
Under review as submission to TMLR

Sample Average Approximation for
Black-Box Variational Inference

Anonymous authors
Paper under double-blind review

Abstract

We present a novel approach for black-box VI that bypasses the difficulties of stochastic
gradient ascent, including the task of selecting step-sizes. Our approach involves using a
sequence of sample average approximation (SAA) problems. SAA approximates the solution
of stochastic optimization problems by transforming them into deterministic ones. We use
quasi-Newton methods and line search to solve each deterministic optimization problem and
present a heuristic policy to automate hyperparameter selection. Our experiments show
that our method simplifies the VI problem and achieves faster performance than existing
methods.

1 Introduction

The goal of probabilistic inference is to approximate the distribution of latent variables given observed data
and a user-specified model. This is of immense practical interest in fields like astrophysics, epidemiology,
political science, psychology, ecology, and others. Typically this is used in applications where the data are
limited so that user-provided assumptions are critical to obtain insight from data. However, inference is
extremely challenging in general and formally computationally intractable except for restricted cases. It is
therefore a long-standing research direction to develop robust approximate inference methods that perform
well on a wide range of real models.

Variational inference (VI) is a powerful technique that allows us to approximate the posterior distribution
by formulating inference as an optimization problem, where the objective is to find a distribution from a
family of distributions that is as close as possible to the true distribution. To achieve this, VI maximizes the
evidence lower bound (ELBO), which is a lower bound on the log-likelihood of the observed data [Wainwright
et al., 2008; Jaakkola and Jordan, 1997; Beal, 2003].

Much recent work focuses on “black box” variational inference (BBVI) [Ranganath et al., 2014; Titsias and
Lázaro-Gredilla, 2014; Kucukelbir et al., 2017; Yin and Zhou, 2018; Hoffman and Ma, 2020; Buchholz et al.,
2018], where the goal is to adapt a tractable density to approximate the posterior using only evaluations of
the model’s log-joint density or its gradient. This allows VI to be applied to a wide range of models, for
example, those written in a probabilistic programming language such as Stan [Carpenter et al., 2017]. BBVI
uses stochastic gradient descent (SGD) to optimize the ELBO [Wingate and Weber, 2013; Blei et al., 2017;
Kucukelbir et al., 2017; Ranganath et al., 2014; Rezende et al., 2014; Kingma and Welling, 2013]. In this
method, an unbiased estimator of the gradient of the ELBO is used for stochastic optimization. However, se-
lecting an appropriate step-size for SGD can be challenging and have a significant impact on the optimization
process’s outcome. Recent work by Agrawal et al. [2020] recommends performing a comprehensive search
over step-sizes to avoid the suboptimality of using a previously-selected step-size. In practice, users often
turn to adaptive methods like Adam [Kingma and Ba, 2015] or AdaGrad [Duchi et al., 2011] to adjust the
step-size on-the-fly, but these methods also require tuning of hyperparameters, which can be time-consuming
and error-prone.

In principle, BBVI simplifies an inference problem by converting it to stochastic optimization. However,
in practice the difficulties of stochastic gradient methods have limited its robustness and broad applicabil-
ity [Agrawal et al., 2020; Welandawe et al., 2022]. This motivates the consideration of alternate stochastic
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optimization methods that perform more reliably for classes of BBVI problems. We propose an alternative
stochastic optimization approach based on the sample average approximation (SAA) that can be easily made
robust for problems involving hundreds of latent variables, specifically focusing on statistical models that do
not rely on data-subsampling. Our main contributions are:

(i) We propose using SAA to provide solutions for the variational inference problem. SAA approximates
the expectation of the objective function by the sample average using a fixed sample from the
distribution [Healy and Schruben, 1991; Robinson, 1996; Shapiro and Wardi, 1996; Kleywegt et al.,
2002; Kim et al., 2015]. This deterministic optimization problem allows us to employ nonlinear
optimization tools usually inaccessible for this task.

(ii) Our novel approach applies quasi-Newton methods with line-search to solve the deterministic op-
timization problem resulting from SAA. This method emphasizes efficient optimization without
manual step-size tuning and takes advantage of the deterministic nature of the SAA problem. By
employing SAA, we reduce the number of iterations while using larger sample sizes in each iteration
to compute the probabilistic model and its approximation. This approach enhances optimization
efficiency by leveraging the vectorization capabilities of GPUs.

(iii) To address the Monte Carlo error introduced by SAA, we propose using retrospective approximation
[Chen and Schmeiser, 2001], a technique that improves SAA’s accuracy by employing a sequence of
SAAs with increasing sample sizes.1

(iv) We present the SAA for VI algorithm, which includes default scheduling for sample sizes and a
stopping criterion. Our empirical results demonstrate that our approach is competitive with state-
of-the-art methods, including the batched quasi-Newton method of Liu and Owen [2021], in terms of
accuracy and computational cost, and has the potential to simplify the variational inference process.

Concurrently with our work, Giordano et al. [2023] proposed a sample average approximation algorithm
for variational inference, motivated by the same challenges of stochastic gradient methods that limit the
robustness and broad applicability of BBVI. We discuss the relationship between our method and theirs in
Section 4.

2 Background

We are interested in approximating the posterior distribution of a latent variable given some observed data,
i.e., p(Z |x), where Z is the latent variable and x is the observed data. To achieve this, we will approximate
the posterior with a distribution from an indexed family of approximations Q = {qθ | θ ∈ Rd}, where θ is a
vector of parameters that parameterize the approximation qθ(Z), and d is the dimension of θ.

VI proposes to approximate the posterior distribution by finding a member fromQ that is closest in Kullback-
Leibler divergence to the true distribution. This is achieved by maximizing the evidence lower bound (ELBO),
which is a function of the parameters θ:

L(θ) = E[ln p(Z, x)− ln qθ(Z)], Z ∼ qθ. (1)

The optimization problem can be formulated as:

max
θ∈Θ
L(θ) = max

θ∈Θ
E[ln p(Z, x)− ln qθ(Z)], Z ∼ qθ. (2)

Under smoothness assumptions, black-box VI presents this problem as a smooth stochastic optimization
problem (SOP) and suggests solving it using methods based on stochastic gradient descent (SGD). Specifi-
cally, it uses stochastic gradient ascent to maximize the ELBO by updating the parameters as follows:

1See Emelogu et al. [2016] for a literature review on the topic.
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At every iteration, samples z1, . . . , zn from qθt are drawn and the sample mean of the function gθt(Z) is
being computed, where gθt(Z) is a Rd-valued random vector whose expectation equals the gradient. Then,
this estimate is used to update the parameters according to:

θt+1 = θt + γt
1
n

n∑
i=1

gθt(zi) for t ∈ N, and γt ∈ R+. (3)

This function can be obtained using various methods, including the score function estimator [Wingate and
Weber, 2013; Ranganath et al., 2014] or, if the distribution is reparameterizable, the ‘reparameterization
trick’ [Kingma and Welling, 2013; Fu, 2006; Kingma et al., 2019; Rezende et al., 2014], among others. A
random variable Z comes from a reparameterizable distribution qθ if there exist a C1 function zθ and a
density qbase such that Z = zθ(ε) for ε ∼ qbase. We refer to these ε values as noise. In such case, the
stochastic optimization problem becomes

max
θ∈Θ
L(θ) = max

θ∈Θ
E[ln p(zθ(ε), x)− ln qθ(zθ(ε))], ε ∼ qbase. (4)

It then follows that, at every step t of the optimization, the update rule of SGD from Eq. (3) is

θt+1 = θt + γt
1
n

n∑
i=1

gθt(zθt(εti)), εti ∼ qbase.

Despite its simplicity, the explanation above fails to convey the complexities of choosing hyperparameters,
particularly the step size γt, also known as the learning rate. The user can opt to use a step size schedule γ =
(γt)t∈N ⊂ R+ that meets the Robbins-Monro conditions (‖γ‖1 =∞ and ‖γ‖2 <∞), which can lead to SGD
converging at a critical point due to the use of unbiased estimators of the gradients [Robbins and Monro, 1951;
Ranganath et al., 2014; Jankowiak and Obermeyer, 2018]. However, the specific sequence of the schedule
is not specified and different schedules may affect the speed of convergence differently [cf. Agrawal et al.
[2020]]. Critically, the random nature of estimating the loss function and its gradient makes it impractical
to use traditional line-search methods. Additionally, the choice of the number of samples n drawn at each
iteration can affect the optimization process, as a larger n provides a more accurate gradient estimate but
may increase the computational cost. Balancing this trade-off is an important aspect of algorithm design.

