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ABSTRACT

Sharpness-Aware Minimization (SAM) has proven effective in enhancing deep
neural network performance by simultaneously minimizing the training loss and
the sharpness of the loss landscape, thereby guiding models toward flatter minima
that are empirically linked to improved generalization. From another perspective,
generalization can be seen as a model’s ability to remain stable under distributional
variability. In particular, effective learning requires that updates derived from
different subsets or resamplings of the same data distribution remain consistent.
In this work, we investigate the connection between the flatness induced by SAM
and the alignment of gradients across random subsets of the data distribution, and
propose Align-SAM as a novel strategy to further enhance model generalization.
Align-SAM extends the core principles of SAM by promoting optimization toward
flatter minima on a primary subset (the training set), while simultaneously enforcing
low loss on an auxiliary subset that is drawn from the same distribution. This dual-
objective approach leads to solutions that are not only resilient to local perturbations
but also robust against distributional shifts in each training iteration. Empirical
evaluations demonstrate that Align-SAM consistently improves generalization
across diverse datasets and challenging settings, including scenarios with noisy
labels and limited data availability.

1 INTRODUCTION

Deep neural networks have emerged as the dominant approach for solving complex tasks such
as classification, often outperforming traditional machine learning models. These models learn
by adjusting a vast number of parameters to minimize prediction errors or maximize task-specific
performance. In practice, training is conducted on a finite dataset S, sampled from an unknown
underlying distribution D. The quality and alignment of this dataset with the target distribution
significantly impact model efficiency and performance Hestness et al. (2017); Kaplan et al. (2020).
Despite their ability to learn complex patterns, deep learning models can also capture noise or random
fluctuations in training data, leading to overfitting Arpit et al. (2017); Zhang et al. (2016); Liu et al.
(2020). This results in excellent performance on training data but poor predictions on new, unseen
data, especially with domain shifts. Generalization McAllester (1999); Dziugaite & Roy (2017b),
measured by comparing prediction errors on S and D, becomes crucial. Balancing a model’s ability
to fit training data with its risk of overfitting is a key challenge in machine learning.

Several studies have been done on this problem, both from theoretical and practical perspectives.
Statistical learning theory has proposed different complexity measures that are capable of controlling
generalization errors (Vapnik, 1998; Bartlett & Mendelson, 2003; Mukherjee et al., 2002; Bousquet
& Elisseeff, 2002; Poggio et al., 2004). In general, they develop a bound for the general error on D.
Theory suggests that minimizing the intractable general error on D is equivalent to minimizing the
empirical loss on S with some constraints to the complexity of models and training size (Alquier
et al., 2016b). An alternative strategy for mitigating generalization errors involves the utilization of
an optimizer to learn optimal parameters for models with a specific local geometry. This approach
enables models to find wider local minima (i.e., flat minima), which makes them more robust against
data shift between training and testing sets (Jiang et al., 2020; Petzka et al., 2021; Huang et al., 2025).

The connection between a model’s generalization and the width of minima has been investigated
theoretically and empirically in many studies, notably (Hochreiter & Schmidhuber, 1994; Neyshabur
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et al., 2017; Dinh et al., 2017; Fort & Ganguli, 2019). A specific method within this paradigm
is Sharpness-Aware Minimisation (SAM) (Foret et al., 2021), which has emerged as an effective
technique for enhancing the generalization ability of deep learning models. SAM seeks a perturbed
model within the vicinity of a current model that maximizes the loss over a training set. Eventually,
SAM leads the model to the region where both the current model and its perturbation model have low
loss values, ensuring flatness. The success of SAM and its variants (Kwon et al., 2021; Kim et al.,
2022) has inspired further investigation into its formulation and behavior, as evidenced by recent
works such as (Kaddour et al., 2022; Möllenhoff & Khan, 2022; Andriushchenko & Flammarion,
2022a; Ji et al., 2024).

