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1. Pick up a book 
from the stack on 
the dresser. 

2. Sit on the mattress 
on the floor. 

3. Turn on the lamp 
to provide light. 

4. Open the book 
and start reading. 

Task: Enjoy Reading before bed.

Task: Refresh yourself with a beverage.

Task: Make a cup of coffee and serve it on a plate.

2. Fetch a plate from a 
bunch of steel plates 
below the picture frame.

3. Walk to the table close to a 
cabinet and place the plate on it.

4. Choose a cup from those 
white, plastic cups on the desk. 

5. Fill it with coffee at 
the coffee maker.

1. Go to the long 
desk against the wall.

6. Go back to the table 
and put down the coffee.

1. Walk to the shorter one of two 
desks with monitors. 

2. Pick up the coke cola from the 
variety displayed on the desk. 

3. Sit on the black office chair under 
that same desk to enjoy your drink. 

Task: Watch tv from the sofa.

1. Go to the black 
table to the left of 
the fire extinguisher. 

2. Grab the black 
remote lying on it. 

4. Walk to the black 
sofa close to the bed. 

5. Sit down and watch 
the tv show.

3. Turn on the tv 
with the remote. 

Figure 1: The task-oriented sequential grounding task in 3D scenes (SG3D), wherein an agent is
required to locate a sequence of target objects for detailed steps in a plan to complete daily activities.
To solve this task, an agent must understand each step in the context of the whole plan to identify the
target object, since a single step alone can be insufficient to distinguish the target from other objects
of the same category. Additional resources can be found at sg-3d.github.io.

ABSTRACT

Grounding natural language in physical 3D environments is essential for the ad-
vancement of embodied artificial intelligence. Current datasets and models for 3D
visual grounding predominantly focus on identifying and localizing objects from
static, object-centric descriptions. These approaches do not adequately address
the dynamic and sequential nature of task-oriented grounding necessary for practi-
cal applications. In this work, we propose a new task: Task-oriented Sequential
Grounding in 3D scenes, wherein an agent must follow detailed step-by-step in-
structions to complete daily activities by locating a sequence of target objects in
indoor scenes. To facilitate this task, we introduce SG3D, a large-scale dataset
containing 22,346 tasks with 112,236 steps across 4,895 real-world 3D scenes. The
dataset is constructed using a combination of RGB-D scans from various 3D scene
datasets and an automated task generation pipeline, followed by human verification
for quality assurance. We adapted three state-of-the-art 3D visual grounding mod-
els to the sequential grounding task and evaluated their performance on SG3D. Our
results reveal that while these models perform well on traditional benchmarks, they
face significant challenges with task-oriented sequential grounding, underscoring
the need for further research in this area.
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1 INTRODUCTION

Grounding natural language in the physical 3D world is crucial for advancing embodied artificial
intelligence (Embodied AI) (Duan et al., 2022; Wang et al., 2023a), where robots must follow
human instructions to complete complex tasks. Recent years have witnessed the collection of various
datasets (Jia et al., 2024; Chen et al., 2020; Achlioptas et al., 2020; Zhang et al., 2023; Wang
et al., 2023a; Kato et al., 2023) aimed at training and testing robust visual grounding models in
3D scenes (Zhu et al., 2023; 2024; Chen et al., 2022b; Guo et al., 2023; Jain et al., 2022). While
these datasets have driven progress in 3D visual grounding, they largely borrow practices from
2D visual grounding, concentrating on identifying and localizing objects based on object-centric
descriptions (Chen et al., 2020; Achlioptas et al., 2020). Such descriptions distinguish the target
object from other objects by detailing its attributes and spatial relationships. However, this object-
centric style may be insufficient for the embodied agent’s application scenarios, where the language
used to interact with agents often involves task assignments rather than mere object identification,
as exemplified in SayCan (Ahn et al., 2022) and SayPlan (Rana et al., 2023). Thus, a significant
yet overlooked gap exists between existing 3D visual grounding approaches and the task-oriented
language demands of embodied agents. This disparity is highlighted in Fig. 2, which compares
object-centric and task-driven visual grounding in 3D scenes.

To close this gap, we propose a new task: Task-oriented Sequential Grounding in 3D scenes. In
this task, an agent is asked to accomplish a daily activity with a detailed plan in an indoor scene, by
sequentially localizing one target object for each step. To solve this task, an agent must understand
each step in the context of the whole plan to identify the target object, since a single step alone can be
insufficient to distinguish the target from other objects of the same category.

To address this challenge, we constructed a large-scale dataset named SG3D. We compiled a set
of RGB-D scans of realistic indoor scenes sourced from various 3D scene datasets, including
ScanNet (Rozenberszki et al., 2022), ARKitScenes (Baruch et al., 2021), 3RScan (Wald et al., 2019),
etc. These scenes encompass a variety of room types, such as bedrooms, kitchens, offices, bathrooms,
and living rooms. We represent these scenes using 3D scene graphs (Armeni et al., 2019; Wald et al.,
2020) derived from SceneVerse (Jia et al., 2024), which describe the objects’ categories, attributes,
and spatial relations within the scenes.

We further designed an automated generation pipeline that utilizes these scene graphs and GPT-
4 (Achiam et al., 2023) to create diverse, high-quality daily tasks. Each task comprises a high-level
description and a detailed plan, with the target object annotated for each step. To ensure the validity of
the generated tasks, we conducted a human verification process to check if the tasks were appropriate
for the scenes, if the plans were sufficient to accomplish the tasks, and if the target objects were
correctly identified for each step. Invalid tasks were either filtered out or manually refined. Ultimately,
the proposed SG3D includes 22,346 tasks with 112,236 steps across 4,895 real-world 3D scenes, as
exemplified in Fig. 1. Tab. 1 compares SG3D with existing 3D visual grounding benchmarks.

In our experiments, we adapted three state-of-the-art 3D visual grounding models to the sequential
grounding task and evaluated them on SG3D. The models included 3D-VisTA (Zhu et al., 2023),
PQ3D (Zhu et al., 2024), and LEO (Huang et al., 2023a). The results indicate that although these
models excel on previous benchmarks, they struggle with the more complex and realistic grounding
presented in the SG3D benchmark. This highlights the need for further research and development to
improve performance in task-oriented sequential grounding scenarios for Embodied AI.

