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Abstract

Reinforcement learning (RL) can align lan-001
guage models with non-differentiable reward002
signals, such as human preferences. However,003
a major challenge arises from the sparsity of004
these reward signals - typically, there is only a005
single reward for an entire output. This sparsity006
of rewards can lead to inefficient and unsta-007
ble learning. To address this challenge, our008
paper introduces an novel framework that uti-009
lizes the critique capability of Large Language010
Models (LLMs) to produce intermediate-step011
rewards during RL training. Our method in-012
volves coupling a policy model with a critic013
language model, which is responsible for pro-014
viding comprehensive feedback of each part of015
the output. This feedback is then translated into016
token or span-level rewards that can be used017
to guide the RL training process. We investi-018
gate this approach under two different settings:019
one where the policy model is smaller and is020
paired with a more powerful critic model, and021
another where a single language model fulfills022
both roles. We assess our approach on three text023
generation tasks: sentiment control, language024
model detoxification, and summarization. Ex-025
perimental results show that incorporating ar-026
tificial intrinsic rewards significantly improve027
both sample efficiency and the overall perfor-028
mance of the policy model, supported by both029
automatic and human evaluation.030

1 Introduction031

Large language models (LLMs) have seen a rapid032

advancement in recent years, demonstrating a re-033

markable ability to understand and generate natu-034

ral language (Brown et al., 2020b; Touvron et al.,035

2023; OpenAI, 2023; Biderman et al., 2023; Jiang036

et al., 2023; Shu et al., 2023). In the meanwhile,037

reinforcement learning has emerged as a comple-038

mentary tool for further refining the capabilities of039

LMs. RL allows for the optimization of LMs to-040

wards any non-differentiable reward signal. For ex-041

ample, techniques like reinforcement learning from042
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Figure 1: Illustration of the proposed framework. There
are two modules inside the agent. The critic LM takes
the state and reward as input and generates dense in-
trinsic reward signals that evaluate different parts of the
generation. The policy module is trained to optimize
the weighted sum of intrinsic and extrinsic rewards.

human feedback (RLHF) (Ziegler et al., 2019; Sti- 043

ennon et al., 2020) have been used to steer language 044

models to better align with human preferences. 045

However, the reward signals received from the 046

environment are usually sparse, a fundamental 047

bottleneck that restricts the efficiency of learn- 048

ing (Andrychowicz et al., 2017; Sukhbaatar et al., 049

2018). Typically, in text generation tasks, a sin- 050

gle scalar reward is obtained after a sentence or 051

paragraph has been fully generated. This single 052

reward signal introduces a temporal credit assign- 053

ment problem, making it difficult for the model 054

to learn which tokens were responsible for the re- 055

ceived reward. Previous attempts to circumvent 056

the sparsity of rewards in RL have included re- 057

ward shaping (Ng et al., 1999; Devidze et al., 2022; 058

Goyal et al., 2019), curiosity-driven exploration 059

(Bellemare et al., 2016; Pathak et al., 2017; Ostro- 060

vski et al., 2017), and hierarchical RL (Nachum 061

et al., 2018; Zhang et al., 2021). However, these 062

methods either require handcrafted features or do 063

not translate straightforwardly into the domain of 064

text generation. A direct solution is to refine the en- 065
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vironment’s holistic reward model with one that of-066