Additionally, inspired by the PAC-Bayes theorem Alquier (2023), SAM provides an upper bound
on the generalization loss over the data distribution D by considering the loss of perturbed models
trained on a random dataset S ∼ D. This guides optimization toward minimizing the worst-case loss
within a neighborhood of parameters. Such a framework has been shown to encourage convergence
to flatter minima on the random dataset S, which in turn promotes improving generalization. In
practice, however, directly minimizing sharpness over the entire training set S would require forward
and backward passes on all of S, which is computationally infeasible with large datasets. Instead,
standard stochastic optimizers, such as SGD or Adam, are applied that rely on randomly sampled mini-
batches, thereby reducing sharpness on each subset and stochastically approximating minimization of
sharpness over the full dataset S.

From a complementary perspective, generalization can be viewed as the model’s ability to remain
reliable on new subsets drawn from the same data distributionD. Specifically, we adopt the viewpoint
that a model exhibits strong generalization if, although optimized primarily on one random subset
S, it can also perform well on another independently drawn auxiliary subset Sa, where S, Sa ∼ D.
Motivated by this, we formulate our objective as finding models that minimize sharpness and loss
on the primary subset while simultaneously maintaining low loss on the auxiliary subset, thereby
ensuring stability across resamplings of the data distribution. To achieve this, we propose Align-SAM,
a novel method that updates model parameters toward solutions that are both flat and low-loss on
the primary subset, while maintaining robust performance across auxiliary subsets, thus implicitly
promoting stronger generalization to the full distribution.

In summary, our contributions in this work are as follows:

• We approach generalization from a novel perspective by framing it as an alignment across
random subsets drawn from the same data distribution. Building on this viewpoint, we
propose Align-SAM, a method designed to enhance both model flatness and stability under
distributional variability. Align-SAM primarily updates model parameters by guiding them
toward regions in parameter space that minimize sharpness and loss on a primary subset,
while simultaneously encouraging strong performance on an auxiliary subset sampled
independently from the same distribution. This is achieved by leveraging a combination of
gradients computed on both subsets during optimization.

• We demonstrate the effectiveness of Align-SAM in enhancing generalization performance
across a variety of settings. Our evaluation begins with image classification tasks, covering
both training from scratch and transfer learning on datasets ranging from small to large
scale. We further assess its robustness under noisy label conditions with varying noise
levels. Additionally, we extend our experiments to meta-learning scenarios to evaluate
Align-SAM’s ability to generalize beyond meta-training tasks and adapt across diverse
domains. The consistent performance gains across these experiments show that Align-SAM
not only improves robustness to label noise and generalization across tasks but also promotes
more stable and reliable predictions in varied settings.

2 RELATED WORKS

Sharpness-Aware Minimization. The correlation between the wider minima and the generalization
capacity has been extensively explored both theoretically and empirically in various studies Tan et al.
(2025); Jiang et al. (2020); Petzka et al. (2021); Dziugaite & Roy (2017a); Zhuang et al. (2022); Kwon
et al. (2021). Many works suggested that finding flat minimizers might help to reduce generalization
error and increase robustness to data distributional shift problems in various settings Jiang et al.
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(2020); Petzka et al. (2021); Huang et al. (2025). There are multiple works have explored the impact
of different training parameters, including batch size, learning rate, gradient covariance, and dropout,
on the flatness of discovered minima such as Keskar et al. (2017); Jastrzebski et al. (2017); Wei et al.
(2020); Deng et al. (2025).

Sharpness-aware minimization (SAM) (Foret et al., 2021) is a recent optimization technique designed
to improve the generalization error of neural networks by considering the sharpness of the loss land-
scape during training. SAM minimizes the worst-case loss around the current model and effectively
updates models towards flatter minima to achieve low training loss and maximize generalization
performance on new and unseen data. SAM has been successfully applied to various tasks and
domains, such as vision models (Chen et al., 2021), language models (Bahri et al., 2022), federated
learning (Qu et al., 2022; Xing et al., 2025), Bayesian Neural Networks (Nguyen et al., 2023),
domain generalization (Cha et al., 2021), multi-task learning (Phan et al., 2022) and meta-learning
bi-level optimization (Abbas et al., 2022). Multiple varieties of SAM have been developed to address
limitations of the original method, including ASAM (Kwon et al., 2021), Friendly-SAM (Li et al.,
2024), GSAM (Du et al., 2022), VASSO (Li & Giannakis, 2024), and other curvature- or alignment-
aware extensions. Efficiency-oriented approaches such as SAF Du et al. (2022) approximate SAM’s
perturbation to reduce computational overhead, GNAM Zhang et al. (2023) promotes first-order
flatness through gradient-norm regularization. LookSAM Liu et al. (2022) further improves efficiency
by reusing the same perturbation direction across k consecutive iterations, significantly lowering
SAM’s computation while maintaining its flatness-seeking behaviour. Recent work has also been
inspired by the Lookahead optimizer to deploy multi-step strategies to explore flatter regions of the
loss landscape: Lookahead-SAM (Yu et al., 2024) integrates Lookahead’s extrapolation–interpolation
mechanism with SAM to reach wider minima, whereas Lookbehind-SAM (Mordido et al., 2024)
incorporates backward steps before the SAM update to better navigate sharp regions.

