

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALIGN-SAM: SEEKING FLATTER MINIMA FOR BETTER CROSS-SUBSET ALIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Sharpness-Aware Minimization (SAM) has proven effective in enhancing deep neural network performance by simultaneously minimizing the training loss and the sharpness of the loss landscape, thereby guiding models toward flatter minima that are empirically linked to improved generalization. From another perspective, generalization can be seen as a model’s ability to remain stable under distributional variability. In particular, effective learning requires that updates derived from different subsets or resamplings of the same data distribution remain consistent. In this work, we investigate the connection between the flatness induced by SAM and the alignment of gradients across random subsets of the data distribution, and propose *Align-SAM* as a novel strategy to further enhance model generalization. Align-SAM extends the core principles of SAM by promoting optimization toward flatter minima on a primary subset (the training set), while simultaneously enforcing low loss on an auxiliary subset that is drawn from the same distribution. This dual-objective approach leads to solutions that are not only resilient to local perturbations but also robust against distributional shifts in each training iteration. Empirical evaluations demonstrate that Align-SAM consistently improves generalization across diverse datasets and challenging settings, including scenarios with noisy labels and limited data availability.

1 INTRODUCTION

Deep neural networks have emerged as the dominant approach for solving complex tasks such as classification, often outperforming traditional machine learning models. These models learn by adjusting a vast number of parameters to minimize prediction errors or maximize task-specific performance. In practice, training is conducted on a finite dataset \mathcal{S} , sampled from an unknown underlying distribution \mathcal{D} . The quality and alignment of this dataset with the target distribution significantly impact model efficiency and performance Hestness et al. (2017); Kaplan et al. (2020). Despite their ability to learn complex patterns, deep learning models can also capture noise or random fluctuations in training data, leading to overfitting Arpit et al. (2017); Zhang et al. (2016); Liu et al. (2020). This results in excellent performance on training data but poor predictions on new, unseen data, especially with domain shifts. Generalization McAllester (1999); Dziugaite & Roy (2017b), measured by comparing prediction errors on \mathcal{S} and \mathcal{D} , becomes crucial. Balancing a model’s ability to fit training data with its risk of overfitting is a key challenge in machine learning.

Several studies have been done on this problem, both from theoretical and practical perspectives. Statistical learning theory has proposed different complexity measures that are capable of controlling generalization errors (Vapnik, 1998; Bartlett & Mendelson, 2003; Mukherjee et al., 2002; Bousquet & Elisseeff, 2002; Poggio et al., 2004). In general, they develop a bound for the general error on \mathcal{D} . Theory suggests that minimizing the intractable general error on \mathcal{D} is equivalent to minimizing the empirical loss on \mathcal{S} with some constraints to the complexity of models and training size (Alquier et al., 2016b). An alternative strategy for mitigating generalization errors involves the utilization of an optimizer to learn optimal parameters for models with a specific local geometry. This approach enables models to find wider local minima (*i.e.*, flat minima), which makes them more robust against data shift between training and testing sets (Jiang et al., 2020; Petzka et al., 2021; Huang et al., 2025).

The connection between a model’s generalization and the width of minima has been investigated theoretically and empirically in many studies, notably (Hochreiter & Schmidhuber, 1994; Neyshabur

et al., 2017; Dinh et al., 2017; Fort & Ganguli, 2019). A specific method within this paradigm is Sharpness-Aware Minimisation (SAM) (Foret et al., 2021), which has emerged as an effective technique for enhancing the generalization ability of deep learning models. SAM seeks a perturbed model within the vicinity of a current model that maximizes the loss over a training set. Eventually, SAM leads the model to the region where both the current model and its perturbation model have low loss values, ensuring flatness. The success of SAM and its variants (Kwon et al., 2021; Kim et al., 2022) has inspired further investigation into its formulation and behavior, as evidenced by recent works such as (Kaddour et al., 2022; Möllenhoff & Khan, 2022; Andriushchenko & Flammarion, 2022a; Ji et al., 2024).

Additionally, inspired by the PAC-Bayes theorem Alquier (2023), SAM provides an upper bound on the generalization loss over the data distribution \mathcal{D} by considering the loss of perturbed models trained on a random dataset $S \sim \mathcal{D}$. This guides optimization toward minimizing the worst-case loss within a neighborhood of parameters. Such a framework has been shown to encourage convergence to flatter minima on the random dataset S , which in turn promotes improving generalization. In practice, however, directly minimizing sharpness over the entire training set S would require forward and backward passes on all of S , which is computationally infeasible with large datasets. Instead, standard stochastic optimizers, such as SGD or Adam, are applied that rely on randomly sampled mini-batches, thereby reducing sharpness on each subset and stochastically approximating minimization of sharpness over the full dataset S .

From a complementary perspective, generalization can be viewed as the model’s ability to remain reliable on new subsets drawn from the same data distribution \mathcal{D} . Specifically, we adopt the viewpoint that a model exhibits strong generalization if, although optimized primarily on one random subset S , it can also perform well on another independently drawn auxiliary subset S^a , where $S, S^a \sim \mathcal{D}$. Motivated by this, we formulate our objective as finding models that minimize sharpness and loss on the primary subset while simultaneously maintaining low loss on the auxiliary subset, thereby ensuring stability across resamplings of the data distribution. To achieve this, we propose *Align-SAM*, a novel method that updates model parameters toward solutions that are both flat and low-loss on the primary subset, while maintaining robust performance across auxiliary subsets, thus implicitly promoting stronger generalization to the full distribution.

In summary, our contributions in this work are as follows:

- We approach generalization from a novel perspective by framing it as an alignment across random subsets drawn from the same data distribution. Building on this viewpoint, we propose Align-SAM, a method designed to enhance both model flatness and stability under distributional variability. Align-SAM primarily updates model parameters by guiding them toward regions in parameter space that minimize sharpness and loss on a primary subset, while simultaneously encouraging strong performance on an auxiliary subset sampled independently from the same distribution. This is achieved by leveraging a combination of gradients computed on both subsets during optimization.
- We demonstrate the effectiveness of Align-SAM in enhancing generalization performance across a variety of settings. Our evaluation begins with image classification tasks, covering both training from scratch and transfer learning on datasets ranging from small to large scale. We further assess its robustness under noisy label conditions with varying noise levels. Additionally, we extend our experiments to meta-learning scenarios to evaluate Align-SAM’s ability to generalize beyond meta-training tasks and adapt across diverse domains. The consistent performance gains across these experiments show that Align-SAM not only improves robustness to label noise and generalization across tasks but also promotes more stable and reliable predictions in varied settings.

2 RELATED WORKS

Sharpness-Aware Minimization. The correlation between the wider minima and the generalization capacity has been extensively explored both theoretically and empirically in various studies Tan et al. (2025); Jiang et al. (2020); Petzka et al. (2021); Dziugaite & Roy (2017a); Zhuang et al. (2022); Kwon et al. (2021). Many works suggested that finding flat minimizers might help to reduce generalization error and increase robustness to data distributional shift problems in various settings Jiang et al.

(2020); Petzka et al. (2021); Huang et al. (2025). There are multiple works have explored the impact of different training parameters, including batch size, learning rate, gradient covariance, and dropout, on the flatness of discovered minima such as Keskar et al. (2017); Jastrzebski et al. (2017); Wei et al. (2020); Deng et al. (2025).

Sharpness-aware minimization (SAM) (Foret et al., 2021) is a recent optimization technique designed to improve the generalization error of neural networks by considering the sharpness of the loss landscape during training. SAM minimizes the worst-case loss around the current model and effectively updates models towards flatter minima to achieve low training loss and maximize generalization performance on new and unseen data. SAM has been successfully applied to various tasks and domains, such as vision models (Chen et al., 2021), language models (Bahri et al., 2022), federated learning (Qu et al., 2022; Xing et al., 2025), Bayesian Neural Networks (Nguyen et al., 2023), domain generalization (Cha et al., 2021), multi-task learning (Phan et al., 2022) and meta-learning bi-level optimization (Abbas et al., 2022). Multiple varieties of SAM have been developed to address limitations of the original method, including ASAM (Kwon et al., 2021), Friendly-SAM (Li et al., 2024), GSAM (Du et al., 2022), VASSO (Li & Giannakis, 2024), and other curvature- or alignment-aware extensions. Efficiency-oriented approaches such as SAF Du et al. (2022) approximate SAM’s perturbation to reduce computational overhead, GNAM Zhang et al. (2023) promotes first-order flatness through gradient-norm regularization. LookSAM Liu et al. (2022) further improves efficiency by reusing the same perturbation direction across k consecutive iterations, significantly lowering SAM’s computation while maintaining its flatness-seeking behaviour. Recent work has also been inspired by the Lookahead optimizer to deploy multi-step strategies to explore flatter regions of the loss landscape: Lookahead-SAM (Yu et al., 2024) integrates Lookahead’s extrapolation–interpolation mechanism with SAM to reach wider minima, whereas Lookbehind-SAM (Mordido et al., 2024) incorporates backward steps before the SAM update to better navigate sharp regions.

Implicit Biases and Behaviors of SAM. SAM was inspired by the PAC-Bayes theorem Alquier et al. (2016a); Alquier (2023); Alquier et al. (2016b), which provides an upper bound on generalization loss and motivates the pursuit of flat minima. Several works have since sought to better understand and improve Sharpness-Aware Minimization (SAM). Andriushchenko and Flammarion Andriushchenko & Flammarion (2022b) offer theoretical insights into SAM’s optimization dynamics, emphasizing its implicit regularization effects. Compagnoni et al. Monzio Compagnoni et al. (2023) model SAM using a stochastic differential equation (SDE), providing a continuous-time interpretation of its behavior. Wen et al. (Wen et al., 2023b) study how SAM reduces sharpness during optimization, while Chen et al. Chen et al. (2023) show that SAM generalizes better than SGD by avoiding sharp minima. To further improve SAM, Luo et al. (Luo et al., 2024) introduce explicit eigenvalue regularization to control curvature during training. Finally, Wen et al. (Wen et al., 2023a) argue that the generalization benefits of sharpness-aware algorithms stem not only from sharpness minimization but also from other favorable inductive biases.

A complementary strand of work examines data distribution, class imbalance, and long-tailed regimes, where sharpness varies significantly across classes. Nguyen et al. (2024) analyze the features learned under SAM and show that SAM encourages models to rely on both simple and complex features. They further demonstrate that modifying the training data distribution to reduce simplicity bias improves in-distribution generalization. In class-imbalanced settings, several methods adapt SAM to better handle head–tail disparities. ImbSAM Zhou et al. (2023a) incorporates imbalance-aware perturbations to prevent minority classes from being overshadowed by head-class gradients. Class-Conditional SAM Zhou et al. (2023b) aligns SAM’s perturbation with class-specific curvature to reduce sharpness for tail classes, improving long-tailed accuracy. Focal-SAM Li et al. (2025) integrates focal reweighting with SAM to emphasize hard or misclassified instances while maintaining stable optimization.

3 PROPOSED METHOD

Notions. We start by introducing the notions used throughout our paper. We denote \mathcal{D} as the data/label distribution to generate pairs of data/label (x, y) . Given a model with the model parameter θ , we denote the per-sample loss induced by (x, y) as $\ell(x, y; \theta)$. Let S be a random subset drawn from the distribution \mathcal{D} . We denote the *empirical* and *generalization* losses as $\mathcal{L}_S(\theta) = \mathbb{E}_S [\ell(x, y; \theta)]$ and $\mathcal{L}_{\mathcal{D}}(\theta) = \mathbb{E}_{\mathcal{D}} [\ell(x, y; \theta)]$ respectively. We define $\mathcal{L}_{\mathcal{D}}(\theta | S)$ as an *upper bound* defined over S of

162 the general loss $\mathcal{L}_{\mathcal{D}}(\theta)$. Note that inspired by SAM (Foret et al., 2021), we use the sharpness over S
 163 to define $\mathcal{L}_{\mathcal{D}}(\theta | S)$ (see Theorem 1). Finally, we use $|A|$ to denote the cardinality of a set A .
 164

165 **3.1 PROBLEM FORMULATION**
 166

167 Given a random subset S^t whose examples are sampled from \mathcal{D} (i.e., $S^t \sim \mathcal{D}^{N_t}$ with $N_t = |S^t|$), we
 168 use $\mathcal{L}_{\mathcal{D}}(\theta | S^t)$ to train models. S^t is known as the training set. Among the models that minimize
 169 this loss, we select the one that minimizes the general loss as follows:

$$170 \min_{\theta^*} \mathcal{L}_{\mathcal{D}}(\theta^*) \text{ s.t. } \theta^* \in \mathcal{A}_{\mathcal{D}}(S^t) := \operatorname{argmin}_{\theta} \mathcal{L}_{\mathcal{D}}(\theta | S^t). \quad (1)$$

172 We note that $\mathcal{A}_{\mathcal{D}}(S^t)$ returns the optimal models θ^* that minimizes the upper bound $\mathcal{L}_{\mathcal{D}}(\theta | S^t)$.
 173 Among the set of such minimizers θ^* , we select the one that further minimizes the true generalization
 174 loss $\mathcal{L}_{\mathcal{D}}$. The reason for the formulation in (1) is that although $\mathcal{L}_{\mathcal{D}}(\theta | S^t)$ is an upper bound of
 175 the general loss $\mathcal{L}_{\mathcal{D}}(\theta)$, there always exists a gap between them. Therefore, the additional outer
 176 minimization helps to refine the solutions.