Moreover, controlling the variance of gradient estimates significantly influences the performance of the op-
timization algorithm, affecting stability and convergence properties, and further adding to the complexity
of the problem. In this context, the choice of the gradient estimator gθt is crucial. Instead of employing
the naïve estimator by taking the average of the gradient of ln p(zθt(ε)) − ln qθt(zθt(ε)), one can consider
alternative methods such as the sticking-the-landing estimator [Roeder et al., 2017] or, when the entropy
term Hθ = −E[ln qθt(zθt(ε))] is available in closed form, estimating the gradients of E[ln p(zθt(ε))] + Hθ.
Although all these estimators are unbiased, they exhibit different variance behaviors, which can impact the
optimization process. To reduce the variance of the gradient estimator, control variates can also be applied
[Ranganath et al., 2014; Geffner and Domke, 2018]. These choices contribute to the overall complexity of
choosing hyperparameters, step size schedules, and the number of samples.

3 Methods

3.1 Sample Average Approximation

The problem of ELBO maximization in the reparameterization setting of Eq. (4) is formulated as an SOP
where the stochasticity comes from a fixed probability distribution, i.e., a probability distribution which does
not depend on θ. Furthermore, the function inside the expectation is a smooth function of the parameters θ.
Solutions to these problems can be approximated using the sample average approximation (SAA): a sample
average over a fixed sample replaces the expectation, effectively transforming the SOP into a deterministic
optimization problem.
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We propose to use SAA for black-box VI. To use SAA, we take n i.i.d. samples ε = ε1, . . . , εn from the
distribution qbase and define the deterministic training objective function

L̂ε : θ 7→ 1
n

n∑
i=1

[ln p(zθ(εi), x)− ln qθ(zθ(εi))],

which is a function of θ alone.

Then, the optimization problem in Eq. (4) can be transformed into a deterministic optimization problem

max
θ∈Θ

L̂ε(θ) = max
θ∈Θ

1
n

n∑
i=1

[ln p(zθ(εi), x)− ln qθ(zθ(εi))] = max
θ∈Θ

1
n

n∑
i=1

vθ(εi), (5)

where we introduced the log-weights vθ(εi) = ln p(zθ(εi), x) − ln qθ(zθ(εi)), also known as log-importance
ratios. As the optimization is performed with the fixed set ε, we refer to it as the training noise.

We want to recover the optimal parameters θ∗ of L̂ε. In an unconstrained smooth optimization setting,
we need to specify how to compute a search direction and a step size. For the search direction, we will
use L-BFGS [Broyden, 1970; Fletcher, 2013; Goldfarb, 1970; Shanno, 1970; Nocedal, 1980]. For a detailed
description of the L-BFGS algorithm, refer to Nocedal and Wright [1999].

In contrast to the SGD setting, deterministic optimization allows us to specify the step size using line
search and ask for it to satisfy the strong Wolfe conditions [Nocedal and Wright, 1999]. Specifically, for
0 < c1 < c2 < 1, the step size γ must simultaneously satisfy the following two conditions:

i) sufficient increase: L̂ε(θ + γr) ≥ L̂ε(θ) + c1γ∇L̂ε(θ)Tr, and

ii) modified curvature:
∣∣∇L̂ε(θ + γr)Tr

∣∣ ≤ c2∣∣∇L̂ε(θ)Tr
∣∣.

We will use L-BFGS with line search to find a local optimum of Eq. (5), and denote the process that does
so by Opt(θ, n, ε, τ). Here, τ is the maximum number of iterations for which L-BFGS will run, and θ is an
initial value of the parameters. Besides the arguments of L̂ε(θ), we also need to specify the value of τ .

Detection and mitigation of overfitting. It is important to understand that the training objective
L̂ε(θ) and the ELBO L(θ), may differ for a fixed θ. The ELBO, as defined in Eq. (1), is an expectation over
the distribution qθ, while the training objective is computed based on an average over a fixed sample ε. In
contrast, the optimal ELBO refers to the value of the ELBO achieved by the maximizer of Eq. (2), denoted
as θ∗.

During optimization with a fixed sample of training noise εn = ε1, . . . , εn, one might wonder how much
the learned parameters θ∗εn and the distribution qθ∗

εn
depend on these noise samples. In particular, how this

dependency translates into a gap between the ELBO L(θ∗εn) and the optimal ELBO L(θ∗). Fortunately, there
are two results by Mak et al. [1999] that are relevant to our discussion. Note that until the noise variables
ε1, . . . , εn are realized, the quantities θ∗εn and L̂εn(θ∗εn) are random. Let ε̂n+1 = ε̂1, . . . , ε̂n+1, be a sample of
size n + 1 taken i.i.d. from qbase. Assuming that the optimization process converges to a global optimum,
it holds that: (i) the ELBO and training objective sandwich the optimal ELBO (in expectation), that is,
EL(θ∗εn) ≤ L(θ∗) ≤ E L̂εn(θ∗εn); and (ii) the training objective converges monotonically to the optimal ELBO
from above (in expectation), that is, E L̂ε̂n+1(θ∗ε̂n+1

) ≤ E L̂εn(θ∗εn).

In particular, these results mean that we can use standard statistical techniques to quantify the discrepancy
between the ELBO L(θ∗) and the training objective L̂ε(θ) by comparing the distribution of the log-weights
v1, . . . , vn for a fresh sample of noise, referred to as testing noise, and the training noise, a technique first
used by Mak et al. [1999]. Figure 1 displays the distribution of log-weights for a growing sample size. As
the number of samples increases, the training objective value decreases and approaches that of the ELBO
estimation, which in turn increases, indicating progress toward the ultimate goal of ELBO maximization.

We adopt the classical approach of mitigating this overfitting by solving a sequence of SAA approximations
for an increasing sequence of sample sizes (nt)t∈N ⊆ N, which creates a sequence of solutions (θ∗nt)t∈N.
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Figure 1: Distribution of log-weights for a fresh sample of noise and the training noise, as a function of the
number n of samples used for training on the mushrooms dataset. (Left) Violin plot showing the distribution
of log-weights. (Right) Line plot depicting the mean (v̄±σ) of the log-weights. The means of the log-weights
correspond to an estimation of the ELBO and the training objective. The overfitting to the training noise is
reduced by training using a larger sample size.

Shapiro [2003] give general conditions for the set of optimal solutions (or critical points) of SAA problems to
converge to the corresponding set for the original stochastic optimization problem. The conditions include
uniform convergence of the SAA objective functions and compactness of the solution set (see also Kim et al.
[2015]). While these could likely be applied to VI problems, the conditions, especially compactness of the
solution set, would be problem specific and depend, for example, on the particular parameterization of a
variational distribution, and we don’t explore it further.

3.2 Algorithm

In this section, we present an algorithm that uses SAA to approximate the solution to the optimization
problem of maximizing the ELBO. Our objective is to find a good approximation to the solution with a
reasonable computational cost and avoid the overfitting phenomenon described earlier. To this end, we
build our stopping criteria based on overfitting. The algorithm, described in Algorithm 1, consists of two
procedures: the optimizer Opt and the convergence checker. We previously described the optimizer, in which
we used a quasi-Newton method. The convergence checker is a function that determines whether we need
to continue the optimization process, and we will describe it later in this section.

The algorithm starts with an initial guess θ0, an initial sample size n0, and an initial maximum number
of iterations for the optimizer τ0. Default values for these parameters can be found in Table 1. At each
iteration t of the algorithm, we double the sample size to reduce the overfitting. First, we draw the training
noise εnt = ε1, . . . , εnt from the base distribution qbase. Then, we use the optimizer to find the parameters
θ∗t that maximize the deterministic objective computed with the fixed training noise εnt . If we find that the
optimizer has reached the maximum number of iterations τt, we double the maximum number of iterations
for the optimizer; otherwise, we keep the same maximum number of iterations.