Our contributions are summarized as follows:

• We proposed a new task, Task-oriented Sequential Grounding in 3D scenes, to address the gap
between object-centric and task-driven grounding required for practical Embodied AI applications.

• We constructed a large-scale dataset for this novel task, SG3D, which contains 22,346 tasks with
112,236 steps across 4,895 real-world 3D scenes.

• We adapted three state-of-the-art 3D visual grounding models (3D-VisTA, PQ3D, and LEO) to
the sequential grounding task and evaluated them on SG3D. Experimental results indicate that
these models struggle with task-oriented sequential grounding, highlighting the need for further
advancements in this area.
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1. Walk to the kitchen counter 
where the sink is located.

2. Use the white soap from the 
dispenser above the counter.

3. Wash your hands thoroughly 
in the sink.

the kitchen counter is next to the 
left side of the wall. the kitchen 
counter is a black rectangle.

this is a soap dispenser. the 
soap dispenser is on the top of 
the sink.

there is a rectangular metal sink. 
it is above a kitchen cabinet.

there is a white paper towel 
dispenser. it is mounted on the 
wall to the right of the 
microwave on the counter.

4. Dry hands with a paper towel 
from the dispenser on the wall.

Task: Wash hands before cooking.

Figure 2: The comparison between task-oriented steps in SG3D (first row) and object-centric
referrals in ScanRefer (second row) for the same target objects. Particularly, in step 3, the ScanRefer
annotation describe the sink’s shape, material, and spatial relation to the cabinet to identify it, while
the corresponding step in SG3D avoids such details. The context provided by the task makes it easy
to infer that the sink is near the soap dispenser mentioned in the previous step.

2 RELATED WORK

Table 1: The comparison of SG3D with existing 3D visual grounding benchmarks. SG3D expands
the data scale of prior work by order of magnitude. “VG” stands for Visual Grounding, “SG” for
Sequential Grounding, and and “MT” for Multiple Tasks. * Only new data is counted.

Dataset Task Referral type Text Source Quality Check Scene Obj. Avg. Text Len. Vocab. Total

ScanRefer (Chen et al., 2020) VG Object-centric Human ✓ 1.5K 33K 20.3 4,197 52K
Nr3D (Achlioptas et al., 2020) VG Object-centric Human ✓ 1.5K 33K 11.5 2,986 42K
Sr3D (Achlioptas et al., 2020) VG Object-centric Template ✓ 1.5K 33K 9.7 158 84K
Multi3DRefer* (Zhang et al., 2023) VG Object-centric Template w/ Rephrasing ✓ 1.5K 33K 15.1 7,077 20K
SceneVerse* (Jia et al., 2024) MT Object-centric Human + GPT-3.5 ✓ 68K 1.5M 14.7 24,304 2.2M

SG3D SG Task-oriented GPT-4 ✓ 4.9K 123K 70.5 8,136 22K / 112K

3D Vision-Language 3D vision-language (3D-VL) learning aims to bridge natural language and
the 3D physical world (Zhu et al., 2023; 2024; Kerr et al., 2023), enabling embodied agents to
comprehend their environment and communicate with humans effectively (Zhu et al., 2023; Rana
et al., 2023). This emerging domain has established benchmarks for various tasks, such as visual
grounding (Chen et al., 2020; Achlioptas et al., 2020; Abdelreheem et al., 2024; Zhang et al., 2023;
Kato et al., 2023), question answering (Azuma et al., 2022; Zhao et al., 2022; Ma et al., 2023), and
dense captioning (Chen et al., 2021). Beside many methods tackling single tasks (Guo et al., 2023;
Wu et al., 2023a; Luo et al., 2022; Jain et al., 2022; Zhao et al., 2021; Chen et al., 2022b), unified
models (Zhu et al., 2023; 2024; Chen et al., 2023c) and open-vocabulary approaches (Peng et al.,
2023; Ding et al., 2023; Takmaz et al., 2023) have gained traction in recent literature. However,
existing 3D visual grounding benchmarks primarily address object-centric, single-step grounding
tasks, whereas realistic grounding sentences are typically driven by task-related context (Deng et al.,
2024). In contrast to previous work, SG3D provides more natural and informative language and
introduces diverse contextual information, as shown in Fig. 2.

Grounded Task Planning Embodied AI focuses on the capabilities of agents to reason, plan, navi-
gate, and act in 3D environments (Deitke et al., 2022; Huang et al., 2023a; Ahn et al., 2022). Grounded
task planning is crucial as it enables these agents to execute human instructions effectively (Lin et al.,
2023; Zhao et al., 2024). Benchmarks such as ALFRED (Shridhar et al., 2020), SAYPLAN (Rana
et al., 2023), BEHAVIOR-1K (Li et al., 2023a), and TaPA (Wu et al., 2023b) evaluate these abilities
by measuring the success of the agents’ overall task plans. Others, like LoTA-BENCH (Choi et al.,
2024), EgoPlan-Bench (Chen et al., 2023b), and G-PlanET (Lin et al., 2023), assess performance per
step using rule-based or closed-set evaluations. Both specialized models (Yang et al., 2023; Zhang
et al., 2022; Shridhar et al., 2020) and foundation models (Song et al., 2023; Wei et al., 2022; Li
et al., 2022; Liang et al., 2023; Huang et al., 2022; Gu et al., 2023) have been applied to this task.
Unlike previous benchmarks based on synthetic environments, our benchmark uses real-world 3D
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1) System Message
You are a helpful assistant that can generate diverse tasks in 
an indoor scene...

2) Scene Graph Example
{'sofa-1': {'relations': ['to the right of armchair-2', 'in front of 
table-3'], 'caption': 'Grey velvet sofa with a rectangular shape 
and a back and arms, suitable for use in a living room.'}, 
'armchair-2': {…}, 'table-3': {…}}

3) Response Format
Task: #Task Description#.
Steps:
1. #STEP-1#. [#Target Object of STEP-1#]
2. #STEP-2#. [#Target Object of STEP-2#]
3. #STEP-3#. [#Target Object of STEP-3#]
...

