Supervised learning datasets may contain multiple cues that explain the training
set equally well, i.e., learning any of them would lead to the correct predictions on
the training data. However, many of them can be spurious, i.e., lose their predictive
power under a distribution shift and consequently fail to generalize to out-of-
distribution (OOD) data. Recently developed "diversification" methods (Lee et al.,
2023; Pagliardini et al., 2023) approach this problem by finding multiple diverse
hypotheses that rely on different features. This paper aims to study this class of
methods and identify the key components contributing to their OOD generalization
abilities. We show that (1) diversification methods are highly sensitive to the
distribution of the unlabeled data used for diversification and can underperform
significantly when away from a method-specific sweet spot. (2) Diversification
alone is insufficient for OOD generalization. The choice of the used learning
algorithm, e.g., the model’s architecture and pretraining, is crucial. In standard
experiments (classification on Waterbirds and Office-Home datasets), using the
second-best choice leads to an up to 20% absolute drop in accuracy. (3) The optimal
choice of learning algorithm depends on the unlabeled data and vice versa, i.e., they
are co-dependent. (4) Finally, we show that, in practice, the above pitfalls cannot
be alleviated by increasing the number of diverse hypotheses, the major feature
of diversification methods. These findings provide a clearer understanding of the
critical design factors influencing the OOD generalization abilities of diversification
methods. They can guide practitioners in how to use the existing methods best and
guide researchers in developing new, better ones.

1 INTRODUCTION

Achieving out-of-distribution (OOD) generalization is a crucial milestone for the real-world de-
ployment of machine learning models. A core obstacle in this direction is the presence of spurious
features, i.e., features that are predictive of the true label on the training data distribution but fail
under a distribution shift. They may appear due to, for example, a bias in the data acquisition
process (Oakden-Rayner et al., 2020)) or an environmental cue closely related to the true predictive
feature (Beery et al., 2018).

The presence of a spurious correlation between spurious features and true underlying labels implies
that there are multiple hypotheses (i.e., labeling functions) that all describe training data equally well,
i.e., have a low training error, but only some generalize to the OOD test data. Previous works (Atanov
et al., 2022; Battaglia et al., 2018; Shah et al., 2020) have shown that in the presence of multiple
predictive features, standard empirical risk minimization (Vapnik, 1991) (ERM) using neural networks
trained with stochastic gradient descent (SGD) converges to a hypothesis that is most aligned with
the learning algorithm’s inductive biases. When these inductive biases are not aligned well with
the true underlying predictive feature, it can cause ERM to choose a wrong (spurious) feature and,
consequently, fail under a distribution shift.
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(a) Original data (b) Unlabeled data changes (c) Learning algo. changes

Figure 1: Diversification is a two-legged problem where unlabeled data and learning algorithm
both matter and are co-dependent. and represent the training data points and their labels.

represents unlabeled data. hERM represents the hypothesis found by empirical risk minimization
(ERM), thus reflecting the inductive bias of the learning algorithm. h2 represents a second diverse
hypothesis found by a diversification method; it has low error on training data as hERM does, but
disagrees with it on the unlabeled data. Compared to (a) the original setting, we study how changing
(b) unlabeled data and (c) the learning algorithm yield different solutions and, therefore, performance.

Recently, diversification methods (Lee et al., 2023; Pagliardini et al., 2023) have achieved state-of-the-
art results in classification settings in the presence of spurious correlations. Instead of training a single
model, these methods aim to find multiple plausible and diverse hypotheses that all describe the
training data well, while relying on different predictive features, which is usually done by promoting
different predictions on additional unlabeled data. The motivation is that among all the found features,
there will be the true predictive one that is causally linked to the label and, therefore, remains
predictive under a distribution shift.

In this work, we identify and study the key factors that contribute to the success of these diversification
methods, adopting (Lee et al., 2023; Pagliardini et al., 2023) as two recently proposed best-performing
representative methods. Our contributions are as follows.
• First, through theoretical and empirical analyses, we show that diversification methods are sensi-

tive to the distribution of the unlabeled data (Fig. 1(a) vs. 1(b)). Specifically, each diversification
method works best for different distributions of unlabeled data, and the performance drops
significantly (up to 30% absolute accuracy) when diverging from the optimal distribution.

• Second, we demonstrate that diversification alone cannot lead to OOD generalization efficiently
without additional biases. This is similar to the in-distribution generalization with ERM, where
“good” learning algorithm’s inductive biases are necessary for generalization (Vapnik & Cher-
vonenkis, 2015). In particular, we show that these methods are sensitive to the choice of the
architecture and pretraining method (Fig. 1(a) vs. 1(c)), and the deviation from best to second
best model choice results in a significant (up to 20% absolute) accuracy drop (see Fig. 3).

• Further, we show that a co-dependence exists between unlabeled data and the learning algorithm,
i.e., the optimal choice for one depends on the other. Specifically, for fixed training data, we can
change unlabeled data in a targeted way to make one architecture (e.g., MLP) generalize and the
other (e.g., ResNet18) to have random guess test accuracy and vice versa.

• Finally, we show that one of the expected advantages of diversification methods – increasing the
number of diverse hypotheses to improve OOD generalization – does not hold up in practice
and does not help to alleviate the aforementioned pitfalls. Specifically, we do not observe any
meaningful improvements using more than two hypotheses.

These findings provide a clearer understanding of the relevant design factors influencing the OOD
generalization of diversification methods. They can guide practitioners in how to best use the existing
methods and guide researchers in developing new, better ones. We provide guiding principles distilled
from our study in each section and Sec. 6.

2 RELATED WORK

Spurious correlation and underspecification. As a special case of OOD generalization problem,
spurious correlations can arise from the underspecified nature of the training data (D’Amour et al.,
2020; Koh et al., 2021; Liang & Zou, 2022). In this setting, neural networks tend to learn simple
(spurious) concepts rather than the true causal concepts, a phenomenon known as simplicity bias
(Shah et al., 2020; Huh et al., 2023) or shortcut learning (Geirhos et al., 2020; Scimeca et al., 2022).
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Some works combat spurious correlation by improving worst-group performance (Sagawa et al.,
2020; Hu et al., 2018; Zhang et al., 2021), some require group annotation (Sagawa et al., 2020; Zhang
et al., 2022; Creager et al., 2021) and others (Liu et al., 2021; LaBonte et al., 2022; Sohoni et al.,
2020) aim at the no group information scenario. Diversification methods fit into the latter, as they
only rely on additional unlabeled data to promote diversity between multiple hypotheses.

Diversification methods. Recently proposed diversification methods (Lee et al., 2023; Pagliardini
et al., 2023; Teney et al., 2022a;b) find multiple diverse hypotheses during training to handle spurious
correlations. They introduce an additional diversification loss over multiple trained hypotheses,
forcing them to rely on different features while still fitting training data well. Teney et al. (2022a;b)
use input-space diversification that minimizes the alignment of input gradients over pairs of models
at all training data points. DivDis (Lee et al., 2023) and D-BAT (Pagliardini et al., 2023) use
output-space diversification, minimizing the agreement between models’ predictions on additional
unlabeled data. We focus on studying the latter, as these methods outperform the input-space ones by
a large margin, achieving state-of-the-art performance in the setting where true labels are close to or
completely correlated with spurious attributes.

Inductive biases in learning algorithms. Different learning algorithms have different inductive
biases (Shalev-Shwartz & Ben-David, 2014; Hüllermeier et al., 2013), which makes a given algorithm
prioritize a specific solution (Gunasekar et al., 2018; Ji & Telgarsky, 2020). While being highly
overparameterized (Allen-Zhu et al., 2019) and able to fit even random labels (Zhang et al., 2017),
deep learning models were shown to benefit from architectural (Xu et al., 2021; Naseer et al., 2021) ,
optimization (Kalimeris et al., 2019; Liu et al., 2020) and pre-training (Immer et al., 2022; Lovering
et al., 2021) inductive biases. In this work, we study the influence of the choice of the learning
algorithm and, hence, its inductive bias on the performance of diversification methods. We show that
diversification methods are sensitive to the choice of architecture and pretraining method.

3 LEARNING VIA DIVERSIFICATION

First, we formalize the problem of generalization under spurious correlation. Then, we present a
diversification framework along with the recent representative methods, DivDis (Lee et al., 2023)
and D-BAT (Pagliardini et al., 2023)1, describing key differences between them: training strategies
(sequential vs. simultaneous) and diversification losses (mutual information vs. agreement).

3.1 PROBLEM FORMULATION

For consistency, we follow a notation similar to that of D-BAT (Pagliardini et al., 2023). Let X be
the input space, Y the output space. Both methods focus on classification, i.e. Y = {0, . . . , q − 1},
where q is the number of classes. We define a domain (D,h) as a distribution D over X and a
hypothesis (labeling function) h : X → Y . The training data is drawn from the domain (Dt, h∗), and
test data from a different domain (Dood, h

∗). Given any domain (D,h′), a hypothesis h, and a loss
function (e.g. cross-entropy loss) L : Y × Y → R+, the expected loss is defined as: LD(h, h′) =
Ex∼D[L(h(x), h′(x))]. Let H be the set of hypotheses expressed by a given learning algorithm. We
define H∗

t and H∗
ood to be the optimal hypotheses set on the train and the OOD domains:

H∗
t := argmin

h∈H
LDt

(h, h∗), H∗
ood := argmin

h∈H
LDood

(h, h∗). (1)

Definition 1. (Spurious Ratio) Given a spurious hypothesis h, the spurious ratio rhD, with respect to
a distribution D and its labeling function h∗ is defined as the proportion of data points where h∗ and
h agree, i.e., have the same prediction: rhD = Ex∼D[h∗(x) = h(x)].

The spurious ratio describes how the spurious hypothesis h correlates with the true h∗ on data D. A
spurious ratio of 1 indicates that a given data distribution has a complete spurious correlation. On the
contrary, a spurious ratio of 0 indicates that the spurious hypothesis is always in opposition to the
true labeling, namely inversely correlated. Finally, a spurious ratio of 0.5 means that the spurious
hypothesis is not predictive of h∗, as there is no correlation between them. We will also refer to this
setting as a “balanced” data distribution. We omit h∗ (and sometimes h) in the notation to keep it
less cluttered, as they can be inferred from the context of a specific setting.

1At the time of writing, these are the best-performing diversification methods and the only existing output-
space ones.
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Spurious correlation setting. In this setting, we assume that there exist one or more spurious
hypotheses h ∈ Hsp ⊂ H∗

t \H∗
ood, which generalize on Dt but not on Dood. Thus, the spurious ratio

on training data is close to one: rhDt
≈ 1. If there is a misalignment between the inductive bias of

the learning algorithm and H∗
ood, the ERM hypothesis hERM may be closer to hypotheses from Hsp

than H∗
t ∩H∗

ood, i.e., have poor OOD generalization. The idea of diversification methods is to find
multiple hypotheses from H∗

t with the aim to have one with good OOD generalization (see Sec. 3.2).

3.2 DIVERSIFICATION FOR OOD GENERALIZATION

DivDis and D-BAT focus on the above spurious correlation setting. They assume access to additional
unlabeled data Du to find multiple diverse hypotheses that all fit the training data (Dt, h

∗) but
disagree, i.e., make diverse predictions, on Du. The motivation is to better cover the space H∗

t and,
consequently, find a hypothesis from H∗

t ∩H∗
ood that also generalizes to OOD data.