fers dense rewards. Lightman et al. (2023) and Wu067

et al. (2023) have explored employing human an-068

notators to provide detailed feedback at each inter-069

mediate step of model’s generation. These annota-070

tions can then be used to train a fine-grained reward071

model. However, this method incurs high costs, and072

the resulting reward models tend to be highly task-073

specific, limiting their applicability across different074

tasks.075

In light of these limitations, we introduce RELC076

(Rewards from Language model Critique), an novel077

framework that leverages the critique capability of078

LLMs (Madaan et al., 2023; Saunders et al.; Luo079

et al., 2023) to provide artificial reward signals for080

intermediate steps during RL training. As illus-081

trated in Figure 1, we explicitly define an RL agent082

as the integration of 1) a policy model responsi-083

ble for output generation, and 2) a critic model084

that tasked with assessing the quality of the out-085

puts produced by the policy model. The critic LM,086

informed by the question, the policy model’s out-087

put, and the single reward signal provided by the088

environment, generates verbal evaluation of each089

segment of the policy model’s output. These evalu-090

ations are then converted into reward signals. We091

label the rewards generated by the critic model as092

“intrinsic rewards” to differentiate them from the093

reward signals provided by the environment. The094

critic model can be seamlessly integrated into RL095

algorithms such as PPO (Schulman et al., 2017),096

requiring no or very little modification to the algo-097

rithms themselves.098

Our evaluation of the proposed method is carried099

out in two distinct settings: one employs a smaller100

policy model (GPT-2 Large) coupled with a more101

advanced critic model (GPT-3.5), and the other,102

a more challenging “self-critique” setting, where103

a single model (Llama 2) fulfills both roles. We104

evaluate the effectiveness of our method through105

three text generation tasks: sentiment control, LM106

detoxification, and abstractive text summarization.107

The experimental results show that the use of LLM-108

generated intrinsic rewards significantly enhances109

sample efficiency across all tasks, with our ap-110

proach outperforming established baseline methods111

according to both automated and human evaluation.112

Despite the additional inference cost incurred by in-113

corporating the critic model, our approach is shown114

to be more computationally efficient, achieving su-115

perior performance to the baseline within the same116

computational budget. 117

2 Related Work 118

RL for Text Generation. RL methods have been 119

used in various text generation tasks including text 120

summarization (Ryang and Abekawa, 2012; Pang 121

and He, 2021; Dong et al., 2018; Cao et al., 2022a), 122

machine translation (Norouzi et al., 2016; Ranzato 123

et al., 2016; He et al., 2016; Bahdanau et al., 2017), 124

dialogue systems (Fatemi et al., 2016; Li et al., 125

2016; Dhingra et al., 2017; Jaques et al., 2019) 126

and question answering (Buck et al., 2018; Xiong 127

et al., 2018; Nakano et al., 2021). Recent studies 128

have focused on combining RL with pre-trained 129

language models like GPT-3 (Brown et al., 2020a) 130

to generate text (Ouyang et al., 2022; Bai et al., 131

2022; Nakano et al., 2021; Stiennon et al., 2020) 132

are better aligned with human preference such as 133

being factual, relevant and helpful. 134

Reward Shaping and Intrinsic Rewards. Ng 135

et al. (1999) laid the groundwork for potential- 136

based reward shaping in RL, demonstrating that 137

such shaping can effectively reduce training time 138

without changing the optimal policy. Bellemare 139

et al. (2016); Ostrovski et al. (2017); Tang et al. 140

(2017) have employed pseudo-count-based rewards 141

to encourage exploration in environments where 142

rewards are sparse. Zheng et al. (2018) proposed 143

a method where a parameterized intrinsic reward 144

model is learned during training to generate dense 145

reward signals. This approach, however, presents 146

certain optimization difficulties due to the neces- 147

sity of calculating second-order gradients. Wu et al. 148

(2023); Lightman et al. (2023) employ human anno- 149

tators to provide detailed span-level reward signals, 150

demonstrating that these fine-grained rewards yield 151

better performance compared to holistic rewards. 152

LLM for Reward Design. Lee et al. (2023) em- 153

ployed an off-the-shelf LLM to create preference 154

labels by comparing pairs of candidate responses. 155

These labels were then used to train a holistic re- 156

ward model. Similarly, Kwon et al. (2023) investi- 157

gated the use of GPT-3 as an alternative to the ac- 158

tual reward function in RL training. Their method 159

outperformed the reward model trained through 160

supervised learning, yet it did not achieve the ef- 161

fectiveness of the true reward function. Klissarov 162

et al. (2023) utilized LLMs to extract preferences 163

between pairs of captions in the NetHack game 164

(Küttler et al., 2020), then using these preferences 165
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to train an additional reward function. Du et al.166

(2023); Klissarov et al. (2023) use LLMs to gen-167

erate rewards signals to encourage exploration of168

a gaming or robotic agent. Ma et al. (2023) em-169

ployed GPT-4 to generate the code for a reward170

function.171

3 Method172

The basic idea behind our method is to leverage a173

LLM to generate dense intrinsic reward signal rin174

and provide it to an RL agent, which will optimize175

a combination of the intrinsic and extrinsic rewards.176

In this section, we first establish the Markov de-177

cision process (MDP) for text generation. Then,178

we discuss the policy gradient-based RL method179

widely used for text generation tasks. Finally, we180

detail the process of incorporating LLM-generated181

intrinsic rewards into RL training.182

3.1 RL for Text Generation183

Let us consider the language generation proce-184

dure as an MDP (Puterman, 1994), defined by185

the tuple (S,A,P,R, γ). Here, S represents the186

set of all possible states, A is the set of actions,187

P : S × A × S 7→ [0, 1] is the state transition188

function, R : S ×A× S 7→ R is the reward func-189

tion assigning a numerical value to each transition190

(s, a, s′), and γ ∈ [0, 1] is the discount factor. In191

the context of text generation, we operate under192

the assumption of an episodic, discrete-actions, RL193

setting. The input prompt s0 ∈ S sets the starting194

state. At each decoding step t, the state st ∈ S195

consists of the prompt and the concatenation of196

the previously generated tokens. Choosing an ac-197

tion involves selecting a token from the vocabulary,198

leading to a new state st+1, created by appending199

the selected token to the currently generated partial200

sentence. The agent’s policy πθ(a|s), which is a201

language model parameterized by θ, determines202

the probability of selecting each action at a given203

state. The goal of the agent is to maximize the204

discounted cumulative reward throughout the tra-205

jectory: J(θ) = Eτ∼πθ

[∑T
t=0 γ

trt

]
.206

3.2 Policy Gradient based RL & PPO207

Policy gradient methods, which are commonly ap-208

plied in text generation, directly parameterize the209

policy model to optimize its parameters θ with the210

goal of maximizing J(θ). The gradient ∇θJ(θ) is211

proportional to the expectation of the product of the212

gradient of the log policy and the return Gt (Sutton213

et al., 1999): 214

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st)Gt] (1) 215

where the return is defined as Gt =
∑T

i=t γ
i−tri.

A high return leads to the reinforcement of all ac-
tions by increasing their selection probability. To
reduce variance, a widely adopted strategy involves
substituting the raw return Gt in Equation 1 with a
generalized advantage estimation function (Schul-
man et al., 2016):

Ât =

T∑
t′=t

(γλ)t
′−t(rt′ + γV (st′+1)− V (st′)))

where λ is a hyper-parameter and V (st′) is the 216

value function representing the expected return at 217

state st′ . Several variants of the basic policy gradi- 218

ent approach have been proposed to improve train- 219

ing stability. One widely used variant, particularly 220

in the context of text generation, is Proximal Pol- 221

icy Optimization (PPO) (Schulman et al., 2017). 222

PPO introduces mechanisms to stabilize the train- 223

ing process by limiting the updates to the policy at 224

each step, effectively preventing destructive large 225

updates that can cause the policy to perform worse. 226

In this work, we use the clipped surrogate objective 227

function of PPO which is expressed as: 228

L(θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
229

where rt(θ) =
πθ(at|st)
πθold (at|st)

is the probability of tak- 230

ing action at at state st in the current policy divided 231

by the previous one. 232

3.3 Learning with LLM Generated Intrinsic 233

Rewards 234

The current RL frameworks for text generation, 235

such as RLHF (Ziegler et al., 2019; Stiennon et al., 236

2020), the environment takes the entire generated 237

text as input and returns a scalar score. Therefore, 238

the learning typically depends on a sparse reward 239

signal that becomes accessible only upon the gen- 240

eration of a complete sentence. We refer to this re- 241

ward signal as the extrinsic reward rex and we have 242

rex
t<T = 0. Our method deviates from the existing 243

approaches by differentiating between the extrinsic 244

reward from the environment and an additional in- 245

trinsic reward rin generated by LLM. As shown in 246

Figure 1, within the agent, our framework incorpo- 247

rate an additional critic language model alongside 248

the policy model. The task of the critic model is to 249
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pinpoint the tokens or segments in the policy’s out-250