We track a counter variable count, which increments each time the optimizer Opt uses less than a very small
number of iterations, VERY_SMALL_ITER. If the count variable reaches 3, it means that the optimizer has
finished with a very small number of iterations for three consecutive step sizes, and the optimization process
terminates. Otherwise, we reset count to 0 if the optimizer uses more than VERY_SMALL_ITER iterations.
The optimization process continues until either the convergence checker determines that we have reached a
good solution to the stochastic optimization problem or the count variable reaches 3.
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Algorithm 1 SAA for VI
1: Input: θ, n, τ
2: Output: θ∗

3: t← 0, count← 0
4: while count < 3 do
5: t← t+ 1, n← 2n
6: εn ← ε1, . . . , εn, where εi ∼ qbase

7: θ ← Opt(θ, n, εn, τ)
8: η ← number of iter used by the optimizer
9: if η = τ then

10: τ ← 2τ
11: if η < VERY_SMALL_ITER then
12: count← count + 1
13: else
14: count← 0
15: if count = 0 and converged(θ, εn, t) then
16: break
17: return θ∗ ← θ

Algorithm 2 converged?
1: Input: θ, εn, t
2: Params: max_t, δ
3: Output: converged, a boolean
4: converged← False
5: ε̂10k ← ε̂1, . . . , ε̂10k, where ε̂i ∼ qbase

6: obj← mean(vθ(εn))
7: elbo← mean(vθ(ε̂10k))
. Perform statistical test using t-tests:

8: pvalue ← t_test(vθ(εn), vθ(ε̂10k))
9: if pvalue > 0.01 then

10: converged← True
11: if |obj− elbo| < δ or t ≥ max_t then
12: converged← True
13: return converged

Input Default value

θ random from N (0, 1)
n 32
τ 300

Table 1: Default values for the input parameters
of SAA for VI.

Stopping Algorithm 2 defines the stopping criteria for our optimization process, which involves computing
log-weights. Specifically, given the training noise εnt and the parameters θt, we compute the log-weights
vθt(ε1), . . . , vθt(εnt), which we denote as vθt(εnt). We also compute a new set of log-weights using a fresh
sample of testing noise with size 10k, denoted by vθt(ε̂10k).

To decide when to stop optimizing, we use a two-sided t-test to compare the distribution of log-weights
computed using the training noise vθt(εnt) with the distribution of log-weights computed using the testing
noise vθt(ε̂10k). The null hypothesis is that the means of the two distributions are the same. Although the
assumptions for the test (e.g., that the training log-weights are i.i.d.) may not necessarily hold, we utilize the
test as a heuristic to determine when to stop. This approach provides a threshold for the difference between
the training objective and the ELBO estimation that remains robust to the noise present in the log-weights.
The test is inspired by the one used in Mak et al. [1999].

Our optimization process terminates when the null hypothesis cannot be rejected with a significance level
of 0.01%. Note that the convergence check is only performed if count = 0. This ensures that we test for
convergence only when the optimizer has made some updates. Otherwise, the convergence check would be
meaningless, since the distribution of the training log-weights vθt(εnt) and the testing log-weights vθt(ε̂10k)
would be very similar. We also introduce two additional stopping conditions: the maximum number of
iterations max_t and the threshold δ for the difference between the training objective L̂ε(θt) and the ELBO
L(θt). In our experiments, we set max_t to ensure that the maximum sample size was nmax = 218, and δ to
0.01. In Appendix F, we provide a more detailed discussion of the hyperparameters used in our experiments.
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4 Related work

In the existing literature, there are efforts to incorporate second-order information into stochastic optimiza-
tion, which have been applied to VI. Byrd et al. [2016] introduced a method that employs the L-BFGS
update formula through subsampled Hessian-vector products, referred to as batched-L-BFGS or batched
quasi-Newton. Liu and Owen [2021] applied the method from Byrd et al. [2016] to address the variational
inference problem, with the optional inclusion of quasi-Monte Carlo (QMC) sampling to further decrease
the variance of the gradient estimator. Both approaches involve a two-step algorithm: (1) updating the
parameters at each iteration using L-BFGS’s two-loop recursion, and (2) updating the displacement vector s
and gradient difference vector y of L-BFGS every B steps by employing the average of the parameters from
the preceding B iterations. In the work of Liu and Owen [2021], each iteration involves drawing a fixed-size
sample of noise ε from qbase to estimate the ELBO gradient and conduct the line search. The sample size is
not extensively discussed in their work; however, the experiments were conducted with sample sizes of 128 or
256. These values are larger than those typically used in the literature, suggesting that the sample size could
indeed be a relevant factor to consider. Our method deviates from the approach proposed by Liu and Owen
[2021] in two key ways. Firstly, we execute a complete deterministic optimization using a fixed set of noise,
effectively reducing uncertainty. Secondly, we seamlessly integrate the sample size consideration into the
algorithm itself, consequently minimizing the need for user input. As we demonstrate in Section 5.1.2, these
differences lead to significant improvements when handling complex target and approximating distributions.

An alternative approach to incorporating second-order information into the variational inference problem
can be found in the work of Zhang et al. [2022]. Their method employs L-BFGS to identify modes or
poles of the posterior distribution. Subsequently, the data generated by L-BFGS is utilized to estimate the
posterior covariance around the mode, which is then used to parameterize an approximating distribution.
This approach more closely resembles the Laplace approximation than methods that seek approximations to
a global optimizer of the ELBO from a fixed parametric family.

We share a common goal with Welandawe et al. [2022], who also drew inspiration from Agrawal et al.
[2020] to develop a system for variational inference that requires minimal user input. However, their method
employs SGD for optimizing the ELBO and uses a heuristic schedule to update the step size γt during the
optimization process. They initially use a fixed step size and incorporate tools to detect when the SGD
process reaches stationarity, at which point they decrease the step size by a factor ρ. During the stationary
regime, they calculate the average of the parameters and take it as the optimal parameters for a given step
size θ∗γt . They repeat the process of decreasing the step size until the symmetrized KL divergence between the
current distribution and the optimal distribution q∗ (for the approximating family) falls below a threshold ξ.
Notably, since the optimal distribution q∗ is not known, the authors estimated the KL divergence between
q∗ and the current distribution qθ∗

γt
. The authors observed that taking the average of the parameters in the

stationary regime significantly improves the approximation quality compared to considering each parameter
at every iteration. Although not directly related, our work shares with AutoML [He et al., 2021; Zöller and
Huber, 2021] the desire of reducing user intervention. However, instead of a very broad scope, our work
focus on the variational inference task, where the model and approximating families are given.

In the machine learning literature, the application of sample average approximation has been relatively
rare. Some early works include Pegasus by Ng and Jordan [2000], in which the authors addressed partially
observable Markov decision processes by replacing the value of a policy (an expectation) with the sample
average of the value function applied to a finite number of states for optimization purposes. In a different
context, Sheldon et al. [2010] explicitly utilized the sample average approximation technique in a network
design setting, where a naïve greedy approach was not applicable. More recently, Balandat et al. [2020]
adopted sample average approximation to optimize the acquisition function in Bayesian optimization. SAA
was previously used for VI in a specialized capacity in several papers [Giordano et al., 2018; Domke and
Sheldon, 2018; Giordano et al., 2019; Domke and Sheldon, 2019; Giordano et al., 2022]; our work and the
concurrent work of Giordano et al. [2023] are the first to explore its general applicability.

As mentioned in the introduction, Giordano et al. [2023] concurrently and independently developed a method
based on the sample average approximation for black-box variational inference. The two papers employ the
same basic algorithmic idea but have several differences in scope. Unlike Giordano et al. [2023], we focus
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substantially on the case where SAA with a fixed sample size has significant error and therefore one needs to
solve a sequence of problems with increasing sample sizes. We introduce heuristics that guide the selection of
sample sizes and the decision of when to halt the process. On the other hand, Giordano et al. [2023] exploit
the determinism of the SAA problem to develop techniques based on sensitivity analysis and the theory
of “linear response covariances” [Giordano et al., 2015; 2018] to improve posterior covariance estimates of
black-box VI and to estimate the Monte Carlo error of the SAA procedure, which are outside the scope
of our work. They also present a theoretical result about a failure mode for SAA with too few samples
relative to the dimension of the latent variables: specifically, for a Gaussian approximation with a dense
covariance matrix, the sample size n needs to be at least equal to the dimension d of the latent space for
the SAA problem to be bounded. Interestingly, while they conclude that this precludes using SAA for VI
with a full Gaussian approximation, we show in the experiments section that, for interesting models, it is
indeed feasible. Two explanations are that: (1) we consider sequences of SAA problems with sample sizes
that can grow substantially larger (up to 218) than they consider (usually 30), (2) our largest model has 501
latent variables, while they examine three models with larger sizes (up to 15K). Thus, their theoretical result
provides useful guidance on the limitations of SAA for VI, while our empirical work shows that SAA for
VI can be practical up to quite large sample sizes. Finally, we have provided an addendum in Appendix E
that uses their theoretical result to improve our method: when using a dense approximation, the sequence of
SAA problems should begin with a sample size larger then d; this makes SAA for VI even faster by avoiding
wasted effort for small sample sizes.