177 We now denote S^a (i.e., $S^a \sim \mathcal{D}^{N_a}$ with $N_a = |S^a|$) as an other random subset sampled from \mathcal{D} , S^a
 178 is called the auxiliary set. With respect to this auxiliary set, we have the following theorem.

179 **Theorem 1.** *Under conditions $L_{\mathcal{D}}(\theta) \leq E_{\epsilon_i \sim N(0, \rho)} L_{\mathcal{D}}(\theta + \epsilon)$ similar to SAM (Foret et al., 2021),
 180 with a probability greater than $1 - \delta$ (i.e., $\delta \in [0, 1]$) over the choice of $S^a \sim \mathcal{D}^{N_a}$, we then have for
 181 any optimal models $\theta^* \in \mathcal{A}_{\mathcal{D}}(S^t)$:*

$$183 \mathcal{L}_{\mathcal{D}}(\theta^*) \leq \mathcal{L}_{\mathcal{D}}(\theta^* | S^a) + \frac{8L}{\sqrt{N_a}} \sqrt{\log \frac{N_a + k}{\delta}} + \frac{4L}{\sqrt{N_a}} O(1) + \frac{4L}{\sqrt{N_a}} k \log \left(1 + \frac{\|\theta^*\|^2}{\rho} \left(1 + \sqrt{\log N_a / k} \right) \right), \quad (2)$$

186 where we denote $\mathcal{L}_{\mathcal{D}}(\theta^* | S) := \max_{\theta': \|\theta' - \theta^*\|_2 \leq \rho} \mathcal{L}_{\mathcal{D}}(\theta')$ for any random subset $S \sim \mathcal{D}^N$ (i.e.
 187 S^t, S^a), and L is the upper bound of the loss function (i.e., $\ell(x, y; \theta) \leq L, \forall x, y, \theta$), k is the model
 188 size as the length of vector θ , and $\rho > 0$ is the perturbation radius.

190 According to Theorem 1, $\mathcal{L}_{\mathcal{D}}(\theta^* | S) := \max_{\theta': \|\theta' - \theta^*\|_2 \leq \rho} \mathcal{L}_{\mathcal{D}}(\theta')$ can be viewed as an upper bound
 191 of the generalization loss $\mathcal{L}_{\mathcal{D}}(\theta^*)$, up to a constant difference. Moreover, our theorem 1 (see Appendix
 192 A.1 for proof) can be viewed as an extension of Theorem 1 in Foret et al. (2021), where we apply the
 193 PAC-Bayes theorem from Alquier et al. (2016a) to prove an upper bound for the generalization loss
 194 of any bounded loss, instead of the 0-1 loss in Foret et al. (2021). We can generalize this proof for S^t
 195 to explain why we use $\mathcal{L}_{\mathcal{D}}(\theta | S^t) := \max_{\theta': \|\theta' - \theta\|_2 \leq \rho} \mathcal{L}_{\mathcal{D}}(\theta')$ as an objective to minimize, as in
 196 (1).

197 Based on Theorem 1, we can rewrite the objectives in (1) as:

$$198 \min_{\theta^*} \mathcal{L}_{\mathcal{D}}(\theta^* | S^a) \text{ s.t. } \theta^* \in \mathcal{A}_{\mathcal{D}}(S^t) := \operatorname{argmin}_{\theta} \mathcal{L}_{\mathcal{D}}(\theta | S^t), \quad (3)$$

200 where $\mathcal{L}_{\mathcal{D}}(\theta | S) := \max_{\theta': \|\theta' - \theta\|_2 \leq \rho} \mathcal{L}_{\mathcal{D}}(\theta')$. Among all models that minimize the upper generalization
 201 bound on a random training subset S^t , we select the one that further minimizes the upper generalization
 202 bound on an independently drawn auxiliary subset S^a . In other words, the optimal solution is the one that achieves low sharpness and loss on the primary subset while simultaneously
 203 maintaining low loss on the auxiliary subset.

205 Our theory works for $S^t, S^a \sim \mathcal{D}$, where \mathcal{D} is the distribution to generate (x, y) . In the practical
 206 version of Algorithm 1, we replace \mathcal{D} by the empirical distribution S and at each iteration, we
 207 sample two mini-batches $B^t, B^a \sim S$. Because when the training size (i.e. $|S|$) approaches ∞ ,
 208 the distribution S asymptotically converges to the distribution \mathcal{D} . Using stochastic optimization,
 209 we reformulate this objective into an iterative update scheme, where the model is trained with two
 210 independently drawn mini-batches, B^t and B^a , such that each update encourages convergence toward
 211 flat minima while aligning performance across subsets in every iteration.

213 **3.2 OUR SOLUTION**
 214

215 Our motivation here is to primarily optimize the loss over the training set S^t , while using S^a to
 216 further enhance the generalization ability, where both S^t and S^a are random subsets drawn from the

same data distribution. Our formulation in (3) has the same form as a bi-level optimization problem similar to MAML (Finn et al., 2017), developed for meta-learning. Inspired by MAML, a naive approach would be to consider $f(\theta) := \text{argmin}_{\theta} \mathcal{L}_{\mathcal{D}}(\theta | S^t)$ (i.e., $f(\theta) = \theta - \eta \nabla_{\theta} \mathcal{L}_{\mathcal{D}}(\theta | S^t)$) and finding $\theta^* := \text{argmin}_{\theta} \mathcal{L}_{\mathcal{D}}(f(\theta) | S^a)$ with respect to θ . However, this naive approach *does not align* with our objective, as it mainly focuses on optimizing the loss $\mathcal{L}_{\mathcal{D}}(f(\theta) | S^a)$ over the auxiliary set S^a , in which, the auxiliary set acts like the validation set in MAML. Here we note that in Franceschi et al. (2018), bi-level optimization was employed to learn optimal hyperparameters (e.g., the weight of a regularizer) by finding hyperparameters such that a model trained on a training set performs well on a validation set. This is fundamentally different from our aim, which is to study how to achieve flat minima that align two independent random subsets in every update step. Moreover, directly adapting the MAML bi-level formulation would require distinct training and validation sets, which are often unavailable in most scenarios. For these reasons, both our theoretical framework and technical approach differ substantially from those in Franceschi et al. (2018).

Using stochastic optimization, we reformulate the objective (3) into an iterative update scheme, where the model is trained using two independently drawn mini-batches B^t and B^a , with both batches sampled independently from the training set S . The *Align-SAM* is presented as follows: *at each iteration, our primary objective is to optimize $\mathcal{L}(\theta | B^t)$, primarily based on its gradients, in such a way that future models are able to implicitly perform well on B^a .* To achieve this, similar to SAM (Foret et al., 2021), we approximate $\mathcal{L}(\theta | B^t) = \max_{\|\theta' - \theta\| \leq \rho} \mathcal{L}_{B^t}(\theta') \approx \mathcal{L}_{B^t}(\theta + \eta_1 \nabla \mathcal{L}_{B^t}(\theta))$ for a sufficient small learning rate $\eta_1 > 0$ (i.e., $\eta_1 \|\nabla \mathcal{L}_{B^t}(\theta)\| \leq \rho$) and $\mathcal{L}(\theta | B^a) = \max_{\|\theta' - \theta\| \leq \rho} \mathcal{L}_{B^a}(\theta') \approx \mathcal{L}_{B^a}(\theta + \eta_2 \nabla \mathcal{L}_{B^a}(\theta))$ for a sufficient small learning rate $\eta_2 > 0$ (i.e., $\eta_2 \|\nabla \mathcal{L}_{B^a}(\theta)\| \leq \rho$).

At each iteration, while primarily using the gradients of $\mathcal{L}(\theta | B^t)$ for optimization, we also utilize the gradient of $\mathcal{L}(\theta | B^a)$ to ensure congruent behavior between these two gradients. Specifically, at the l -th iteration, we update as follows:

$$\tilde{\theta}_l^a = \theta_l + \eta_2 \nabla_{\theta} \mathcal{L}_{B^a}(\theta_l), \quad (4)$$

$$\tilde{\theta}_l^t = \theta_l + \eta_1 \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) - \eta_2 \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a), \quad (5)$$

$$\theta_{l+1} = \theta_l - \eta \nabla_{\theta} \mathcal{L}_{B^t}(\tilde{\theta}_l^t), \quad (6)$$

where $\eta_1 > 0$, $\eta_2 > 0$, and $\eta > 0$ are the learning rates, while $\mathcal{L}_{B^t}(\theta_l)$ and $\mathcal{L}_{B^a}(\theta_l)$ represent the empirical losses over the mini-batches $B^t, B^a \sim S^t$ respectively.

According to (6) (i.e., $\theta_{l+1} = \theta_l - \eta \nabla_{\theta} \mathcal{L}_{B^t}(\tilde{\theta}_l^t)$), θ_{l+1} is updated to minimize $\mathcal{L}_{B^t}(\tilde{\theta}_l^t)$. We now do first-order Taylor expansion for $\mathcal{L}_{B^t}(\tilde{\theta}_l^t)$ as

$$\mathcal{L}_{B^t}(\tilde{\theta}_l^t) \approx \mathcal{L}_{B^t}(\theta_l) + \eta_1 \|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)\|_2^2 - \eta_2 \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a), \quad (7)$$

where \cdot specifies the dot product.

From (7), we reach the conclusion that the update in (6) aims to *minimize* simultaneously (i) $\mathcal{L}_{B^t}(\theta_l)$, (ii) $\|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)\|_2^2$, and *maximize* (iii) $\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)$. While the effects in (i) and (ii) are similar to SAM (Foret et al., 2021), maximizing $\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)$ encourages two gradients of the losses over B^t and B^a to become more congruent. The following theorem shows that, during training, the two gradients of interest become *more congruent*.

Theorem 2. For sufficiently small learning rates $\eta_1 \leq \frac{|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)|}{12 \|\nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)^T H_{B^t}(\theta_l) \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)|}$ and $\eta_2 \leq$

$\min \left\{ \frac{|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)|}{6 \|\nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)^T H_{B^t}(\theta_l) \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)\|}, \frac{|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)|}{6 \|\nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)^T H_{B^a}(\tilde{\theta}_l^a) \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)\|} \right\}$, we have

$$\nabla_{\theta} \mathcal{L}_{B^t}(\tilde{\theta}_l^t) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a) \geq \begin{cases} \frac{1}{2} \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a) & \text{if } \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a) \geq 0 \\ \frac{3}{2} \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a) & \text{otherwise} \end{cases} \quad (8)$$

270 **Algorithm 1** Pseudo-code of Align-SAM

271 1: **Input:** ρ, λ, η , the number of iterations T , and the training set S
272 2: **Output:** the optimal model θ_T .
273 3: **for** $l = 1$ to T **do**
274 4: Sample mini-batches $B^t, B^a \sim S$.
275 5: $g_a = \nabla_{\theta} \mathcal{L}_{B^a}(\theta_l)$
276 6: $\tilde{g}_a = \nabla_{\theta} \mathcal{L}_{B^a} \left(\theta_l + \rho \frac{g_a}{\|g_a\|_2} \right)$
277 7: $g_t = \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)$
278 8: Compute $\tilde{\theta}_l^t \leftarrow \theta_l + \rho \left(\lambda \frac{g_t}{\|g_t\|_2} - \frac{\tilde{g}_a}{\|\tilde{g}_a\|_2} \right)$.
279 9: Compute $\theta_{l+1} \leftarrow \theta_l - \eta \nabla_{\theta} \mathcal{L}_{B^t}(\tilde{\theta}_l^t)$.
280 10: **end for**

281 Theorem 2 (see Appendix A.1 for proof) indicates that two gradients $\nabla_{\theta} \mathcal{L}_{B^t}(\tilde{\theta}_l^t)$ and $\nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)$
282 are encouraged to be more congruent since our update aims to maximize its lower bound $c \times$
283 $\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)$ (i.e., $c = 0.5$ or $c = 1.5$).
284

285 **Practical Algorithm.** Inspired by SAM (Foret et al., 2021), we set $\eta_2 = \frac{\rho}{\|\nabla_{\theta} \mathcal{L}_{B^a}(\theta_l)\|_2}$ and
286 $\eta_1 = \lambda \frac{\rho}{\|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)\|_2}$, where $\rho > 0$ are perturbation radius and λ is trade-off coefficient for combining
287 gradient from B^t and B^a . In practice, we observe that setting $\lambda > 1$, which prioritizes the gradient
288 from the training mini-batch B^t , results in improved performance. This trade-off is discussed in
289 Section A.3.