put that directly contribute to receiving the environ-251

ment’s reward. The critic model is fed with a task252

description D, a set of few-shot examples E, the253

current state s as determined by the policy model’s254

output, and optionally, the reward rex received from255

the environment. For token at step t, if it is part256

of the identified segment, we assign an non-zero257

value to the intrinsic reward rin
t . The final reward is258

defined as the weighted sum of extrinsic and intrin-259

sic rewards: r(s, a) = α1r
ex(s, a) + α2r

in(s, a)260

where α1 and α2 are hyper-parameters that con-261

trols the weight of the reward. Note that extrin-262

sic rewards are only non-zero at the final time263

step, specifically when t = T . The policy LM264

is optimized to maximize the combined reward:265

J(θ)RELC = Eτ∼πθ

[∑T
t=0 γ

t(α1r
ex + α2r

in)
]

266

where the policy model is parameterized by θ. The267

critic LM is frozen during training. In this work,268

we employed the PPO algorithm to train the agent.269

However, it’s worth noting that our framework is270

versatile and can also be integrated with other rein-271

forcement learning algorithms, such as Advantage272

Actor-Critic (A2C) (Mnih et al., 2016). In sub-273

sequent sections, references to PPO specifically274

denote the use of PPO with extrinsic rewards only.275

LLM Choice and Prompt Design In this276

work, we employ two LLMs as critics:277

gpt-3.5-turbo-1106 and 7B Llama2278

(Touvron et al., 2023). The input prompt is279

structured in three segments. First, we define the280

task within the prompt, outlining the types of281

correct responses or errors the critic model should282

identify. For instance, in the detoxification task,283

we clearly specify what constitutes toxic language.284

Next, we include a curated set of few-shot exam-285

ples (3-shot unless otherwise specified). These286

examples are chosen meticulously to include a287

broad spectrum of exemplary responses and typical288

errors produced by the policy model. Finally, we289

give the critic model the current question, the290

output from the policy model, and, optionally,291

the extrinsic reward from the environment. This292

extrinsic reward is incorporated to better align293

the critic’s evaluation with the desired outcomes.294

It’s important to note that our primary goal is to295

optimize the agent towards extrinsic reward, as296

these are the ultimate indicators of performance.297

Intrinsic rewards, on the other hand, are used only298

for providing immediate feedback and enhancing299

the learning process. As such, we want to ensure300

that the critic models’ feedback and the extrinsic 301

rewards are well aligned. The specifics of the 302

prompt used are detailed in the Appendix. 303

4 Experiments 304

In this section, we demonstrate that our method 305

outperforms the PPO baseline in three text gener- 306

ation tasks: sentiment control, LM detoxification, 307

and text summarization. 308

4.1 Sentiment Control 309

In the sentiment control task, the objective is to 310

guide the LM towards producing responses with a 311

positive sentiment, starting from prompts that are 312

neutral or negative. 313

4.1.1 Experimental Setup 314

We consider two settings: 1) a small policy LM 315

(GPT-2 large) paired with a strong critic LM 316

(gpt-3.5-turbo); 2) the policy model and 317

critic model are the same, which we use Llama 318

2 (Touvron et al., 2023) as initialization. We ac- 319

cess the gpt-3.5-turbo model through Ope- 320

nAI’s API. For training, we make use of the IMDB 321

dataset that contains 25K movie reviews (Maas 322

et al., 2011). We randomly extract the first 4 to 10 323

tokens from each review as the input prompt. The 324

policy model is trained on the training set for one 325

epoch. We set α1 = 1 and α2 = 0.2. Following 326

the experimental setup of (Liu et al., 2021; Lu et al., 327

2022), we use the OpenWebText (OWT) Corpus 328

dataset (Gokaslan and Cohen, 2019) as our test 329

set. Liu et al. (2021) curated three distinct test sets 330

from OWT: neutral (5K prompts), positive (2.5K 331

prompts), and negative (2.5K prompts). These sets 332

were created based on the likelihood of the prompt 333

leading to positive or negative continuations. For 334

the reward model, we employ a distilled BERT 335

classifier that is trained on the IMDB dataset*. De- 336

tails regarding the prompts, few-shot examples, and 337

additional hyper-parameters can be found in Ap- 338

pendix A. 339

Baselines and evaluation metrics We compare 340

our method with seven baseline methods includ- 341

ing PPLM (Dathathri et al., 2020), CTRL (Keskar 342

et al., 2019), DAPT (Gururangan et al., 2020), 343

GeDi (Krause et al., 2021), DEXPERTS (Liu et al., 344

2021), RECT (Cao et al., 2023), and PPO. For sen- 345

timent evaluation, we adopt the approach of Liu 346

*https://huggingface.co/lvwerra/
distilbert-imdb
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(b) Self-critique using Llama 2 7B

Figure 2: Learning curves of the sentiment control
experiment on the IMDB dataset. The x-axis is the
number of training samples, while the y-axis shows the
extrinsic reward, defined as the logit of the positive class
returned by a distilled BERT sentiment classifier. The
curves are smoothed using a moving average of 10 to
improve readability.

et al. (2021); Lu et al. (2022) and calculate the347

average percentage of positive/negative continua-348

tions from the 25 generated outputs using Hugging-349

Face’s sentiment analysis classifier fine-tuned on350

SST-2. Moreover, we analyze fluency and diversity351

to measure how each method impacts the overall352

text quality. We use GPT-2 XL perplexity (PPL) as353

a proxy for fluency. For diversity, we calculate the354

normalized count of unique bigrams.355

4.1.2 Results356

Figure 2 presents the learning curves for both our357

method and baselines. From the figure, we can find358

that RELC has better sample efficiency compared359

to the baselines in both settings. Table 1 shows360

the evaluation results on the OWT Corpus test set.361

As shown in the table, our method outperforms362

all the baselines in terms of steering towards posi-363

tive sentiment. Besides, compared to the baseline,364

our model has the least impact on the fluency of365

generated sentences.366

% Positive (↑) Fluency Dist. (↑)neg. neu. ppl. (↓)

GPT2 (large) 0.00 50.02 11.31 0.85

PPLM 8.72 52.68 142.1 0.86
CTRL 18.88 61.81 43.79 0.83
GeDi 26.80 86.01 58.41 0.80
DEXPERTS 36.42 94.46 25.83 0.84
DAPT 14.17 77.24 30.52 0.83
PPO 43.13 94.10 15.16 0.80
QUARK 46.55 95.00 14.54 0.80

PPO (Ours) 54.06 93.63 13.98 0.78
RELC 59.06 95.63 13.79 0.80

Table 1: Automatic evaluation results of the sentiment
control experiments. All models are based on GPT2-
large. Baseline results are reported in Liu et al. (2021);
Lu et al. (2022). Neg. column shows the evaluation
results on 2.5K negative prompts and Neu. shows the
evaluation results on 5K neutral prompts.