Optimization objective. Following DivDis and D-BAT, we define a diversification loss ADu
(h1, h2)

that quantifies the agreement between two hypotheses on Du. Then, in the case of finding K
hypotheses, the training objective of a diversification method is the sum of ERM loss and the
diversification loss averaged over all pairs of hypotheses:

h1, ..., hK = argmin
h1,...,hK∈H

K∑
i=1

LDt(hi, h
∗) +

α

K(K − 1)

K∑
i=1

K∑
j=1, i ̸=j

ADu(hi, hj), (2)

Diversification loss. Let Phi be the predictive distribution of a hypothesis hi on given data D. Then,

• DivDis (Lee et al., 2023): AD(h1, h2) = DKL(P(h1,h2)||Ph1⊗Ph2)+λ
∑

i∈{1,2} DKL(Phi ||P̂ ).

The first term is the mutual information, which is equal to 0 iff Ph1
and Ph2

are independent.
The second term is the KL-divergence between Phi and a prior distribution P̂ (usually set to the
distribution of labels in Dt). It prevents hypotheses from collapsing to degenerate solutions.

• D-BAT (Pagliardini et al., 2023): AD(h1, h2) = Ex∼D[−log(Ph1
(x; 0) ·Ph2

(x; 1)+Ph1
(x; 1) ·

Ph2
(x; 0))], where Phi

(x; y) is the probability of class y predicted by hi.
In practice, they are computed and optimized on additional unlabeled data Du. Note that it is usually
favorable to have the distribution of Du different from that of Dt, i.e., rhDu

< rhDt
≈ 1, as this

enables the diversification process to distinguish between spurious and semantic hypotheses (This is
also confirmed by empirical results in Fig.2-Right). In Sec. 4, we will show that both losses have
their strengths, and the optimal choice depends on the spurious ratio of Du.

Sequential vs. simultaneous optimization. In practice, when minimizing the diversification
objective in Eq. 2, there are two choices: (i) optimize over all hypotheses simultaneously or (ii) find
hypotheses one by one. DivDis trains simultaneously and defines hypotheses as linear classifiers
that share the same feature extractor. D-BAT, on the contrary, starts with h1 ≜ hERM and finds new
hypotheses, defined as separate models sequentially. For consistency and comparability with D-BAT
in Sec. 4 analysis, we also introduce DivDis-Seq, a version of DivDis using sequential optimization,
allowing us to concentrate only on the difference in diversification loss design.

The two-stage framework. After finding K hypotheses, one needs to be chosen to make the
final prediction, leading to a two-stage approach (Lee et al., 2023): 1. Diversification: find K

diverse hypotheses H∗
K ⊂ H∗

t . 2. Disambiguation: select one hypothesis ĥ ∈ H∗
K given additional

information (e.g., a few labeled test examples or human supervision). We identify the diversification
stage as the most critical one. Indeed, if the desired hypothesis h∗ is not chosen (h∗ /∈ H∗

K), the
second stage cannot make up for it as it is limited to only hypotheses from H∗

K . We, therefore, focus
on the first stage and assume an oracle that chooses the best available hypothesis in the second stage.

4 THE RELATIONSHIP BETWEEN UNLABELED DATA AND OOD
GENERALIZATION VIA DIVERSIFICATION

In this section, we study how the different diversification losses of DivDis and D-BAT interact with
the choice of unlabeled data. In an illustrative example and real-world datasets, we identify that
neither of the diversification losses is optimal in all scenarios and that their behavior and performance
are highly dependent on the spurious ratio of the unlabeled OOD data Du.
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Figure 2: Performance of diversification is highly dependent on unlabeled OOD data. Left:
Top-left quadrant: The 2D binary classification task. Other quadrants: Show the second hypotheses
(arrows are normal vectors) found by D-BAT (hDB

2 ) and DivDis-Seq (hDD
2 ) with varied spurious

ratios of unlabeled OOD data rDu = {0, 0.25, 0.5} (from inversely correlated to balanced). Right:
Best hypothesis test accuracy of D-BAT & DivDis(-Seq) on MNIST-CIFAR (M/C) for varied spurious
ratios rDu and number of hypotheses K. The test accuracy is measured on hold-out balanced data
Dood (i.e., rDood

= 0.5, no spurious correlation).

4.1 THEORETICAL AND EMPIRICAL STUDY OF A SYNTHETIC EXAMPLE

Synthetic 2D binary classification task. In Fig. 2-Left, we show a 2D task with distribution
Dood spanning a 2D square, i.e., {x = (x1, x2) ∈ [−1, 1]2}. We define our hypothesis space H
to be all possible linear classifiers h(x;β) where β is the radian of the classification plane w.r.t
horizontal axis x1. The ground truth labeling function is defined as h⋆(x) = h(x; π

2 ) = I{x1 > 0}
where I is the indicator function, and the training distribution is defined as Dt = {x = (x1, x2) ∈
{[−1, 0] × [0, 1]} ∪ {[0, 1] × [−1, 0]}}. We then define a spurious feature function as hsp(x) =
h(x; 0) = I{x2 < 0} and assume that ERM converges to hsp. This means that the first hypothesis
hDB
1 (D-BAT) and hDD

1 (DivDis-Seq) of both methods converge to hsp. Finally, we define different
distributions of unlabeled data Du to have different spurious ratios rDu

from 0 to 0.5 (the construction
is described in Appendix A).

Proposition 1. (On Optimal Diversification Loss) In the synthetic 2D binary task, let hDB
2 and

hDD
2 be the second hypotheses of D-BAT and DivDis-Seq, respectively. If rDu

= 0, then hDB
2 = h⋆

and hDD
2 = h(x; π

4 ). Otherwise, if rDu = 0.5, then hDB
2 = h(x;π) = 1 − hsp and hDD

2 = h⋆.
Increasing the spurious ratio rDu

from 0 to 0.5 will lead to hDB
2 and hDD

2 rotating counterclockwise.

See Appendix A for the full proof and Fig. 2-Left for the visual demonstration. This proposition
implies that D-BAT recovers h⋆ when rDu

= 0 (i.e., inversely correlated) and DivDis-Seq recovers
h⋆ when rDu

= 0.5 (i.e., balanced). For D-BAT, this happens because the optimal second hypothesis
hDB
2 is the hypothesis that disagrees with hDB

1 on all unlabeled data points i.e. hDB
2 ∈ {h ∈

H∗
t : h(x) ̸= hDB

1 (x) ∀x ∈ Du}. On the contrary, the optimal second hypothesis for DivDis-
Seq is independent of the first one, i.e., disagreeing on half of the data points hDD

2 ∈ {h ∈ H∗
t :

Px∼Du
[h(x) = hDD

1 (x)] = 1
2}.

In Fig. 2-Left, we empirically demonstrate this behavior by training linear classifiers2 with D-BAT
and DivDis-Seq3 on such synthetic data, with 0.5k training / 5k unlabeled OOD data points (following
(Lee et al., 2023)). We observe that the behavior suggested in Proposition 1 is consistent with our
experiments. This highlights that different diversification losses only recover the ground truth function
in different specific spurious ratios.

4.2 VERIFICATION ON REAL-WORLD IMAGE DATA

We further evaluate whether the suggested behavior holds with more complex classifiers and more
complex datasets. Specifically, we use M/C (Shah et al., 2020) and M/F (Pagliardini et al., 2023),

2In Appendix B, we show additional results with more complex classifiers (i.e., MLP).
3For completeness, we also provide results with DivDis, which is deferred to Appendix C.
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which are datasets that concatenate one image from MNIST with one image from either CIFAR-10
(Krizhevsky & Hinton, 2009) or Fashion-MNIST (Xiao et al., 2017). We follow the setup of Lee et al.
(2023); Pagliardini et al. (2023): we use 0s and 1s from MNIST and two classes from Fashion-MNIST
(coats & dresses) and CIFAR-10 (cars & trucks). The training data is designed to be completely
spuriously correlated (e.g., 0s always occur with cars and 1s with trucks in M/C). We vary the spurious
ratio rDu

of the unlabeled data by changing the probability of 0s occurring with cars/dresses. We use
LeNet (Lecun et al., 1998) architecture for both D-BAT and DivDis(-Seq) methods.

Fig. 2-Right shows that similar to Proposition 1, D-BAT is optimal when rDu = 0 whereas DivDis(-
Seq) optimal setting is rDu

= 0.5. Both methods observe a drastic decrease in performance away
from their “sweet spot” (with up to 30% absolute accuracy drop). Note that it is expected that
both methods reach chance-level accuracy when rDu → 1, as it means that the spurious hypothesis
becomes completely correlated to the true hypothesis on Du, and it is thus impossible to differentiate
them by enforcing diversification on Du. In Appendix D, Fig. 9 shows that the same observation
holds for the M/F dataset, and Tab. 4 also shows the results of different spurious ratios on a larger
and more realistic dataset, CelebA-CC (Liu et al., 2015; Lee et al., 2023).

Lee et al. (2023); Pagliardini et al. (2023) note that both the number of hypotheses K and the
diversification coefficient α (Eq. 2) are critical hyper-parameters, that may greatly influence the
performance. However, controlling for these variables, in Fig. 2-Right and Fig. 10, we find that
tuning α and K is not sufficient to compensate the performance loss from the misalignment between
unlabeled OOD data and the diversification loss.

Takeaway. Diversification methods’ performance drops drastically when away from the
spurious ratio (Def. 1) “sweet spot”, and neither diversification loss is optimal in all cases.
Therefore, new methods should be designed to adapt to different unlabeled data distributions.

5 THE RELATIONSHIP BETWEEN LEARNING ALGORITHM AND OOD
GENERALIZATION VIA DIVERSIFICATION

In this section, we study another key component of diversification methods – the choice of the learning
algorithm. First, we present a theoretical result showing that diversification alone is insufficient to
achieve OOD generalization and requires additional biases (e.g., the inductive biases of the learning
algorithm). Then, we empirically demonstrate the high sensitivity of these methods to the choice of
the learning algorithm (architecture and pretraining method). Finally, empirically, we show that the
optimal choices of the learning algorithm and unlabeled data are co-dependent.

5.1 DIVERSIFICATION ALONE IS INSUFFICIENT FOR OOD GENERALIZATION

Diversification methods find hypotheses his that all minimize the training loss, i.e., hi ∈ H∗
t , but

disagree on the unlabeled data Du. The underlying idea is to cover the space H∗
t evenly and better

approximate a generalizable hypothesis from H∗
t ∩ H∗

ood (e.g., see Fig. 3 in (Pagliardini et al.,
2023)). However, if the original hypothesis space H is expressive enough to include all possible
labeling functions (e.g., neural networks (Hornik et al., 1989)), then H∗

t essentially only constrains
its hypotheses’ labeling on the training data Dt while including all possible labelings over Dood,
which implies q|Dood| possible labelings, where q is the number of classes. Therefore, one might
need to find exponentially many hypotheses before covering this space and approximating the desired
hypothesis h∗ ∈ H∗

t ∩H∗
ood well enough.

Notably, we prove that having as many diverse hypotheses as the number of data points in Dood

is still insufficient to guarantee better than a random guess accuracy. Indeed, there always exists a
set of hypotheses satisfying all the constraints of the diversification objective in Eq. 2 while having
random accuracy w.r.t the true labeling h∗ on OOD data. The following Proposition 2 formalizes this
intuition in the binary classification case. Please see its proof and extension to the multi-class case in
Appendix E.