4) In-context Examples
five examples from different scene types

5) query
content of a new scene graph

3D Scene Scene Graph Task Generation

Task: Enjoy a relaxing moment on the couch while watching TV.

Steps:
1. Go to the blue couch in the living room area. [couch-32]

2. Sit comfortably on the couch. [couch-32]
3. Reach for the remote control on the coffee table. [coffee table-43] [remote-11]
4. Turn on the television inside the wooden cabinet with the remote. [tv-15]

5. Adjust settings or choose a channel with the remote. [tv-15]
6. Lay back and enjoy watching your selected program. [tv-15]

Human verification

Figure 3: The pipeline of generating sequential grounding tasks in 3D scenes.

scenes, where noise, clutter, and missing or indistinguishable small objects in reconstructed point
clouds make grounding more challenging than in cleaner, more controlled simulated environments.
Moreover, by grounding each planned task to objects instead of low-level actions, we enable a broader
range of actions and facilitate a more comprehensive analysis of results at each step.

3D Large Language Model Recent advancements in large language models (LLMs) have been
significantly enhanced by integrating 3D spatial data, resulting in the development of 3D LLMs (Ma
et al., 2024). Existing works, such as 3D-LLM (Hong et al., 2023) and Chat3D (Wang et al., 2023b),
use object-centric or point-level representations to incorporate scene information into LLMs during
instruction tuning (Hong et al., 2023; Xu et al., 2023; Li et al., 2024; Fu et al., 2024; Hong et al.,
2024). LL3DA (Chen et al., 2023a) employs a Q-former-like (Li et al., 2023b) structure to further
improve LLMs’ 3D scene perception. Additionally, recent models like LEO (Huang et al., 2023a),
3D-VLA (Zhen et al., 2024), and ManipLLM (Li et al., 2023c) have introduced action capabilities
into 3D LLMs, enabling them to interact with and manipulate objects in 3D environments (Huang
et al., 2023a;b; Liu et al., 2024). Our work enhances the capabilities of 3D LLMs by incorporating
grounding abilities, which output specific objects alongside the text.

3 THE 3D SEQUENTIAL GROUNDING BENCHMARK (SG3D)

3.1 PROBLEM FORMULATION

The problem of sequential grounding involves determining the relevance of objects in a given task.
Specifically, given a 3D scene S and a task T = (t, {a1, ..., an}) where t is a high-level task
description and a1, ...an are detailed steps of the task plan, a model is required to predict a sequence
of objects O = {o1, ..., on}, i.e., the model needs to learn a mapping f : (S, T ) → O. Compared to
prior work, the challenge in our task lies in consistently grounding objects across sequential steps of
a task plan.

3.2 DATASET CONSTRUCTION

As illustrated in Fig. 3, we leverage GPT-4 to generate tasks based on a 3D scene graph, followed by
human verification. The full dataset is provided in the supplementary material.

3D Scenes Existing robotic task-planning approaches are typically evaluated in simulated envi-
ronments (Shridhar et al., 2020; Li et al., 2023a; Rana et al., 2023), lacking observation of their
effectiveness in real-world scenarios. To address this, we select reconstructed scenes as the 3D
environment for our task. Specifically, we utilized real-world scenes from the SceneVerse dataset,
incorporating scenes from ScanNet, ARKitScenes, HM3D, 3RScan, and MultiScan. In total, we
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(c) Target Object Counts

Figure 4: Distributions of (a) step counts, (b) text length, and (c) target object counts per task.

curate 4,895 3D scenes in SG3D. Tab. 2 presents the number of scenes used in each dataset and the
average number of object instances per scene.

Scene Graphs To provide GPT-4 with rich scene information, we process each scene into a semantic
scene graph transformed from SceneVerse assets, which captures the categories, attributes, and spatial
relations of objects within the scene. Each node in the graph represents a 3D object instance, while
each edge represents a spatial relationship between nodes, such as “near”, “below”, or “embedded”.
We further enhance these scene graphs by adding object captions provided in SceneVerse.

Task Generation Using the 3D scene graph, we prompt GPT-4 (gpt-4-turbo-2024-04-09) to generate
diverse tasks. For each scene, we ask GPT-4 to create five distinct tasks. Each task comprises
a general description and several steps, with each step requiring the agent to focus on a specific
target object, such as navigating toward or interacting with it. To ensure variety and coherence, we
meticulously crafted the prompts and provided diverse in-context examples from multiple scene types.
This approach guarantees that the generated tasks are both robust and varied. After generation, we
remove any outputs with formatting errors and rigorously verify that all assigned targets are present
in the corresponding scenes. Moreover, we observed that tasks exceeding ten steps tend to introduce
hallucinated objects or problematic steps, which can negatively impact dataset quality. As a result,
we discard any tasks containing more than ten steps. The detailed prompt used for GPT-4 can be
found under Appendix A.1.

Human Verification We manually verify the evaluation set data to ensure quality. Given the 3D
scene mesh and the task generated by GPT-4, annotators apply the following rules to judge each
step’s correctness:

1. If the step is unfeasible or unrelated to the task description, it is marked as incorrect.
2. If there is a missing step between step k and step k + 1, step k + 1 is judged as incorrect.
3. When the step’s description is insufficient to identify the target object, the step is considered correct

if the target object can still be identified through context; otherwise, it is marked as incorrect.

Tasks with a single incorrect step are manually revised, while tasks containing more than one incorrect
step are discarded. This human verification process ensures that the generated tasks are reasonable
and the action steps are feasible. A screenshot of the interface for verification is provided under
Appendix A.1.

3.3 DATASET ANALYSIS

In total, we collected data containing 22,346 tasks, encompassing 112,236 steps. Tab. 2 presents the
statistics of task and step counts in our dataset. Each task description has an average length of 6.9
words, and each step has an average length of 12.7 words. The dataset was split into training and
evaluation sets. For 3RScan, scenes from its training and evaluation splits were used as our training
set, while scenes from its test split were used as the evaluation set. For other datasets, we adhered to
the original split of the 3D scenes provided.

Fig. 4(a) illustrates the distribution of the number of steps per task, revealing an average of 5.03
steps per task. This underscores the complexity of our benchmark and the sequential nature of our
data. Fig. 4(b) presents a histogram displaying the distribution of total text lengths for each task,
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Table 2: Dataset statistics of SG3D.