5 Experiments

In this section, we present experimental evidence for our proposed method. We adopt the experimental setup
of Burroni et al. [2023] and consider two types of models: 11 models from the Stan examples repository [Stan
Development Team, 2021; Carpenter et al., 2017] and Bayesian logistic regression with 6 UCI datasets [Dua
and Graff, 2017]. For each model p(Z, x), where Z is a d-dimensional random vector, the approximating
distribution qθ can either be a diagonal Gaussian or a d-dimensional multivariate Gaussian distribution. The
former is a product of d independent Gaussians, where the parameters µi and σ2

i > 0 are specific to each Zi.
The latter has parameters µi and LLT, where L ∈ Rd×d is a lower-triangular matrix with diagonal elements
that are positive, enforced by applying the softplus transformation. We use the constraints framework
from PyTorch [Paszke et al., 2019] to transform the model p into one with unconstrained real-valued latent
variables, as done by Kucukelbir et al. [2017]. We run all our experiments on GPUs.

We run two sets of experiments. First, we conduct performance comparisons where we assess our proposed
method against two other methods: Adam with a fixed step-size, which is commonly used for black-box
VI optimization, and batched quasi-Newton, a newer method that introduces second-order information in
the optimization process. For all methods compared, we employed the naïve gradient estimator described in
Section 2. When using Gaussian approximating distributions, this estimator corresponds to the one obtained
when the entropy term is computed in closed-form. Second, we conduct an ablation study to explore how
our decisions affect the algorithm’s performance. We present the results of these experiments in the following
subsections.

5.1 Performance comparison

5.1.1 Adam

In order to solve the black-box VI problem, it is standard practice to use Adam [Kingma and Ba, 2015] as
the default optimizer. This is evident from examples in Pyro2 and the TensorFlow-Probability VI tutorial.3
Despite the fact that the influence of the step-size in the optimization process is less relevant with Adam than
with SGD, it is still a factor to consider. In our study, we compared Adam to our proposed method, SAA for
VI. For Adam, we optimized each model and approximating distribution combination with three different
step-sizes: 0.1, 0.01, and 0.001, and 20 repetitions of each combination. At each iteration with Adam, we

2See, for instance, the examples in Pyro-SVI.
3Adam is also used in the TensorFlow-Probability VI Tutorial.
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estimated the gradient of the ELBO by taking 16 samples from qθ. For each model and approximating
distribution, we selected the step-size that provided the highest median ELBO across the 20 repetitions.
Please see Appendix A for more details on the Adam experiments. For SAA for VI, we used the algorithm
described in Section 3.2, using the default parameter values of Table 1.

Diagonal Covariance Dense Covariance

Adam SAA for VI Difference Adam SAA for VI Difference
(i) (ii) (i)− (ii) (iv) (v) (iv)− (v)

Bayesian log. regr.
a1a -654.79 -655.51 0.72 -637.23 -636.40 -0.82
australian -268.36 -269.35 0.99 -256.82 -256.73 -0.09
ionosphere -138.30 -139.62 1.31 -124.44 -124.35 -0.08
madelon -2,466.28 -2,466.15 -0.13 -2,600.32 -2,399.65 -200.67
mushrooms -210.00 -211.43 1.42 -180.60 -179.89 -0.72
sonar -149.58 -151.69 2.11 -110.33 -110.04 -0.29

Stan models
congress 421.91 421.79 0.12 423.58 423.55 0.04
election88 -1,419.02 -1,420.01 0.99 -1,645.18 -1,398.03 -247.15
election88Exp -1,376.03 -1,380.18 4.15 — -1,381.79 —
electric -788.84 -788.89 0.05 -859.26 -786.91 -72.35
electric-one-pred -818.33 -818.36 0.03 -818.00 -818.01 0.01
hepatitis -560.43 -560.44 0.01 -618.76 -557.36 -61.40
hiv-chr -608.42 -608.77 0.35 — -582.78 —
irt -15,888.03 -15,887.92 -0.11 -15,936.06 -15,884.67 -51.40
mesquite -30.08 -30.15 0.08 -29.78 -29.83 0.05
radon -1,210.65 -1,210.70 0.05 -1,216.92 -1,209.46 -7.46
wells -2,042.37 -2,042.45 0.08 -2,041.90 -2,041.95 0.05

Table 2: Comparison of Adam and SAA for VI: Median of the highest ELBO achieved across multiple
optimization runs with different seeds for each model and approximating distribution. Adam was optimized
using step-sizes of 0.1, 0.01, and 0.001, and the configuration with the highest median ELBO is reported. We
additionally included the difference between the median ELBO achieved by Adam and SAA for VI: negative
values indicate that SAA for VI achieved a higher ELBO than Adam. For further details, see Section 5.1.
The full results are provided in Tables 6 and 7 in the appendix.

We conducted two comparisons for our study. First, we compared the median ELBO, obtained across
20 repetitions, at the end of the optimization process using Adam and SAA for VI. Initially, we ran the
Adam experiments for 40, 000 iterations, but we found that for some models, there was a persistent large
gap between the maximum median ELBO achieved with Adam and that of SAA for VI. We increased the
maximum number of iterations to reduce the gap for models such as election88, electric, irt, madelon,
and radon. (See Table 8 in the appendix). Table 2 presents the comparisons of median ELBOs. Although the
Adam optimizer achieves a slightly higher median ELBO for some models—due to the stopping criterion of
SAA for VI—SAA for VI achieves a noticeably higher median ELBO for complex models. We also observed
that Adam diverged for models such as election88Exp. Additionally, Adam diverged for the hepatitis
model when optimized for more than 40, 000 iterations, which partially explained the large gap between the
median ELBOs of Adam and SAA for VI. We note that it’s possible that Adam could achieve higher ELBO
values by searching over a finer step-size grid; however, it is exactly this type of difficult and time-intensive
tuning we seek to avoid with SAA.
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Second, we compared the time taken to achieve a given ELBO. For each combination of model and approx-
imating distribution, we computed the minimum between the median ELBO achieved by Adam and the
median ELBO achieved by SAA for VI. This allows us to determine a value of the ELBO that was achieved
for at least 50% of the runs, regardless of the optimization. To compare the performance of the algorithms
fairly, we measured the time taken to reach an ELBO value within 1 nat of the determined minimum me-
dian ELBO across all runs. We computed this adjusted time for each run, ensuring the comparison is not
influenced by our choices of maximum number of iterations for Adam.

Table 3 presents the time (in seconds) required to achieve the adjusted ELBO when using Adam and our
proposed method, and the ratio between them. For example, running optimization for the electric model
takes a minute when using Adam, as opposed to less than 2 seconds when using SAA for VI. In other words,
Adam takes more than 30 times longer to achieve the adjusted ELBO as SAA for VI. It is worth noting that
SAA for VI was at a disadvantage in the comparison, because the actual compute time required by Adam
was three times larger than the reported one due to the selection of the step-size. As the evaluation of the
model for different sample draws is vectorized on the GPU, the wall clock time in seconds serves as the most
meaningful metric for comparing the compute time of both methods. Given the consistency of the results,
we can confidently conclude that SAA for VI is a faster alternative to Adam in this case.

To explore the influence of sample size on Adam’s performance, we provide a concise discussion in Ap-
pendix G, analyzing the results with sample sizes of 1 and 256. In the same appendix, we also incorporate
Adagrad [Duchi et al., 2011] with a sample size of 16 as an alternative optimization method to Adam.
Throughout our various experiments, SAA for VI consistently proved to be a robust alternative.

5.1.2 Batched quasi-Newton

As noted earlier in Section 4, our method exhibits certain differences compared to the batched quasi-Newton
technique developed by Liu and Owen [2021], which also integrates second-order information into VI. In this
section, we aim to empirically highlight the significance of these differences, specifically the use of a sequence
of sample average approximations with an increasing number of samples.