290 The pseudo-code of Align-SAM is presented in Algorithm 1. Compared to standard SAM, our
291 method requires additional forward and backward passes due to the use of an auxiliary batch. To
292 reduce this overhead, we set the auxiliary batch size $|B^a|$ significantly smaller than the primary
293 training batch size $|B^t|$, ensuring that most computation is devoted to the main update step. As a
294 result, Align-SAM is only marginally slower than standard SAM, as reported in Table 9. Further
295 details are provided in the Appendix.

303 3.3 CONVERGENCE ANALYSIS

304 It is well known that the normalized (practical) version of SAM *does not converge* to the minimizer
305 of the training loss, as rigorously demonstrated in Si & Yun (2023) (Theorem 4.6), one of the most
306 comprehensive analyses of SAM’s convergence behavior. Our proposed approach shares the *same*
307 *convergence rate* as standard SAM, as established in Si & Yun (2023) (Theorem 4.6). Details in
308 Appendix A.2

310 4 EXPERIMENTS

311 In this section, we present the results of various experiments to evaluate the effectiveness of our
312 Align-SAM, including training from scratch, transfer learning on different dataset sizes, learning
313 with noisy labels, and a meta-learning setting.

317 4.1 IMAGE CLASSIFICATION FROM SCRATCH

318 We first conduct experiments on ImageNet, Food101, and CIFAR datasets with standard image
319 classification settings trained from scratch. The performance is compared with baseline models trained
320 with the SGD, SAM, ASAM, and the integration of ASAM and Align-SAM. For all experiments of
321 Align-SAM, we consistently set $\lambda = 2$ and discuss the effect of this trade-off in Section A.3.

322 **ImageNet dataset.** We use ResNet18 and ResNet34 models for experiments on the ImageNet dataset,
323 with an input size of 224×224 . For all experiments with Align-SAM, we consistently set $\lambda = 2$,

324 while the perturbation radius ρ is configured according to the SAM method. Specifically, in this
 325 experiment, we set $\rho = 0.1$ for both SAM and Align-SAM. The models are trained for 200 epochs
 326 with basic data augmentations (random cropping, horizontal flipping, and normalization). We use an
 327 initial learning rate of 0.1, a batch size of 2048 for the training mini-batches, and 512 for the auxiliary
 328 mini-batches, following a cosine learning schedule across all experiments in this paper. We extend
 329 this experiment to the mid-sized Food101 dataset using the same settings, except for a batch size of
 330 128 for the training and 32 for the auxiliary mini-batches. Performance results are detailed in Table 1.
 331

332 Table 1: Classification accuracy on the ImageNet and Food101 datasets. All models are trained from
 333 scratch with 200 epochs.
 334

Dataset	Method	Resnet18		Resnet34	
		Top-1	Top-5	Top-1	Top-5
ImageNet	SAM	62.46	84.19	63.73	84.95
	Align-SAM	63.64	85.22	65.89	86.84
Food101	SAM	73.15	89.85	73.87	90.84
	Align-SAM	73.45	90.35	74.47	91.27

344 **CIFAR dataset.** We used three architectures: WideResnet28x10, Pyramid101, and Densenet121 with
 345 an input size of 32×32 for CIFAR datasets. To replicate the baseline experiments, we followed the
 346 hyperparameters provided in the original papers. Specifically, for CIFAR-100, we set $\rho = 0.1$, and for
 347 CIFAR-10, we used $\rho = 0.05$ for SAM, VASSO and Align-SAM. The same procedure and settings
 348 were applied to ASAM and Align-ASAM, with the perturbation radius $\rho = 1.0$ for CIFAR-100 and
 349 $\rho = 0.5$ for CIFAR-10. Other training configurations are consistent with those used in the ImageNet
 350 experiments, except for data augmentations (horizontal flipping, four-pixel padding, and random
 351 cropping). We use $\theta = 0.9$ as the default parameter for VASSO. The results are reproduced and
 352 reported in Tables 2, while the SGD results are referenced from Foret et al. (2021).

353 Our proposed method outperforms the baselines across various settings. On both ImageNet and
 354 Food101, it significantly surpasses the baselines, with a notable improvement in both Top-1 and Top-5
 355 accuracy. For CIFAR-10, performance is close to the saturation point, making further improvements
 356 challenging. Nevertheless, Align-SAM achieves slight enhancements across all cases. On CIFAR-
 357 100, where models are more prone to overfitting compared to CIFAR-10, Align-SAM still delivers
 358 competitive results.

361 4.2 TRANSFER LEARNING

363 In this subsection, we further evaluate Align-SAM in the transfer learning setting using the ImageNet
 364 pre-trained models to fine-tune both small-size, mid-size, and large-size datasets. All initialized
 365 weights are available on the Pytorch library.

366 First, we conduct experiments on ImageNet using three models from the ResNet family and a
 367 ViT-Adapter-S (which incorporates lightweight Adapter modules with a plain ViT-Small backbone).
 368 The ResNet models are pre-trained on ImageNet, while the backbone ViT-Small of ViT-Adapter-S
 369 is pre-trained on ImageNet-21k. Each model is then fine-tuned for 50 epochs using either SAM
 370 or Align-SAM with a learning rate of 0.01. We set $\rho = 0.05$ for SAM and Align-SAM; basic
 371 augmentation techniques are the same as training from the scratch setting. Results reported in Table 3
 372 show that our methods outperform baselines with a significant gap in both top-1 and top-5 accuracies.

373 Next, we examine this setting on small and mid-sized datasets on three models of the EfficientNet
 374 family. We fine-tune with a learning rate of 0.05 in 50 epochs and use $\rho = 0.1$ for all experiments
 375 of SAM, VASSO (with $\theta = 0.9$ as the default) Li & Giannakis (2024), and Align-SAM. In Table 4,
 376 Align-SAM achieves a noticeable improvement compared to most of the baselines on all small-size,
 377 mid-size, and large-size datasets, demonstrating its robustness and stability across various experiment
 settings.

378 Table 2: Classification accuracy on the CIFAR datasets. All models are trained from scratch three
 379 times with different random seeds and we report the mean and standard deviation of accuracies.
 380

381	Method	WideResnet28x10	Pyramid101	Densenet121
382 Dataset CIFAR-100				
384	SGD Foret et al. (2021)	81.20 ± 0.200	80.30 ± 0.300	-
385	SAM Foret et al. (2021)	83.00 ± 0.035	81.99 ± 0.636	68.72 ± 0.409
386	VASSO Li & Giannakis (2024)	83.11 ± 0.063	82.04 ± 0.127	69.00 ± 0.261
387	GSAM Zhuang et al. (2022)	83.13 ± 0.099	81.87 ± 0.143	68.88 ± 0.201
388	LookSAM (k=1) Liu et al. (2022)	82.89 ± 0.111	82.25 ± 0.273	69.05 ± 0.182
389	Align-SAM	83.72 ± 0.049	82.53 ± 0.282	69.10 ± 0.311
390	ASAM	83.16 ± 0.296	82.02 ± 0.134	69.62 ± 0.120
391	Align-ASAM	83.88 ± 0.042	82.31 ± 0.183	69.71 ± 0.339
392 Dataset CIFAR-10				
393	SGD Foret et al. (2021)	96.50 ± 0.100	96.00 ± 0.100	-
394	SAM Foret et al. (2021)	96.87 ± 0.027	96.17 ± 0.174	91.28 ± 0.241
395	VASSO Li & Giannakis (2024)	96.84 ± 0.014	96.22 ± 0.035	91.18 ± 0.063
396	GSAM Zhuang et al. (2022)	96.91 ± 0.020	96.15 ± 0.113	91.50 ± 0.109
397	LookSAM(k=1) Liu et al. (2022)	97.00 ± 0.181	96.00 ± 0.207	91.10 ± 0.196
398	Align-SAM	96.91 ± 0.007	96.47 ± 0.219	91.54 ± 0.307
399	ASAM Kwon et al. (2021)	96.91 ± 0.063	96.45 ± 0.042	92.04 ± 0.240
400	Align-ASAM	97.15 ± 0.063	96.56 ± 0.261	92.02 ± 0.000

401 Table 3: Transfer learning on ImageNet with Resnet models.

402 Model	Top-1 Acc		Top-5 Acc	
	SAM Foret et al. (2021)	Align-SAM	SAM Foret et al. (2021)	Align-SAM
405 Resnet18	70.44 ± 0.12	70.92 ± 0.05	89.63 ± 0.04	89.90 ± 0.04
406 Resnet34	73.06 ± 0.48	73.94 ± 0.14	91.29 ± 0.03	91.81 ± 0.03
407 Resnet50	$75.17 \pm \text{---}$	$75.91 \pm \text{---}$	$92.58 \pm \text{---}$	$92.83 \pm \text{---}$
408 ViT-Adapter-S	$79.96 \pm \text{---}$	$80.04 \pm \text{---}$	$95.35 \pm \text{---}$	$95.39 \pm \text{---}$

409 Table 4: Transfer learning accuracy of small and medium datasets. All models are fine-tuned from
 410 pre-trained weights on ImageNet.
 411

412 Dataset	Top-1 Acc				Top-5 Acc			
	SGD	SAM	VASSO	Align-SAM	SGD	SAM	VASSO	Align-SAM
413 EfficientNet-B2								
414 Stanford Cars	89.14 ± 0.11	89.68 ± 0.17	89.91 ± 0.24	90.39 ± 0.07	97.60 ± 0.20	98.04 ± 0.07	98.03 ± 0.09	98.30 ± 0.09
415 FGVC-Aircraft	85.83 ± 0.23	86.25 ± 0.36	86.23 ± 0.22	87.22 ± 0.27	95.72 ± 0.02	95.87 ± 0.06	95.94 ± 0.05	95.94 ± 0.03
416 Oxford IIIT Pets	92.17 ± 0.19	92.34 ± 0.11	92.40 ± 0.16	92.64 ± 0.17	99.23 ± 0.02	99.35 ± 0.02	99.34 ± 0.01	99.35 ± 0.07
417 Flower102	95.06 ± 0.01	95.22 ± 0.14	95.37 ± 0.11	95.43 ± 0.10	99.08 ± 0.18	99.11 ± 0.19	99.23 ± 0.09	99.18 ± 0.02
418 Food101	83.50 ± 0.01	85.12 ± 0.07	84.65 ± 0.03	85.51 ± 0.02	96.10 ± 0.32	96.83 ± 0.08	96.60 ± 0.09	97.14 ± 0.00
419 Country211	11.94 ± 0.14	12.48 ± 0.03	12.49 ± 0.10	13.41 ± 0.00	23.70 ± 0.13	25.49 ± 0.07	24.90 ± 0.13	27.06 ± 0.16
420 EfficientNet-B3								
421 Stanford Cars	89.01 ± 0.19	89.40 ± 0.09	89.55 ± 0.12	89.86 ± 0.14	97.73 ± 0.21	98.03 ± 0.07	98.01 ± 0.05	98.10 ± 0.01
422 FGVC-Aircraft	84.88 ± 0.08	85.19 ± 0.11	85.15 ± 0.19	85.78 ± 0.25	95.53 ± 0.12	95.67 ± 0.00	95.67 ± 0.02	96.26 ± 0.10
423 Oxford IIIT Pets	92.68 ± 0.25	92.58 ± 0.02	92.64 ± 0.06	92.75 ± 0.19	99.00 ± 0.01	99.19 ± 0.05	99.23 ± 0.10	99.26 ± 0.11
424 Flower102	94.59 ± 0.10	94.73 ± 0.14	94.94 ± 0.17	95.32 ± 0.26	98.95 ± 0.08	99.12 ± 0.16	99.13 ± 0.07	99.26 ± 0.07
425 Food101	83.75 ± 0.12	85.79 ± 0.13	85.69 ± 0.14	85.95 ± 0.13	96.22 ± 0.02	97.12 ± 0.00	97.07 ± 0.09	97.33 ± 0.00
426 Country211	12.96 ± 0.01	13.38 ± 0.09	13.36 ± 0.08	13.61 ± 0.05	26.11 ± 0.56	25.78 ± 0.08	25.91 ± 0.05	26.71 ± 0.26
427 EfficientNet-B4								
428 Stanford Cars	84.72 ± 0.04	85.08 ± 0.16	85.06 ± 0.07	85.46 ± 0.32	96.41 ± 0.07	96.45 ± 0.01	96.53 ± 0.04	96.81 ± 0.00
429 FGVC-Aircraft	79.95 ± 0.61	79.96 ± 0.04	80.02 ± 0.38	80.53 ± 0.51	94.87 ± 0.08	94.65 ± 0.08	94.68 ± 0.13	94.74 ± 0.01
Oxford IIIT Pets	91.89 ± 0.13	92.02 ± 0.23	92.04 ± 0.18	92.07 ± 0.00	99.28 ± 0.10	99.43 ± 0.07	99.59 ± 0.08	99.44 ± 0.02
Flower102	92.73 ± 0.04	93.02 ± 0.14	93.02 ± 0.16	93.07 ± 0.16	98.49 ± 0.07	98.68 ± 0.02	98.73 ± 0.07	98.63 ± 0.05
Food101	84.55 ± 0.14	86.13 ± 0.06	86.18 ± 0.10	86.40 ± 0.44	96.31 ± 0.03	97.07 ± 0.01	97.07 ± 0.03	97.31 ± 0.02
Country211	14.63 ± 0.09	14.80 ± 0.13	14.97 ± 0.11	15.26 ± 0.16	27.60 ± 0.00	28.09 ± 1.77	28.00 ± 0.18	28.24 ± 0.14

432 4.3 TRAIN WITH NOISY LABEL
433

434 In addition to mitigating data shifts between training and testing datasets, we evaluate the robustness
435 of Align-SAM against noisy labels on the standard training procedure. Specifically, we adopt a
436 classical noisy-label setting for CIFAR-10 and CIFAR-100, in which a portion of the training set's
437 labels are symmetrically flipped with noise fractions $\{0.2, 0.4, 0.6, 0.8\}$, while the testing set's labels
438 remain unchanged.