Dataset #scenes #obj. / scene #tasks #steps

3RScan (Wald et al., 2019) 472 31.5 2,194 11,318
ScanNet (Dai et al., 2017) 693 30.7 3,174 15,742
MultiScan (Mao et al., 2022) 117 40.8 547 2,683
ARKitScenes (Baruch et al., 2021) 1,575 12.1 7,395 39,887
HM3D (Ramakrishnan et al., 2021) 2,038 31.0 9,036 42,706

Total 4,895 25.1 22,346 112,336

(a) Task Description (b) Action Step (c) Target Object Categories

Figure 5: Word clouds of (a) task description, (b) action step, and (c) target object categories.

including the task description and all steps, with an average of 70.5 words. This extended context
poses a significant challenge for many text encoders, such as CLIP (Radford et al., 2021), indicating
the need for models capable of handling lengthy inputs. Additionally, we examine the number of
distinct target objects involved in each task, as shown in Fig. 4(c). Unlike the step counts, the number
of unique target objects per task considers target objects with the same ID across different steps as
one object, resulting in an average of 2.59 unique objects per task. This finding indicates that multiple
objects are typically involved in this process.

To illustrate the diversity of our dataset, we present three word clouds here. Fig. 5(a) and Fig. 5(b)
depict the frequency of words in task descriptions and action steps, respectively. In the task descrip-
tions, the terms “prepare” and “organize” are the most prevalent activities. In the action steps, “walk”
and “place” are the most common actions, “table” is the most frequent object, and “white” is the most
frequent adjective. This indicates that task descriptions tend to be abstract and demand-oriented, while
action steps offer detailed, execution-oriented instructions. Fig. 5(c) highlights the most frequently
occurring target object categories, including but not limited to “cabinet”, “table”, “chair”, “sink”,
“bed”, “shelf”, demonstrating the association of different object categories with the task guidance.

4 3D SEQUENTIAL GROUNDING MODELS

We explore several representative approaches for this purpose: three 3D-VL models depicted in
Fig. 6—the dual-stream model 3D-VisTA (Zhu et al., 2023), the query-based model PQ3D (Zhu et al.,
2024), the 3D LLM LEO (Huang et al., 2023a). Additionally, we investigate the integration of GPT-4
with an object labeler. Further details are provided in the subsequent discussion.

4.1 ARCHITECTURES

We follow ReferIt3D (Achlioptas et al., 2020) to use ground-truth object masks. To ensure a fair
comparison, we employ the point cloud as the scene representation and the same PointNet++ (Qi
et al., 2017) encoder to extract scene features for all three 3D-VL models.

Dual-stream model. In the dual stream model, we build upon the 3D-VisTA (Zhu et al., 2023)
baseline. In 3D-VisTA, the model employs a spatial transformer to process 3D object representations
and extracts text features using BERT (Devlin et al., 2018). These object and text tokens are
then combined and fed into a unified transformer architecture to predict the target object. In our
experiments, we concatenate the task description t with detailed plans up to step i, {a1, ..., ai}, to
serve as the textual input for predicting the target object oi at the current step.

6
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Dual Stream Model

Language 
transformer

Unified transformer

Spatial
Transformer

Objects Text

Ground Head

Prediction

Query-based Model

Queries

Scene features

Text

Cross Attention

Cross Attention

Self Attention

x N

Ground Head

3D Large Language Model

ObjectsSystem 
prompts

Task
Description

Large Language Model

[BOS]

Step1 [GRD] Step2 [GRD]Ground Head

Prediction Prediction

Figure 6: Dual-stream model 3D-VisTA, query-based model PQ3D, and 3D LLM LEO.

Query-based model. Unlike the dual stream model, the query-based model employs a generalized
decoding framework for vision-language tasks (Zou et al., 2023; Zhu et al., 2020). PQ3D (Zhu
et al., 2024) is a prominent query-based model designed for 3D environments, which unifies multiple
representations and handles various tasks through multi-task training. This model leverages the
CLIP (Radford et al., 2021) text encoder to process textual inputs. For a fair comparison with other
models, we limit our implementation to the point feature branch for scene feature extraction. The
input and output setting remain consistent with those of 3D-VisTA, as discussed above.

3D LLM. The powerful reasoning capabilities of Large Language Models are highly advantageous
for our task. We have adapted the recent 3D LLM LEO (Huang et al., 2023a) to suit our needs.
In addition to predicting actions for each step, our model also predicts a special grounding token,
[GRD]. This token is concatenated with object tokens and passed to the same grounding head
used in 3D-VisTA and PQ3D to predict the target object, enabling integrated reasoning about both
the previous and current step instructions. Unlike dual-stream and query-based models, which are
constrained by their architectures and require separate forward passes for each action step, 3D LLM
LEO concatenates t and {a1, ..., an} to predict target objects for all steps sequentially by using
multiple [GRD] tokens in a single forward pass.

GPT-4 with an object labeler. In addition to the three 3D-VL models, we examine the applicability
of GPT-4 for this task by integrating it with a PointNet++ (Qi et al., 2017) classifier, pre-trained on
ScanNet, to predict semantic labels (categories) for objects. GPT-4 receives scene information in
JSON format, which includes each object’s ID, predicted category, center position, and size, along
with the task description and detailed steps, tasked with generating a list of object IDs. Fig. A5 shows
the specific prompt used here.

4.2 TRAINING & INFERENCE

During training, we optimize the three types of 3D-VL models using the cross-entropy loss, which
compares the predicted object scores f(S, T ) with the ground truth scores O, as defined in Eq. (1). In
the case of the 3D LLM, following the methodology of LEO, we introduce an additional cross-entropy
loss to provide supervision for action generation in text format.

Lgrd = E(S,T ,O)∼DCrossEntropy(f(S, T ),O) (1)
During inference, the 3D-VL models receive the task description and detailed steps, predicting the
target object at each step. Beam search is utilized in LEO for generating action steps and the [GRD]
token, with the beam width set to 5.