To carry out this comparison, we implemented the batched quasi-Newton method in PyTorch without em-
ploying quasi-Monte Carlo sampling and compared it to our method. We ran the experiments for 40,000
iterations, with 20 independent runs for each. Initially, we used a sample size of 16 and increased it by a
factor of 2 for models where the method encountered difficulties, up to a maximum of 128 samples. We
consistently used B = 20 as recommended in the original paper.

When employing a simpler approximating distribution, such as a Gaussian distribution with a diagonal
covariance matrix, the batched quasi-Newton method demonstrates performance on par with SAA for VI
(refer to Table 9 in the appendix). However, the method encounters difficulties when using a more complex
Gaussian distribution with a dense covariance matrix as the approximating distribution.

Table 4 displays the median final ELBO across runs for various models. The batched quasi-Newton method
reaches optimal performance for most Bayesian logistic regression models but faces difficulties with models
from the Stan example library. Even when increasing the sample size to 128, a significantly larger sample size
than commonly employed with SGD, the method still falls short of reaching the optimal value. Additionally,
we show in the appendix that the wall-clock time taken by the batched quasi-Newton method is often similar
to or slower than the time taken by SAA for VI.

5.2 Ablation study

Impact of warm start. The optimization process requires a decision on whether to use warm start or
draw fresh parameters for each iteration. Suppose that the inner optimization process Opt has already
converged to parameters θ∗t . Despite the convergence, it may still be necessary to run the inner optimization
process more times, as described in Section 3.2, to reduce overfitting. The question then arises whether it is
computationally advantageous to use θ∗t as the initial parameters or to draw a new set of parameters from
a suitable distribution.

10
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Diagonal Covariance Dense Covariance

Adam SAA for VI Ratio Adam SAA for VI Ratio
(i) (ii) (i)/(ii) (iv) (v) (iv)/(v)

Bayesian log. regr.
a1a 18.09 0.38 48.24 19.95 19.69 1.01
australian 15.21 0.21 70.76 14.73 4.81 3.06
ionosphere 11.44 0.17 67.64 13.47 4.33 3.11
madelon 21.02 0.82 25.62 223.55 58.52 3.82
mushrooms 27.23 0.37 73.25 29.11 17.30 1.68
sonar 11.76 0.30 39.47 11.74 12.17 0.96

Stan models
congress 36.56 0.95 38.56 50.34 0.82 61.46
election88 283.19 12.11 23.39 1,465.89 199.76 7.34
election88Exp 261.83 12.35 21.19 — 83.68 —
electric 65.14 1.92 33.96 235.40 42.14 5.59
electric-one-pred 55.22 0.51 107.75 70.62 0.62 114.40
hepatitis 103.89 2.74 37.88 264.52 96.09 2.75
hiv-chr 56.80 2.27 24.98 — 29.74 —
irt 33.53 1.70 19.67 210.05 94.80 2.22
mesquite 28.87 0.73 39.47 48.54 0.27 179.91
radon 74.83 1.57 47.72 252.85 18.66 13.55
wells 16.87 0.69 24.34 18.33 0.08 221.36

Table 3: Comparison of running time, in seconds, for Adam and SAA for VI across different datasets
and distribution approximations, and Adam to SAA time ratio. Values of ratio greater than 1 indicate that
Adam is slower than SAA for VI. SAA for VI generally outperforms Adam, with the exception of the sonar
dataset. When using the diagonal covariance approximation, the speed improvement for SAA for VI is
notably higher, reaching at least an order of magnitude in most cases. See Section 5.1 for more information.

Pasupathy [2010] provides an intuition of why using a warm start is helpful: in principle, the optimization
process for larger sample sizes begin from a place that probably is close to a solution. However, we wanted
to empirically verify this intuition. To determine the most efficient approach, we conducted an experiment
to compare the performance of warm start and drawing fresh parameters across different models and ap-
proximating distributions. For each combination of models and distribution, we ran the sequence of SAA
problems until convergence, using either warm start or by sampling new parameters at the beginning of each
inner optimization. Specifically, for the sequence of sample sizes (nt)t∈N described above, we ran the inner
optimization process Opt until it converged. At each iteration t, we initialized the process either with the
previously computed optimal parameters θ∗t−1 (warm start) or by drawing a new random set of parameters
(fresh start). We continue this process until the algorithm converges. We again used 20 repetitions for each
configuration and report the median results. Our results, presented in Table 5, show that although the
difference in nats between the median run is small, using warm start results in a significant reduction in the
total time taken to converge. For example, on the election88 dataset, using fresh samples takes 20× more
time than using a warm start due to the inner optimization process Opt taking more iterations to find a
good solution at each step.
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Dense Covariance

Batched quasi-Newton—Sample Size SAA for VI
16 32 64 128

Bayesian log. regr.
a1a -636.49 -636.40
australian -256.80 -256.73
ionosphere -124.44 -124.35
madelon 7 -2,418.04 -2,412.23 -2,407.44 -2,406.27 -2,399.65
mushrooms -179.96 -179.89
sonar -110.09 -110.04

Stan models
congress 423.59 423.55
election88 7 −1.15× 1012 −8.26× 1011 −7.23× 1011 −5.87× 1011 -1,398.03
election88Exp 7 −3.47× 1019 −1.15× 1018 −3.72× 1016 −1.86× 1016 -1,381.79
electric 7 −5.44× 1010 −6.20× 109 −5.05× 109 −6.08× 109 -786.91
electric-one-pred -1,145.79 -818.00 -818.01
hepatitis 7 −1.99× 1010 −1.03× 1010 −9.56× 109 −1.64× 1010 -557.36
hiv-chr 7 −6.44× 1015 −1.47× 1016 −3.59× 1015 −1.87× 1015 -582.78
irt 7 -20,481.68 -18,573.30 -17,263.15 -16,099.44 -15,884.67
mesquite -29.78 -29.83
radon −1.58× 106 −5.50× 105 -4,473.35 -1,209.47 -1,209.46
wells -2,041.90 -2,041.95

Table 4: ELBO achieved by the batched quasi-Newton method for VI using a Gaussian distribution with
a dense covariance matrix, as proposed by Liu and Owen [2021]. The results for SAA for VI are included
as a benchmark (refer to column (v) of Table 2). It is observed that the batched quasi-Newton method
frequently converges to suboptimal solutions, indicated by 7, especially in models from the Stan examples
repository. In certain cases, such as the election88 dataset, the SAA for VI method demonstrates a
significant performance advantage over the batched quasi-Newton method. The initial sample size for the
batched quasi-Newton method was set to 16 and increased when necessary to enhance the method’s ELBO.

6 Conclusion

In this paper, we introduced the SAA for VI algorithm, which provides an effective and accurate solution to
variational inference problems, significantly reducing the reliance on manual hyperparameter tuning. This
promising method enhances both efficiency and precision in addressing these challenges.
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(Fresh start)− (Warm start) (Fresh start)/(Warm start)
ELBO difference Time ratio

Diagonal Dense Diagonal Dense

Bayesian log. regr.
a1a 0.00 0.00 1.11 1.78
australian 0.00 0.00 1.01 1.58
ionosphere 0.00 0.00 0.94 1.26
madelon 0.00 0.00 1.63 1.73
mushrooms 0.00 0.00 1.31 2.04
sonar 0.00 0.00 1.12 1.44

Stan models
congress 0.01 0.02 1.14 3.07
election88 -1.77 1.66 3.11 20.63
election88Exp -3.46 3.43 2.16 2.59
electric 0.00 0.00 2.64 4.69
electric-one-pred 0.01 0.00 1.05 0.75
hepatitis 0.01 -0.04 2.77 2.03
hiv-chr 0.07 -0.05 2.10 2.70
irt 0.00 0.00 3.63 6.56
mesquite 0.00 0.00 0.98 1.31
radon 0.00 0.00 2.29 5.35
wells 0.00 0.00 0.96 0.99

Table 5: Median ELBO variation in nats resulting from switching between two approaches: fresh start,
where parameters are refreshed at each iteration to warm start, where previously learned parameters are
used as the starting point. (Negative values indicate that the warm start approach is better.) We also
provide the ratio of median time taken by the fresh start approach compared to the warm start approach.
(Values larger than 1 indicate that the warm start approach is faster.) Our results indicate that warm start
approaches can significantly reduce the optimization time required.
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A Detailed comparison with Adam

We now provide additional details about the experimental setup presented in Section 5.1. We used the Adam
optimizer with the default parameters from the torch.optim package in PyTorch [Paszke et al., 2019], ex-
cept for the step-size, which we varied across 0.1, 0.01, and 0.001. To approximate the distributions, we
used a Gaussian with a diagonal covariance matrix and a more expressive Gaussian with a dense covariance
matrix. Tables 6 and 7 present the experiment results disaggregated by step-size. In all cases we ran 20
repetitions of the experiments, and we estimated the objective function using 16 samples from the varia-
tional approximation qθt . Every 100 iterations we estimate the ELBO using 10, 000 fresh samples from qθt .
Initially, we ran the experiments for 40, 000 iterations, but we found that the dense approximation produced
unsatisfactory results for some models. We, therefore, increased the number of iterations for those models,
but observed only slight changes in the maximum achieved ELBO, as shown in Table 8 and Table 7. It is
also worth noting that the hepatitis model diverged when we ran it for more than 40, 000 iterations using
the dense approximation.