Implicit Biases and Behaviors of SAM. SAM was inspired by the PAC-Bayes theorem Alquier et al.
(2016a); Alquier (2023); Alquier et al. (2016b), which provides an upper bound on generalization loss
and motivates the pursuit of flat minima. Several works have since sought to better understand and
improve Sharpness-Aware Minimization (SAM). Andriushchenko and Flammarion Andriushchenko
& Flammarion (2022b) offer theoretical insights into SAM’s optimization dynamics, emphasizing
its implicit regularization effects. Compagnoni et al. Monzio Compagnoni et al. (2023) model
SAM using a stochastic differential equation (SDE), providing a continuous-time interpretation of
its behavior. Wen et al. (Wen et al., 2023b) study how SAM reduces sharpness during optimization,
while Chen et al. Chen et al. (2023) show that SAM generalizes better than SGD by avoiding
sharp minima. To further improve SAM, Luo et al. (Luo et al., 2024) introduce explicit eigenvalue
regularization to control curvature during training. Finally, Wen et al. (Wen et al., 2023a) argue that
the generalization benefits of sharpness-aware algorithms stem not only from sharpness minimization
but also from other favorable inductive biases.

A complementary strand of work examines data distribution, class imbalance, and long-tailed regimes,
where sharpness varies significantly across classes. Nguyen et al. (2024) analyze the features learned
under SAM and show that SAM encourages models to rely on both simple and complex features. They
further demonstrate that modifying the training data distribution to reduce simplicity bias improves in-
distribution generalization. In class-imbalanced settings, several methods adapt SAM to better handle
head–tail disparities. ImbSAM Zhou et al. (2023a) incorporates imbalance-aware perturbations to
prevent minority classes from being overshadowed by head-class gradients. Class-Conditional SAM
Zhou et al. (2023b) aligns SAM’s perturbation with class-specific curvature to reduce sharpness for
tail classes, improving long-tailed accuracy. Focal-SAM Li et al. (2025) integrates focal reweighting
with SAM to emphasize hard or misclassified instances while maintaining stable optimization.

3 PROPOSED METHOD

Notions. We start by introducing the notions used throughout our paper. We denoteD as the data/label
distribution to generate pairs of data/label (x, y). Given a model with the model parameter θ, we
denote the per-sample loss induced by (x, y) as ℓ(x, y; θ). Let S be a random subset drawn from the
distribution D. We denote the empirical and generalization losses as LS (θ) = ES [ℓ (x, y; θ)] and
LD (θ) = ED [ℓ (x, y; θ)] respectively. We define LD (θ | S) as an upper bound defined over S of
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the general loss LD (θ). Note that inspired by SAM (Foret et al., 2021), we use the sharpness over S
to define LD (θ | S) (see Theorem 1). Finally, we use |A| to denote the cardinality of a set A.

3.1 PROBLEM FORMULATION

Given a random subset St whose examples are sampled from D (i.e., St ∼ DNt with Nt = |St|), we
use LD (θ | St) to train models. St is known as the training set. Among the models that minimize
this loss, we select the one that minimizes the general loss as follows:

min
θ∗
LD (θ∗) s.t. θ∗ ∈ AD

(
St

)
:= argminθLD

(
θ | St

)
. (1)

We note that AD (St) returns the optimal models θ∗ that minimizes the upper bound LD (θ | St).
Among the set of such minimizers θ∗, we select the one that further minimizes the true generalization
loss LD. The reason for the formulation in (1) is that although LD (θ | St) is an upper bound of
the general loss LD (θ), there always exists a gap between them. Therefore, the additional outer
minimization helps to refine the solutions.