4.2 LM Detoxification 367

In this experiment, we focus on the task of LM 368

detoxification. We show that the integration of 369

LLM-generated intrinsic rewards into RL training 370

can improve both sample efficiency and the final 371

detoxification performance. 372

4.2.1 Experimental Setup 373

In our detoxification experiments, we utilize 374

the REALTOXICITYPROMPTS (RTP) benchmark 375

(Gehman et al., 2020) for training and evaluation. 376

RTP contains 100K human-written sentence pre- 377

fixes (i.e., prompts) derived from English web texts. 378

For toxicity evaluation, we utilize the Perspective 379

API†, a tool that is widely used in previous work for 380

automatic toxicity evaluation. The API provides a 381

score from 0 to 1, with 1 indicating high toxicity 382

and 0 signifying non-toxic content. Following the 383

experimental setup of previous work, we use 85K 384

of these prompts as training set. Our evaluation 385

is conducted on the 10K non-toxic test prompts 386

used by Liu et al. (2021); Lu et al. (2022). We use 387

1− PERSPECTIVE (y) as the reward signal. We set 388

α1 to 1 and α2 to 0.5. More information about the 389

prompts, few-shot examples, and hyper-parameters 390

can be found in Appendix B. 391

Baselines and evaluation metrics. We con- 392

ducted a comparative analysis of our method 393

against seven baseline methods. Out of these, six 394

are the same as those discussed in Section 4.1. Ad- 395

ditionally, we add another baseline method RECT 396

†https://github.com/conversationai/
perspectiveapi
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Figure 3: Plot shows the learning curves of the detoxi-
fication experiment on the RTP dataset, smoothed using
a moving average of 10 to improve readability. X-axis
shows the number of training samples (in thousands)
and y-axis is the average of non-toxic probability (same
as extrinsic reward) measured using Perspective API.

(Cao et al., 2023). We report two metrics: the397

average of maximum toxicity scores over 25 gen-398

erations and the empirical probability of a toxic399

continuation appearing at least once over 25 gener-400

ations.401

4.2.2 Results402

As shown in Figure 3, incorporating intrinsic re-403

wards greatly improves sample efficiency. Another404

interesting find is that using only intrinsic rewards405

also outperforms extrinsic reward baseline. Table 2406

shows the evaluation results on the test set. As407

shown in the table, our method significantly re-408

duces the rate of toxic generations compared to all409

baseline methods. Moreover, our approach has a410

minimal effect on fluency, as measured by perplex-411

ity, while also maintaining a similar level of diver-412

sity. In Table 3, we compare our method with Fine-413

Grained RLHF (Wu et al., 2023) which queries the414

API using partial generated sentences to get fine-415

grained rewards. As shown in Table 3, our method416

outperforms Fine-Grained RLHF in terms of both417

detoxification performance and text quality. We418

Toxicity (↓) Fluency Dist. (↑)avg.max. %prob. ppl. (↓)

GPT2 0.527 52.0 11.31 0.85

PPLM 0.357 21.8 32.58 0.86
DAPT 0.258 9.0 31.21 0.84
GeDi 0.230 3.8 60.03 0.84
DEXPERTS 0.189 2.2 32.14 0.84
PPO 0.218 4.4 14.27 0.80
QUARK 0.154 1.0 12.47 0.80

PPO (Ours) 0.179 2.6 11.49 0.79
RELC 0.125 0.8 11.72 0.80

Table 2: Detoxification evaluation results on 10K
non-toxic prompts from the REALTOXICITYPROMPTS
dataset, using the identical test set as referenced in
Gehman et al. (2020); Liu et al. (2021). We use top-p
sampling with p = 0.9 to sample up to 20 tokens. We
re-evaluated all the baselines using the updated Perspec-
tive API to ensure consistency in the results, as detailed
in Pozzobon et al. (2023).

Toxicity (↓) Fluency Dist.
avg.max. ppl. (↓) dist-3 (↑)

F.G. RLHF 0.081 9.77 0.932
RELC 0.050 9.53 0.934

Table 3: Comparison with Fine-Grained RLHF (Wu
et al., 2023). In alignment with the experimental setting
of Wu et al. (2023), we use nucleus sampling decoding
with p = 0.9 and temperature = 1.0. The generation
length limit is set to 48.

also directly prompt Llama 2 with detoxification 419

instructions and few-shot examples. As shown in 420

Table 4, our method outperforms the prompting- 421

based method. 422

4.3 Summarization 423

In this section, we demonstrate how our approach 424

effectively improves the language model’s ability 425

to generate summaries that are better aligned with 426

human preference. 427

Toxicity (↓) Dist. (↑)avg.max. %prob.

Llama 2
+ 1-shot 0.409 30.9 0.77
+ 3-shot 0.426 32.5 0.78

PPO 0.276 12.53 0.82
RELC 0.176 3.68 0.82

Table 4: Llama2 evaluation results for the detoxification
task. Prompt and few-shot examples used can be found
at Appendix B.
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Rouge (↑) Pref. Score (↑)R-1 R-L

SFT 34.78 26.97 2.34
PPO 30.81 22.11 3.25
RELC 29.32 20.17 3.88

Table 5: Summarization task evaluation results on the
Reddit TL;DR test set, with Pref. Score representing
the preference score calculated using a GPT-J-6B model
(Wang and Komatsuzaki, 2021) fine-tuned on a human
preference dataset (Stiennon et al., 2020).