439 Table 5: Results under label noise on CIFAR datasets with ResNet32. Each experiment is conducted
440 three times using different random seeds, and we report their averages and standard deviations.
441

442 Method	Noise rate (%)			
	443 0.2	0.4	0.6	0.8
445 Dataset CIFAR-100				
446 SGD	66.22 \pm 0.355	59.26 \pm 0.045	46.77 \pm 0.020	26.49 \pm 0.640
447 SAM	66.16 \pm 0.721	59.95 \pm 0.622	50.81 \pm 0.353	24.26 \pm 1.209
448 FSAM	65.73 \pm 0.219	58.96 \pm 0.381	49.36 \pm 1.103	25.92 \pm 1.173
449 VASSO ($\theta = 0.9$)	66.52 \pm 0.254	59.67 \pm 0.318	50.09 \pm 0.353	20.85 \pm 0.077
450 VASSO ($\theta = 0.2$)	65.16 \pm 0.042	59.07 \pm 0.820	48.35 \pm 1.046	28.49 \pm 0.551
451 Align-SAM	66.78 \pm 0.657	60.78 \pm 0.636	51.03 \pm 0.502	27.66 \pm 1.265
452 ASAM	66.88 \pm 0.593	61.53 \pm 0.487	52.77 \pm 0.561	30.33 \pm 1.788
453 Align-ASAM	67.38 \pm 0.106	62.72 \pm 0.304	54.58 \pm 0.572	32.77 \pm 0.388
454 Dataset CIFAR-10				
455 SGD	89.98 \pm 0.070	84.83 \pm 0.085	75.06 \pm 0.385	54.47 \pm 1.265
456 SAM	91.26 \pm 0.007	88.19 \pm 1.060	83.43 \pm 0.622	61.69 \pm 0.289
457 FSAM	91.35 \pm 0.318	87.58 \pm 0.353	82.78 \pm 2.057	58.09 \pm 2.276
458 VASSO ($\theta = 0.9$)	91.47 \pm 0.487	88.17 \pm 0.890	83.75 \pm 0.480	67.71 \pm 4.129
459 VASSO ($\theta = 0.2$)	90.45 \pm 0.855	86.28 \pm 0.997	77.33 \pm 0.806	70.95 \pm 0.770
460 Align-SAM	92.38 \pm 0.007	90.20 \pm 0.318	85.33 \pm 0.268	70.02 \pm 0.403
461 ASAM	91.98 \pm 0.007	89.24 \pm 0.572	84.39 \pm 0.445	64.82 \pm 6.880
462 Align-ASAM	92.06 \pm 0.367	90.01 \pm 0.282	86.09 \pm 0.657	73.25 \pm 0.353

463 All experiments are conducted using the ResNet32 architecture, with models trained from scratch
464 for 200 epochs. The batch size is set to 512 for the training mini-batches and 128 for the auxiliary
465 mini-batches. Following Foret et al. (2021), we set $\rho = 0.1$ SAM, FSAM Li et al. (2024), VASSO Li
466 & Giannakis (2024), and Align-SAM, $\rho = 1.0$ for ASAM and Align-ASAM when training with all
467 noise levels. Exceptionally, for the setting with 80% noisy labels, the perturbation radius for SAM,
468 FSAM, Align-SAM, ASAM, and Align-ASAM is reduced by half to ensure more stable convergence.
469 This observation is also noted in Li et al. (2024) and Foret et al. (2021).

470 In line with Li et al. (2024), we apply additional cutout techniques along with the basic augmentations
471 outlined in Section 4.1. We report the results of VASSO with $\theta = \{0.2, 0.9\}$, as presented in their
472 paper Li & Giannakis (2024), where $\theta = 0.2$ is expected to yield better performance. However, we
473 observe that $\theta = 0.2$ performs better only in the setting with 80% noisy labels, while in other noisy
474 label settings, it gives a lower result compared to $\theta = 0.9$. Each experiment is repeated three times
475 with different random seeds, and we report the average and standard deviation of the results in Table
476 5. Note that training with SGD is prone to overfitting as the number of epochs increases. Therefore,
477 we present the best results for SGD training at both 200 and 400 epochs.

478 5 ABLATION STUDY
479480 5.1 COSINE SIMILARITY OF GRADIENTS
481

482 We present the cosine similarity of gradients before and update the model using SAM and Align-SAM
483 in Figure 1. Detail analysis is presented in Appendix A.3.
484

485 **The size of the auxiliary subset $|B^a|$ and complexity, the sensitivity of trade-off coefficient λ ,
the analysis of loss landscape**, and details of these experiments are presented in Appendix A.3.

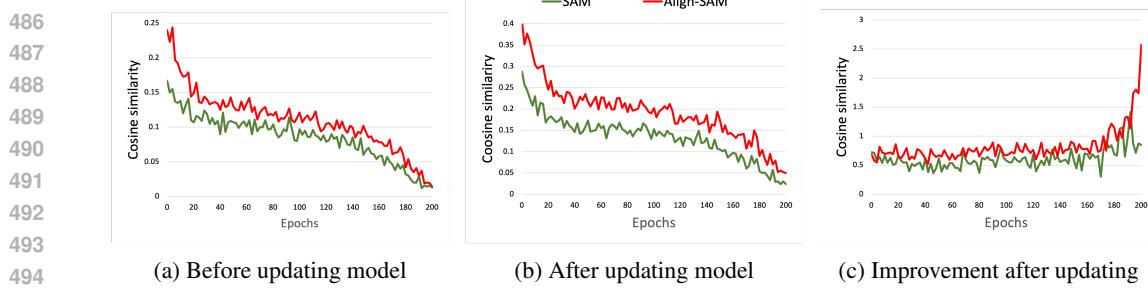


Figure 1: Cosine similarity of two gradients $\nabla_{\theta} \mathcal{L}_{B^t}$ (θ_l) and $\nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)$ (a) before updating model, (b) after updating model and (c) the improvement of this similarity.

6 CONCLUSION AND LIMITATION

In conclusion, this work revisits Sharpness-Aware Minimization (SAM) through the lens of cross-subset alignment, offering a fresh perspective on generalization. While SAM encourages flat minima to improve generalization, we argue that effective generalization also hinges on the alignment between two independently sampled subsets from the same data distribution. Building on this insight, we introduce *Align-SAM* to find models that minimize sharpness and loss on the primary subset while simultaneously maintaining low loss on the auxiliary subset, thereby ensuring stability across resamplings of the data distribution. By explicitly aligning the optimization process across both subsets, Align-SAM produces models that are not only robust to perturbations but also more resilient to distributional shifts. Extensive experiments confirm that Align-SAM delivers consistent gains in generalization, particularly under challenging conditions such as label noise and data scarcity. One limitation to note is that using an additional auxiliary subset in each training iteration may increase training time (depending on the size of the auxiliary sets). We view this as a trade-off between performance and training complexity. However, this issue could potentially be mitigated by reusing the gradients from the previous steps. We leave this as a direction for future work to reduce training complexity while maintaining performance.

REFERENCES

Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-aware model-agnostic meta learning. *arXiv preprint arXiv:2206.03996*, 2022.

Pierre Alquier. User-friendly introduction to pac-bayes bounds, 2023. URL <https://arxiv.org/abs/2110.11216>.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approximations of gibbs posteriors. *Journal of Machine Learning Research*, 17(236), 2016a. URL <http://jmlr.org/papers/v17/15-290.html>.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approximations of gibbs posteriors. *The Journal of Machine Learning Research*, 17(1):8374–8414, 2016b.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization. In *International Conference on Machine Learning*, pp. 639–668. PMLR, 2022a.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 639–668. PMLR, 17–23 Jul 2022b. URL <https://proceedings.mlr.press/v162/andriushchenko22a.html>.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in deep networks. In *International conference on machine learning*, pp. 233–242. PMLR, 2017.

540 Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language
 541 model generalization. In *Proceedings of the 60th Annual Meeting of the Association for*
 542 *Computational Linguistics (Volume 1: Long Papers)*, pp. 7360–7371, Dublin, Ireland, May
 543 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.508. URL
 544 <https://aclanthology.org/2022.acl-long.508>.

545 Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
 546 structural results. *J. Mach. Learn. Res.*, 3(null):463–482, mar 2003. ISSN 1532-4435.

547 Olivier Bousquet and André Elisseeff. Stability and generalization. *The Journal of Machine Learning*
 548 *Research*, 2:499–526, 2002.

549 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
 550 and Sungrae Park. Swad: Domain generalization by seeking flat minima. *Advances in Neural*
 551 *Information Processing Systems*, 34:22405–22418, 2021.

552 Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
 553 without pre-training or strong data augmentations. *arXiv preprint arXiv:2106.01548*, 2021.

554 Zixiang Chen, Junkai Zhang, Yiwen Kou, Xiangning Chen, Cho-Jui Hsieh, and Quanquan Gu.
 555 Why does sharpness-aware minimization generalize better than sgd? In *Proceedings of the 37th*
 556 *International Conference on Neural Information Processing Systems*, NIPS ’23, Red Hook, NY,
 557 USA, 2023. Curran Associates Inc.

558 Jiaxin Deng, Junbiao Pang, Baochang Zhang, and Guodong Guo. Asymptotic unbiased sample
 559 sampling to speed up sharpness-aware minimization. In *Proceedings of the AAAI Conference on*
 560 *Artificial Intelligence*, volume 39, pp. 16208–16216, 2025.

561 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
 562 deep nets. In *International Conference on Machine Learning*, pp. 1019–1028. PMLR, 2017.

563 Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
 564 for free. *Advances in Neural Information Processing Systems*, 35:23439–23451, 2022.

565 Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
 566 deep (stochastic) neural networks with many more parameters than training data. In *UAI*. AUAI
 567 Press, 2017a.

568 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
 569 deep (stochastic) neural networks with many more parameters than training data. *arXiv preprint*
 570 *arXiv:1703.11008*, 2017b.

571 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 572 deep networks. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International*
 573 *Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp.
 574 1126–1135. PMLR, 06–11 Aug 2017.

575 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 576 for efficiently improving generalization. In *International Conference on Learning Representations*,
 577 2021. URL <https://openreview.net/forum?id=6Tm1mpos1rM>.

578 Stanislav Fort and Surya Ganguli. Emergent properties of the local geometry of neural loss landscapes.
 579 *arXiv preprint arXiv:1910.05929*, 2019.

580 Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
 581 programming for hyperparameter optimization and meta-learning. In Jennifer Dy and Andreas
 582 Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80
 583 of *Proceedings of Machine Learning Research*, pp. 1568–1577. PMLR, 10–15 Jul 2018. URL
 584 <https://proceedings.mlr.press/v80/franceschi18a.html>.

585 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo Jun, Hassan Kianinejad,
 586 Md. Mostafa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 587 empirically. *CoRR*, abs/1712.00409, 2017.

594 Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima. In
 595 *NIPS*, pp. 529–536. MIT Press, 1994.
 596

597 Bin Huang, Ying Xie, and Chaoyang Xu. Learning with noisy labels via clean aware sharpness aware
 598 minimization. *Scientific Reports*, 15(1):1350, 2025.

599 Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
 600 and Amos J. Storkey. Three factors influencing minima in sgd. *ArXiv*, abs/1711.04623, 2017.

601

602 Jie Ji, Gen Li, Jingjing Fu, Fatemeh Afghah, Linke Guo, Xiaoyong Yuan, and Xiaolong Ma. A single-
 603 step, sharpness-aware minimization is all you need to achieve efficient and accurate sparse training.
 604 In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
 605 *Advances in Neural Information Processing Systems*, volume 37, pp. 44269–44290. Curran Asso-
 606 ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/4e5a47c427ec16ec863e547bc1aeb70c-Paper-Conference.pdf.

607

608 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 609 generalization measures and where to find them. In *ICLR*. OpenReview.net, 2020.

610

611 Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. A fair comparison of two popular flat
 612 minima optimizers: Stochastic weight averaging vs. sharpness-aware minimization. *arXiv preprint*
 613 *arXiv:2202.00661*, 1, 2022.

614

615 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 616 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 617 *CoRR*, abs/2001.08361, 2020.