Proposition 2. For K = (2|Dood| − 1) and h∗ the OOD labeling function, there exists a set of
diverse K hypotheses h1, ..., hK , i.e., ADood

(hi, hj) = |{x ∈ Dood : hi(x) = hj(x)}|/|Dood| ≤
0.5 ∀i, j ∈ {1, ...,K}, i ̸= j and it holds that maxh′∈h1,. . . ,hK

Acc(h∗, h′) ≤ 0.5.
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Figure 3: The performance of diversification methods is highly sensitive to the choice of archi-
tecture and pretraining method. Left: DivDis and D-BAT best hypothesis (K = 2) performance
with multiple pretraining strategies and architecture pairs on Waterbirds-CC (Left) and Office-Home
(Right). ResNet50 is used if not specified. Right: Top-1 accuracy on ImageNet-1k after fine-tuning.

Since in most cases, Lee et al. (2023); Pagliardini et al. (2023) find 2 hypotheses to be sufficient to
approximate h∗ and the size of the used datasets is larger than 2, these hypotheses should not only be
diverse but also biased towards those that generalize under the considered distribution shift.

Takeaway. Diversification alone cannot lead to OOD generalization efficiently and requires
additional biases to be brought by a specific learning algorithm used in practice.

Properties of diverse hypotheses. In Appendix F.2, using the agreement score (AS) (Atanov et al.,
2022; Hacohen et al., 2020) as a measure of the alignment of a hypothesis with a learning algorithm’s
inductive biases, we study in what way D-BAT and DivDis diverse hypotheses are biased. We show
that they find hypotheses that are not only diverse but aligned with the inductive bias of the used
learning algorithm. According to the definition of AS, such alignment is expected for a hypothesis
found by empirical risk minimization (ERM). However, it is not generally expected from diverse
hypotheses (as defined in Eq. 2), given that the additional diversification loss could destroy this
alignment. This analysis sheds light on the process by which diverse hypotheses are found and
emphasizes the choice of a good learning algorithm, which is crucial, as shown in the next section.

5.2 LEARNING ALGORITHM SELECTION: A KEY TO EFFECTIVE DIVERSIFICATION

Sec. 5.1 argues that the right learning algorithm’s inductive biases (i.e., those aligned well with the
true causal hypothesis h∗) are required for diversification to enable OOD generalization. In this
section, we examine the “sensitivity” of this requirement by using DivDis and D-BAT with different
choices of pretraining strategies and architectures on several real-world datasets.

Experimental setup. We consider the following datasets. (1) A multi-class classification dataset
Office-Home (Venkateswara et al., 2017) consists of images of 65 item categories across four domains:
Art, Product, Clipart, and Real-World. Following the experimental setting in Pagliardini et al. (2023),
we use the Product and Clipart domains during training and the Real-World domain as the out-of-
distribution one. (2) A binary classification dataset: Waterbirds-CC Lee et al. (2023); Sagawa et al.
(2020), a modified version of Waterbirds where the background and bird features are completely
spuriously correlated on the training data. We report worst-group accuracy for Waterbirds-CC, i.e.,
the minimum accuracy among the four possible groups. We train both diversification methods using
different architectures and pretraining methods, each resulting in a different learning algorithm with
different inductive biases. Please see full experimental details and results in Appendix G.

Sensitivity to the model choice. Fig. 3 shows that the performance of both diversification methods is
highly sensitive to the choice of the learning algorithm: 1) the gap between the best and second-best
model is significant (10%-20%) 2) there is no single model that performs the best over both datasets,
and 3) there is a 20% standard deviation of the performance over the distribution of models (averaged
over methods and datasets). Furthermore, similar to the findings of Wenzel et al. (2022), one cannot
choose a good model reliably based on the ImageNet performance as a proxy. Indeed, the best
model, according to this proxy, ViT-MAE (He et al., 2021), underperforms significantly in all cases.
Additionally, ViT-Dino (Caron et al., 2021), the third best on ImageNet, completely fails for DivDis
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Dataset Method K = 2 K = 3 K = 4 K = 5

Waterbirds-CC D-BAT (ViT-B/16 IN) 57.1±3.7 57.1±3.7 57.1±3.7 57.1±3.7

DivDis (MoCo-v2) 49.4±10.3 51.7±6.0 49.6±8.3 48.4±0.9

Office-Home D-BAT (ViT-MAE) 61.9±0.7 62.6±0.1 62.6±0.1 62.6±0.1

DivDis (Resnet50 IN) 55.9±0.6 54.6±0.1 53.6±0.4 53.1±0.2

Table 1: Increasing the number of hypotheses does not bridge the performance gap between
different models. We increase the number of hypotheses found by diversification methods for the
second-best model in Fig. 3 and find that it is not enough to bridge the performance gap with the
best-performing model. The best hypothesis accuracy is reported. Results are averaged over 3 seeds.
Standard deviations for Waterbirds-CC are larger due to the usage of the worst-group accuracy metric.

on both datasets. Overall, these results emphasize the need for a specific architecture and pretraining
tailored for each dataset and method, which may require an expensive search.

Increasing K does not improve performance. Finally, we study whether the performance gap
between the best and second-best models tested in Fig. 3 can be closed by increasing the number of
hypotheses K, as this is allegedly the major feature and motivation of diversification methods. Tab. 1
shows that similar to the observation made in Sec. 4.2, increasing K does not bring any improvements,
suggesting that the choice of the model is more important for enabling OOD generalization. In
Fig. 14, we further show that DivDis does not scale well to larger K (e.g., K = 64) “out-of-the-box”,
and the performance drops as the number of hypotheses increases. Note that testing D-BAT in this
regime would be prohibitively expensive.

Takeaway. Diversification methods are highly sensitive to the choice of the learning algorithm,
e.g., architecture and pretraining method. The “built-in” mechanism of increasing the number
of hypotheses K does not alleviate this issue and fails to improve performance.

5.3 ON THE CO-DEPENDENCE BETWEEN LEARNING ALGORITHM AND UNLABELED DATA

Sec. 4 and Sec. 5.2 show the sensitivity of the diversification methods to the distribution of the
unlabeled data and the choice of a learning algorithm, respectively. Here, we further demonstrate that
these choices are co-dependent, i.e., the optimal choice for one depends on the other. Specifically, we
show that by only varying the distribution of unlabeled data, the optimal architecture can be changed.

Experimental setup. We consider two learning algorithms (architectures) A ∈ {MLP,ResNet18}
(extension to other architectures is straightforward) and construct examples for D-BAT where one
architecture outperforms the other and vice versa. To do that we build on the idea of adversarial splits
introduced in (Atanov et al., 2022), defined on a CIFAR-10 Krizhevsky & Hinton (2009) dataset D.
Below, we briefly describe the construction and refer the reader to Appendix H for more details.

We start by considering two hypotheses with high agreement scores (Baek et al., 2022) found by
Atanov et al. (2022) for each architecture, such that the following holds:

ASMLP(hMLP) > ASMLP(hRN), ASRN(hRN) > ASRN(hMLP), (3)

where ASA stands for the agreement score measured with algorithm A. As shown in Atanov et al.
(2022), the above inequalities suggest that each hypothesis hA is more aligned with its corresponding
learning algorithm A, i.e., ERM trained with MLP architecture will preferentially converge to hMLP

over hRN and vice-versa when training with Resnet18. Akin to adversarial splits (Atanov et al.,
2022), we then use these two high-AS hypotheses to construct a dataset to change, in a targeted
way, what the first hypothesis of D-BAT h1 ≜ hERM converges to, depending on the used learning
algorithm. Different h1s, in turn, lead to different h2s and, hence, different test performance.

As the true labeling h∗, we use a binary classification task constructed by splitting the original 10
classes into two sets of five. Then, as Tab. 2-Right illustrates, we construct training data Dt to contain
samples where all h∗, hMLP, and hRN agree, i.e., Dt = {x ∈ D : h∗(x) = hMLP(x) = hRN(x)}.
Thus, by design, both hMLP and hRN are completely spuriously correlated with h∗. Then, we
define unlabeled OOD data Du s.t. either (rhMLP

Du
= 0, rhRN

Du
= 1

2 ) (denoted as h∗ ⊥ hRN), or
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Du A Test Acc.(%)

h⋆ ⊥ hMLP
① MLP 89.2±0.8

② ResNet18 56.7±0.8

h⋆ ⊥ hRN
③ MLP 55.4±0.3

④ ResNet18 77.0±0.7

𝐷!: ℎ∗ ⊥ ℎ#$%

ℎ#$%

ℎ∗ ℎ&'

𝐷!: ℎ∗ ⊥ ℎ&'

ℎ&'

ℎ∗ℎ#$%

Training set (𝐷!) Unlabeled data	(𝐷")
Class 1

Class 0

Class 1

Class 0

Table 2: The optimal choices of the (learning algorithm) architecture and unlabeled data are
co-dependent. Left: Performance of the D-BAT method using two architectures and two created
unlabeled data distributions. The test accuracy is on hold-out data Dood ∼ Du. Right: Illustration
of the two unlabeled data distributions used in the experiment. We keep the training data fixed and
change Du s.t. h⋆ is inversely correlated (denoted by ‘⊥’) to one of the “spurious” hypotheses
hMLP, hRN. We show that the optimal choice of the architecture (A) depends on the unlabeled data
distribution, and the best A is the one for which h∗ ⊥ hA on Du.

(rhMLP

Du
= 1

2 , r
hRN

Du
= 0) (denoted as h∗ ⊥ hMLP). This means that h∗ is inversely correlated with

only one of hMLP or hRN, while not correlated to the other hypothesis.

Results. Keeping the training data fixed, we train D-BAT (K = 2) using different architecture and
construct unlabeled data pairs (A, Du). Tab. 2-Left shows that the performance of A drops to almost
random chance when hA does not inversely correlate with h∗ on the unlabelled data (② and ③). This
is consistent with Sec. 4, where we show that the setting with rh1

Du
= 1

2 is disadvantageous for D-BAT.
In Appendix H, Tab. 11 further shows similar observation for a different architecture pair (ViT &
ResNet18), and Fig. 15 extends the experiment with smooth interpolation from one unlabeled dataset
setting to the other, showing a linear transition where one architecture goes from optimal performance
to random-chance accuracy, and vice-versa.

Takeaway. The optimal choices of the architecture and unlabeled data are co-dependent.

6 CONCLUSION AND LIMITATIONS

This paper aims to study diversification methods and identify key components enabling their OOD
generalization: the diversification loss used, the distribution of the unlabeled data, and the choice of a
learning algorithm. Below, we distill some practical recommendations that follow from our analysis.

Unlabeled data and diversification loss. Sec. 4 shows that a sub-optimal spurious ratio w.r.t to the
chosen diversification loss may lead to significant performance drops. One possibility to overcome
this problem is to use a mixture of diversification losses, determined by an estimate of the spurious
ratio of unlabeled data. Another is to try to collect unlabeled data with a specific spurious ratio.

Choice of the learning algorithm. Sec. 5.2 demonstrates that the methods are highly sensitive to the
choice of the learning algorithm inductive bias. Future methods should be made more resilient to this
choice, e.g., by modeling each hypothesis with different architectures and pretraining methods or by
implementing a mechanism to choose a “good” model automatically.

Co-dependence. Sec. 5.3 suggests that a practitioner should not expect the best learning algorithm
(e.g., architecture or pretraining choice) found on one dataset to perform well on another one (as
observed in Sec. 5.2), and an additional search might be needed to achieve good performance.