Adam—Step Size SAA for VI
0.1 0.01 0.001

Bayesian log. regr.
a1a -656.19 -654.98 -654.79 -655.51
australian -268.85 -268.42 -268.36 -269.35
ionosphere -138.87 -138.38 -138.30 -139.62
madelon -2,494.73 -2,470.07 -2,466.28 -2,466.15
mushrooms -210.97 -210.22 -210.00 -211.43
sonar -151.09 -149.80 -149.58 -151.69

Stan models
congress 421.86 421.90 421.91 421.79
election88 -1,436.20 -1,420.16 -1,419.02 -1,420.01
election88Exp -1,376.35 -1,376.03 -1,381.95 -1,380.18
electric -790.66 -789.06 -788.84 -788.89
electric-one-pred -818.34 -818.33 -1,063.98 -818.36
hepatitis -564.05 -560.83 -560.43 -560.44
hiv-chr -611.75 -608.82 -608.42 -608.77
irt -15,896.00 -15,889.39 -15,888.03 -15,887.92
mesquite -30.09 -30.08 -30.08 -30.15
radon -1,211.57 -1,210.79 -1,210.65 -1,210.70
wells -2,042.38 -2,042.37 -2,042.37 -2,042.45

Table 6: Maximum ELBO achieved by Adam and SAA for VI with Gaussian distribution and diagonal
covariance matrix as approximating distribution: median across seeds. The table shows the median of the
maximum ELBO achieved by Adam and SAA for each model when using a Gaussian distribution with
diagonal covariance matrix as approximating distribution. For each step-size used with Adam, we ran the
algorithm 20 times and reported the median of the maximum ELBO achieved.
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Adam—Step Sizes SAA for VI
0.1 0.01 0.001

Bayesian log. regr.
a1a -1,355.11 -646.20 -637.23 -636.40
australian -269.97 -257.53 -256.82 -256.73
ionosphere -148.71 -125.21 -124.44 -124.35
madelon -66,648.98 -7,599.58 -2,600.32 -2,399.65
mushrooms -242.99 -182.65 -180.60 -179.89
sonar -386.12 -114.58 -110.33 -110.04

Stan models
congress 423.36 423.53 423.58 423.55
election88 — -1,645.18 — -1,398.03
election88Exp — — — -1,381.79
electric — -859.26 — -786.91
electric-one-pred -818.01 -818.00 -1,083.04 -818.01
hepatitis — -618.76 — -557.36
hiv-chr — — — -582.78
irt -126,355.62 -18,773.00 -15,936.06 -15,884.67
mesquite -29.80 -29.79 -29.78 -29.83
radon — -1,216.92 -43,570.33 -1,209.46
wells -2,041.91 -2,041.90 -2,041.90 -2,041.95

Table 7: Maximum ELBO achieved by Adam and SAA for VI with Gaussian distribution and dense
covariance matrix as approximating distribution: median across seeds. The table shows the median of the
maximum ELBO achieved by Adam and SAA for each model when using a gaussian distribution with dense
covariance matrix as approximating distribution. For each step-size used with Adam, we ran the algorithm
20 times and reported the median of the maximum ELBO achieved.
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Adam
Diagonal Covariance Dense Covariance

Bayesian log. regr.
a1a 40,000 40,000
australian 40,000 40,000
ionosphere 40,000 40,000
madelon 40,000 400,000
mushrooms 40,000 40,000
sonar 40,000 40,000

Stan models
congress 40,000 40,000
election88 40,000 400,000
election88Exp 40,000 40,000
electric 40,000 400,000
electric-one-pred 40,000 40,000
hepatitis 40,000 40,000
hiv-chr 40,000 40,000
irt 40,000 200,000
mesquite 40,000 40,000
radon 40,000 400,000
wells 40,000 40,000

Table 8: Maximum number of iterations for Adam optimization using Gaussian distribution with diagonal
or dense covariance matrix. Some models (election88, electric, irt, madelon, and radon) were run for
up to 10 times more iterations to achieve a comparable ELBO to SAA for VI.

20



Under review as submission to TMLR

B Detailed comparison with batched quasi-Newton

In this section, we provide further details about the experiments conducted using the batched quasi-Newton
method of Liu and Owen [2021]. Table 9 compares the performance of batched quasi-Newton with our
method when the approximating distribution is a Gaussian distribution with a diagonal covariance matrix.
This table complements Table 4. As mentioned earlier, the results in this setting are quite similar to ours.

Additionally, we report the wall-clock time for each experiment in Table 10. We executed each experiment
for 40,000 iterations and performed 20 independent runs for each one. Our method incorporates a stopping
criterion based on convergence. To ensure a fair comparison with batched quasi-Newton, we need to detect
when the algorithm converges. To approximate this, we first calculate the highest ELBO for each of the 20
independent runs using both batched quasi-Newton and SAA for VI. Then, we compute the median ELBO
value across the repetitions for each method. Finally, we determine the minimum median ELBO value
between the two methods and calculate the total time taken until the algorithm reaches within 1 nat of this
minimum median ELBO value. These results are presented in Table 10.

Similar to the experiments with Adam, this calculation does not account for the time spent on sample sizes
that were not useful.

Diagonal Gaussian

Batched quasi-Newton 16 SAA for VI

Bayesian log. regr.
a1a -654.94 -655.51
australian -268.47 -269.35
ionosphere -138.49 -139.62
madelon -2,466.58 -2,466.15
mushrooms -210.26 -211.43
sonar -150.14 -151.69

Stan models
congress 421.91 421.79
election88 -1,426.01 -1,420.01
election88Exp -1,382.64 -1,380.18
electric -788.89 -788.89
electric-one-pred -818.33 -818.36
hepatitis -560.58 -560.44
hiv-chr -608.58 -608.77
irt -15,888.14 -15,887.92
mesquite -30.08 -30.15
radon -1,210.73 -1,210.70
wells -2,042.37 -2,042.45

Table 9: Comparison of the ELBOs obtained by batched quasi-Newton and SAA for VI when using a
diagonal Gaussian distribution as the approximating distribution. The batched quasi-Newton method of Liu
and Owen [2021] is executed using a sample size of 16. Median results are reported from 20 independent
runs for each model. The corresponding results for SAA for VI can also be found in column (ii) of Table 2.
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Diagonal Covariance Dense Covariance

Batched
quasi-Newton

SAA for VI Ratio Batched
quasi-Newton

SAA for VI Ratio

(i) (ii) (i)/(ii) (iv) (v) (iv)/(v)

Bayesian log. regr.
a1a 2.10 0.38 5.60 8.40 20.31 0.41
australian 1.08 0.21 5.03 2.55 4.81 0.53
ionosphere 1.10 0.17 6.50 2.35 4.33 0.54
madelon 7.82 0.81 9.71 384.02 62.98 6.10
mushrooms 7 2.26 0.37 6.07 7.31 18.84 0.39
sonar 1.28 0.30 4.28 3.72 12.48 0.30

Stan models
congress 2.93 0.95 3.08 4.99 0.82 6.10
election88 7 1,660.06 8.96 185.34 — — —
election88Exp 7 799.40 9.75 82.02 — — —
electric 7 18.35 1.92 9.57 — — —
electric-one-pred 3.45 0.51 6.73 4.53 0.62 7.33
hepatitis 7 22.29 2.74 8.13 — — —
hiv-chr 7 30.57 2.27 13.44 — — —
irt 7 37.66 1.70 22.09 663.15 89.94 7.37
mesquite 1.39 0.73 1.90 0.95 0.27 3.51
radon 9.80 1.57 6.25 648.76 22.06 29.41
wells 1.04 0.69 1.49 0.50 0.08 6.08

Table 10: Comparison of running times, in seconds, to reach within 1 nat of the minimum median
ELBO value between batched quasi-Newton and SAA for VI across different models and approximating
distributions. Results for the approximation using a dense covariance matrix consider runs with a batched
quasi-Newton sample size of 128. For models with 7, indicating batched quasi-Newton failure in the dense
covariance matrix approximation, only madelon and irt are reported, as they closely achieve the maximum
ELBO. The table also presents the ratio of running times between the two methods; values greater than 1
indicate that SAA for VI is faster.