618

619 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
 620 Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In *ICLR*.
 621 OpenReview.net, 2017.

622

623 Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher SAM: Information geometry
 624 and sharpness aware minimisation. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
 625 Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference*
 626 *on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 11148–
 627 11161. PMLR, 17–23 Jul 2022.

628

629 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
 630 minimization for scale-invariant learning of deep neural networks. In *International Conference on*
 631 *Machine Learning*, pp. 5905–5914. PMLR, 2021.

632

633 Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
 634 suppression. *Advances in Neural Information Processing Systems*, 36, 2024.

635

636 Sicong Li, Qianqian Xu, Zhiyong Yang, Zitai Wang, Linchao Zhang, Xiaochun Cao, and Qingming
 637 Huang. Focal-SAM: Focal sharpness-aware minimization for long-tailed classification. In *Forty-
 638 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=1Ck4PZto8T>.

639

640 Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
 641 minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 642 *Recognition*, pp. 5631–5640, 2024.

643

644 Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning
 645 regularization prevents memorization of noisy labels. *Advances in neural information processing*
 646 *systems*, 33:20331–20342, 2020.

647

648 Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
 649 sharpness-aware minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 650 *and Pattern Recognition*, pp. 12360–12370, 2022.

648 Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, and Trung Le. Explicit
 649 eigenvalue regularization improves sharpness-aware minimization. In *The Thirty-eighth Annual*
 650 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=JFUhBY34SC>.

651

652 David A. McAllester. Pac-bayesian model averaging. In *Proceedings of the Twelfth Annual Conference on Computational Learning Theory*, COLT '99, pp. 164–170, New York, NY, USA, 1999. Association for Computing Machinery. ISBN 1581131674. doi: 10.1145/307400.307435. URL <https://doi.org/10.1145/307400.307435>.

653

654 Thomas Möllenhoff and Mohammad Emtiyaz Khan. Sam as an optimal relaxation of bayes. *arXiv*
 655 *preprint arXiv:2210.01620*, 2022.

656

657 Enea Monzio Compagnoni, Luca Biggio, Antonio Orvieto, Frank Norbert Proske, Hans Kersting,
 658 and Aurelien Lucchi. An SDE for modeling SAM: Theory and insights. In Andreas Krause,
 659 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
 660 (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of
 661 *Proceedings of Machine Learning Research*, pp. 25209–25253. PMLR, 23–29 Jul 2023. URL
 662 <https://proceedings.mlr.press/v202/monzio-compagnoni23a.html>.

663

664 Gonçalo Mordido, Pranshu Malviya, Aristide Baratin, and Sarath Chandar. Lookbehind-SAM: k
 665 steps back, 1 step forward. In *Forty-first International Conference on Machine Learning*, 2024.
 666 URL <https://openreview.net/forum?id=vCN51wcWWE>.

667

668 Sayan Mukherjee, Partha Niyogi, Tomaso A. Poggio, and Ryan M. Rifkin. Statistical learning: Stability
 669 is sufficient for generalization and necessary and sufficient for consistency of empirical risk
 670 minimization. 2002. URL <https://api.semanticscholar.org/CorpusID:7478036>.

671

672 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization
 673 in deep learning. *Advances in neural information processing systems*, 30, 2017.

674

675 Tuan H Nguyen, Paymon Haddad, Eric Gan, and Baharan Mirzasoleiman. Changing the training data
 676 distribution to reduce simplicity bias improves in-distribution generalization. *Advances in Neural*
 677 *Information Processing Systems*, 37:68854–68896, 2024.

678

679 Van-Anh Nguyen, Tung-Long Vuong, Hoang Phan, Thanh-Toan Do, Dinh Phung, and Trung Le. Flat
 680 seeking bayesian neural network. In *Advances in Neural Information Processing Systems*, 2023.

681

682 Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative
 683 flatness and generalization. In *NeurIPS*, pp. 18420–18432, 2021.

684

685 Hoang Phan, Ngoc Tran, Trung Le, Toan Tran, Nhat Ho, and Dinh Phung. Stochastic multiple target
 686 sampling gradient descent. *Advances in neural information processing systems*, 2022.

687

688 Tomaso Poggio, Ryan Rifkin, Sayan Mukherjee, and Partha Niyogi. General conditions for predictivity
 689 in learning theory. *Nature*, 428(6981):419–422, 2004.

690

691 Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
 692 sharpness aware minimization. *arXiv preprint arXiv:2206.02618*, 2022.

693

694 Dongkuk Si and Chulhee Yun. Practical sharpness-aware minimization cannot converge all the way
 695 to optima. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
 696 Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on*
 697 *Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December*
 698 *10 - 16, 2023*, 2023.

699

700 Chengli Tan, Jiangshe Zhang, Junmin Liu, Yicheng Wang, and Yunda Hao. Stabilizing sharpness-
 701 aware minimization through a simple renormalization strategy. *Journal of Machine Learning*
 702 *Research*, 26(68):1–35, 2025.

703

704 Vladimir Naumovich Vapnik. Statistical learning theory. In *Adaptive and Learning Systems for*
 705 *Signal Processing, Communications, and Control*. Wiley, 1998.

702 Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout.
 703 In *International conference on machine learning*, pp. 10181–10192. PMLR, 2020.
 704

705 Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize
 706 sharpness to achieve better generalization. In *Thirty-seventh Conference on Neural Information
 707 Processing Systems*, 2023a. URL <https://openreview.net/forum?id=Dkmpa6wCIx>.
 708

709 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes sharpness?
 710 In *The Eleventh International Conference on Learning Representations*, 2023b. URL <https://openreview.net/forum?id=5spDgWmpY6x>.
 711

712 Xinda Xing, Qiugang Zhan, Xiurui Xie, Yuning Yang, Qiang Wang, and Guisong Liu. Flexible
 713 sharpness-aware personalized federated learning. In *Proceedings of the AAAI Conference on
 714 Artificial Intelligence*, volume 39, pp. 21707–21715, 2025.
 715

716 Runsheng Yu, Youzhi Zhang, and James Kwok. Improving sharpness-aware minimization by
 717 lookahead. In *Forty-first International Conference on Machine Learning*, 2024.
 718

719 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 720 deep learning requires rethinking generalization. *arXiv preprint arXiv:1611.03530*, 2016.
 721

722 Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
 723 seeks first-order flatness and improves generalization. In *Proceedings of the IEEE/CVF Conference
 724 on Computer Vision and Pattern Recognition*, pp. 20247–20257, 2023.
 725

726 Yixuan Zhou, Yi Qu, Xing Xu, and Hengtao Shen. Imbsam: A closer look at sharpness-aware
 727 minimization in class-imbalanced recognition. In *Proceedings of the IEEE/CVF International
 728 Conference on Computer Vision*, pp. 11345–11355, 2023a.
 729

730 Zhipeng Zhou, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, and Wei Gong. Class-conditional
 731 sharpness-aware minimization for deep long-tailed recognition. In *Proceedings of the IEEE/CVF
 732 conference on computer vision and pattern recognition*, pp. 3499–3509, 2023b.
 733

734 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C. Dvornek, Sekhar
 735 Tatikonda, James S. Duncan, and Ting Liu. Surrogate gap minimization improves sharpness
 736 aware training. In *International Conference on Learning Representations (ICLR)*, 2022. URL
 737 <https://arxiv.org/abs/2203.08065>.
 738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX / SUPPLEMENTAL MATERIAL**
 757

758 In this appendix, we present the proofs in our paper and additional experiments. We open-source
 759 our code and provide instruction, scripts, and log files to reproduce experiments at <https://anonymous.4open.science/r/AlignSAM-43CD/README.md>
 760

761 **A.1 ALL PROOFS**
 762

763 **Proof of Theorem 1**
 764

766 *Proof.* We use the PAC-Bayes theory in this proof. In PAC-Bayes theory, θ could follow a distribution,
 767 says P , thus we define the expected loss over θ distributed by P as follows:

768
$$\mathcal{L}_D(\theta, P) = \mathbb{E}_{\theta \sim P} [\mathcal{L}_D(\theta)]$$

 769
$$\mathcal{L}_S(\theta, P) = \mathbb{E}_{\theta \sim P} [\mathcal{L}_S(\theta)].$$

 770

771 For any distribution $P = \mathcal{N}(\mathbf{0}, \sigma_P^2 \mathbb{I}_k)$ and $Q = \mathcal{N}(\theta, \sigma^2 \mathbb{I}_k)$ over $\theta \in \mathbb{R}^k$, where P is the prior
 772 distribution and Q is the posterior distribution, use the PAC-Bayes theorem in Alquier et al. (2016a),
 773 for all $\beta > 0$, with a probability at least $1 - \delta$, we have
 774

775
$$\mathcal{L}_D(\theta, Q) \leq \mathcal{L}_S(\theta, Q) + \frac{1}{\beta} \left[\text{KL}(Q \| P) + \log \frac{1}{\delta} + \Psi(\beta, N) \right], \quad (9)$$

 776

777 where Ψ is defined as
 778

779
$$\Psi(\beta, N) = \log \mathbb{E}_P \mathbb{E}_{D^N} \left[\exp \left\{ \beta [\mathcal{L}_D(f_\theta) - \mathcal{L}_S(f_\theta)] \right\} \right].$$

 780

781 When the loss function is bounded by L , then
 782

783
$$\Psi(\beta, N) \leq \frac{\beta^2 L^2}{8N}.$$

 784

785 The task is to minimize the second term of RHS of (9), we thus choose $\beta = \sqrt{8N} \frac{\text{KL}(Q \| P) + \log \frac{1}{\delta}}{L}$.
 786 Then the second term of RHS of (9) is equal to
 787

788
$$\sqrt{\frac{\text{KL}(Q \| P) + \log \frac{1}{\delta}}{2N}} \times L.$$

 789

790 The KL divergence between Q and P , when they are Gaussian, is given by formula
 791

792
$$\text{KL}(Q \| P) = \frac{1}{2} \left[\frac{k\sigma^2 + \|\theta\|^2}{\sigma_P^2} - k + k \log \frac{\sigma_P^2}{\sigma^2} \right].$$

 793

794 For given posterior distribution Q with fixed σ^2 , to minimize the KL term, the σ_P^2 should be equal to
 795 $\sigma^2 + \|\theta\|^2/k$. In this case, the KL term is no less than
 796

797
$$k \log \left(1 + \frac{\|\theta_0\|^2}{k\sigma^2} \right).$$

 798

799 Thus, the second term of RHS is
 800

801
$$\sqrt{\frac{\text{KL}(Q \| P) + \log \frac{1}{\delta}}{2N}} \times L \geq \sqrt{\frac{k \log \left(1 + \frac{\|\theta\|^2}{k\sigma^2} \right)}{4N}} \times L \geq L$$

 802

803 when $\|\theta\|^2 > \sigma^2 \{ \exp(4N/k) - 1 \}$. Hence, for any $\|\theta\|_2 > \sigma^2 \{ \exp(4N/k) - 1 \}$, we have the
 804 RHS is greater than the LHS, and the inequality is trivial. In this work, we only consider the case:
 805

806
$$\|\theta\|^2 < \sigma^2 (\exp\{4N/k\} - 1). \quad (10)$$

 807

808 Distribution P is Gaussian centered around $\mathbf{0}$ with variance $\sigma_P^2 = \sigma^2 + \|\theta\|^2/k$, which is unknown
 809 at the time we set up the inequality, since θ is unknown. Meanwhile, we have to specify P in advance,

since P is the prior distribution. To deal with this problem, we could choose a family of P such that its means cover the space of θ satisfying inequality (10). We set

$$\begin{aligned} c &= \sigma^2(1 + \exp\{4N/k\}) \\ P_j &= \mathcal{N}(0, c \exp \frac{1-j}{k} \mathbb{I}_k) \\ \mathfrak{P} &:= \{P_j : j = 1, 2, \dots\} \end{aligned}$$

Then the following inequality holds for a particular distribution P_j with probability $1 - \delta_j$ with $\delta_j = \frac{6\delta}{\pi^2 j^2}$

$$\mathbb{E}_{\theta' \sim \mathcal{N}(\theta, \sigma^2)} \mathcal{L}_{\mathcal{D}}(f_{\theta'}) \leq \mathbb{E}_{\theta' \sim \mathcal{N}(\theta, \sigma^2)} \mathcal{L}_{\mathcal{S}}(f_{\theta'}) + \frac{1}{\beta} \left[\text{KL}(Q \| P_j) + \log \frac{1}{\delta_j} + \Psi(\beta, N) \right].$$

Use the well-known equation: $\sum_{j=1}^{\infty} \frac{1}{j^2} = \frac{\pi^2}{6}$, then with probability $1 - \delta$, the above inequality holds with every j . We pick

$$j^* := \left\lfloor 1 - k \log \frac{\sigma^2 + \|\theta\|^2/k}{c} \right\rfloor = \left\lfloor 1 - k \log \frac{\sigma^2 + \|\theta\|^2/k}{\sigma^2(1 + \exp\{4N/k\})} \right\rfloor.$$