Then we discuss the limitations of our study:

Data characteristics. We characterize the influence of the OOD data distribution through its spurious
ratio. The influence of other important properties of the OOD data may need to be studied in future
work. Furthermore, we mainly focused on image data to aid the comparison with Lee et al. (2023);
Pagliardini et al. (2023), but we expect our conclusions to be mainly data-agnostic.

Co-dependence experiment only with D-BAT In Sec. 5.3, the experiment is only performed with
D-BAT. We expect DivDis to have a similar co-dependence. However, its diversification loss (mutual
information) and optimization strategy (simultaneous) make such a targeted experiment challenging
to design. We leave an explicit demonstration for future work.
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REPRODUCIBILITY STATEMENT

In order to ensure that this work is reproducible, we have taken the following steps. In Appendix A
and E, we provide proofs for each theoretical result (Proposition 1 and Proposition 2). For the
experiments, in Appendix D, G, and H, we provide a complete description of the datasets, used
models, and hyper-parameter settings. Additionally, all results from DivDis (Lee et al., 2023) and
D-BAT (Pagliardini et al., 2023) are obtained using their respective published source code, ensuring
a faithful representation of their methods. Finally, we provide the anonymized source code for the
experiments performed in the paper.
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Appendix

The appendix of this work is outlined as follows:

• Appendix A proves Proposition 1 of Sec. 4.1 (synthetic 2D task), and shows that the optimal
diversification loss depends on the spurious ratio of the unlabeled data.

• Appendix B extends the experiment done in Sec. 4.1 (synthetic 2D task) by training a multilayer
perceptron (MLP) instead of a linear classifier, and shows empirically that Proposition 1 extends
to more complex classifiers.

• Appendix C provides additional experiments for Sec. 4.1, and shows empirically that Proposi-
tion 1 extends to DivDis.

• Appendix D provides the implementation details of the experimental verification of Proposition 1
on real-world images (Sec. 4.2) We also provide additional results, using the M/F dataset
(where MNIST and Fashion-MNIST (Xiao et al., 2017) are concatenated), as well as the CelebA
(Liu et al., 2015) dataset. We also show that tuning the diversification hyperparameter α is
not sufficient to compensate the performance loss from the misalignment between unlabeled
data and diversification loss, i.e., the conclusion of Proposition 1 still holds when tuning α.

• Appendix E proves Proposition 2 of Sec. 5.1, proving the existence of a large number of
pairwise diverse hypotheses which do not generalize. A proof for a similar result in the
multi-class classification case is also provided.

• Appendix F.1 provides an overview of the important concepts from Task Discovery (Atanov
et al., 2022) used in this paper (agreement score, adversarial splits).

• Appendix F.2, using agreement score, explains the experimental setup and results that demonstrate
that D-BAT and DivDis find hypotheses that are not only diverse but aligned with the
inductive bias of the used learning algorithm.

• Appendix G reports the experimental details and full results of Sec. 5.2.
• Appendix H provides a detailed explanation of how to construct the training and unlabeled data of

5.3 where we show that by only changing the distribution of unlabeled data, we can influence
the optimal choice of the architecture. It also contains a variant of Tab. 2 with ViT&ResNet
pair, as well as an extension of the experiment with a smooth interpolation from one unlabeled
dataset setting to the other, showing a linear transition where one architecture goes from
the optimal performance to random-chance accuracy, and vice-versa.

A PROOF AND DISCUSSION OF PROPOSITION 1

In Sec. 4, we make a proposition that, in the synthetic 2D example, the optimal choice of diversification
loss changes with the spurious ratio of unlabeled OOD data rDu

. Specifically, DivDis-Seq finds
the ground truth hypothesis h⋆ if and only if rDu

= 0.5 (i.e., balanced or no spurious correlation),
whereas D-BAT discovers h⋆ if and only if rDu = 0 (i.e., inversely correlated). In this section, we
provide the proof, method by method, and case by case.

We first restate the Proposition 1 as follows:

Synthetic 2D Binary Classification Task. We illustrate the setting in Fig. 4 and describe it below:
• The data domain spans a 2D square, i.e., {x = (x1, x2) ∈ [−1, 1]2}.
• The training distribution is defined as Dt = {x = (x1, x2) ∈ {[−1, 0]∪[0, 1]}∪{[0, 1]∪[−1, 0]}},

i.e., contains data points the 1st and 4th quadrants.
• Our hypothesis space H contains all possible linear classifiers h(x;β) where β is the radian of

the classification plane w.r.t horizontal axis x1.
• The ground truth hypothesis is h⋆(x) = h(x; π

2 ) = I{x1 > 0}, where I is the indicator function.
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Figure 4: Synthetic 2D Binary Classification Task. and represent the training data points
and their labels. represents unlabeled OOD data. In this setting, the unlabeled OOD data Du has
spurious ratio rDu

= 0 (i.e., inversely correlated).

• The spurious hypothesis, i.e. the one that ERM converges to, is assumed to be hsp(x) = h(x; 0) =
I{x2 < 0}.

• Thus, hsp and h⋆ agree on the training data (1st and 4th quadrants) and disagree on the 2nd and
3rd quadrants.

• We vary the spurious ratio of the unlabeled OOD data distribution Du by varying the ratio of data
points sampled from the 1st and 4th quadrants over the number of data points sampled from the
2nd and 3rd quadrants.

• One possibility is to define Du = {x = (x1, x2) ∈ {[R(rDu), 1] ∪ [0, 1]} ∪ {[−1,−R(rDu)] ∪
[−1, 0]}}, and R(r) = r

r−1 for 0 ≤ r ≤ 0.5.

• Let Ph(x; y) be the probability of class y predicted by hypothesis h given sample x. The following
proof assumes both the hypotheses hsp and the second hypothesis hDB

2 or hDD
2 discovered by

D-BAT and DivDis-Seq have a hard margin, i.e., Ph(x; y) ∈ {0, 1}. Nonetheless, we also show
empirically in Sec. 4.1 (Fig. 2) that when this hard margin condition does not hold, we get the
same conclusion as Proposition 1.

Proposition 1. (On Optimal Diversification Loss) In the synthetic 2D binary task, let hDB
2 and hDD

2

be the second hypotheses of D-BAT and DivDis-Seq, respectively. If rDu
= 0, then hDB

2 = h⋆ and
hDD
2 = h(x; π

4 ). Otherwise, if rDu
= 0.5, then hDB

2 = h(x;π) = 1− hsp and hDD
2 = h⋆.

Proof.

In the following proof, we use −h to denote the opposite hypothesis, i.e., −h(x) = 1− h(x).

D-BAT. Plugging in the unlabeled OOD data distribution Du, the first hypothesis hsp and the second
hypothesis hDB

2 , the diversification loss in D-BAT is:

ADu
(hsp, h

DB
2 ) = Ex∼Du

[−log(Phsp
(x; 0) · PhDB

2
(x; 1) + Phsp

(x; 1) · PhDB
2

(x; 0))],

Let LERM
Dt

be the ERM loss on fitting training data. D-BAT’s objective is then LERM
Dt

+αADu
, where

α is a hyperparameter. Bellow, we prove the proposition case by case:
• When rDu

= 0 (inversely correlated), the unlabeled OOD data spans {[0, 1]∪ [0, 1]}∪{[−1, 0]∪
[−1, 0]},i.e., the second and third quadrants. In this case, the diversification loss is:

ADu
= Ex∼Du

[−log(Phsp
(x; 0) · PhDB

2
(x; 1) + Phsp

(x; 1) · PhDB
2

(x; 0))]

= Ex∼Du
[−log(1 · PhDB

2
(x; 1) + 0 · PhDB

2
(x; 0)) | x ∈ {[0, 1] ∪ [0, 1]}] · 1

2
(2nd quadrant)

+ Ex∼Du [−log(0 · PhDB
2

(x; 1) + 1 · PhDB
2

(x; 0)) | x ∈ {[−1, 0] ∪ [−1, 0]}] · 1
2

(3rd quadrant),

(4)
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where we assume uniform distribution over Dood. The hypothesis hDB
2 which minimizes the

diversification loss in Eq. 4 should satisfy PhDB
2

(x; 1) = 1 and PhDB
2

(x; 0) = 1 for the data
points in the second and third quadrants, respectively. Since the hypothesis space consists of
linear classifiers, the two hypotheses that satisfy (i.e., with ADu

= 0) the above constraints are
h⋆ and −hsp, where −hsp(x) = 1 − I{x2 < 0} = I{x2 > 0}. When considering the entire
objective LERM

Dt
+ αADu

, only h⋆ minimizes the objective to 0, regardless of α. Therefore, in
this case, the D-BAT’s solution corresponds to the ground truth function h⋆.

• When rDu
= 0.5 (balanced), the unlabeled OOD data spans {[−1, 1]∪[0, 1]}∪{[−1, 1]∪[−1, 0]},

i.e., all four quadrants. The diversification loss is, therefore:

ADu
= Ex∼Du

[−log(Phsp
(x; 0) · PhDB

2
(x; 1) + Phsp

(x; 1) · PhDB
2

(x; 0))]

= Ex∼Du
[−log(1 · PhDB

2
(x; 1) + 0 · PhDB

2
(x; 0)) | x ∈ {[0, 1] ∪ [0, 1]}] · 1

4
(2nd quadrant)

+ Ex∼Du
[−log(1 · PhDB

2
(x; 1) + 0 · PhDB

2
(x; 0)) | x ∈ {[−1, 0] ∪ [0, 1]}] · 1

4
(1st quadrant)

+ Ex∼Du
[−log(0 · PhDB

2
(x; 1) + 1 · PhDB

2
(x; 0)) | x ∈ {[−1, 0] ∪ [−1, 0]}] · 1

4
(3rd quadrant)

+ Ex∼Du
[−log(0 · PhDB

2
(x; 1) + 1 · PhDB

2
(x; 0)) | x ∈ {[0, 1] ∪ [−1, 0]}] · 1

4
(4th quadrant)

(5)

The hypothesis h2 which minimizes Eq. 5 requires PhDB
2

(x; 1) = 1 for x in the 1st & 2nd
quadrants, and PhDB

2
(x; 0) = 1 for x in the 3rd & 4th quadrants. The only hypothesis that

satisfies these conditions is −hsp. Although −hsp doesn’t minimize LERM
Dt

, we note that, given
that the hypothesis function is hard-margin, any data point x in the 1st and 4th quadrants drives
the diversification loss to positive infinity if hDB

2 (x) ̸= −hsp(x). This is because of the −log in
the diversification loss. Therefore, in this case, D-BAT’s solution is −hsp regardless of LERM

Dt

and α. In practice (soft-margin regime), given that the α parameter is large enough to enforce
diversification, this also holds as we empirically verified in Fig. 2-Left.

• The cases where 0 < rDu
< 0.5 can be straightforwardly extended from the above two cases.

Indeed, as said above, any unlabeled data point in the 1st and 4th quadrants drives the diver-
sification loss to be positive infinity if hDB

2 ̸= −hsp, and, thus, hDB
2 = −hsp Note, that this

“phase transition” arises in theory as we consider all the points from Dood appearing in the 1st
and 4th quadrants, i.e., {[R(rDu

), 0] ∪ [0, 1]} and {[0,−R(rDu
)] ∪ [−1, 0]}. In practice, when

Dood contains only some samples from these regions, the hDB
2 will rotate counterclockwise

as we increase rDu
from 0 to 0.5, starting at hGT and ending at −hsp as seen in the empirical

experiment shown in Fig. 2.
Overall, when rDu

= 0, there are h⋆ and −hsp minimizing diversification loss with minimum 0, and
only h⋆ minimizes the whole loss (ERM + diversification loss). On the other hand, when rDu

= 0.5,
D-BAT finds −hsp that minimizes diversification loss but violates the ERM objective, regardless of
the choice of α.