C Additional results for SAA for VI

Table 3 displays the median time taken by SAA for VI to reach the maximum ELBO attained by Adam. In
this section, we present the total time taken by SAA for VI until completion. It is worth noting that, for
certain models such as election88, SAA achieved an ELBO over 200 nats higher than Adam, which explain
the differences between Table 11 and Table 3.

D Datasets description

We utilized the same datasets as Burroni et al. [2023]. The table below, adapted from their paper, provides
a summary of the datasets employed.
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Diagonal Covariance Dense Covariance

total time maximum
sample size

total time maximum
sample size

Bayesian log. regr.
a1a 0.46 28 52.99 218

australian 0.22 26 9.69 217

ionosphere 0.16 26 6.27 216

madelon 1.11 211 100.19 218

mushrooms 0.42 28 90.65 217

sonar 0.29 28 19.24 218

Stan models
congress 0.95 25 1.10 28

election88 12.84 28 264.98 215

election88Exp 11.65 210 351.63 212

electric 2.41 211 70.07 218

electric-one-pred 0.51 28 0.62 27

hepatitis 3.49 212 163.19 218

hiv-chr 2.68 29 64.87 218

irt 13.83 214 473.77 218

mesquite 0.73 25 0.38 26

radon 2.08 211 53.62 218

wells 0.70 25 0.09 25

Table 11: Median running time (in seconds) and corresponding median sample size at which convergence
occurs for SAA for VI across runs. As described in Section 5, the sample size is limited to a maximum of
218, which proved sufficient for all models.
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Table 12: Description of datasets/models.

Num. of
variables

Num. of
records Comments

Bayesian log. regr.

a1a 105 1605
First 1605 instances of the Adult Data Set,
following LIBSVM Chang and Lin [2011],

+ discretized continous and dummified.
australian 35 690 From UCI + dummified.
ionosphere 35 351 From UCI
madelon 500 4400 From UCI
mushrooms 96 8124 From UCI + dummified.
sonar 61 208 From UCI

Stan models
congress 4 343 Gelman and Hill [2006] Ch. 7
election88 95 2015 Gelman and Hill [2006] Ch. 19
election88Exp 96 2015 Gelman and Hill [2006] Ch. 19
electric 100 192 Gelman and Hill [2006] Ch. 23
electric-one-pred 3 192 Gelman and Hill [2006] Ch. 23
hepatitis 218 288 WinBUGS Lunn et al. [2000] examples
hiv-chr 173 369 Gelman and Hill [2006] Ch. 7
irt 501 30105 Gelman and Hill [2006] Ch. 14
mesquite 3 46 Gelman and Hill [2006] Ch. 4
radon 88 919 radon-chr from Gelman and Hill [2006] Ch. 19
wells 2 3020 Gelman and Hill [2006] Ch. 7
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E Addendum

As mentioned in the related work section, a result by Giordano et al. [2023] demonstrates the futility of
using a sample size smaller than the dimension of the latent space for the ELBO optimization problem. In
this section, we provide a proof sketch of this result, adapted to our notation.
Theorem E.1 (Theorem 2 of Giordano et al. [2023]). Let qθ be a Gaussian distribution with parameters
θ = (µ,LLT), where µ ∈ Rd and L ∈ Rd×d is a lower-triangular matrix with positive diagonal elements.
If we draw a sample of size n < d from qbase, denoted by ε = ε1, . . . , εn, then the optimization problem in
Eq. (5) is unbounded:

sup
θ∈Θ
L̂ε(θ) = sup

θ∈Θ

1
n

n∑
i=1

[ln p(zθ(εi), x)− ln qθ(zθ(εi))] =∞.

Proof. Since n < d, there exists a nonzero vector v ∈ Rd such that 〈v, εi〉 = 0 for all 1 ≤ i ≤ n. Without
loss of generality, assume that the largest index ` with v` 6= 0 satisfies v` = 1. Define the lower triangular
matrix

Lλ =

I`−1 0
λvT

0 Id−`.

 .

Then, we have (Lλεi)` = 0 = (L0εi)` for all 1 ≤ i ≤ n. Let θλ = (0, LλLT
λ ). For λ > 0, we obtain

L̂ε(0, LλLT
λ ) = 1

n

n∑
i=1

[ln p(Lλεi, x)− ln qθλ(Lλεi)] = 1
n

n∑
i=1

[ln p(L0εi, x)− ln qθλ(L0εi)] = c+ lnλ,

where c is a constant independent of λ.

The result follows by letting λ→∞.

With this result in mind, we decided to adapt the SAA for VI algorithm by, in the case of a dense covariance
matrix approximation, drawing a sample of size n, set as the smallest power of two exceeding twice the
latent space dimension. Table 13 and 14 present the experimental results alongside the previously computed
results. As observed, starting with a larger sample size allows us to reduce the number of iterations required
to achieve a certain accuracy. Furthermore, this reduction is substantial. This outcome was anticipated
because, when the problem was unbounded, the optimization process for smaller n typically concluded when
the maximum number of iterations was reached, meaning the entire computational budget was utilized.
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Adam SAA for VI
original, min n = 32

SAA for VI
new, min n > d

Time Min n Time Ratio Min n Time Ratio
(i) (ii) (i)/(ii) (iii) (i)/(iii)

Bayesian log. regr.
a1a 19.95 32 19.69 1.01 256 4.69 4.26
australian 14.73 32 4.81 3.06 128 1.14 12.96
ionosphere 13.47 32 4.33 3.11 128 0.80 16.85
madelon 223.55 32 58.52 3.82 1,024 2.57 86.90
mushrooms 29.11 32 17.30 1.68 256 4.43 6.57
sonar 11.74 32 12.17 0.96 128 2.75 4.27

Stan models
congress 50.34 32 0.82 61.46 32 0.78 64.40
election88 1,465.89 32 199.76 7.34 256 45.72 32.06
election88Exp — 32 83.68 — 256 5.59 —
electric 235.40 32 42.14 5.59 256 13.27 17.74
electric-one-pred 70.62 32 0.62 114.40 32 0.60 117.46
hepatitis 264.52 32 96.09 2.75 512 11.49 23.02
hiv-chr — 32 29.74 — 512 4.11 —
irt 210.05 32 94.80 2.22 1,024 15.38 13.65
mesquite 48.54 32 0.27 179.91 32 0.26 185.76
radon 252.85 32 18.66 13.55 256 7.43 34.03
wells 18.33 32 0.08 221.36 32 0.08 232.47

Table 13: Comparison of running time, in seconds, for Adam and SAA for VI across various datasets,
using a Gaussian approximating distribution with a dense covariance matrix and calculating the Adam to
SAA time ratio. The minimum sample size n for SAA in VI is also displayed. We consider two settings:
one where the minimum n is set to 32 for all datasets, which corresponds to the configuration used in this
paper [cf. Table 3], and another where the minimum sample size is chosen as the nearest power of 2 to twice
the number of parameters d in the model. The results indicate that by avoiding the use of small sample
sizes, the running time of SAA in VI can be significantly reduced.
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Batched
quasi-Newton

SAA for VI
original, min n = 32

SAA for VI
new, min n > d

Time Min n Time Ratio Min n Time Ratio
(i) (ii) (i)/(ii) (iii) (i)/(iii)