Therefore,

$$\begin{aligned} 1 - j^* &= \left\lceil k \log \frac{\sigma^2 + \|\theta\|^2/k}{c} \right\rceil \\ \Rightarrow \log \frac{\sigma^2 + \|\theta\|^2/k}{c} &\leq \frac{1 - j^*}{k} \leq \log \frac{\sigma^2 + \|\theta_0\|^2/k}{c} + \frac{1}{k} \\ \Rightarrow \sigma^2 + \|\theta\|^2/k &\leq c \exp \left\{ \frac{1 - j^*}{k} \right\} \leq \exp(1/k) [\sigma^2 + \|\theta\|^2/k] \\ \Rightarrow \sigma^2 + \|\theta\|^2/k &\leq \sigma_{P_{j^*}}^2 \leq \exp(1/k) [\sigma^2 + \|\theta\|^2/k]. \end{aligned}$$

Thus the KL term could be bounded as follow

$$\begin{aligned} \text{KL}(Q \| P_{j^*}) &= \frac{1}{2} \left[\frac{k\sigma^2 + \|\theta\|^2}{\sigma_{P_{j^*}}^2} - k + k \log \frac{\sigma_{P_{j^*}}^2}{\sigma^2} \right] \\ &\leq \frac{1}{2} \left[\frac{k(\sigma^2 + \|\theta\|^2/k)}{\sigma^2 + \|\theta\|^2/k} - k + k \log \frac{\exp(1/k)(\sigma^2 + \|\theta\|^2/k)}{\sigma^2} \right] \\ &= \frac{1}{2} \left[k \log \frac{\exp(1/k)(\sigma^2 + \|\theta\|^2/k)}{\sigma^2} \right] \\ &= \frac{1}{2} \left[1 + k \log \left(1 + \frac{\|\theta_0\|^2}{k\sigma^2} \right) \right] \end{aligned}$$

For the term $\log \frac{1}{\delta_{j^*}}$, with recall that $c = \sigma^2(1 + \exp(4N/k))$ and

$j^* = \left\lfloor 1 - k \log \frac{\sigma^2 + \|\theta\|^2/k}{\sigma^2(1 + \exp\{4N/k\})} \right\rfloor$, we have

$$\begin{aligned} \log \frac{1}{\delta_{j^*}} &= \log \frac{(j^*)^2 \pi^2}{6\delta} = \log \frac{1}{\delta} + \log \left(\frac{\pi^2}{6} \right) + 2 \log(j^*) \\ &\leq \log \frac{1}{\delta} + \log \frac{\pi^2}{6} + 2 \log \left(1 + k \log \frac{\sigma^2(1 + \exp(4N/k))}{\sigma^2 + \|\theta\|^2/k} \right) \\ &\leq \log \frac{1}{\delta} + \log \frac{\pi^2}{6} + 2 \log \left(1 + k \log(1 + \exp(4N/k)) \right) \\ &\leq \log \frac{1}{\delta} + \log \frac{\pi^2}{6} + 2 \log \left(1 + k \left(1 + \frac{4N}{k} \right) \right) \\ &\leq \log \frac{1}{\delta} + \log \frac{\pi^2}{6} + \log(1 + k + 4N). \end{aligned}$$

864 Hence, the inequality
 865

$$\begin{aligned}
 \mathcal{L}_{\mathcal{D}}(\theta', \mathcal{N}(\theta, \sigma^2 \mathbb{I}_k)) &\leq \mathcal{L}_{\mathcal{S}}(\theta', \mathcal{N}(\theta, \sigma^2 \mathbb{I}_k)) + \sqrt{\frac{\text{KL}(Q \| P_{j^*}) + \log \frac{1}{\delta_{j^*}}}{2N} \times L} \\
 &\leq \mathcal{L}_{\mathcal{S}}(\theta', \mathcal{N}(\theta, \sigma^2 \mathbb{I}_k)) \\
 &\quad + \frac{L}{2\sqrt{N}} \sqrt{1 + k \log \left(1 + \frac{\|\theta\|^2}{k\sigma^2}\right) + 2 \log \frac{\pi^2}{6\delta} + 4 \log(N+k)} \\
 &\leq \mathcal{L}_{\mathcal{S}}(\theta', \mathcal{N}(\theta, \sigma^2 \mathbb{I}_k)) \\
 &\quad + \frac{L}{2\sqrt{N}} \sqrt{k \log \left(1 + \frac{\|\theta\|^2}{k\sigma^2}\right) + O(1) + 2 \log \frac{1}{\delta} + 4 \log(N+k)}.
 \end{aligned}$$

878 Since $\|\theta' - \theta\|^2$ is k chi-square distribution, for any positive t , we have
 879

$$\mathbb{P}(\|\theta' - \theta\|^2 - k\sigma^2 \geq 2\sigma^2\sqrt{kt} + 2t\sigma^2) \leq \exp(-t).$$

881 By choosing $t = \frac{1}{2} \log(N)$, with probability $1 - N^{-1/2}$, we have
 882

$$\|\theta' - \theta\|^2 \leq \sigma^2 \log(N) + k\sigma^2 + \sigma^2 \sqrt{2k \log(N)} \leq k\sigma^2 \left(1 + \sqrt{\frac{\log(N)}{k}}\right)^2.$$

886 By setting $\sigma = \rho \times (\sqrt{k} + \sqrt{\log(N)})^{-1}$, we have $\|\theta' - \theta\|^2 \leq \rho^2$. Hence, we get
 887

$$\begin{aligned}
 \mathcal{L}_{\mathcal{S}}(\theta', \mathcal{N}(\theta, \sigma^2 \mathbb{I}_k)) &= \mathbb{E}_{\theta \sim \mathcal{N}(\theta, \sigma^2 \mathbb{I}_k)} \mathbb{E}_{\mathcal{S}}[f_{\theta'}] = \int_{\|\theta' - \theta\| \leq \rho} \mathbb{E}_{\mathcal{S}}[f_{\theta'}] d\mathcal{N}(\theta, \sigma^2 \mathbb{I}) \\
 &\quad + \int_{\|\theta' - \theta\| > \rho} \mathbb{E}_{\mathcal{S}}[f_{\theta'}] d\mathcal{N}(\theta, \sigma^2 \mathbb{I}) \\
 &\leq \left(1 - \frac{1}{\sqrt{N}}\right) \max_{\|\theta' - \theta\| \leq \rho} \mathcal{L}_{\mathcal{S}}(\theta') + \frac{1}{\sqrt{N}} L \\
 &\leq \max_{\|\theta' - \theta\|_2 \leq \rho} \mathcal{L}_{\mathcal{S}}(\theta') + \frac{2L}{\sqrt{N}}.
 \end{aligned}$$

897 It follows that
 898

$$\begin{aligned}
 \mathcal{L}_{\mathcal{D}}(\theta) &\leq \max_{\|\theta' - \theta\| \leq \rho} \mathcal{L}_{\mathcal{S}}(\theta') + \frac{4L}{\sqrt{N}} \left[\sqrt{k \log \left(1 + \frac{\|\theta\|^2}{\rho^2} (1 + \sqrt{\log(N)/k})^2\right)} \right. \\
 &\quad \left. + 2 \sqrt{\log \left(\frac{N+k}{\delta}\right)} + O(1) \right] \\
 &= \mathcal{L}_{\mathcal{D}}(\theta | \mathcal{S}) + \frac{4L}{\sqrt{N}} \left[\sqrt{k \log \left(1 + \frac{\|\theta\|^2}{\rho^2} (1 + \sqrt{\log(N)/k})^2\right)} \right. \\
 &\quad \left. + 2 \sqrt{\log \left(\frac{N+k}{\delta}\right)} + O(1) \right].
 \end{aligned}$$

910 By choosing $\theta = \theta^*$, which is the solution on a random subset S^t and $\mathcal{S} = S^a$, which is another
 911 subset, $S^t, S^a \sim \mathcal{D}$, hence $N = N^a$, we reach the conclusion. \square
 912

913 Proof of Theorem 2

915
 916 *Proof.* We have

$$\mathcal{L}_{B^t}(\tilde{\theta}_l^t) = \mathcal{L}_{B_t}(\theta_l) + \eta_1 \|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)\|_2^2 - \eta_2 \nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a).$$

918 This follows that

$$\begin{aligned} \nabla_{\theta} \mathcal{L}_{B^t} \left(\tilde{\theta}_l^t \right) &= \nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) + 2\eta_1 H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right) \\ &\quad - \eta_2 \left[H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) + H_{B^a} \left(\tilde{\theta}_l^a \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right) \right], \end{aligned}$$

923 where $H_{B^t} \left(\theta_l \right) = \nabla_{\theta}^2 \mathcal{L}_{B_t} \left(\theta_l \right)$ and $H_{B^a} \left(\tilde{\theta}_l^a \right) = \nabla_{\theta}^2 \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)$ are the Hessian matrices.

$$\begin{aligned} \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \cdot \nabla_{\theta} \mathcal{L}_{B^t} \left(\tilde{\theta}_l^t \right) &= \nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \\ &\quad + 2\eta_1 \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right) \\ &\quad - \eta_2 \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \\ &\quad - \eta_2 \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^a} \left(\tilde{\theta}_l^a \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right). \end{aligned}$$

933 We now choose $\eta_1 \leq \frac{|\nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)|}{12 |\nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right)|}$, we then have

$$\eta_1 \left| \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right) \right| \leq \frac{1}{12} \left| \nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \right|.$$

938 This further implies

$$\eta_1 \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right) \geq -\frac{1}{12} \left| \nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \right|.$$

942 Next we choose $\eta_2 \leq \min \left\{ \frac{|\nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)|}{6 |\nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)|}, \frac{|\nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)|}{6 |\nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^a} \left(\tilde{\theta}_l^a \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right)|} \right\}$,
943 we then have

$$\eta_2 \left| \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \right| \leq \frac{|\nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)|}{6}.$$

$$-\eta_2 \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^t} \left(\theta_l \right) \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \geq -\frac{|\nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)|}{6}.$$

$$\eta_2 \left| \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^a} \left(\tilde{\theta}_l^a \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right) \right| \leq \frac{|\nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)|}{6}.$$

$$-\eta_2 \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)^T H_{B^a} \left(\tilde{\theta}_l^a \right) \nabla_{\theta} \mathcal{L}_{B^t} \left(\theta_l \right) \geq -\frac{|\nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right)|}{6}.$$

953 Finally, we yield

$$\nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \cdot \nabla_{\theta} \mathcal{L}_{B^t} \left(\tilde{\theta}_l^t \right) \geq \nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) - \frac{1}{2} \left| \nabla_{\theta} \mathcal{L}_{B_t} \left(\theta_l \right) \cdot \nabla_{\theta} \mathcal{L}_{B^a} \left(\tilde{\theta}_l^a \right) \right|.$$

963 \square

964 Proof of Theorem 3

965 *Proof.* We first denote $\hat{\theta}_l^t = \theta_l + (\rho_1 - \rho_2) \frac{\nabla \mathcal{L}_S(\theta_l)}{\|\nabla \mathcal{L}_S(\theta_l)\|}$. Using the β -smoothness, we have

$$\begin{aligned} \mathcal{L}_S(\theta_{l+1}) &\leq \mathcal{L}_S(\theta_l) + \nabla \mathcal{L}_S(\theta_l) \cdot (\theta_{l+1} - \theta_l) + \frac{\beta}{2} \|\theta_{l+1} - \theta_l\|^2 \\ &\leq \mathcal{L}_S(\theta_l) - \eta \nabla \mathcal{L}_S(\theta_l) \cdot \nabla \mathcal{L}_{B^t} \left(\tilde{\theta}_l^t \right) + \frac{\beta \eta^2}{2} \|\nabla \mathcal{L}_{B^t} \left(\tilde{\theta}_l^t \right)\|^2. \end{aligned}$$