DivDis-Seq. The DivDis diversification loss is

ADu
(hsp, h

DD
2 ) = DKL(P(hsp,hDD

2 )||Phsp
⊗ PhDD

2
) + λDKL(PhDD

2
||PDt

).

The first term on the right-hand side is the mutual information between hsp and hDD
2 . Minimizing

mutual information on the unlabeled OOD data Du yields a hypothesis hDD
2 that disagrees with hsp

on NU

2 data points while agreeing on the other NU

2 (where NU is the size of unlabeled OOD data). In
a finite sample size, this is equivalent to the hypotheses being statistically independent.

The second term is the KL-divergence between the class distribution of h2 on unlabeled data Du and
the class distribution of Dt. In this setting, an hypothesis h2 minimizing this metric simply needs to
classify half of the samples in the first class and the other half in the second class. Therefore:
• When rDu = 0 (inversely correlated), minimizing LERM

Dt
(hDD

2 )+αADu(hsp, h
DD
2 ) finds hDD

2 =
h(x; π

4 ). Indeed, it is the only linear classifier that satisfies (minimizes to 0) both objectives. It
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classifies all data points from Dt correctly and ’half’ disagrees (i.e., statistically independent) on
2nd and 3rd quadrants with hsp, and classifies half of the unlabeled samples in each class.

• When rDu
= 0.5 (balanced), minimizing LERM

Dt
(hDD

2 ) + αADu
(hsp, h

DD
2 ) finds hDD

2 =
h(x; π

2 ) = h⋆ as the only hypothesis satisfying both losses similar to the previous case.

• In general, for 0 ≤ rDu ≤ 0.5, the classification boundary of hDD
2 rotates counterclockwise

(starting at h(x; π
4 ) for rDu

= 0) as the spurious ration increases i.e. hDD
2 = h(x;β(rDu

)), where
β(r) : [0, 0.5] → [π4 ,

π
2 ] is an increasing function of r. More precisely, β(r) = π

2 −arctan( 1−2r
1−r ).

This is the solution that satisfies both losses, similar to the previous cases. The decision line lies
in the 2nd and 3rd quadrants, and, therefore classifies the labeled training data correctly. The
angle can be easily derived to satisfy the constraint that hDD

2 and hsp agree only on half of the
unlabeled OOD data. Since β(r) is strictly increasing, it is only when rDu = 0.5 the solution of
DivDis-Seq coincides with the ground truth h⋆ = h(x; π

2 ) = h(x;β(0.5)).

In this setting, this means DivDis-Seq only finds h⋆ when the unlabeled OOD data is balanced.

Conclusion. Overall, we see that the two methods find h⋆ in completely different conditions, which
is consistent with the observation in Fig. 2 and thus calls for attention on one of the key components –
the spurious ratio of unlabeled OOD data rDu .

DivDis. Since simultaneous training introduces a more complex interaction between the two hy-
potheses, we do not provide proof for DivDis. In Appendix C, we give empirical results on the 2D
example showing that DivDis only finds h⋆ when rDu = 0.5, as DivDis-Seq does, but the solutions
are different for other values of the spurious ratio.

B RESULTS FOR TRAINING MLPS ON 2D TASK

(ERM)

ℎ∗

ℎ"#

2D Binary Classification Task

D-BAT 𝑟!! = 0 𝑟!! = 0.25 𝑟!! = 0.5

𝑟!! = 0 𝑟!! = 0.25 𝑟!! = 0.5

D-BAT D-BAT

DivDis-SeqDivDis-SeqDivDis-Seq

Figure 5: Performance of diversification is highly dependent on unlabeled OOD data (2D
example + MLP). The unlabeled OOD data points are not shown in the plots. Left: the labeled
training data Dt, the ground truth function h⋆ and the spurious function hsp. Right: the second
hypothesis for D-BAT and DivDis-Seq under different spurious ratios of unlabeled OOD data.

In this section, we investigate whether the influence of the spurious ratio of unlabeled OOD data
shown in Proposition 1 still holds when the learning algorithm is more flexible. Specifically, we
use the same 2D settings, described in Sec. 4 and Appendix A, but we train a multilayer perceptron
(MLP) instead of the linear classifier. The MLP consists of 3 fully connected layers (with a width of
40) and has ReLU as the activation function.
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ℎ∗

ℎ"#

𝑟$! = 0 𝑟$! = 0.25 𝑟$! = 0.5

2D Binary Task Inverse Correlated BalancedPartially Correlated

Figure 6: (Complementary results for Fig. 2-Left) Learning Dynamics of DivDis (Lee et al.,
2023) on 2D binary task. Left: Top-left quadrant: The 2D binary classification task. Other
quadrants: The two diverse hypotheses (arrows are normal vectors) found by DivDis with varied
spurious ratios of unlabeled OOD data rDu

= {0, 0.25, 0.5} (from inversely correlated to balanced).

As shown in Fig. 5, we observe that D-BAT (Pagliardini et al., 2023) finds h⋆ only in inversely
correlated unlabeled OOD data, while DivDis-Seq, on the contrary, finds h⋆ under balanced unlabeled
OOD data, which is consistent with the Proposition 1. Indeed, for D-BAT, when rDu

= 0.25
or rDu

= 0.5, the diversification loss contradicts the cross-entropy loss on the labeled training
data, causing misclassification of the training data. On the contrary, DivDis-Seq’s boundary rotates
counterclockwise, and its diversification loss causes no contradiction with the cross-entropy training
loss.

C RESULTS FOR DIVDIS ON 2D BINARY TASK

In Sec. 4.1, we show how varying the spurious ratio influences the learning dynamics of DivDis-Seq
and D-BAT. For completeness, we also provide results for DivDis (Fig. 6). The experimental setup
is the same as in Sec. 4, with 0.5k / 5k training and unlabeled OOD data (with varied spurious
ratio). Similarly, the hypothesis space is restricted to linear classifiers. Because DivDis optimizes
simultaneously (i.e., there is no first/second model), we do not fix the first classifier to hsp contrary to
what was done for D-BAT and DivDis-Seq.

As shown in Fig. 6, DivDis does not find the true hypothesis h⋆ when the unlabeled OOD data
is inversely correlated. On the contrary, it recovers hsp and h⋆ when the unlabeled OOD data is
balanced. Thus, DivDis and DivDis-Seq share similar learning dynamics when rDu = 0.5.

D MORE DETAILS, RESULTS AND DISCUSSION FOR SEC. 4.2

In Sec. 4.2, we demonstrate on real-world image data that one of the key factors influencing
the performance of diversification methods is the distribution of the unlabeled OOD data (more
specifically, the spurious ratio rDu

). Here we provide more details for the experimental setup, and
results (in Fig. 9) for M/F (Pagliardini et al., 2023) dataset (where MNIST and Fashion-MNIST (Xiao
et al., 2017) are concatenated). We then provide the results on CelebA (Liu et al., 2015; Lee et al.,
2023) as verification on a large-scale dataset, as shown in Tab. 4.

Dataset & model details. We investigate two datasets: M/C and M/F, where:
• In the training set (Fig. 7), the spurious dataset (MNIST) completely correlates with the "true" or

semantic dataset (CIFAR-10 (Krizhevsky & Hinton, 2009) or Fashion-MNIST (Xiao et al., 2017)).
Specifically, in M/C, MNIST 0s and 1s always concatenate with cars and trucks, respectively. In
M/F, MNIST 0s and 1s always concatenate with coats and dresses, respectively.

• For the unlabeled data Du, where D-BAT & DivDis(-Seq)’s hypotheses make diverse predic-
tions, the spurious ratio rDu

changes, exposing that the performance of diversification is highly
dependent on the unlabeled data.
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Figure 7: Training data samples from M/C (Top) and M/F (Bottom). Note that Dt is completely
spurious correlated (rDt

= 1). Thus, MNIST 0s/1s match with CIFAR-10 cars/trucks or F-MNIST
coats/dresses.

Figure 8: Test data samples from M/C (Top) and M/F (Bottom). Note that Dood is balanced
(rDood

= 0.5).

• We can straightforwardly vary the rDu
by changing the rules of concatenation in Du. Specifically,

take M/C as an example, we first take the samples of 0s and 1s from MNIST, as well as cars
and trucks from CIFAR-10, and we make sure they have the same size and are shuffled. Then,
according to spurious ratio rDu

, we randomly select a rDu
proportion of the samples from MNIST

(0s / 1s) and CIFAR-10 (cars/trucks), and concatenate 0s with cars and 1s with trucks (so that the
semantic feature is correlated with the spurious feature in rDu of samples). We finally concatenate
the remaining 1− rDu

proportion of samples oppositely (i.e., 0s with trucks and 1s with cars).
• rDu = 0 means inversely correlated (all images are 0s/trucks or 1s/cars).
• rDu

= 0.5 means balanced (half of the 0s are concatenated with cars and the other half is
concatenated with trucks, half of the 1s are concatenated with trucks and the other half is
concatenated with cars).

• rDu
= 1 means completely spurious (all images are 0s/cars or 1s/trucks).

• The test data is a hold-out balanced OOD data Dood (Fig. 8), i.e., rDood
= 0.5, in which there

is no spurious correlation between the MNIST and target dataset (either CIFAR-10 or Fashion-
MNIST), and the labels are assigned according to CIFAR-10 (in M/C) and Fashion-MNIST (in
M/F).

We train a LeNet (Lecun et al., 1998), which contains 2 convolutional layers and 3 linear layers.
Following Pagliardini et al. (2023) setup, depending on the dataset, we modify the number of channels
and input / output sizes of the linear layers. We summarize these parameters in Tab. 3.

Conv 1 Conv 2 Linear 1 Linear 2 Linear 3 Pooling

M/C 3, 32, 5 32, 56, 5 2016, 512 512, 256 256, 2 Average
M/F 1, 6, 5 6, 16, 5 960, 120 120, 84 84, 2 Max

Table 3: LeNet’s parameters in Sec. 4.2. For Conv layers, the numbers represent the input channel,
output channel and kernel size. For linear layers, the numbers are input and output sizes, respectively.
Results on M/F dataset. In the same manner of Fig.2, we show results on M/F dataset in Fig. 9-Right.
We see a similar trend as Fig.2:
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Figure 9: Performance of diversification is highly dependent on unlabeled OOD data (M/C and
M/F datasets). The test accuracy is measured on balanced data Dood (i.e. rDood

= 0.5, no spurious
correlation). Left: Test accuracy of D-BAT & DivDis(-Seq) on MNIST/CIFAR-10 for varied spurious
ratios rDu

. Right: Test accuracy of D-BAT & DivDis(-Seq) on MNIST/Fashion-MNIST for varied
spurious ratios rDu

.

• When rDu
∈ [0, 0.5], (inversely correlated to balanced), the results match our observations made

in .
• When rDu

∈ [0.5, 1.0] (balanced to completely spurious), both on M/C and M/F, all methods
have more and more difficulty to diversify and use the semantic features. Indeed, the unlabeled
OOD data distribution Du gets increasingly closer to the training distribution Dt, thus we cannot
expect OOD generalization.