We now denote Sa (i.e., Sa ∼ DNa with Na = |Sa|) as an other random subset sampled from D, Sa

is called the auxiliary set. With respect to this auxiliary set, we have the following theorem.
Theorem 1. Under conditions LD(θ) ≤ Eϵi∼N(0,ρ)LD(θ + ϵ) similar to SAM (Foret et al., 2021),
with a probability greater than 1− δ (i.e., δ ∈ [0, 1]) over the choice of Sa ∼ DNa , we then have for
any optimal models θ∗ ∈ AD(S

t):

LD (θ∗) ≤ LD (θ∗ | Sa)+
8L√
Na

√
log

Na + k

δ
+

4L√
Na

O(1)+
4L√
Na

k log

(
1 +
∥θ∗∥2

ρ

(
1 +

√
logNa/k

))
,

(2)
where we denote LD (θ∗ | S) := maxθ′:∥θ′−θ∗∥2≤ρ LS (θ′) for any random subset S ∼ DN (i.e
St, Sa), and L is the upper bound of the loss function (i.e., ℓ (x, y; θ) ≤ L, ∀x, y, θ), k is the model
size as the length of vector θ, and ρ > 0 is the perturbation radius.

According to Theorem 1, LD (θ∗ | S) := maxθ′:∥θ′−θ∗∥2≤ρ LS (θ′) can be viewed as an upper bound
of the generalization lossLD(θ

∗), up to a constant difference. Moreover, our theorem 1 (see Appendix
A.1 for proof) can be viewed as an extension of Theorem 1 in Foret et al. (2021), where we apply the
PAC-Bayes theorem from Alquier et al. (2016a) to prove an upper bound for the generalization loss
of any bounded loss, instead of the 0-1 loss in Foret et al. (2021). We can generalize this proof for St

to explain why we use LD (θ | St) := maxθ′:∥θ′−θ∥2≤ρ LSt (θ′) as an objective to minimize, as in
(1).

Based on Theorem 1, we can rewrite the objectives in (1) as:

min
θ∗
LD (θ∗ | Sa) s.t. θ∗∈ AD

(
St

)
:= argminθ LD

(
θ | St

)
, (3)

where LD (θ | S) := maxθ′:∥θ′−θ∥2≤ρ LS (θ′). Among all models that minimize the upper general-
ization bound on a random training subset St, we select the one that further minimizes the upper
generalization bound on an independently drawn auxiliary subset Sa. In other words, the optimal
solution is the one that achieves low sharpness and loss on the primary subset while simultaneously
maintaining low loss on the auxiliary subset.

Our theory works for St, Sa ∼ D, where D is the distribution to generate (x, y). In the practical
version of Algorithm 1, we replace D by the empirical distribution S and at each iteration, we
sample two mini-batches Bt, Ba ∼ S. Because when the training size (i.e. |S|) approaches ∞,
the distribution S asymptotically converges to the distribution D. Using stochastic optimization,
we reformulate this objective into an iterative update scheme, where the model is trained with two
independently drawn mini-batches, Bt and Ba, such that each update encourages convergence toward
flat minima while aligning performance across subsets in every iteration.

3.2 OUR SOLUTION

Our motivation here is to primarily optimize the loss over the training set St, while using Sa to
further enhance the generalization ability, where both St and Sa are random subsets drawn from the
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same data distribution. Our formulation in (3) has the same form as a bi-level optimization problem
similar to MAML (Finn et al., 2017), developed for meta-learning. Inspired by MAML, a naive
approach would be to consider f(θ) := argminθLD (θ | St) (i.e., f(θ) = θ − η∇θLD (θ | St)) and
finding θ∗ := argminθLD (f(θ) | Sa) with respect to θ. However, this naive approach does not align
with our objective, as it mainly focuses on optimizing the loss LD (f(θ) | Sa) over the auxiliary set
Sa, in which, the auxiliary set acts like the validation set in MAML. Here we note that in Franceschi
et al. (2018), bi-level optimization was employed to learn optimal hyperparameters (e.g., the weight
of a regularizer) by finding hyperparameters such that a model trained on a training set performs
well on a validation set. This is fundamentally different from our aim, which is to study how to
achieve flat minima that align two independent random subsets in every update step. Moreover,
directly adapting the MAML bi-level formulation would require distinct training and validation sets,
which are often unavailable in most scenarios. For these reasons, both our theoretical framework and
technical approach differ substantially from those in Franceschi et al. (2018).