972 Taking the expectation, we gain
 973
 974

$$\begin{aligned}
 \mathbb{E}[\mathcal{L}_S(\theta_{l+1})] &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \eta \mathbb{E}[\nabla \mathcal{L}_S(\theta_l) \cdot \nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t)] + \frac{\beta\eta^2}{2} \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t)\|^2] \\
 &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \eta \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] - \eta \mathbb{E}[\nabla \mathcal{L}_S(\theta_l) \cdot [\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t) - \nabla \mathcal{L}_S(\theta_l)]] \\
 &\quad + \frac{\beta\eta^2}{2} \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t)\|^2] \\
 &= \mathbb{E}[\mathcal{L}_S(\theta_l)] - \eta \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] - \eta \mathbb{E}[\nabla \mathcal{L}_S(\theta_l) \cdot [\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t) - \nabla \mathcal{L}_{B^t}(\theta_l)]] \\
 &\quad + \frac{\beta\eta^2}{2} \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t)\|^2] - \eta \mathbb{E}[\nabla \mathcal{L}_S(\theta_l) \cdot [\nabla \mathcal{L}_S(\tilde{\theta}_l^t) - \nabla \mathcal{L}_S(\theta_l)]] \\
 &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \eta \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] \\
 &\quad + \frac{\eta}{2} \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] + \frac{\eta}{2} \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t) - \nabla \mathcal{L}_{B^t}(\theta_l)\|^2] \\
 &\quad - \eta \mathbb{E}\left[\|\nabla \mathcal{L}_S(\theta_l)\| \frac{\hat{\theta}_l^t - \theta_l}{\rho_1 - \rho_2} \cdot [\nabla \mathcal{L}_S(\hat{\theta}_l^t) - \nabla \mathcal{L}_S(\theta_l)]\right] + \frac{\beta\eta^2}{2} \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t)\|^2] \\
 &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \frac{\eta}{2} \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] + \frac{\beta^2\eta}{2} \mathbb{E}[\|\tilde{\theta}_l^t - \hat{\theta}_l^t\|^2] + \frac{\beta\eta^2}{2} \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t)\|^2] \\
 &\quad + \beta\eta \mathbb{E}\left[\frac{\|\nabla \mathcal{L}_S(\theta_l)\|}{\rho_1 - \rho_2} \|\hat{\theta}_l^t - \theta_l\|^2\right] \\
 &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \frac{\eta}{2} \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] \\
 &\quad + \frac{\beta^2\eta}{2} \mathbb{E}\left[\left\|\rho_1 \frac{\nabla \mathcal{L}_{B^t}(\theta_l)}{\|\nabla \mathcal{L}_{B^t}(\theta_l)\|} - \rho_2 \frac{\nabla \mathcal{L}_{B^a}(\tilde{\theta}_l^a)}{\|\nabla \mathcal{L}_{B^a}(\tilde{\theta}_l^a)\|} - (\rho_1 - \rho_2) \frac{\nabla \mathcal{L}_S(\theta_l)}{\|\nabla \mathcal{L}_S(\theta_l)\|}\right\|^2\right] \\
 &\quad + \frac{\beta\eta^2}{2} \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t)\|^2] + \beta\eta \mathbb{E}\left[\frac{\|\nabla \mathcal{L}_S(\theta_l)\|}{\rho_1 - \rho_2} \|\hat{\theta}_l^t - \theta_l\|^2\right] \\
 &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \frac{\eta}{2} \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] + 3\beta^2\eta(\rho_1^2 + \rho_2^2 - \rho_1\rho_2) \\
 &\quad + (\rho_1 - \rho_2)\beta\eta \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|] + \frac{\beta\eta^2}{2} \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t)\|^2] \\
 &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \frac{\eta}{2} \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] + 3\beta^2\eta(\rho_1^2 + \rho_2^2 - \rho_1\rho_2) \\
 &\quad + (\rho_1 - \rho_2)\beta\eta \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|] \\
 &\quad + \beta\eta^2 \mathbb{E}[\|\nabla \mathcal{L}_{B^t}(\tilde{\theta}_l^t) - \nabla \mathcal{L}_S(\tilde{\theta}_l^t)\|^2] + \beta\eta^2 \mathbb{E}[\|\nabla \mathcal{L}_S(\tilde{\theta}_l^t)\|^2] \\
 &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \frac{\eta}{2} \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|^2] + 3\beta^2\eta(\rho_1^2 + \rho_2^2 - \rho_1\rho_2) \\
 &\quad + (\rho_1 - \rho_2)\beta\eta \mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|] + \beta\eta^2(\sigma^2 + G^2) \\
 &\leq \mathbb{E}[\mathcal{L}_S(\theta_l)] - \frac{\eta}{2} (\mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|] - \Delta\rho\beta)^2 + \frac{1}{2}\eta\Delta\rho^2\beta^2 \\
 &\quad + 3\beta^2\eta(\rho_1^2 + \rho_2^2 - \rho_1\rho_2) + \beta\eta^2(\sigma^2 + G^2)
 \end{aligned}$$

1019 Rearrange the terms, we obtain
 1020
 1021

$$\begin{aligned}
 (\mathbb{E}[\|\nabla \mathcal{L}_S(\theta_l)\|] - \Delta\rho\beta)^2 &\leq \frac{2}{\eta} (\mathbb{E}[\mathcal{L}_S(\theta_l)] - \mathbb{E}[\mathcal{L}_S(\theta_{l+1})]) \\
 &\quad + \frac{1}{2}\eta\Delta\rho^2\beta^2 + 3\beta^2\eta(\rho_1^2 + \rho_2^2 - \rho_1\rho_2) + \beta\eta^2(\sigma^2 + G^2)
 \end{aligned}$$

1026 Take sum l from 1 to T , we reach
 1027

$$\begin{aligned}
 1028 \frac{1}{T} \sum_{l=1}^T (\mathbb{E} [\|\nabla \mathcal{L}_S(\theta_l)\|] - \Delta \rho \beta)^2 &\leq \frac{2}{\eta T} (\mathbb{E} [\mathcal{L}_S(\theta_0)] - \mathbb{E} [\mathcal{L}_S(\theta_{T+1})]) + \Delta \rho^2 \beta^2 \\
 1029 &\quad + 6\beta^2 (\rho_1^2 + \rho_2^2 - \rho_1 \rho_2) + 2\beta \eta (\sigma^2 + G^2) \\
 1030 &\leq \frac{2}{\eta T} (\mathbb{E} [\mathcal{L}_S(\theta_0)] - L^*) + \Delta \rho^2 \beta^2 + 6\beta^2 (7\rho_1^2 + 7\rho_2^2 - 8\rho_1 \rho_2) \\
 1031 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1032 &\leq \frac{2\Delta}{\eta T} + 6\beta^2 (7\rho_1^2 + 7\rho_2^2 - 8\rho_1 \rho_2) + 2\beta \eta (\sigma^2 + G^2) \\
 1033 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1034 &\leq \frac{2\Delta}{\eta T} + 6\beta^2 (7\rho_1^2 + 7\rho_2^2 - 8\rho_1 \rho_2) + 2\beta \eta (\sigma^2 + G^2) \\
 1035 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1036 &\leq \frac{2\Delta}{\eta T} + 6\beta^2 (7\rho_1^2 + 7\rho_2^2 - 8\rho_1 \rho_2) + 2\beta \eta (\sigma^2 + G^2) \\
 1037
 \end{aligned}$$

1038 Substitute $\eta = \frac{\sqrt{\Delta}}{\sqrt{\beta T(\sigma^2 + G^2)}}$, we arrive at
 1039

$$\frac{1}{T} \sum_{l=1}^T (\mathbb{E} [\|\nabla \mathcal{L}_S(\theta_l)\|] - \Delta \rho \beta)^2 \leq \frac{4\sqrt{\beta \Delta (\sigma^2 + G^2)}}{\sqrt{T}} + 6\beta^2 (7\rho_1^2 + 7\rho_2^2 - 8\rho_1 \rho_2)$$

□

1045 Proof of Theorem 3.1

1046 *Proof.* We have
 1047

$$\begin{aligned}
 1049 \min_{l=0, \dots, T} |\mathbb{E} [\|\nabla \mathcal{L}_S(\theta_l)\|] - \Delta \rho \beta| &\leq \frac{1}{T} \sum_{l=1}^T |\mathbb{E} [\|\nabla \mathcal{L}_S(\theta_l)\|] - \Delta \rho \beta| \\
 1050 &\leq \sqrt{\frac{1}{T} \sum_{l=1}^T (\mathbb{E} [\|\nabla \mathcal{L}_S(\theta_l)\|] - \Delta \rho \beta)^2} \\
 1051 &\leq \frac{2 [\beta \Delta (\sigma^2 + G^2)]^{1/4}}{T^{1/4}} + \beta \sqrt{6 (7\rho_1^2 + 7\rho_2^2 - 8\rho_1 \rho_2)} \\
 1052 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1053 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1054 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1055 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1056 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1057 &\quad + 2\beta \eta (\sigma^2 + G^2) \\
 1058 &\quad + 2\beta \eta (\sigma^2 + G^2)
 \end{aligned}$$

This implies that
 1058

$$\begin{aligned}
 1059 \min_{l=0, \dots, T} \mathbb{E} [\|\nabla \mathcal{L}_S(\theta_l)\|] &\leq \frac{2 [\beta \Delta (\sigma^2 + G^2)]^{1/4}}{T^{1/4}} + \beta \sqrt{6 (7\rho_1^2 + 7\rho_2^2 - 8\rho_1 \rho_2)} \\
 1060 &\quad + \Delta \rho \beta. \\
 1061 &\quad + \Delta \rho \beta. \\
 1062 &\quad + \Delta \rho \beta. \\
 1063 &\quad + \Delta \rho \beta. \\
 1064 &\quad + \Delta \rho \beta. \\
 1065 &\quad + \Delta \rho \beta. \\
 1066 &\quad + \Delta \rho \beta.
 \end{aligned}$$

□

A.2 CONVERGENCE ANALYSIS

1067 To do convergence analysis for Align-SAM, we make the following assumptions (Si & Yun, 2023):
 1068

A1 (G-Lipchitz). The loss function \mathcal{L}_S is G -Lipchitz, i.e., $|\mathcal{L}_S(\theta) - \mathcal{L}_S(\theta')| \leq G\|\theta - \theta'\|$.

A2 (β -smoothness). The loss function \mathcal{L}_S is β -smooth, if $\|\nabla \mathcal{L}_S(\theta) - \nabla \mathcal{L}_S(\theta')\| \leq \beta\|\theta - \theta'\|$ for all θ, θ' .

A3 (Bounded variance). For any batch $B \sim S$, $\mathbb{E}_B [\|\mathcal{L}_B(\theta) - \mathcal{L}_S(\theta)\|^2] \leq \sigma^2$ for all θ .

Theorem 3. Assume that the loss function \mathcal{L}_S satisfies the assumptions A1, A2, and A3, and $L^* = \inf_{\theta} \mathcal{L}_S(\theta) > -\infty$. Under Align-SAM, starting from θ_0 and the learning rate $\eta = \frac{\sqrt{\Delta}}{\sqrt{\beta T(\sigma^2 + G^2)}}$, we have

$$\frac{1}{T} \sum_{l=1}^T (\mathbb{E} [\|\nabla \mathcal{L}_S(\theta_l)\|] - \Delta \rho \beta)^2 \leq \frac{4\sqrt{\beta \Delta (\sigma^2 + G^2)}}{\sqrt{T}} + 6\beta^2 (7\rho_1^2 + 7\rho_2^2 - 8\rho_1 \rho_2),$$

where $\Delta \rho = \rho_1 - \rho_2$ and $\Delta = \mathcal{L}_S(\theta_0) - L^*$.

1080 Table 6: Domain Generalization setting. All models are trained on ImageNet-1k and then evaluated
 1081 on ImageNet-1k (clean validation set), Imagenet-R, and Imagenet-C datasets.
 1082

Method	Top-1 Acc			Top-5 Acc		
	Imagenet	ImageNet-R	ImageNet-C	Imagenet	ImageNet-R	ImageNet-C
ResNet18 - Transfer Learning						
SAM	70.52	34.18	48.27	89.60	52.82	72.17
Align-SAM	70.88	34.38	48.69	89.94	53.23	72.61
ResNet18 - From Scratch						
SAM	62.46	25.86	32.96	73.15	43.09	55.72
Align-SAM	63.64	26.20	34.06	73.45	43.99	57.42

1091 **Corollary 3.1.** *Under the assumptions as in Theorem 3, we have*

$$\min_{t=0, \dots, T} \mathbb{E} [\|\nabla \mathcal{L}_S(\theta_t)\|] \leq \frac{2 [\beta \Delta (\sigma^2 + G^2)]^{1/4}}{T^{1/4}} + \beta \left(\sqrt{6(7\rho_1^2 + 7\rho_2^2 - 8\rho_1\rho_2)} + \Delta\rho \right).$$

1096 It is well known that the normalized (practical) version of SAM *does not converge* to the minimizer
 1097 of the training loss, as rigorously demonstrated in Si & Yun (2023) (Theorem 4.6), one of the most
 1098 comprehensive analyses of SAM’s convergence behavior. Our proposed approach shares the *same*
 1099 convergence rate as standard SAM, as established in Si & Yun (2023) (Theorem 4.6).
 1100

1101 A.3 ADDITIONAL EXPERIMENTS

1103 **Experiments of Domain Generalization** To strengthen the claims about Align-SAM, we evaluated
 1104 Align-SAM’s robustness under domain shifts by training on ImageNet-1K and testing on ImageNet-
 1105 1K (clean test set), ImageNet-R (artistic renditions), and ImageNet-C (with various corruptions).
 1106 These shifts demonstrate Align-SAM’s robustness, as it consistently outperforms SAM across all
 1107 setups. The results are shown in Table 6.

1109 **Experiments of meta-learning setting** The concept of Align-SAM is inspired by the agnostic
 1110 approach in the MAML setting, where the meta-model is optimized on the meta-training set but aims
 1111 to minimize loss on the validation set, assuming both the training and validation sets are from the
 1112 same data distribution. Different from this original idea, Align-SAM uses the gradient from another
 1113 auxiliary set as an indicator to close the generalization gap between the training and testing sets.
 1114 Despite this difference, both approaches share the same underlying objective, making it reasonable
 1115 to expect that applying Align-SAM in the MAML setting will result in improved generalization
 1116 performance.