Overall the synthetic 2D binary task section, M/C, and M/F experiments suggest that, in practice,
across different datasets, diversification methods’ behavior and solutions are highly dependent on the
spurious ratio of unlabeled OOD data.

Discussion on the α hyperparameter. In the above experiments on both datasets, we use large
coefficients α for diversification losses (ADu

in Eq. 2) as 5 / 50 / 50 for D-BAT / DivDis / DivDis-Seq,
in order to study the behavior of these methods when the diversity objective is fully optimized.

In Fig. 10-Left, we further show results for different values of α. We observe that tuning α is not
sufficient to compensate for the misalignment between the unlabeled OOD data and the diversification
loss, and the performance for both methods has the same trend. Specifically, larger α gives better
test accuracy in general, as shown in Fig. 10-Left. In Fig. 10-Right, we select the best α for each
scenario (i.e., each spurious ratio of unlabeled OOD data), and observe no meaningful difference in
behavior (compared to Fig. 2 and Fig. 9). Therefore, a conclusion similar to Proposition 1 still holds:
even when tuning α for each unlabeled OOD data setting (i.e. spurious ratio), D-BAT performs best
when the unlabeled data is inversely correlated, while DivDis performs best when the unlabeled data
is balanced. This suggests that a practitioner might not be able to compensate for a misalignment
between unlabeled data and diversification loss by tuning the hyperparameter α.

Results on CelebA-CC dataset. In Tab. 4, we further show results on a large-scale real-world dataset,
namely CelebA-CC (Liu et al., 2015; Lee et al., 2023). CelebA-CC is a variant of CelebA, introduced
by (Lee et al., 2023), where the training data semantic attribute is completely correlated with the
spurious attribute. Here, gender is used as the spurious attribute and hair color as the target. We take
D-BAT and DivDis-Seq (for fair comparison on sequential training), and show their test accuracy
on different degrees of spurious ratio of unlabeled OOD data (rDu

= {0.0, 0.5, 1.0}). Consistent
with our previous observations, the results show that D-BAT performs the best when rDu = 0.0, and
DivDis-Seq performs the best when rDu

= 0.5.

E PROOF OF PROPOSITION 2

We first remind our proposition:

Proposition 2. For K = (2|Dood| − 1) and h∗ the OOD labeling function, there exists a set of
diverse K hypotheses h1, ..., hK , i.e., ADood

(hi, hj) = |{x ∈ Dood : hi(x) = hj(x)}|/|Dood| ≤
0.5 ∀i, j ∈ {1, ...,K}, i ̸= j and it holds that maxh′∈h1,. . . ,hK

Acc(h∗, h′) ≤ 0.5.
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Figure 10: Tuning α is not sufficient to compensate for the change in performance when the
spurious ratio of unlabeled OOD data changes. The test accuracy is measured on balanced data
Dood of MNIST/CIFAR-10. Left: Test accuracy of D-BAT and DivDis with varied spurious ratios
of unlabeled OOD data, where various α are considered. Right: Test accuracy with the best α for
D-BAT and DivDis, where for each spurious ratio, the best α is selected w.r.t the accuracy on a
hold-out balanced validation data.

rDu
= 0.0 rDu

= 0.5 rDu
= 1.0

D-BAT 84.6±0.3 82.8±0.2 74.6±0.6

DivDis-Seq 84.8±0.2 86.1±0.1 73.2±0.4

Table 4: Verification of the conclusion in Proposition 1 with CelebA-CC. Gender is used as the
spurious attribute and hair color as the target. We report average test accuracy. The trends of accuracy
are consistent with what was shown in Fig.9, indicating that the conclusion that D-BAT reaches its
optimal when rDu

= 0.0 and DivDis(-Seq) reaches its optimal when rDu
= 0.5 can extend to a

much larger and more realistic dataset. DivDis-Seq is used here for a fair comparison.

This formulation covers our two methods of interest, D-BAT (Pagliardini et al., 2023) and DivDis (Lee
et al., 2023). Indeed, the maximum agreement is upper-bounded by 0.5. For DivDis, the optimal
solution has a maximum agreement of 0.5, as seen in Appendix A. For D-BAT, the optimal solution
has the lowest agreement possible. Indeed, for K = 2, the optimal solution has ADood

(h1, h2) = 0.
Thus, both methods optimal solutions are covered when upper-bounding the maximum agreement by
0.5 (as long as K ≤ (2|Dood| − 1)).

We prove the existence of a diverse set of K hypotheses, satisfying the condition of Proposition 2,
using a classic construction from coding theory, called the Hadamard code (Bose & Shrikhande,
1959).

Terminology. We first make explicit the equivalence between a hypothesis space and coding
theory terminology. In binary classification, a labeling function or hypothesis hi on Dood is a
binary codeword (vector) of fixed length N , where N = |Dood|. A set of K hypotheses is now
referred to as a code C of size K. We define the Hamming distance between codewords hi, hj as
d(hi, hj) =

∑N
k=1 I[hi(k) ̸= hj(k)] where I is the indicator function and hi(k) is the hypothesis

prediction on the kth data point from Dood. The Hamming distance between two equal-length
codewords of symbols is the number of positions at which the corresponding symbols are different.

The agreement between two hypotheses hi, hj can now be rewritten using the Hamming distance as
ADood

(hi, hj) =
1
N

∑N
k=1 I[hi(k) = hj(k)] =

1
N (N −

∑N
k=1 I[hi(k) ̸= hj(k)]) = 1 − d(hi,hj)

N .

Similarly, the accuracy can also be rewritten as Acc(h∗, h′) = ADood
(h∗, h′) = 1− d(h∗,h′)

N .

Proof.
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We first use the fact that there exists a binary code C with minimum distance d∗ =
minx,y∈C,x ̸=y d(x, y) = N

2 and |C| = 2N . This binary code is the Hadamard code (Bose &
Shrikhande, 1959; Rudra, 2007), also known as Walsh code. This binary code has 2N codewords of
length N and has the minimal distance of N

2 .

We show now that we can modify the Hadamard code C to obtain another code C ′ with equivalent
properties and h∗ ∈ C ′. For C ′, it then holds that maxh′∈C′ Acc(h∗, h′) ≤ 0.5, as it was shown
above that Acc(h∗, h′) = 1 − d(h∗,h′)

N ≤ 1 − d∗

N = 1 − N/2
N = 0.5. Further, we show how to

construct such C ′.

Let h1 be the first codeword of C. Let us now define a function (or transformation) f(h) : {0, 1}N →
{0, 1}N such that f(h1) = h∗, i.e f transforms h1 into h∗. Since we are dealing with binary vectors,
the function f(h) can be broken down into individual bit flips i.e.

f(h)(i) =


h(i) if h1(i) = h∗(i)

1− h(i) if h1(i) ̸= h∗(i)

Applying f to all codewords in code C gives us a new code C ′ = {h ∈ C : f(h)} and h∗ ∈ C ′. This
operation maintains the minimum distance d = N

2 since:

d(f(ci), f(cj)) =

N∑
k=1

I[f(hi)(k) ̸= f(hj)(k)]

=
∑

{k: h1(k)=h∗(k)}

I[hi(k) ̸= hj(k)]

+
∑

{k: h1(k)̸=h∗(k)}

I[1− hi(k) ̸= 1− hj(k))] (by definition of f )

=
∑

{k: h1(k)=h∗(k)}

I[hi(k) ̸= hj(k)]

+
∑

{k: h1(k)̸=h∗(k)}

I[hi(k) ̸= hj(k))]

=

N∑
k=1

I[hi(k) ̸= hj(k)]

= d(hi, hj)

Therefore, C ′ is the code satisfying all the conditions of Proposition 2.

As was shown before, a binary code C is equivalent to a set of |C| hypotheses with the same properties.
Thus, with N = |Dood|, the above construction gives us a set of (2|Dood| − 1) (2N minus the true
labeling h∗) hypotheses satisfying the constraints of Proposition 2. This concludes our proof.

□

Extension to multi-class classification
We used the mathematical framework of coding theory and a classical result from it, the Hadamard
code (Bose & Shrikhande, 1959), to prove Proposition 2, specifically for binary hypotheses. However,
in coding theory, it has not been proven yet whether codes with similar “nice” properties, similar to
Hadamard’s, exist for any q-ary codes i.e. for hypotheses with q possible classes. One exception is
when q is a prime number.
Proposition 3. Let q be the number of classes and a prime number. Let m ∈ N+ s.t. |Dood| = qm.
Then, for K = (q · |Dood| − 1) and h∗ the OOD labeling function, there exists a set of diverse K q-
ary hypotheses h1, ..., hK , s.t., ADood

(hi, hj) = |x ∈ Dood : hi(x) = hj(x)|/|Dood| ≤ 1
q ∀i, j ∈

1, ...,K, i ̸= j, and it holds that maxh′∈h1,. . . ,hK
Acc(h∗, h′) ≤ 1

q
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ℎ! = 0 ℎ! = 1

Figure 11: Examples of high-AS hypotheses discovered in Atanov et al. (2022). Each hypothesis is
illustrated by exemplar images from each class as labeled be the corresponding discovered hypothesis
hD. Neural networks can generalize by training on the hD’s labeling.

Proof. Using a similar argument from the proof of Proposition 2, (Stepanov, 2006; 2017) tells us
that for any |Dood| = qm where m ∈ N+, we can find a code similar to Hadamard’s with minimum
distance equal to N(q−1)

q and cardinality equal to qm+1 = q · |Dood|. By removing the semantic
hypothesis from the count, we obtain that Proposition 3 holds for K = (q · |Dood| − 1).

F AGREEMENT SCORE AND IMPLICIT BIAS OF DIVERSE HYPOTHESES

F.1 AGREEMENT SCORE AND TASK DISCOVERY (ATANOV ET AL., 2022)

In this section, we introduce more details on the background of Atanov et al. (2022), as well as how
we leverage the findings from it.

Agreement score as a measure of inductive bias alignment. We use the agreement score
(AS) (Atanov et al., 2022; Hacohen et al., 2020; Jiang et al., 2022) to measure the alignment
between the found hypotheses and the inductive biases of a learning algorithm. It is measured in the
following way: given a training dataset Dt labeled with a true hypothesis h∗, unseen unlabeled data
Dood, and a neural network learning algorithm A, train two networks from different initializations on
the same training data, resulting in two hypotheses h1, h2 ∼ A(Dt, h

∗), and measure the agreement
between these two hypotheses on Dood:

ASA(h
∗;Dt, Dood) = Eh1,h2∼A(Dt,h∗)Ex∼Dood

[h1(x) = h2(x)] (6)

Recent works (Atanov et al., 2022; Baek et al., 2022) show that the AS correlates well with how well
a learning algorithm A generalizes on a given training task represented by a hypothesis h. Indeed,
high AS is a necessary condition for generalization (Atanov et al., 2022) (different outcomes of A
have to at least converge to a similar solution). Finally, a learning algorithm will generalize on a
labeling if the labeling is aligned with the learning algorithm’s inductive biases, thus, we use AS as a
measure of how well a given hypothesis h is aligned with the inductive biases of A.

Task Discovery. Atanov et al. (2022) use bi-level optimization (also called meta-optimization) to
optimize the agreement score (i.e., Eq. 6) and discover, on any dataset, high-AS hypotheses (tasks
in the terminology of Task Discovery) that a given learning algorithm can generalize well on. They
show that there are many diverse high-AS hypotheses different from semantic human annotations. In
Fig. 11, we show examples of the high-AS hypotheses discovered for the ResNet18 architecture on
CIFAR-10 (Krizhevsky & Hinton, 2009).