4.3.1 Experimental Setup428

We use the Reddit TL;DR dataset (Völske et al.,429

2017) for the summarization experiment. The430

dataset contains approximately 3 million posts gath-431

ered from reddit.com, spanning a wide range432

of topics. We employ the filter version of the orig-433

inal dataset as provided by Stiennon et al. (2020),434

which consists of around 116K training samples,435

6K validation and test samples. We fine-tuned a436

GPT2-large model via supervised learning on the437

whole training set for 9,000 steps, using a batch size438

of 64. This model serves as the initialization for439

the policy model. For RL training, we fine-tuned440

the policy model on 30K training samples for one441

epoch. Following Stiennon et al. (2020), our re-442

ward model is a 6B language model fine-tuned on443

92K human-annotated pairwise summary compar-444

ison dataset. The reward model achieves 75.94%445

accuracy on the validation set. We set α1 = 1.0446

and α2 = 0.1. We use gpt-3.5-turbo for gen-447

erating intrinsic rewards in a 3-shot setting. Details448

regarding the prompt, the few-shot examples, and449

the hyper-parameters applied in the summarization450

experiment are provided in Appendix C.451

Baselines and evaluation metrics. We compare452

our method with two baseline methods: the su-453

pervised fine-tuning baseline (SFT) and the PPO454

baseline. For summary quality evaluation, we use455

both the ROUGE score and the preference score456

calculated using the reward model. It worth men-457

tioning that ROUGE score is not often reliable and458

doesn’t capture human preference. As shown in459

Stiennon et al. (2020), the preference score consis-460

tently outperforms the ROUGE score with a better461

agreement with the human annotators on summary462

quality.463

4.3.2 Results464

Figure 4 shows the agent’s performance evaluated465

on the TL;DR test set at every 100 training step. As466
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(b) Llama 2 (7B) as the policy LM and the critic.

Figure 4: Summarization task evaluation result on the TL;DR
test set. Evaluated at every 100 training steps.

evidenced in the figure, our method outperforms 467

the PPO baseline in terms of both preference score 468

and sample efficiency. Table 5 further substantiates 469

these findings, showing that incorporating intrin- 470

sic rewards achieve significantly higher preference 471

scores compared to the PPO baseline. 472

Human evaluation. We conducted a human eval- 473

uation on 200 randomly selected samples from 474

TL;DR test set. We hired five IELTS certified raters 475

to evaluate the quality of the generated summaries. 476

To prepare for the actual annotation, a preliminary 477

pilot study was carried out with an separate set of 478

20 samples. We focused on three key aspects of 479

quality: coverage, coherence, and factuality. Each 480

summary in the annotation set is evaluated by five 481

annotators on each of the four category. The re- 482

sults, as illustrated in Figure 5, demonstrate that 483

our method surpasses both the PPO and supervised 484

learning baselines in all quality dimensions, with a 485

notable advantage in factuality. Detailed annotation 486

instructions are provided in the Appendix D. 487

To evaluate the consistency among annotators, 488

we report Krippendorff’s alpha, a widely used mea- 489

sure for annotator agreement evaluation involving 490

multiple raters. As shown in Table 6, the Krippen- 491

dorff’s alpha scores across all evaluated categories 492

indicate a substantial level of inter-annotator agree- 493

ment, demonstrating the reliability and consistency 494

of the human evaluation process. 495
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Coverage Factuality Coherence Overall

0.693 0.740 0.646 0.678

Table 6: Krippendorff’s alpha scores among five anno-
tators for each quality category.
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Figure 5: Human evaluations of four axes of summary
quality on the TL;DR dataset.

0 5 10 15 20 25 30 35 40
Training Samples (in thousands)

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

No
n-

to
xi

c 
Pr

ob
ab

ilit
y

Extrinsic + Intrinsic Rewrds
Extrinsic Only
Extrinsic + Random Intrinsic Rewrds

Figure 6: Detoxification performance with random in-
trinsic rewards.

5 Analysis496

5.1 Random Intrinsic Rewards497

To gain a better understanding of the contribution498

of LLM-generated intrinsic reward to the agent, we499

conducted an ablation experiment where the intrin-500

sic rewards were assigned to tokens on a random501

basis. We employed a moving average approach to502

approximate the proportion of tokens receiving in-503

trinsic rewards from the real critic LM, denoted as504

Pt = α∗ # intrinsic reward tokens
# seq. tokens +(1−α)∗Pt−1. Then,505

intrinsic rewards were randomly assigned to each506

token based on Pt. All additional hyper-parameters507

remained consistent with those described in Sec-508

tion 4.2. The learning curve from this ablation509

study is presented in Figure 6. The results, as il-510

lustrated, indicate that the integration of random511

intrinsic rewards does not improve the learning pro-512

cess. This finding supports the conclusion that the513
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Figure 7: Detoxification performance as a function of
floating point operations (FLOPs). Figure is truncated
on the x-axis.

efficacy of our method is primarily attributed to the 514

accurate credit assignment by the critic LLM. 515

5.2 Computation Efficiency 516

In Section 4, we demonstrate that our approach is 517

more sample-efficient than the baselines. Given the 518

additional computational overhead introduced by 519

the critic LLM in our method, this analysis seeks 520

to evaluate if our approach maintains its advantage 521

over the baselines with an equivalent amount of 522

computation. We report the number of floating- 523

point operations (FLOPs) used in model training. 524

This analysis is carried out in the context of a 525

detoxification experiment using Llama 2. As illus- 526

trated in Figure 7, we plot the model’s performance 527

against the number of FLOPs, clearly showing that 528

our method achieves better performance than the 529

baseline under the same amount of computation. 530

6 Conclusion 531

In this work, we introduced a novel framework that 532

integrates a critic LM to generate dense intrinsic 533

reward signals to alleviate the reward sparsity and 534

credit assignment problem in language model train- 535

ing. The critic model evaluates segments of policy 536

model’s output and produces token or span-level 537

rewards. These intrinsic rewards are combined 538

with extrinsic rewards in RL training. Evaluated on 539

sentiment control, detoxification, and summariza- 540

tion tasks, our method not only significantly im- 541

prove the sample efficiency of the PPO algorithm 542

but also outperformed baseline methods using auto- 543

matic and human evaluation. Additionally, we have 544

demonstrated the effectiveness of “self-critique” in- 545

trinsic rewards when the same model functions as 546

both the policy and the critic. 547
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7 Limitation548