5 EXPERIMENTS AND RESULTS

5.1 SETTINGS

Training Details We conduct training for all three 3D-VL model across all available datasets for
50 epochs. For optimization, we employ the AdamW optimizer, setting the learning rate at 1e-4, with
β1 configured to 0.9 and β2 to 0.999. Additionally, we apply a weight decay of 0.05. Specifically, for
the PQ3D and 3D-VisTA models, we utilize a batch size of 32. For the LEO model, we reduce the
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batch size to 16 due to GPU memory limit. Furthermore, we use LoRA tuning (Hu et al., 2021) for
the parameters of the LLM in LEO with a rank setting of 16.

Evaluation Metrics We assess the grounding performance of all models using two key metrics: task
accuracy (t-acc) and step accuracy (s-acc). Task accuracy refers to the average grounding accuracy
over the total number of tasks t. A sample is considered correct if the grounded objects are accurately
identified for all steps within a task. Conversely, step accuracy is calculated by averaging the accuracy
across all individual steps a. Task accuracy evaluates the model’s ability to consistently interpret and
respond accurately across a sequence of text prompts. On the other hand, step accuracy focuses on
the model’s effectiveness at each individual step.

5.2 QUANTITATIVE RESULTS & ANALYSIS

1. Previous 3D Vision-Language models, such as dual-stream model 3D-VisTA and query-based
model PQ3D, struggle to transfer to the sequential grounding task without fine-tuning. As
shown in Tab. 3, in the zero-shot setting, these models achieve low step accuracies ranging from
22.8% to 34.6% and task accuracies ranging from 0.0% to 10.3% across all datasets. This indicates
that the models’ pre-training on non-sequential tasks is insufficient for handling the complexities
inherent in sequential grounding, highlighting the need for task-specific fine-tuning.

2. Fine-tuning greatly enhances performance but low task accuracy scores (< 40%) indicate
that consistent sequential grounding remains a challenge. 3D-VisTA’s t-acc increases from 8.3%
to 30.6%, while PQ3D’s t-acc improves from 7.8% to 26.8%. The 3D LLM model LEO achieves
the best performance after fine-tuning, with a s-acc of 62.8% and a t-acc of 34.1%. Despite these
improvements, all models’ t-acc scores remain below 40%, indicating that current models still struggle
to achieve consistent sequential grounding. This limitation highlights the need for further research
and model design to effectively address the challenges posed by sequential grounding tasks.

3. The 3D LLM model, LEO, consistently outperforms the other models across all datasets, par-
ticularly in terms of task accuracy. LEO achieves the highest task accuracies 34.1%, compared to
3D-VisTA 30.6% and PQ3D 26.8%. This advantage can be attributed to LEO’s 3D LLM architecture,
which effectively captures and reasons about sequential dependencies in grounding tasks. Although
LEO also enhances step accuracy, the improvement is less substantial compared to the significant
gains observed in task accuracy.

4. The combination of GPT-4 and 3D object classifier is insufficient for addressing the sequential
grounding task. Despite GPT-4’s robust reasoning and generalization capabilities, its performance—
recording a t-acc of 7.6% and a s-acc of 27.3%—is significantly inferior to that of fine-tuned 3D
vision-language models. This shortfall can be attributed to classification inaccuracies and the loss of
information when translating the scene into semantic labels and positions. These results indicate that
the effectiveness of large language models in this problem is heavily influenced by the alignment
between 3D vision modality and text modality, making 3D-VL models the more suitable approach.

5.3 ABLATION STUDY

Effect of offering contextual information. To investigate the impact of contextual information,
we eliminate multi-step action context during both the training and inference phases, providing
only the task description and current action step. The experimental results illustrated in Fig. 7
reveal a significant decline in task accuracy upon the removal of contextual information for both
LEO and 3D-VisTA. Specifically, LEO exhibits an average t-acc drop of 3.4%, while 3D-VisTA
demonstrates an even more pronounced decline of 5.0%. This suggests that the models have, to a
certain extent, learned to leverage contextual information during the grounding process. In contrast,
PQ3D experiences a more modest performance reduction, with an average t-acc decrease of only
0.8%. This limited decline can be attributed to PQ3D’s reliance on a CLIP text encoder, which
struggles to interpret lengthy sentences (Zhang et al., 2024), thereby leading to overfitting on shorter,
single-step instructions.

Impact of training data volume and data efficiency comparison. Fig. 8 shows that increasing
the volume of training data utilized during fine-tuning improves the performance of all three models.
Notably, LEO exhibits superior data efficiency, achieving comparable performance to PQ3D and
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Table 3: The grounding accuracy on SG3D. “s-acc” denotes the grounding accuracy averaged over
steps and “t-acc” denotes the grounding accuracy averaged over tasks. A task is considered correct if
and only if all steps are correct. We run each experiment three times and report error bars.

Model Type ScanNet 3RScan MultiScan
s-acc (%) t-acc (%) s-acc (%) t-acc (%) s-acc (%) t-acc (%)

Zero-shot
3D-VisTA Dual-stream 26.9 4.7 23.7 2.2 22.8 4.7
PQ3D Query-based 29.7 4.1 24.6 2.9 23.2 0.0
GPT-4 w/ pred labels LLM 42.6 10.9 25.5 2.4 27.0 0.0

Fine-tune
3D-VisTA Dual-stream 58.4± 0.1 21.1± 0.5 53.3± 0.8 14.9± 1.5 48.3± 3.4 11.6± 2.4
PQ3D Query-based 54.8± 0.8 17.8± 0.7 49.3± 1.3 9.9± 2.5 46.4± 2.1 4.7± 0
LEO 3D LLM 61.2± 1.0 25.7± 1.7 55.8± 0.6 16.0± 1.8 52.7± 1.6 7.6± 1

Model Type ARKitScenes HM3D OverAll
s-acc (%) t-acc (%) s-acc (%) t-acc (%) s-acc (%) t-acc (%)

Zero-shot
3D-VisTA Dual-stream 30.8 9.0 25.3 10.3 26.9 8.3
PQ3D Query-based 34.6 8.6 24.4 9.7 28.2 7.8
GPT-4 w/ pred labels LLM 27.6 6.0 20.8 7.7 27.3 7.6

Fine-tune
3D-VisTA Dual-stream 68.8± 0.9 37.6± 1.1 59.6± 0.7 32.4± 0.8 60.9± 0.4 30.6± 0.7
PQ3D Query-based 65.2± 0.5 32.1± 0.7 56.1± 0.3 30.0± 0.7 57.3± 0.1 26.8± 0.5
LEO 3D LLM 69.6 ± 0.4 41.5 ± 1.5 61.5 ± 1 35.7 ± 1.3 62.8 ± 0.7 34.1 ± 1.2

ScanNet 3RScan MultiScan ARKitScenes HM3D OverAll
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Figure 7: Ablation of contextual infor-
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Figure 8: Impact of training data volume and data
efficiency comparison.