1117 Table 7: Meta-learning results on Mini-Imagenet dataset. All baseline results are taken from Abbas
 1118 et al. (2022)

Method	Accuracy	
	5 ways 1 shot	5 ways 5 shots
MAML	47.13	62.20
SHARP-MAML _{low}	49.72	63.18
Align-SAM _{low}	50.08	64.29

1127 We compare our approach with standard MAML and Sharp-MAML (Abbas et al., 2022), which
 1128 also address the loss landscape flatness in bilevel models. MAML is typically framed as a bilevel
 1129 optimization problem, consisting of a meta-update step to learn a shared model initialization and a
 1130 fine-tuning step to adapt task-specific models. Sharp-MAML analyzes the geometry of MAML’s
 1131 loss landscape and introduces the use of SAM to avoid sharp local minima in MAML loss functions.
 1132 Sharp-MAML proposes three variants: Sharp-MAML_{low} (applying SAM only to the fine-tuning step),
 1133 Sharp-MAML_{up} (applying SAM only to the meta-update step), and Sharp-MAML_{both} (applying
 1134 SAM to both steps). Since our Align-SAM shares the same objective as SAM to improve model

1134 Table 8: Meta-learning results on Omniglot dataset. All baseline results are taken from Abbas et al.
 1135 (2022)

Method	Accuracy	
	20 ways 1 shot	20 ways 5 shots
MAML	91.77	96.16
SHARP-MAML _{low}	92.89	96.59
Align-SAM _{low}	92.66	97.28

1144 generalization it can replace SAM optimization in both the meta-update and fine-tuning steps of the
 1145 MAML model.

1146 The experiments follow the setup from Abbas et al. (2022), specifically using the Sharp-MAML_{low}
 1147 variation, which focuses on minimizing the sharpness of meta-models fine-tuned on the meta-training
 1148 set. For Align-SAM, we set $\lambda = 2$ and follow the setup exactly for ρ , inner gradient steps, and
 1149 step size in Abbas et al. (2022) for both Sharp-MAML_{low} and Align-SAM_{low}. The results are
 1150 reported in Tables 7 and 8. Our method outperforms most baselines with significant improvements,
 1151 demonstrating the effectiveness of Align-SAM and its flexibility across various settings.

1152
 1153
 1154 **Cosine similarity of gradients** In Theorem 2, we prove that minimizing the loss function \mathcal{L}_{B^t}
 1155 could encourage two gradients $\nabla_{\theta} \mathcal{L}_{B^t}(\tilde{\theta}_l^t)$ and $\nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)$ to be more congruent since our
 1156 update aims to maximize its lower bound, which is $\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)$. In this sec-
 1157 tion, we measure the cosine similarity between two gradients $\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)$ and $\nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)$ be-
 1158 fore (denoted as cosine_b in Figure 1a) and after (denoted as cosine_a in Figure 1b) updating the
 1159 model and measure the change of these two score (denoted as change). Mathematically, we
 1160 define $\text{cosine}_b = \frac{\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)}{\|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_l)\|_2 \|\nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_l^a)\|_2}$, $\text{cosine}_a = \frac{\nabla_{\theta} \mathcal{L}_{B^t}(\theta_{l+1}) \cdot \nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_{l+1}^a)}{\|\nabla_{\theta} \mathcal{L}_{B^t}(\theta_{l+1})\|_2 \|\nabla_{\theta} \mathcal{L}_{B^a}(\tilde{\theta}_{l+1}^a)\|_2}$, and
 1161 $\text{change} = \frac{\text{cosine}_a - \text{cosine}_b}{\text{cosine}_a}$.

1162 As shown in Figure 1c, both SAM and Align-SAM improve the similarity after updating the model,
 1163 this improvement also increases across training epochs. However, the similarity score of our Align-
 1164 SAM is always higher than SAM across the training process, both before and after updating the
 1165 model. It is evident that our Align-SAM encourages gradients of the training subset and the auxiliary
 1166 subset to be more similar during the training process.

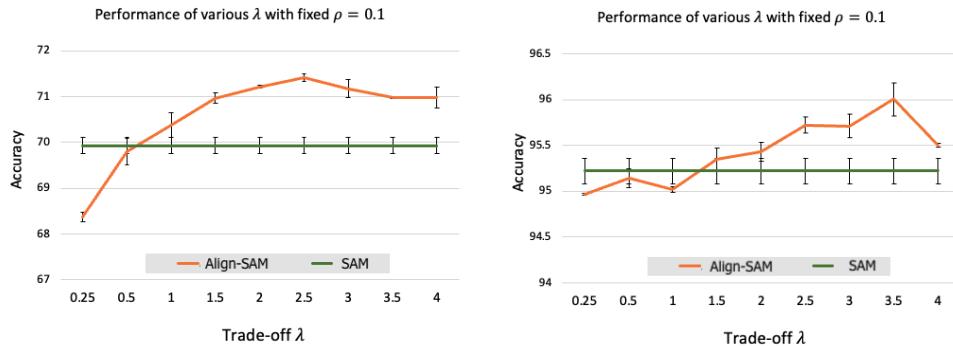
1167
 1168
 1169
 1170
 1171 **Batch size $|B^a|$ and complexity** Our method is to use a gradient on the auxiliary subset as a helper
 1172 indicator to lead the model to wider local minima while maintaining low loss on a random subset from
 1173 the same distribution, and the model should be updated mainly using training samples. Increasing
 1174 the batch size $|B^a|$ could potentially increase performance and training time. In Table 9, we present
 1175 the results of Align-SAM with various sizes $|B^a|$ of CIFAR-100 with Resnet32 while maintaining a
 1176 fixed training batch size $|B^t| = 512$. We consider performance and training complexity to be the
 1177 trade-off of Align-SAM and find that setting $|B^t| = 4|B^a|$ works well for all experiments.

1178 Additionally, we examine different numbers of epochs with SAM, Align-SAM, and LookBehind-
 1179 SAM Mordido et al. (2024). As presented in Table 9, Align-SAM outperforms both SAM and
 1180 Lookbehind-SAM under the same training time.

1181
 1182
 1183 **Sensitivity of trade-off coefficient λ** Throughout this paper, we used a consistent setting of
 1184 $\lambda = 2$, which is the trade-off coefficient for combining gradients from B^t and B^a . While this
 1185 hyperparameter could be optimized for each experiment individually, we find that this configuration
 1186 delivers good performance across most experiments. By setting $\lambda > 1$, we ensure that the perturbed
 1187 model prioritizes maximizing the loss on the training mini-batch B^t rather than minimizing it on
 1188 the auxiliary mini-batch B^a . This approach encourages the model to focus primarily on minimizing
 1189 sharpness during the actual update step in Formula 6.

Table 9: Experiments on different sizes of auxiliary mini-batch with a fixed size of training mini-batch is 512 samples

Method	Epoch	Auxiliary batch-size	Accuracy	Training time per epoch	Training time Total
SAM	200	-	70.31 \pm 0.233	11s	36.6m
	220		70.45 \pm 0.303	11s	40.3m
	250		70.06 \pm 0.078	11s	45.8m
	270		71.15 \pm 0.293	11s	49.5m
Align-SAM	200	16	70.58 \pm 0.219	11s	37.5m
		32	71.07 \pm 0.172	12s	40.0m
		64	70.67 \pm 0.049	13s	43.3m
		128	71.21 \pm 0.056	14s	46.6m
		256	71.04 \pm 0.207	15s	50.0m
SAM	220	-	70.45 \pm 0.303	11s	40.3m
Align-SAM	170		70.83 \pm 0.209	14s	39.6m



(a) Experiments with CIFAR-100 on Resnet32 (b) Experiments with Flower102 on EfficientNet-B2

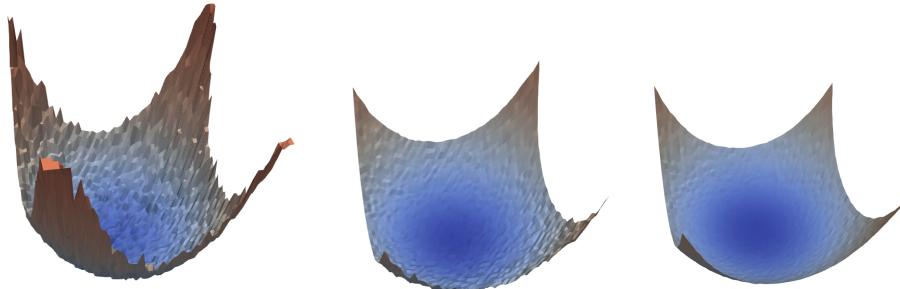
Figure 2: Experiments of various trade-off λ with fixed perturbation radius ρ

To verify the impact of this hyperparameter on model performance, we conduct experiments with varying values of trade-off λ and present the results in Figure 2. Notably, the configuration where $\lambda \geq 1$ consistently yields higher accuracy compared to the setting where $\lambda < 1$. When decreasing λ , the model places more emphasis on minimizing the auxiliary loss, rather than sharpness on the training set during the actual update step in Formula 6, ultimately reducing performance.

Analysis of loss landscape and eigenvalues of the Hessian matrix We demonstrate the effectiveness of Align-SAM in guiding models toward flatter regions of the loss landscape, as compared to both SAM and SGD, in Figures 3 and 4. The loss landscapes are visualized with the same setting, the blue areas represent lower loss values, while the red areas indicate higher loss values. Although SAM is shown to lead the model to a flatter region than SGD, Align-SAM achieves an even smoother and significantly flatter loss landscape, especially in experiments with EfficientNet-B2 in Figure 3.

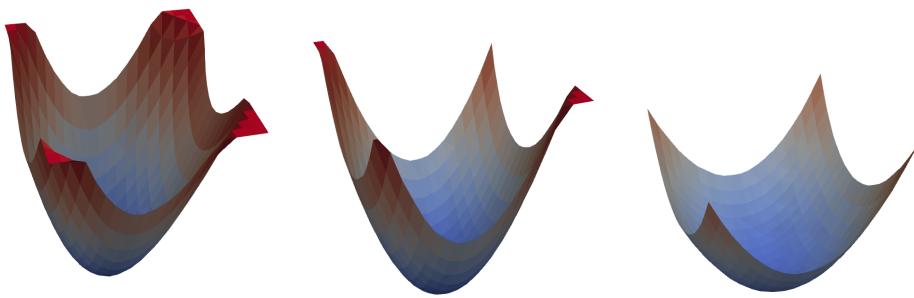
To further validate that Align-SAM successfully locates minima with low curvature, we compute the Hessian of the loss landscape and report the five largest eigenvalues, sorted from λ_1 to λ_5 , in Table 10. These eigenvalues provide insight into the curvature of the model at the optimized parameters. Larger eigenvalues indicate steeper curvature, meaning the model is more sensitive to small changes in its parameters. Conversely, smaller eigenvalues suggest flatter minima, which are typically associated with improved robustness, better generalization, and reduced sensitivity to overfitting. Negative eigenvalues indicate non-convex curvature in certain directions.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252



1253 Figure 3: Loss landscape of **EffecientNet-B2** trained on Flower102 dataset with **(left)** SGD, **(middle)**
1254 SAM, and **(right)** Align-SAM.

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265



1266 Figure 4: Loss landscape of **ResNet32** trained **(left)** SGD, **(middle)** SAM, and **(right)** Align-SAM
1267 on Cifar100 dataset.

1268

Methods	Ratio of top-5 largest eigenvalues of Hessian matrix				
	λ_1	$\frac{\lambda_1}{\lambda_2}$	$\frac{\lambda_1}{\lambda_3}$	$\frac{\lambda_1}{\lambda_4}$	$\frac{\lambda_1}{\lambda_5}$
EfficientNet-B2 on Flower102					
SGD	2.05×10^5	4.55	7.88	-4.36	-4.18
SAM	1.61×10^3	1.27	1.31	1.54	-1.65
Align-SAM	0.61×10^3	1.48	1.64	1.90	1.96
Resnet32 on Cifar100					
SGD	3.07×10^5	1.27	1.46	1.87	2.13
SAM	1.42×10^5	1.47	1.65	1.79	1.89
Align-SAM	1.11×10^5	1.32	1.68	1.85	2.09

1281

1282 Table 10: Eigenvalues of Hessian matrix

1283

1284

As shown in Table 10, Align-SAM consistently achieves positive and lower eigenvalues compared to the baseline methods, suggesting that it effectively leads the model toward flatter regions of the loss landscape. These results further support the efficacy of Align-SAM in optimizing for smoother and more stable solutions across a variety of architectures and tasks.

1285

A.4 ETHICAL STATEMENT AND THE USE OF LARGE LANGUAGE MODELS

1286

We used a large language model (ChatGPT) to help with editing this paper. It was only used for simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the reproducibility of our work.

1287