Our framework depends on the critic model to of-549

fer insightful feedback, which necessitates that the550

critic model cannot be overly small. This require-551

ment may restrict the applicability of our proposed552

method in settings with limited computational re-553

sources. While accessing a critic LLM through an554

API is feasible, the training duration may extend555

due to delays associated with the API. In our re-556

search, we consider the critic model to be fixed557

during training. Nonetheless, as the policy model558

improves, evaluating the policy model’s outputs559

becomes increasingly challenging. Thus, it would560

be beneficial to also fine-tune the critic model to561

enhance its critique ability. We plan to explore this562

refinement in future work.563
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A Sentiment Control952

Hyperparameter Value

base model GPT2-large
learning rate 1.41e-5

batch size 16
mini batch size 16

target kl 6.0
PPO epochs 4

PPO clip range 0.2
PPO clip value 0.2
kl coefficient 0.1

value loss coeff 0.1
num. frozen layers 30

min new tokens 15
max new tokens 20
discount factor γ 1.0

α1, α2 1.0, 0.2

Table 7: Hyper-parameters for the sentiment control
experiment.

B LM Detoxification953

In our detoxification experiments, we utilize954

the REALTOXICITYPROMPTS (RTP) benchmark955

(Gehman et al., 2020) for training and evalua-956

tion. Following the experimental setup of Liu et al.957

(2021), we employ 85K of these prompts for train-958

ing. Our evaluation is conducted on the 10K non-959

toxic test prompts as provided by Liu et al. (2021).960

Throughout the training phase, prompts with a toxi-961

city probability below 0.5 were excluded to reduce962

training time. We employed the inverse of the toxi-963

city score from the Perspective API as our reward964

signal. A score of 1 signifies non-toxicity, while a965

score of 0 indicates toxicity. For intrinsic reward966

generation, we use the gpt-3.5-turbo model967

through OpenAI’s API.968

C Text Summarization969

Hyper-parameters used for the summarization ex-970

periment can be found in Tabel 9. Instead of using971

preference score as reward signal, we also conduct972

another experiment where ROUGE-1 score is used973

as reward signal (Dong et al., 2018).974

Figure 9 shows the learning curve of the sum-975

marization experiment when ROUGE-1 score is976

used as reward signals. As shown in the figure,977

incorporating intrinsic rewards did not yield sig-978

nificant improvements in learning efficiency when979

Hyperparameter Value

base model GPT2-large
learning rate 1.41e-5

batch size 16
mini batch size 8

target kl 6.0
PPO epochs 4

PPO clip range 0.2
PPO clip value 0.2
kl coefficient 0.02

num. frozen layers 24
min new tokens 30
max new tokens 50
discount factor γ 1.0

α1, α2 1.0, 0.2

Table 8: Hyper-parameters for the detoxification experi-
ment.

evaluated using the ROUGE-1 score. Additionally, 980

we evaluate the model’s performance every 100 981

training steps on the TL;DR test set using ROUGE 982

score and preference score. In Figure 11, we ob- 983

serve that with equivalent training samples and 984

computational resources, our method enables the 985

model to learn considerably faster when evaluated 986

using the preference model. This outcome suggests 987

that intrinsic rewards exhibit a stronger alignment 988

with human preferences compared to the ROUGE 989

score, which we consider a less reliable metric due 990

to its limited correlation with important properties 991

of summary like factuality (Stiennon et al., 2020; 992

Cao et al., 2022b). Table 5 further substantiates 993

these findings, indicating that summaries incorpo- 994

rating intrinsic rewards achieve significantly higher 995

preference scores compared to the PPO baseline. 996

D Human Evaluation 997

We employed five annotators certified in IELTS 998

to assess the quality of the generated summaries. 999

Each annotator receives compensation that exceeds 1000

the local minimum wage. 1001

D.1 Annotation Guideline 1002

The purpose of these guidelines is to ensure a 1003

standardized and accurate evaluation of model- 1004

generated summaries based on three primary met- 1005

rics: content preservation, factuality, and coher- 1006

ence. 1007
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##### Indentify Positive/Negative Sentiment #####

Imagine you’re a human annotator. Your task is to review a sentence and pinpoint
↪→ words or phrases that contribute to a positive or negative sentiment. If the
↪→ sentence has a neutral sentiment with no discernible positive or negative
↪→ elements, simply report "None identified".

Here are the detailed annotation steps:

1. Read the Sentence Carefully: Thoroughly read the sentence to grasp its overall
↪→ sentiment.
2. Spot Sentiment-Driven Words/Phrases: Seek words or phrases that convey positive
↪→ or negative emotions. For instance, words indicating disapproval, criticism, or
↪→ displeasure signify negative sentiments.
3. Highlight the Most Concise Span: When you find words contributing to the
↪→ sentiment, aim to highlight the briefest combination of words that fully convey
↪→ the sentiment. The goal is to capture the essence with minimal span.
4. Avoid Over-Identification: Be mindful not to mark words that are neutral and do
↪→ not contribute to any sentiment.
5. Neutral Sentences: If you conclude that the sentence expresses a neutral
↪→ sentiment, indicate it with "None identified".

Examples:

##### Example 1 #####
Sentence to be Labeled:
I didn’t enjoy the book because the story was quite boring.

Identified Positive Text Span:
None identified

Identified Negative Text Span:
[Span 1]: didn’t enjoy
[Span 2]: quite boring

##### Example 2 #####
Sentence to be Labeled:
Mystery Men is one of the worst horror films that I’ve ever seen. It attempts to be
↪→ a satire of the problems confronting

Identified Positive Text Span:
None identified

Identified Negative Text Span:
[Span 1]: the worst

##### Example 3 #####
Sentence to be Labeled:
This is one of those movies you really need to appreciate to the very end. The film
↪→ is based on a true story

Identified Positive Text Span:
[Span 1]: really need to appreciate

Identified Negative Text Span:
None identified

##### Follow the instructions and the example(s) above #####
Sentence to be Labeled:
{}

Identified Positive Text Span:

Listing 1: Feedback generation prompt used for the sentiment control task.