Using stochastic optimization, we reformulate the objective (3) into an iterative update scheme,
where the model is trained using two independently drawn mini-batches Bt and Ba, with both
batches sampled independently from the training set S. The Align-SAM is presented as follows:
at each iteration, our primary objective is to optimize L (θ | Bt), primarily based on its gradi-
ents, in such a way that future models are able to implicitly perform well on Ba. To achieve
this, similar to SAM (Foret et al., 2021), we approximate L (θ | Bt) = max∥θ′−θ∥≤ρ LBt (θ′) ≈
LBt (θ + η1∇LBt (θ)) for a sufficient small learning rate η1 > 0 (i.e., η1∥∇LBt (θ) ∥ ≤ ρ) and
L (θ | Ba) = max∥θ′−θ∥≤ρ LBa (θ′) ≈ LBa (θ + η2∇LBa (θ)) for a sufficient small learning rate
η2 > 0 (i.e., η2∥∇LBa (θ) ∥ ≤ ρ).

At each iteration, while primarily using the gradients of L (θ | Bt) for optimization, we also utilize
the gradient of L (θ | Ba) to ensure congruent behavior between these two gradients. Specifically, at
the l-th iteration, we update as follows:

θ̃al = θl + η2∇θLBa (θl) , (4)

θ̃tl = θl + η1∇θLBt (θl)− η2∇θLBa

(
θ̃al

)
, (5)

θl+1 = θl − η∇θLBt

(
θ̃tl

)
, (6)

where η1 > 0, η2 > 0, and η > 0 are the learning rates, while LBt (θl) and LBa (θl) represent the
empirical losses over the mini-batches Bt, Ba ∼ St respectively.

According to (6) (i.e., θl+1 = θl − η∇θLBt

(
θ̃tl

)
), θl+1 is updated to minimize LBt

(
θ̃tl

)
. We now

do first-order Taylor expansion for LBt

(
θ̃tl

)
as

LBt

(
θ̃tl

)
≈ LBt (θl) + η1∥∇θLBt (θl) ∥22 − η2∇θLBt (θl) · ∇θLBa

(
θ̃al

)
, (7)

where · specifies the dot product.

From (7), we reach the conclusion that the update in (6) aims to minimize simultaneously (i) LBt (θl),
(ii) ∥∇θLBt (θl) ∥22, and maximize (iii) ∇θLBt (θl) · ∇θLBa

(
θ̃al

)
. While the effects in (i) and (ii)

are similar to SAM (Foret et al., 2021), maximizing ∇θLBt (θl) · ∇θLBa

(
θ̃al

)
) encourages two

gradients of the losses over Bt and Ba to become more congruent. The following theorem shows
that, during training, the two gradients of interest become more congruent.

Theorem 2. For sufficiently small learning rates η1 ≤
|∇θLBt (θl)·∇θLBa(θ̃a

l )|
12

∣∣∣∇θLBa(θ̃a
l )

T
HBt (θl)∇θLBt (θl)

∣∣∣ and η2 ≤

min

{
|∇θLBt (θl)·∇θLBa(θ̃a

l )|
6
∣∣∣∇θLBa(θ̃a

l )
T
HBt (θl)∇θLBa(θ̃a

l )
∣∣∣ , |∇θLBt (θl)·∇θLBa(θ̃a

l )|
6
∣∣∣∇θLBa(θ̃a

l )
T
HBa(θ̃a

l )∇θLBt (θl)
∣∣∣
}

, we have

∇θLBt

(
θ̃tl

)
· ∇θLBa

(
θ̃al

)
≥


1
2∇θLBt (θl) · ∇θLBa

(
θ̃al

)
if∇θLBt (θl) · ∇θLBa

(
θ̃al

)
≥ 0

3
2∇θLBt (θl) · ∇θLBa

(
θ̃al

)
otherwise

(8)
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Algorithm 1 Pseudo-code of Align-SAM

1: Input: ρ, λ, η, the number of iterations T , and the training set S
2: Output: the optimal model θT .
3: for l = 1 to T do
4: Sample mini-batches Bt, Ba ∼ S.
5: ga = ∇θLBa (θl)

6: g̃a = ∇θLBa

(
θl + ρ ga

∥ga∥2

)
7: gt = ∇θLBt (θl)

8: Compute θ̃tl ← θl + ρ
(
λ gt

∥gt∥2
− g̃a

∥g̃a∥2

)
.