3D-VisTA using only 25% of the data. This advantage is likely attributable to LEO’s foundation on a
large language model, which has been pre-trained on a vast array of task-relevant information and
acquired common-sense knowledge.

5.4 QUALITATIVE RESULTS

Fig. 9 demonstrates that sequential grounding tasks require models to reason across sequential
steps. The results from LEO show that after training, the model is capable of performing sequential
grounding, as evidenced in tasks 1, 2, and 5. However, the model sometimes struggles to maintain
sequential consistency across sequential steps, as observed in task 3. Task 4, in particular, highlights
a failure case in which the model fails to grasp the concept of a diaper bin. The examples highlight
the challenges and complexities inherent in sequential grounding tasks, emphasizing the need for
models possessing both robust sequential reasoning abilities and a solid understanding of common
sense knowledge to achieve consistent and accurate results.
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Task 2: 
Watch a movie on the 
television

Step1: Walk to the dresser close to 
the organizer shelf and the 
instrument case.

Task 3:
Sanitize your hands.

Step1: Move towards the sink below 
the soap dispenser aligned with the 
toilet seat cover dispenser.

Step2: Turn on the sleek black 
television above it

Step2: Reach for the bottle of hand 
sanitizer aligned with the toilet seat 
cover dispenser inside the mirror.

Step3: Sit on the bed decorated with 
a cozy blanket and two plush pillows. 

Step3: Apply a generous amount of 
sanitizer to your hands.

Step4: Enjoy the movie on the 
television.

Step4: Rub your hands together 
thoroughly to spread the sanitizer.

Task 4:
 Check the time in the 
nursery.

Step1: Go to the black diaper bin 
next to the white wardrobe closet.

Step2: Look upward to see the clock 
with a red tag above the bin. 

Task 5:
Enjoy some nursery room 
decorations

Step2: Look up to admire the baby 
mobile with a tan tent above the crib.

Step1: Walk to the baby crib near the 
changing table.

Task 1: 
Water the desk plant

Step1: Go to the cabinet standing on 
the floor and open a drawer to find a 
watering can.

Step2: Fill the watering can using 
water from the radiator below the 
window. 

Step3: Walk back to the desk 
supporting the green plant next to 
several monitors.

Step4: Carefully pour water into the 
pot of the small green plant.

Step5: Wipe any spilled water from 
the desk using a cloth from the 
cabinet

❌

❌

Figure 9: Qualitative results from LEO. Red are predictions and green are ground-truth boxes.

6 CONCLUSION

In this work, we introduce the task of Task-oriented Sequential Grounding in 3D scenes and present
SG3D, a large-scale dataset designed to facilitate research in this area. Evaluations of state-of-the-art
3D visual grounding models on SG3D benchmark reveal the substantial challenges in adapting these
models to sequential grounding tasks. These results emphasize the necessity for further research and
model development. We encourage the community to move beyond traditional 3D visual grounding
towards more practical, task-oriented applications, paving the way for more advanced and capable
embodied agents.

7 DISCUSSIONS

Rationale for limiting to one target object per step The primary consideration for this restriction
is that most mobile manipulators (e.g., the one used in SayCan (Ahn et al., 2022)) are single-arm and
can manipulate only one object at a time. This design aligns with current practical constraints and
facilitates the adaptation of 3D visual grounding models to real-world robotic tasks. Nevertheless,
our data generation pipeline is flexible and can be easily adapted to support multi-target actions by
adjusting the GPT-4 prompt, as detailed in Fig. A1.

Handling steps that do not appear to involve a target object Some steps, like “Rub your hands”
(task 3’s step 4 in Fig. 9), involving the agent itself rather than a specific object in the scene, we
consider the target object from the previous step as the reference. This implies that no positional
change is required, which is a reasonable assumption in the navigation setting. These steps reflect
realistic interactions and are part of the task’s natural sequence, so we keep them in our dataset.
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A APPENDIX

A.1 DETAILS OF DATASET CONSTRUCTION

Detailed Prompt used in Task Generation The prompt messages employed in the task generation
process are depicted in Fig. A1, with the "System prompt" specifically illustrated in Fig. A2. Specific
in-context examples, denoted as “<EXAMPLES>” in the system prompt, are presented in Fig. A3. We
deliberately omit to show GPT-4 the corresponding scene graph for the provided response examples,
as an overly long context increases the likelihood of errors.

messages = [{‘role’: ‘system’, ‘content’: System prompt}, {‘role’: ‘user’, ‘content’: Scene graph of the scene to
process}]

Figure A1: Prompts messages for GPT-4 task generation.

Details in Human Verification Fig. A4 shows the interface used for human verification. The
interface consists primarily of an interactive 3D mesh window and a right-hand column that displays
task data. When a specific step is selected, the target object is highlighted within the mesh using
a red bounding box. Users can rotate, translate, and zoom in or out within the 3D mesh window.
Annotators mark each step with a tick or a cross. Following this verification process, tasks containing
one incorrect step are manually revised.

A.2 ADDITIONAL DATA STATISTICS

The statistics for task and step counts in the training and evaluation splits are presented separately in
Tab. A1.

Table A1: Statistics of the training and evaluation splits for various datasets.