14



##### Indentify Toxic Content in Sentences #####

Imagine you’re a human annotator. In the task ahead, you’ll be given a sentence, and
↪→ your job is to identify any spans of words that display toxic language.

Definition of Toxic Language:

Toxic language refers to any form of communication that expresses strong negative
↪→ sentiments, such as hate, prejudice, discrimination, threats, or derogatory
↪→ comments. These sentiments often target individuals or groups based on their race
↪→ , gender, ethnicity, nationality, religion, sexual orientation, or any other
↪→ identifying characteristics. Toxic language can also include aggressive swearing,
↪→ calls for harm or violence, and personal attacks. It’s essential to note that
↪→ toxicity is not always overt; subtle forms of bias or prejudice can also be
↪→ considered toxic.

Here are the detailed annotation steps:

1. Read the entire sentence thoroughly.
2. Look for words, phrases, or sections of the sentence that display signs of toxic
↪→ language.
3. Mark the beginning and end of the toxic span. If there are multiple toxic spans,
↪→ mark each one separately.
4. Instead of labeling the entire sentence, aim to identify the shortest span
↪→ possible.
5. If no toxic span identified, specify "None identified".

Examples:

##### Example 1 #####
Sentence to be Labeled:
I don’t know why women even bother with physics; they’re just not cut out for it.

Toxic Spans Identified in the Sentence:
[Toxic Span 1]: even bother with
[Toxic Span 2]: just not cut out for it.

##### Example 2 #####
Sentence to be Labeled:
Generally, reward shaping in RL is a challenging issue. No single method works for
↪→ every situation.

Toxic Spans Identified in the Sentence:
None identified

##### Example 3 #####
Sentence to be Labeled:
The cabbie then drives away yelling: "I’m going to kill you!"

Toxic Spans Identified in the Sentence:
[Span 1]: yelling
[Span 2]: kill you!

##### Follow the instructions and the example(s) above #####
Sentence to be Labeled:
{}

Toxic Spans Identified in the Sentence:

Listing 2: 3-shot prompt used for the detoxification task.
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You are a helpful, respectful and honest assistant. Always answer as helpfully as
↪→ possible, while being safe. Your answers should not include any harmful,
↪→ unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure
↪→ that your responses are socially unbiased and positive in nature.

Toxic language refers to any form of communication that expresses strong negative
↪→ sentiments, such as hate, prejudice, discrimination, threats, or derogatory
↪→ comments. These sentiments often target individuals or groups based on their race
↪→ , gender, ethnicity, nationality, religion, sexual orientation, or any other
↪→ identifying characteristics. Toxic language can also include aggressive swearing,
↪→ calls for harm or violence, and personal attacks. It’s essential to note that
↪→ toxicity is not always overt; subtle forms of bias or prejudice can also be
↪→ considered toxic.

Now, please continue the following sentence with around 20 words, ensuring it’s free
↪→ from any toxic content.

Examples:

##### Example 1 #####
[Sentence]: I swear to Christ, if they try to make me
[Continuation]: into a morning person, I’ll start setting alarms for 2 PM.

##### Example 2 #####
[Sentence]: "You know, you’re going to have to shut up or I’m going
[Continuation]: to start believing all those compliments you’re throwing my way."

##### Example 3 #####
[Sentence]: And the woman responds: "You look like
[Continuation]: who’s seen a fair share of adventures, with stories etched into
↪→ every line of your face."

##### Example 4 #####
[Sentence]: {}
[Continuation]:

Listing 3: Prompt and few-shot examples used for Llama 2 detoxification.
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##### Indentify Flaws in Machine-Generated Summaries #####

Imagine you are a human annotator. You will be given a source document, a machine
↪→ generated summary and score. This score represents the overlap between the
↪→ machine-generated summary and a reference summary written by a human, which you
↪→ cannot see. Your task is to identify spans (segments of text) in the machine-
↪→ generated summary that contain flaws, making them unlikely to match the reference
↪→ summary.

Here are the detailed annotation steps:

1. Familiarize with the Source: Begin by reading the original document in its
↪→ entirety to fully grasp its content.
2. Examine the Summary: Thoroughly go through the machine-generated summary.
3. Indentify Flaws:

a. Begin with the first sentence of the machine-generated summary.
b. As you proceed, cross-reference each segment with your understanding from the
↪→ original document.
c. Using the summary score as a guide, mark segments that appear flawed,
↪→ misplaced, incoherent, or factually off. Remember, the higher the score is,
↪→ the less segments you should mark.

4. Annotate Identified Issues: Next to each highlighted segment, jot down a concise
↪→ description of the flaw. Use labels like "Factually Incorrect", "Irrelevant", "
↪→ Incoherent" or other short descriptions.
5. Be Precise: Rather than marking entire sentences, strive to pinpoint the most
↪→ concise and shortest problematic segment possible.
6. Indicate High-quality Summaries: If you don’t find any issues, simply note "None
↪→ identified".

Examples:

##### Example 1 #####
Source Document:
SUBREDDIT: r/college TITLE: People who transferred between universities (not CC to
↪→ university) one or more times, why did you decide to switch and - in retrospect -
↪→ how do you feel about your decision? POST: First, I have no desire to transfer,
↪→ so you needn’t talk me into or out of anything. That being said, I *always* see
↪→ people on this sub asking for advice about transferring, as a first or second
↪→ year, from [X University] to [University of Y] because they’re "not happy" or it’
↪→ s "not what they expected". My opinion - based purely on second-hand, anecdotal
↪→ evidence - is that in some cases it might be that these students simply weren’t
↪→ adjusting to *college* in general, rather than specific problems with the school
↪→ itself. I have known people who decided to switch schools, only to realize that
↪→ the second school was *even worse* and want to transfer somewhere else, perhaps
↪→ even back to the first one they attended. Since I’ve seen people on this sub post
↪→ about similar things, I thought this might be a good place to ask. So, /r/
↪→ college, I’m very curious to hear your stories. I welcome the idea that I’m
↪→ totally wrong and/or misunderstanding why people decide to switch universities,
↪→ so please educate me if this is the case!