Adversarial dataset splits (Fig. 12). Atanov et al. (2022) also introduces the concept of adversarial
dataset splits, which is a train-test dataset partitioning such that neural networks trained on the
training set fail to generalize on the test set. To do that, they induce a spurious correlation between a
high-AS discovered hypothesis hD and the (target) semantic hypothesis h⋆ on the training data, and
the opposite correlation on the test set. Specifically, they select data points as training set Dt, such
that a discovered high-AS hypothesis hD (specifically, AS(hD) > AS(h⋆)) completely spurious
correlates with h⋆, i.e. {x ∈ Dt : hD(x) = h⋆(x)}. The test set Dtest is constructed such that the
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ℎ∗ = 0, ℎ" = 0 ℎ∗ = 1, ℎ" = 1

ℎ∗ = 0, ℎ" = 1 ℎ∗ = 1, ℎ" = 0

Figure 12: Illustration of an adversarial split introduced in (Atanov et al., 2022). A high-AS
discovered hypothesis hD ’spuriously correlated’ with semantic hypothesis h⋆ on the training set, but
inversely correlated with h⋆ on test set. Training ERM on the training set and evaluating on test set
give < 20% test accuracy (according to (Atanov et al., 2022)’s Fig. 7). In the context of this work,
the test set in a given adversarial split is inversely correlated (r = 0).

two hypotheses are inversely correlated, i.e., {x ∈ Dtest : hD(x) ̸= h⋆(x)}. Theoretically, a NN
trained on such a training set Dt should learn the hypotheses with a higher AS, i.e., hD, which would
lead to a low accuracy when tested on Dtest. This was indeed shown to hold in practice, where the
test accuracy drops from 0.8 for a random split to 0.2 for an adversarial split.

Adversarial splits, therefore, show that neural networks favor learning the task with a higher AS (the
background color in the case of Fig. 12) when there are two hypotheses that can ’explain’ the training
data equally well. In this work, we refer to this ’preference’ as an alignment between the neural
network and hD. This creates a controllable testbed for studying the effect of spurious correlations
on NN training, which we also adopt in our study.

F.2 DIVERSIFICATION FINDS HYPOTHESES ALIGNED WITH INDUCTIVE BIASES

Disclaimer: For an introduction on agreement score, we refer to Appendix F.1

In this section, we study how the diversification process is biased in practice by the inductive biases of
the chosen learning algorithm. Specifically, using agreement score, we demonstrate that D-BAT and
DivDis find hypotheses that are not only diverse but aligned with the inductive bias of the learning
algorithm.

Experimental setup

CIFAR-10. we build on top of the adversarial splits and construct a CIFAR-10 data split with
complete spurious correlation on the training data and a balanced (no spurious correlation) unlabeled
OOD data, as shown in Fig.13. This is a typical setting on which D-BAT (Pagliardini et al., 2023) and
DivDis (Lee et al., 2023) apply. More precisely, h⋆ is a semantic binary classification on CIFAR-10,
defined by choosing a 5 vs 5 split of the original 10 classes. We define the spuriously correlated
CIFAR-10 data by using an arbitrary high AS binary labeling hD as the spurious hypothesis, similarly
to "adversarial splits" introduced by (Atanov et al., 2022). There are two reasons for using this setting:
one to easily control the data setup, and one for using (Atanov et al., 2022) as a reference of the AS
for different hypotheses on CIFAR-10.

Measuring the AS of found hypotheses. For a given dataset with training data Dt, unlabeled OOD
data DU

ood, and test OOD data Dood, we train a diversification method (without pretraining) to find
multiple diverse hypotheses h1, . . . , hK and measure their agreement scores. More precisely, for each
hypothesis hi, we measure ASA(hi;Dt ∪DU

ood, Dood) where A is the same learning algorithm (e.g.
ResNet18) used to find the diverse hypotheses. This AS allows us to assess whether hi is labeling
Dood randomly or in a way that aligns well with the inductive biases of the learning algorithms. We
provide more details on the setting in Appendix F.2 and illustrate the dataset creation in Fig. 13.

Implicit bias of diverse hypotheses. Tab. 5 shows the agreement score of random hypotheses hR

(true labels on Dt but random labels on Dood) and the diverse hypotheses found by both diversification
methods. We observe a clear gap between the two, indicating that all diverse hypotheses label Dood

in a structured non-random manner.
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ℎ∗ = 0, ℎ" = 0
Training set (𝐷!)

Unlabeled data (𝐷")

ℎ∗ = 1, ℎ" = 1
airplane automobile bird cat deer dog frog horse ship truck

ℎ∗ = 0, ℎ" = 0	or	1 ℎ∗ = 1, ℎ" = 0	or	1

Figure 13: Illustration of the constructed CIFAR-10 data with spurious correlation. The
semantic binary labeling h⋆ is defined by a 5 vs. 5 split of the original CIFAR-10 classes. Spurious
hypothesis/feature hD (color) is predictive in the training set Dt, and non-predictive on unlabeled
OOD data Du.

CIFAR-10 Waterbirds

Hypothesis AS Test Acc.(%) AS WG Acc.(%)

Semantic (h⋆) 0.83 100.0 0.84 100.0
Random (hR) 0.63±0.01 50.0 0.55±0.02 50.0

D-BAT 0.82±0.01 60.1±0.2 0.89±0.01 25.3±3.0

DivDis 0.81±0.02 57.3±0.5 0.91±0.04 28.9±4.8

Table 5: The diverse hypotheses found by diversification methods have high AS (i.e., aligned
with the biases of the learning algorithm). Nonetheless, without additional inductive biases (e.g., the
correct pretraining strategy, which is examined in Sec.5.2 and Tab. 7), they do not generalize. The
test accuracy of CIFAR-10 is measured on hold-out balanced data (Dood), and WG Acc. stands for
Waterbirds worst-group test accuracy. Results are averaged over 3 seeds.

MLP ViT

Hypothesis AS Test Acc.(%) AS Test Acc.(%)

Semantic (h⋆) 0.80 100.0 0.76 100.0

D-BAT 0.89±0.02 56.1±0.4 0.90±0.01 59.2±0.3

DivDis 0.85±0.02 58.3±0.1 0.87±0.02 57.7±0.1

Table 6: On CIFAR-10, D-BAT and DivDis also find high-AS hypotheses with MLP and ViT
(Dosovitskiy et al., 2021). Results are averaged over 3 seeds.

Measuring the agreement score of the true or semantic hypothesis h⋆ gives us an estimate of the
expected AS value of a hypothesis aligned with the inductive bias of A (otherwise, we wouldn’t
expect A to be able to learn h⋆). We observe that the hypotheses found by DivDis and D-BAT have
agreement scores similar to that of h⋆, indicating good alignment with the inductive biases of A.
Thus, optimizing Eq. 2, using neural networks as the learning algorithm, leads to diverse hypotheses
implicitly biased towards those favored by its inductive biases. According to the definition of AS,
such alignment is expected from a hypothesis found through empirical risk minimization (ERM),
however, it is not expected from diverse hypotheses (as defined in Eq. 2), given that the additional
diversification loss could destroy this alignment. This analysis sheds light on the process by which
diverse hypotheses are found, and puts an emphasis on the choice of a good learning algorithm, which
is crucial, as we show in the subsequent Sec. 5.2.

Similar to what is shown with ResNet in Tab. 5, in Tab. 6, we repeat the experiment with two different
architectures, MLP and ViT (Dosovitskiy et al., 2021), on CIFAR-10. The diverse hypotheses found
by D-BAT and DivDis have high AS. This demonstrates that our above conclusions also hold with
different architectures.
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Hypothesis AS WG Acc.(%)

Semantic (h⋆) 0.84 100.0
Random (hR) 0.55±0.02 50.0

D-BAT (NP) 0.89±0.01 25.3±3.0

D-BAT (P) 0.86±0.02 59.1±1.6

DivDis (NP) 0.91±0.04 28.9±4.8

DivDis (P) 0.86±0.02 81.3±2.2

Table 7: D-BAT and DivDis find high-AS hypotheses on Waterbirds (Sagawa et al., 2020). The
Agreement Score (AS) is measured on different hypotheses on Waterbirds. For D-BAT and DivDis,
K = 2 hypotheses are considered. ’WG Acc.’ stands for worst-group accuracy. "NP" signifies
non-pretrained, "P" signifies ImageNet pretrained. Two ResNet-50 models are trained from scratch
when measuring the AS. The best model performance is shown for DivDis. For D-BAT, we always
show the performance of the second model. Results are averaged over 3 seeds.

Diverse hypotheses cannot generalize without the correct pretraining

As seen above, D-BAT and DivDis produce diverse hypotheses implicitly biased towards those favored
by the inductive biases of its learning algorithm. Nonetheless, this implicit bias may not lead to OOD
generalization, i.e., h∗ /∈ H∗

K , as the test accuracies in Tab. 5 are found to be near the chance level.

In Tab. 7, on Waterbirds, we repeat the same experiment as in Tab. 5, with an additional variable. The
ResNet50 model is either trained from scratch or starting from ImageNet-1k supervised pretraining
weights. We can see that pretraining does not affect whether DivDis and D-BAT find high AS
hypotheses, however it greatly influences the generalization capability of the found hypotheses. These
results corroborate with Sec. 5.2 that the correct choice of inductive bias is crucial to unlock OOD
generalization.

G RESULTS AND IMPLEMENTATION DETAILS OF SEC. 5.2

G.1 EXPERIMENTAL DETAILS

Remarks on D-BAT and DivDis.

• All experiments were run using DivDis and D-BAT respective codebases to ensure closest
reproducibility to their presented methods and results.

• DivDis’ default setting is to augment the data while training. This option was disabled to ensure a
fair comparison to D-BAT.

• For their results, DivDis rebuilt the Waterbirds(Sagawa et al., 2020) dataset from scratch. On the
contrary, D-BAT used the one provided by the WILDS(Koh et al., 2021) library. To ensure a fair
comparison, both methods were run using the latter version of the dataset.

• If not precised, all train, validation and test splits are taken as provided from Pagliardini et al.
(2023); Lee et al. (2023) or WILDS.

• The best models are selected according to validation accuracy.

Computational resources. Each experiment can be run on a single A100 40GB GPU.

Models. If not precised, the model used in most experiments is ResNet50 (He et al., 2015). Otherwise,
when using a Vision Transformer (ViT), we use a ViT-B/164 (Dosovitskiy et al., 2021). The last
exception is for DivDis Camelyon17 (DenseNet121 (Huang et al., 2017)).

DivDis parameters. For Waterbirds variants, the optimizer is SGD, the number of epochs is 100, the
learning rate is 0.001, the weight decay is 0.0001. The α parameter (referred as λ in DivDis) was
tuned over {0.1, 1, 10}. For Office-Home, the optimizer is SGD, the number of epochs is 50, the
learning rate is 0.001, the weight decay is 0.0001, and the α parameter was tuned over {0.1, 1, 10}.
For Camelyon17, the original best-performing setting from DivDis was used.