Bayesian log. regr.
a1a 8.40 32 20.31 0.41 256 5.32 1.58
australian 2.55 32 4.81 0.53 128 1.14 2.24
ionosphere 2.35 32 4.33 0.54 128 0.80 2.93
madelon 384.02 32 62.98 6.10 1,024 7.22 53.22
mushrooms 7 7.31 32 18.84 0.39 256 5.94 1.23
sonar 3.72 32 12.48 0.30 128 2.95 1.26

Stan models
congress 4.99 32 0.82 6.10 32 0.78 6.39
election88 7

election88Exp 7

electric 7

electric-one-pred 4.53 32 0.62 7.33 32 0.60 7.53
hepatitis 7

hiv-chr 7

irt 7 663.15 32 89.94 7.37 1,024 7.24 91.55
mesquite 0.95 32 0.27 3.51 32 0.26 3.63
radon 648.76 32 22.06 29.41 256 10.67 60.78
wells 0.50 32 0.08 6.08 32 0.08 6.38

Table 14: Comparison of running time (in seconds) between batched quasi-Newton and SAA for VI on
various datasets, using a Gaussian approximating distribution with a dense covariance matrix and calculating
the batched quasi-Newton to SAA time ratio. The minimum sample size n for SAA in VI is displayed.
For models where the batched quasi-Newton method did not fully converge (7), we only show results for
mushrooms and irt, as the others diverged. Two settings are considered: one with a minimum n of 32 for
all datasets (used in this paper [cf. Table 10]), and another with the minimum sample size set to the nearest
power of 2 greater than twice the number of parameters d in the model. As in Table 13, the results indicate
that avoiding small sample sizes can significantly reduce the running time of SAA in VI.
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F Hyperparameters

As with any optimization algorithm, our implementation of the SAA for VI algorithm uses certain constants
and hyperparameters. Table 15 details the purpose of each such number, along with the rationale behind
our chosen values. We emphasize that SAA for VI performs well across many models without tuning these
parameters (our experiments used a single setting): many can be considered constants, while others control
tradeoffs between computation and precision in a straightforward way, such as tolerance parameters. While
the current hyperparameter values are not tuned, we are open to the possibility of further enhancing the
algorithm’s performance through careful tuning.

The sequence of sample sizes is controlled by the first two hyperparameters. We tested a variety of expo-
nentially increasing sequences and determined that the performance was largely unaffected by the specific
choice. However, the initial sample size showed a more pronounced effect on performance as it could poten-
tially ‘save work’ by avoiding smaller sample sizes if larger ones are required. This is not always predictable;
our addendum, following Giordano et al. [2023]’s concurrent work, refines SAA for VI by tuning this value
based on the model and approximation family.

The remaining hyperparameters, listed last in the table, mainly dictate when to halt the process. For
example, a user may deem being 1 nat away from the optimum as adequate, thus setting δ to 1 instead of
0.01. The α (significance level for t-test) could also be adjusted depending on the desired balance between
computation cost and approximation precision. Similar parameters are used in most implementations of
other optimization algorithms (maximum iterations, absolute/relative tolerance, etc.) and tend to be less
critical than parameters like step sizes as they affect the trade-off between computational time and numerical
precision rather than the fundamental operation of the algorithm.

Hyperparameter Value Purpose Justification

Initial sample size (n) 32 Sets the starting point for
the sample size sequence

Arbitrary choice. Refined based
on the work of Giordano et al.
[2023] in the addendum.

Sample size and max iterations
sequence (2n, 2τ)

2 Determines progression of
sample sizes and max in-
ner optimizer iterations

Arbitrary. We tested alternative
sequences with negligible perfor-
mance impact

ELBO difference threshold (δ) 0.01 Convergence criterion for
the optimizer

Conservative choice ensuring pre-
cision

Max. number of SAA steps
(max_t) or max. sample size

218 Limits total number of
SAA steps or sample size

Chosen to ensure optimization
usually concludes for other rea-
sons

Inner optimizer early exit count
(count < 3)

3 Specifies how many times
inner optimizer can finish
after few iterations

We found empirically that this
counter was necessary, but we
didn’t explore other alternatives.

VERY_SMALL_ITER for inner opti-
mizer

5 Defines what is considered
a small number of itera-
tions for the inner opti-
mizer

Arbitrary choice. It is related to
the early exit count.

Significance level (α) for t-test 1% Statistical significance cri-
terion

Standard value in significance
testing

Test set sample size 10k Size of the sample set for
ELBO estimation

Arbitrary. It is related to α

Initial maximum number of iter-
ations for inner optimizer (τ)

300 Sets an initial limit for op-
timizer iterations

Arbitrary. However, it self-adjusts
as needed

Table 15: Hyperparameter choices for our SAA for VI experiments
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G Additional experiments with Adam and AdaGrad

This section provides supplementary experimental findings with Adam and AdaGrad. We further explore
the performance of Adam with two additional sample sizes: 1 and 256. For AdaGrad, we maintain the
sample sizes consistent with those discussed in the main body of the text. The step-size search across 0.1,
0.01, and 0.001 remains unchanged in all experiments. As the sample size increases, the maximum ELBO
value in most models tends towards the one obtained using SAA for VI, as demonstrated in Table 16. (We
do not show the results for Adam with n = 1 because those were of poorer quality than the results for
n = 16.) Despite this improvement, some models still exhibit significant disparity. It is important to note
that Adam’s computational cost continues to be higher than SAA for VI, as evidenced by Table 17. Note
that the same instances of SAA for VI were used in all scenarios. Meaning, for each SAA for VI iteration,
we ran Adam nine times. This repetition is not reflected in the presented numbers.

In AdaGrad’s case, as shown in the Tables, there are promising results for Bayesian logistic regression models.
However, the same performance does not extend to the Stan models. Only in the wells model does the
maximum ELBO value closely match that of SAA for VI.

AdaGrad Adam SAA for VI Differences

(n=16) (n=256) AdaGrad - SAA Adam - SAA
(i) (ii) (iii) (i)− (iii) (ii)− (iii)

Bayesian log. regr.
a1a -636.76 -636.57 -636.40 -0.36 -0.17
australian -256.77 -256.75 -256.73 -0.04 -0.01
ionosphere -124.39 -124.36 -124.35 -0.04 -0.00
madelon -2,469.59 -2,433.07 -2,399.65 -69.94 -33.42
mushrooms -181.48 -180.02 -179.89 -1.59 -0.13
sonar -110.19 -110.09 -110.04 -0.14 -0.05

Stan models
congress 413.88 423.59 423.55 -9.66 0.05
election88 — -1,446.37 -1,398.03 — -48.34
election88Exp — — -1,381.79 — —
electric — -792.28 -786.91 — -5.38
electric-one-pred -5,572.18 -818.00 -818.01 -4,754.17 0.01
hepatitis — -566.51 -557.36 — -9.14
hiv-chr — -77,190.31 -582.78 — -76,607.53
irt -15,900.00 -15,894.76 -15,884.67 -15.33 -10.09
mesquite -75.93 -29.78 -29.83 -46.10 0.05
radon — -1,210.36 -1,209.46 — -0.90
wells -2,041.90 -2,041.90 -2,041.95 0.05 0.05

Table 16: Comparison of AdaGrad and Adam to SAA for VI: Median of the highest ELBO.
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AdaGrad Adam SAA for VI Ratios

(n=16) (n=256) AdaGrad/SAA Adam/SAA
(i) (ii) (iii) (i)/(iii) (ii)/(iii)

Bayesian log. regr.
a1a 12.67 16.16 20.31 0.62 0.80
australian 4.74 12.94 4.81 0.99 2.69
ionosphere 2.95 12.41 4.33 0.68 2.87
madelon 85.49 17.03 60.31 1.44 0.28
mushrooms 68.22 31.49 18.84 3.94 1.67
sonar 3.73 9.81 12.48 0.31 0.79

Stan models
congress 18.36 39.40 0.82 22.41 48.11
election88 — 3,485.68 200.34 — 17.40
election88Exp — — 83.68 — —
electric — 275.95 49.16 — 5.61
electric-one-pred 32.53 65.63 0.62 52.70 106.32
hepatitis — 250.90 98.69 — 2.54
hiv-chr — 157.79 29.91 — 5.28
irt 106.84 62.90 109.17 0.98 0.58
mesquite 39.74 39.76 0.27 147.28 147.35
radon — 197.21 21.19 — 9.31
wells 7.18 17.48 0.08 86.66 211.03

Table 17: Comparison of running time, in seconds, for AdaGrad and Adam to SAA for VI.
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