Summary to be Labeled:
People switched universities and decided to change, why did you decide to switch?

Summary Score: 0.4/10

Problematic Spans Identified in the Summary:
[Span 1]: and decided to change (Label: Irrelevant)
[Span 2]: why did you decide to switch? (Label: Irrelevant)

##### Follow the instructions and the example(s) above #####
Source Document:
{}

Summary to be Labeled:
{}

Summary Score: {}/10

Problematic Spans Identified in the Summary:

Listing 4: Prompt used for the summarization task. We use 3-shot setting in the experiment, only one example
is displayed here for conciseness. We scale the preference score to a range of 1-10 to enhance the critic model’s
comprehension of the summary’s quality. 17
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The move boasts breathtaking visuals, but the story falls flat.

Positive: breathtaking visuals
Negative: story falls flatReward: -2

External
Environment

Critic LLM

The move boasts breathtaking visuals , but the story falls flat .
 0      0          0             1                        1           0  0     0     -1        -1     -1   0

The move boasts breathtaking visuals , but the story falls flat .
 0      0          0             1                        1           0  0     0     -1        -1     -1   -2

Sampled 
Trajectory:

Token-level 
Rewards:

0 0 0 0 0 0 0 0 0 0 0 -2

Figure 8: An example demonstrating the reward calculation process in the sentiment control task. In this example,
the external environment returns a scalar reward of -2 in response to the policy model’s output. Subsequently, the
critic model is prompted to identify spans of positive and negative sentiment within the output. Tokens within these
spans are then assigned intrinsic rewards: +1 for positive and -1 for negative sentiment. The hyper-parameter α
determines the weight of these two types of rewards. The extrinsic reward is assigned to the last position in the
output sequence.

Hyperparameter Value

base model GPT2-large
learning rate 1.41e-5

batch size 16
mini batch size 8

target kl 6.0
PPO epochs 4

PPO clip range 0.2
PPO clip value 0.2
kl coefficient 0.02

num. frozen layers 24
min new tokens 30
max new tokens 50
discount factor γ 1.0

α1, α2 1.0, 0.2

Table 9: Hyper-parameters for the summarization exper-
iment.

General Instructions1008

1. Read both the original text and the model-1009

generated summary thoroughly.1010

2. Evaluate the summary independently for each1011

of the three metrics.1012

3. Use the scale provided for each metric to rate1013

the summary.1014
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Figure 9: Learning curves of the summarization ex-
periment and its ablations, smoothed using a moving
average of 10 to improve readability. The extrinsic re-
ward signals are ROUGE-1 scores.

4. Provide brief comments to justify your ratings, 1015

especially for extreme scores. 1016

Definition of the three metrics 1017

Content Preservation: Assess how well the sum- 1018

mary captures the essential information, themes, 1019

and nuances of the original text. 1020

• 5: Excellent - All key points are included, and 1021

nothing significant is omitted. 1022

• 4: Good - Most key points are included, with 1023

minor omissions. 1024
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Figure 10: Learning curves of the summarization ex-
periment, smoothed using a moving average of 10 to
improve readability.
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Figure 11: Evaluation results on the RL;DR test set
after every 100 steps of training. Preference scores are
calculated using a 6B GPT-J model fine-tuned on 92k
human annotated summary comparison dataset.

• 3: Fair - Some key points are included, but1025

notable information is missing.1026

• 2: Poor - Many key points are missing; the1027

summary captures only a few aspects of the1028

original text.1029

• 1: Very Poor - The summary fails to capture1030

the core ideas of the original text.1031

Factuality: Evaluate the accuracy of the informa-1032

tion in the summary relative to the original text.1033

• 5: Completely Accurate - All information in1034

the summary accurately reflects the original1035

text.1036

• 4: Mostly Accurate - Minor inaccuracies, but1037

they do not change the overall understanding.1038

• 3: Somewhat Accurate - Some inaccuracies or1039

misinterpretations that affect understanding.1040

• 2: Mostly Inaccurate - Frequent inaccuracies, 1041

leading to a distorted understanding of the 1042

original text. 1043

• 1: Completely Inaccurate - The summary con- 1044

tains major factual errors. 1045

Coherence: Assess the logical flow, readability, 1046

and structure of the summary. The summary is 1047

coherent if, when read by itself (without checking 1048

against the reference), it’s easy to understand, non- 1049

ambiguous, and logically coherent. 1050

• 5: Highly Coherent - The summary is well- 1051

structured, logical, and easy to follow. 1052

• 4: Coherent - Good structure and flow, with 1053

minor lapses in clarity. 1054

• 3: Moderately Coherent - Some disorganiza- 1055

tion or lack of clarity, but the main message is 1056

discernible. 1057

• 2: Poorly Coherent - Difficult to follow, with 1058

significant structural or logical flaws. 1059

• 1: Incoherent - The summary is disjointed and 1060

lacks any logical flow. 1061

Final Steps 1062

After rating each metric, provide a brief overall 1063

assessment of the summary. 1064

• 5: Excellent - The summary is exceptional in 1065

all aspects. It perfectly preserves the content 1066

from the source, maintains complete factual 1067

accuracy, and exhibits flawless coherence and 1068

fluency. 1069

• 4: Good - The summary is of high quality 1070

with only minor issues. It accurately preserves 1071

most of the original content and facts, with 1072

slight deviations that don’t significantly im- 1073

pact the overall understanding. 1074

• 3: Mediocre - The summary is average, doing 1075

an adequate job of conveying the main points 1076

but with noticeable issues. 1077

• 2: Poor - The summary has significant short- 1078

comings. It provides a substandard represen- 1079

tation of the source material. 1080

• 1: Very Poor - The summary is severely lack- 1081

ing in quality. It fails to preserve the essential 1082

content, contains numerous factual inaccura- 1083

cies, and is largely incoherent and non-fluent. 1084
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