4https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.html
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From scratch Self-supervised Supervised
Resnet50 ViT-B/16 SwAV SIMCLRv2 MoCo-v2 ViT-MAE ViT-Dino Adv. robustness Resnet50 IN ViT-B/16 IN

OfficeHome
ERM (D-BAT h1) 10.4±0.9 5.1±5.4 20.6±1.4 43.9±0.6 25.2±1.5 61.2±0.9 55.5±2.9 53.6±0.7 58.3±0.3 75.9±0.6

D-BAT h2 9.5±0.5 8.1±5.9 21.3±0.9 46.1±0.5 27.1±1.2 61.9±0.7 61.6±1.6 55.5±0.7 58.2±0.9 79.2±0.4

DivDis (best) 7.0±0.1 9.4±0.5 23.1±1.2 39.6±1.2 28.3±0.8 47.9±0.7 10.3±1.9 51.4±0.8 55.9±0.6 70.7±1.6

Waterbirds-CC
ERM (D-BAT h1) 8.6±2.1 13.5±6.7 7.0±0.3 9.2±3.3 35.6±3.8 11.9±0.6 9.2±0.8 20.9±5.1 30.1±2.3 33.1±2.2

D-BAT h2 15.0±5.1 8.6±6.8 22.6±6.6 15.4±6.6 36.1±5.9 55.5±2.8 47.6±5.0 49.7±9.8 67.7±3.2 57.2±3.7

DivDis (best) 25.0±2.7 7.8±3.9 20.4±16.9 22.5±4.0 49.4±10.3 38.9±7.3 11.2±4.7 47.1±0.8 70.5±4.7 22.7±2.3

Table 8: The performance of diversification methods is highly sensitive to the choice of architec-
ture and pretraining method.. Average accuracy on Office-Home and worst-group accuracy on
Waterbirds-CC for different pretraining methods. All methods are pretrained on ImageNet-1k. If not
specified, the used model is ResNet50. Results are averaged over 3 seeds. Bold and underline stand
for the best and second best, respectively.

Dataset Method K = 2 K = 3 K = 4 K = 5

Waterbirds-CC D-BAT (ViT-B/16 IN) 57.1±3.7 45.0±1.4 45.5±1.7 44.5±1.8

DivDis (MoCO-v2) 49.4±10.3 51.7±6.0 49.6±8.3 48.4±0.9

Office-Home D-BAT (ViT-MAE) 61.9±0.7 62.6±0.1 60.8±0.4 61.7±0.7

DivDis (Resnet50 IN) 55.9±0.6 54.6±0.1 53.6±0.4 53.1±0.2

Table 9: Increasing the number of hypotheses, while using the second-best inductive bias, does
not bridge the performance gap with the best inductive bias. Best hypothesis performance for
DivDis and the corresponding hypothesis performance for D-BAT are reported. The second-best
inductive bias was chosen according to Fig. 3. Results are averaged over 3 seeds.

D-BAT parameters. For Waterbirds variants and Office-Home, the optimizer is SGD, the learning
rate is 0.001, the weight decay is 0.0001. Given that D-BAT optimizes sequentially, the number of
epochs is an important parameter to tune. We tuned over epochs ∈ {30, 100} and α ∈ {0.0001, 0.1}.
For Camelyon17, the original D-BAT best-performing setting was used.

G.2 COMPLETE RESULTS OF SEC. 5.2

We provide the full results for Fig. 3 (ERM baseline included) in Tab. 8. We also provide the accuracy
of each new head of D-BAT for Tab. 1 in Tab. 9. Finally, in Fig. 14, we further show that DivDis does
not scale well to larger K (e.g. K = 64) “out-of-the-box”, and the performance drops as the number
of hypotheses increases. Note that testing D-BAT in this regime would be prohibitively expensive.

G.3 PRETRAINING STRATEGY AND ARCHITECTURE DETAILS.

In Fig. 3, we vary the pretraining method and architecture, and measure the effects on performance.
We provide additional details here. If not precised, the methods use a ResNet-50(He et al., 2015)
model. All 8 variations are pretrained on the ImageNet-1k(Russakovsky et al., 2015) dataset:

• Self-supervised
– SwAV (Caron et al., 2020)
– SimCLRv2 (Chen et al., 2020a)
– MoCo-v2 (Chen et al., 2020b)
– ViT-B/16 MAE (He et al., 2021)
– ViT-B/16 Dino (Caron et al., 2021)

• Supervised
– Adversarially robust classifiers (Salman et al., 2020).
– Resnet50 IN (He et al., 2015), supervised pretraining on ImageNet-1k. This is the pretraining

method used by (Lee et al., 2023; Pagliardini et al., 2023) in their papers.
– ViT-B/16 IN (Dosovitskiy et al., 2021), supervised pretraining on ImageNet-1k.

Experimental details For the adversarially robust classifier, the L2-Robust ImageNet ResNet-50
(ϵ = 0.05) model was chosen, following the advice of (Salman et al., 2020), as it is hypothesized
that smaller values of ϵ tend work better on datasets where leveraging finer-grained features are
necessary (i.e., where there is less norm-separation between classes in the input space), such as
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Figure 14: Naively increasing the number of hypotheses in DivDis is detrimental to performance.
y-axis shows the worst-group accuracy of the best hypothesis on Waterbirds-CC. We use Resnet50
as a backbone. Pretraining is supervised pretraining on ImageNet-1k. “ERM pretrained” baseline
stands for standard empirical risk minimization (ERM) without the usage of diversification. Results
are averaged over 3 seeds. Preliminary investigation of this behavior suggests that the diversification
loss is not optimized well when K grows large (e.g. K > 8) due to the averaging over all pairs of
hypotheses, and that another aggregation function, e.g., maximum, could work better.

Waterbirds-CC or Office-Home. Each variation hyperparameters were tuned following the same
procedure as described in G.1.

H DETAILED EXPERIMENTAL SETUP AND ADDITIONAL RESULTS FOR
SEC. 5.3

In Sec.5.3, we demonstrate that using different inductive biases can drastically and predictably
influence a diversification method. Here we provide more details on how we construct such examples.
Additionally, in Tab. 11 we also provide results where the examples are constructed using a ViT-
ResNet pair (instead of MLP-ResNet pair). Finally, we provide an extension Tab. 2 by showing how
an inductive bias gradually gets favorable and vice versa through the transition of spurious ratios, in
Fig. 15.

Construction
• Prerequisite: We consider a semantic (5-vs-5) binary classification task h⋆ on CIFAR-10

(Krizhevsky & Hinton, 2009) (i.e., airplane, automobile, bird, cat, deer original classes as class 1
and dog, frog, horse, ship, truck original classes as class 0).

• Step 1 (Selecting hypotheses aligned with learning algorithms from (Atanov et al., 2022)):
We take two high-AS hypotheses (see Fig. 11 for examples of such hypotheses) discovered in
(Atanov et al., 2022) for MLP and ResNet18 (He et al., 2015), where the hypotheses (hMLP and
hRN) satisfy Eq. 3:

ASMLP(hMLP) > ASMLP(hRN), ASRN(hRN) > ASRN(hMLP),

For example, this means the MLP hypothesis hMLP has a high AS when training MLPs but lower
AS when training ResNet18s. Also, we ensure these two hypotheses have higher AS than the true
hypothesis h⋆ to make sure that they are able to act as a spurious hypothesis.

• Step 2 (Constructing training data where h⋆, hMLP and hRN completely correlates): As
presented in Tab. 10, in Dt row, we select the data points as training set Dt such that h⋆, hMLP

and hRN agree. As shown in (Atanov et al., 2022) by adversarial splits, when two hypotheses
correlate with each other (i.e., their labels are the same on training data), a neural network tends
to converge to the hypothesis with higher AS. Thus, combining with the conditions in step 1 (i.e.,
Eq. 3), training MLP on Dt with ERM should converge to hMLP and training ResNet on Dt with
ERM to hRN, which is illustrated in Tab. 2-Right.
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h⋆ hMLP hRN

Dt
0 0 0
1 1 1

Du

0 1 0
0 1 1
1 0 0
1 0 1

h⋆ hMLP hRN

Dt
0 0 0
1 1 1

Du

0 0 1
0 1 1
1 0 0
1 1 0

Table 10: The rules for constructing the data in Sec. 5.3, covering the two cases in Tab. 2. Left:
h⋆ ⊥ hMLP on Du. Right: h⋆ ⊥ hRN on Du. ‘⊥’ means inversely correlated on the unlabeled OOD
data Du.

• Step 3 (Further improving the alignment between the two hypotheses and their correspond-
ing architectural inductive biases): This step is not necessary in general, but it allows us to
find hypotheses that are better aligned with the inductive biases of the network. This is because
the Task Discovery framework from (Atanov et al., 2022) might not provide globally optimal
hypotheses. The improvement goes as follows: we update hMLP and hRN to further increase
their AS for a better alignment with the corresponding learning algorithm (i.e., MLP and hMLP,
ResNet18 and hRN). Specifically, we train with ERM an MLP and ResNet18 on Dt and make
predictions on all CIFAR-10 data except for the training data i.e. D \Dt. We replace the old
labels of hMLP and hRN on D \Dt by the new labels predicted by MLP and ResNet18. This step
gives us higher AS hypotheses (thus more preferred by the given architecture) that satisfy Eq. 3
(equation also shown in Step 1).

• Step 4 (Constructing unlabeled OOD data such that ResNet18 or MLP fails): As shown in
Tab. 10, in Du row, we select data points with specific hypothesis labels as the unlabeled OOD
data. By design, in Tab. 10-Left, h⋆ is inversely correlated to hMLP and is not correlated (i.e.
balanced) to hRN. We know training an MLP with ERM on Dt will choose hMLP. Therefore,
D-BAT will perform well (i.e., find h⋆) by minimizing its diversification loss. On the contrary,
training a ResNet with ERM on Dt will choose hRN. Therefore, as shown in Sec. 4, D-BAT
cannot perform well by minimizing its diversification loss. The opposite conclusion holds for
Tab. 10-Right.

• Step 5: we take Dt and Du (which are around 12k and 24k images, respectively) and run D-BAT
(Pagliardini et al., 2023) (the labels on Du are inaccessible), and measure the test accuracy on
hold-out Dood ∼ Du, which is shown in Tab. 2-Left.

The construction process is thus a white-box process (or attack), similar to adversarial attacks, but on
the architectural inductive bias aspect. We reiterate that the purpose of this example is to illustrate
that the choice of architectural inductive bias can have a very drastic influence on the behavior of
diversification methods and this choice is co-dependent on the properties of the unlabeled OOD data.

Additionally, we can demonstrate this co-dependence in a “fine-grained” manner, as shown in Fig. 15.
Here we still keep the training data the same (according to Dt in Tab. 10), and construct the unlabeled
OOD data Du such that the spurious ratios of hMLP and hRN gradually switch from low to high or
high to low. Hence, the Tab. 10-Left and the Tab. 10-Right correspond to the left and right extremities
of the x-axis of Fig. 15, and in between are interpolations between the two distributions (spurious
ratios). This gives a better view of how one inductive bias gets favorable through the transitions of
spurious ratios, and vice versa.

Du A Test Acc.(%)

h⋆ ⊥ hViT
ViT 76.4±0.6

ResNet18 58.1±0.4

h⋆ ⊥ hRN
ViT 68.1±0.3

ResNet18 79.0±0.5

Table 11: Tab. 2 with another architecture pair. ViT far exceeds ResNet18 when h⋆ ⊥ hViT and
vice versa. Results are averaged over 3 seeds.
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Figure 15: The favorable inductive bias changes over transitions of spurious ratios. As the
unlabeled OOD data DU

ood changes, the optimal inductive bias switches from MLP to Resnet18,
indicating their co-dependence. Results are averaged over 3 seeds.
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