Training Set Evaluation Set Train+Eval

3RScan # tasks 2,056 138 2,194
# steps 10,622 696 11,318

ScanNet # tasks 2,731 443 3,174
# steps 13,634 2,108 15,742

MultiScan # tasks 504 43 547
# steps 2,459 224 2,683

ARKitScenes # tasks 6,952 443 7,395
# steps 37,552 2,335 39,887

HM3D # tasks 8,146 890 9,036
# steps 38,833 3,873 42,706

Total # tasks 20,389 1,957 22,346
# steps 103,100 9,236 112,336

A.3 ADDITIONAL INFORMATION OF BASELINES

Detailed Prompt used in the GPT-4 baseline Fig. A5 details the prompt messages employed in
the baseline of GPT-4 integrated with an object labeler.

Benchmarking more baselines We also evaluated more grounding baselines, including MiKASA-
3DVG (Chang et al., 2024), ViewRefer (Guo et al., 2023), and Vil3DRef (Chen et al., 2022a), on
SG3D to validate the robustness of our findings. To maintain consistency with our main experiments,
we trained all these models for 50 epochs. For ease of comparison, we include these results alongside
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You are a helpful assistant that can generate diverse tasks in an indoor scene.

The scene is represented by a scene graph in the JSON dictionary format. Each entity in the scene graph denotes
an object instance, named ‘<category>-<ID>’. The ‘caption’ describes the object’s attributes, such as ‘color’,
‘material’, etc. The ‘relations’ describes the object’s spatial relations with other objects. For example, from the
scene graph:
```
‘sofa-1’: ‘relations’: [‘to the right of armchair-2’, ‘in front of table-3’], ‘caption’: ‘Grey velvet sofa with a
rectangular shape and a back and arms, suitable for use in a living room.’, ‘armchair-2’: ‘relations’: [‘to the left
of sofa-1’], ‘caption’: ‘The armchair is made of leather, specifically black leather, and has a spherical shape.’,
‘table-3’: ‘relations’: [], ‘caption’: ‘The table is a rectangular wooden table with a brown finish, sometimes used as
a dining table or coffee table, with a smooth wooden texture and various styles, including a sign or place setting on
it, and can have plates or a white cloth on it.’
```

You can know that ‘sofa-1’ is grey, the ‘armchair-2’ is made of leather, the ‘table-3’ is made of wood, the
‘armchair-2’ is on the left of the ‘sofa-1’, the ‘sofa-1’ is in front of the ‘table-3’.

Using the provided scene graph, design daily tasks that a person can do in this scene. Besides, decomposing every
task into a sequence of steps that can be performed using the objects in this scene. For each step, give the target
object that the person should attend to. Your output must follow the template below:
```
Task: #Describe the task using one sentence.#
Steps:
1. #The step must perform only one action. Split actions such as ‘pick up xxx and place it xxx’ into two separate
steps. All objects, attributes, and relations must be explicitly listed in the given scene graph. Do not include the IDs
of the objects, use ordinal words, attributes, and relations to refer to different object instances of the same category.
Use pronouns (‘it’, ‘them’, ‘here’, and ‘the other’, etc.) as much as possible to make the step concise.# [#Use
‘<category>-<ID>’ to denote the target object. Do NOT assume objects that do not exist in the scene graph! Each
step must have exactly one target object. #]
2. ...
3. ...
...
```

Here are some examples:
```
<EXAMPLES>
```

Generate 5 different tasks involving different objects and separate these tasks by "===".

Figure A2: System prompt for GPT-4 task generation.

our main experimental results in Tab. A2. The results further support the conclusions we proposed in
the manuscript.

A.4 HUMAN STUDY

We conducted a human study by randomly selecting 100 tasks from the evaluation set. Participants
were given an interactive 3D scene and a task in a web viewer. Despite some artifacts in the 3D
scene viewer, human participants achieved 85% step accuracy and 63% task accuracy, significantly
outperforming baseline models. This demonstrates that the proposed task and dataset are indeed
challenging for current models. A series of screenshots of the human study interface to demonstrate a
human study case is provided in the supplementary material for reference.
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Table A2: The grounding accuracies of more baselines on SG3D. “s-acc” denotes the grounding
accuracy averaged over steps and “t-acc” denotes the grounding accuracy averaged over tasks. A task
is considered correct if and only if all steps are correct.

ScanNet 3RScan MultiScan
s-acc (%) t-acc (%) s-acc (%) t-acc (%) s-acc (%) t-acc (%)

3D-VisTA 58.4 21.1 53.3 14.9 48.3 11.6
PQ3D 54.8 17.8 49.3 9.9 46.4 4.7
LEO 61.2 25.7 55.8 16.0 52.7 7.6

MiKASA-3DVG 57.8 20.3 53.0 10.9 48.7 2.3
ViewRefer 59.9 20.8 54.6 6.5 48.7 4.7
Vil3DRef 60.2 20.8 53.3 11.6 53.6 11.6

ARKitScenes HM3D OverAll
s-acc (%) t-acc (%) s-acc (%) t-acc (%) s-acc (%) t-acc (%)

3D-VisTA 68.8 37.6 59.6 32.4 60.9 30.6
PQ3D 65.2 32.1 56.1 30.0 57.3 26.8
LEO 69.6 41.5 61.5 35.7 62.8 34.1
MiKASA-3DVG 66.4 33.6 57.2 30.6 59.1 26.9
ViewRefer 68.2 34.8 57.3 30.0 60.2 27.9
Vil3DRef 70.1 37.5 58.0 29.7 61.0 29.0

A.5 IMPACT ON EMBODIED NAVIGATION

While interactive evaluation of action sequences is currently infeasible due to the static nature of the
reconstructed 3D scenes, we demonstrate the relevance of our annotations by integrating the LEO
model with a navigation module in an embodied setting. Specifically, we use the GreedyGeodesicFol-
lower class from Habitat-Sim (Savva et al., 2019) to guide task-oriented navigation within HM3D
scenes based on the grounding results (the centers of the target objects). We have provided three
navigation videos showcasing this process in the supplementary material.

A.6 PLANNING ABILITY OF LEO

In this additional experiment, we evaluate the planning ability of LEO fine-tuned on SG3D. Given
a task description t, LEO is required to generate both action steps {a1, .., an} and target objects
{o1, ..., on}. Since action steps can be rearranged into various topological orders, we do not employ
exact matches to assess the similarity between the predicted and ground truth plans. Instead, we
utilize metrics from OpenEQA (Majumdar et al., 2024), which leverage GPT-4 to score the model’s
output based on ground truth. A score of 1 indicates no match, while a score of 5 represents a perfect
match. In our experiments, the GPT score on ScanNet is 2.1± 1.0, suggesting considerable room
for improvement. The prompts used for score computation are detailed in Fig. A6.
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Task: Make me a cup of coffee.
Steps:
1. Go to the long desk against the wall. [desk-15]
2. Choose a cup from those white, plastic cups on the top of the desk. [cups-19]
3. Fill it with coffee at the coffee maker. [coffee maker-16]
4. Walk to the table close to a cabinet. [table-23]
5. Put the cup down. [table-23]
6. Return to the long desk. [desk-15]
7. Fetch a plate from a bunch of steel plates below a picture frame hanging on the wall. [plates-17]
8. Go back to the table. [table-23]
9. Put the cup on the plate on the table. [table-23]
===
Task: Watch tv from the sofa.
Steps:
1. Go to the black table to the left of the fire extinguisher. [table-30]
2. Grab the black remote lying on it. [remote-36]
3. Turn on the tv with the remote. [tv-38]
4. Walk to the table in the middle of the bed and the white cabinet. [table-58]
5. Place the remote here. [table-58]
6. Walk to the black sofa close to the bed. [sofa-14]
7. Sit here to admire tv show. [sofa-14]
===
Task: Clean the mirror.
Steps:
1. Walk to the white cabinet. [cabinet-7]
2. Grab the towel on it. [towel-10]
3. Put the towel into the sink. [sink-37]
4. Turn the faucet on. [faucet-13]
5. Wet the towel in the sink. [sink-37]
6. Turn the faucet off. [faucet-13]
7. Wipe the mirror with the towel. [mirror-11]
8. Put the towel into the sink again. [sink-37]
9. Turn the faucet on. [faucet-13]
10. Wash the towel in the sink. [sink-37]
11. Turn the faucet off. [faucet-13]
12. Wring the towel dry in the sink. [sink-37]
13. Put it back to the cabinet. [cabinet-7]
===
Task: Browse the internet.
Steps:
1. Walk to the desk adorned with papers. [desk-19]
2. Turn on the computer tower behind the desk and the bookshelf. [computer tower-7]
3. Sit down on the nearest chair. [chair-26]
4. Fetch the mouse on the desk. [mouse-8]
5. Look at the screen of the monitor. [monitor-14]
===
Task: Go to sleep.
Steps:
1. Go to the curtain. [curtain-11]
2. Close it. [curtain-11]
3. Walk to the nightstand with the telephone. [nightstand-15]
4. Turn off the lamp on this nightstand. [lamp-19]
5. Go to the other nightstand. [nightstand-14]
6. Set the alarm on it. [alarm clock-28]
7. Lie down on the bed. [bed-20]

Figure A3: <EXAMPLES> in system prompt for GPT-4 task generation.
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Figure A4: Screenshot of the interface for human verification.
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# system prompt (role: system)
You are tasked with identifying the target object for each step in a given task. Each scene contains various objects,
and your response should provide the target object for each step in the format <label-id>, maintaining the sequence
of steps. For example:

# example task (role: user)
Task: Make me a cup of coffee and serve it on a plate.
Steps:
1. Go to the long desk against the wall.
2. Fetch a plate from a bunch of steel plates below the picture frame.
3. Walk to the table close to a cabinet.
4. Put the plate on it.
5. Return to the long desk.
6. Choose a cup from those white, plastic cups on the desk.
7. Fill it with coffee at the coffee maker.
8. Go back to the table.
9. Put down the cup of coffee.

# example scene (role: user)

"table-24":
"position": [
-4.913224259334377,
2.2510899724225615,
-0.9699999988079071
],
"size": [
2.032371906039741,
1.247916508679886,
0.8399999737739563
]
,
...

# example response (role: assistant) 1. desk-15
2. plates-17
3. table-23
4. table-23
5. desk-15
6. cups-19
7. coffee maker-16
8. table-23
9. table-23

# role: user
< CURRENT TASK & SCENE >

Figure A5: Prompt messages used in the GPT-4 baseline.
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You are a helpful assistant that can evaluate the quality of task planning given a scene, a task description, a ground
truth task planning, and a predicted task planning. To mark a response, you should output a single integer between
1 and 5 (including 1, 5), with format ```Your mark: number```. 5 means that the predicted task planning perfectly
solves the problem described in the task and matches the ground truth task planning. 1 means that the predicted
task planning is completely irrelevant to the task description and does not match the ground truth task planning.

The scene is represented by a scene graph in the JSON dictionary format. Each entity in the scene graph denotes
an object instance, named ‘<category>-<ID>’. The ‘caption’ describes the object’s attributes, such as ‘color’,
‘material’, etc. The ‘relations’ describes the object’s spatial relations with other objects. For example, from the
scene graph:
```
‘sofa-1’: ‘relations’: [‘to the right of armchair-2’, ‘in front of table-3’], ‘caption’: ‘Grey velvet sofa with a
rectangular shape and a back and arms, suitable for use in a living room.’, ‘armchair-2’: ‘relations’: [‘to the left
of sofa-1’], ‘caption’: ‘The armchair is made of leather, specifically black leather, and has a spherical shape.’,
‘table-3’: ‘relations’: [], ‘caption’: ‘The table is a rectangular wooden table with a brown finish, sometimes used as
a dining table or coffee table, with a smooth wooden texture and various styles, including a sign or place setting on
it, and can have plates or a white cloth on it.’
```

You can know that ‘sofa-1’ is grey, the ‘armchair-2’ is made of leather, the ‘table-3’ is made of wood, the
‘armchair-2’ is on the left of the ‘sofa-1’, the ‘sofa-1’ is in front of the ‘table-3’.

Using the provided scene graph, you should decide whether predicted task planning can solve the problem
described in task description.
Here are some examples:
```
<example>
```

Your Turn, output with format ```Your mark: number```.
Scene graph: <scene graph>
Task description: <task description>
Ground truth task planning text: <gt plan text>
Ground truth object id: <gt object id>
Predicted task planning text: <pred plan text>

Figure A6: Prompt messages for computing GPT score.
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