9: Compute θl+1 ← θl − η∇θLBt

(
θ̃tl

)
.

10: end for

Theorem 2 (see Appendix A.1 for proof) indicates that two gradients∇θLBt

(
θ̃tl

)
and∇θLBa

(
θ̃al

)
are encouraged to be more congruent since our update aims to maximize its lower bound c ×
∇θLBt (θl) · ∇θLBa

(
θ̃al

)
(i.e., c = 0.5 or c = 1.5).

Practical Algorithm. Inspired by SAM (Foret et al., 2021), we set η2 = ρ
∥∇θLBa (θl)∥2

and
η1 = λ ρ

∥∇θLBt (θl)∥2
, where ρ > 0 are perturbation radius and λ is trade-off coefficient for combining

gradient from Bt and Ba. In practice, we observe that setting λ > 1, which prioritizes the gradient
from the training mini-batch Bt, results in improved performance. This trade-off is discussed in
Section A.3.

The pseudo-code of Align-SAM is presented in Algorithm 1. Compared to standard SAM, our
method requires additional forward and backward passes due to the use of an auxiliary batch. To
reduce this overhead, we set the auxiliary batch size |Ba| significantly smaller than the primary
training batch size |Bt|, ensuring that most computation is devoted to the main update step. As a
result, Align-SAM is only marginally slower than standard SAM, as reported in Table 9. Further
details are provided in the Appendix.

3.3 CONVERGENCE ANALYSIS

It is well known that the normalized (practical) version of SAM does not converge to the minimizer
of the training loss, as rigorously demonstrated in Si & Yun (2023) (Theorem 4.6), one of the most
comprehensive analyses of SAM’s convergence behavior. Our proposed approach shares the same
convergence rate as standard SAM, as established in Si & Yun (2023) (Theorem 4.6). Details in
Appendix A.2

4 EXPERIMENTS

In this section, we present the results of various experiments to evaluate the effectiveness of our
Align-SAM, including training from scratch, transfer learning on different dataset sizes, learning
with noisy labels, and a meta-learning setting.

4.1 IMAGE CLASSIFICATION FROM SCRATCH

We first conduct experiments on ImageNet, Food101, and CIFAR datasets with standard image
classification settings trained from scratch. The performance is compared with baseline models trained
with the SGD, SAM, ASAM, and the integration of ASAM and Align-SAM. For all experiments of
Align-SAM, we consistently set λ = 2 and discuss the effect of this trade-off in Section A.3.

ImageNet dataset. We use ResNet18 and ResNet34 models for experiments on the ImageNet dataset,
with an input size of 224 × 224. For all experiments with Align-SAM, we consistently set λ = 2,

6
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while the perturbation radius ρ is configured according to the SAM method. Specifically, in this
experiment, we set ρ = 0.1 for both SAM and Align-SAM. The models are trained for 200 epochs
with basic data augmentations (random cropping, horizontal flipping, and normalization). We use an
initial learning rate of 0.1, a batch size of 2048 for the training mini-batches, and 512 for the auxiliary
mini-batches, following a cosine learning schedule across all experiments in this paper. We extend
this experiment to the mid-sized Food101 dataset using the same settings, except for a batch size of
128 for the training and 32 for the auxiliary mini-batches. Performance results are detailed in Table 1.

Table 1: Classification accuracy on the ImageNet and Food101 datasets. All models are trained from
scratch with 200 epochs.

Dataset Method Resnet18 Resnet34

Top-1 Top-5 Top-1 Top-5

ImageNet SAM 62.46 84.19 63.73 84.95
Align-SAM 63.64 85.22 65.89 86.84

Food101 SAM 73.15 89.85 73.87 90.84
Align-SAM 73.45 90.35 74.47 91.27

CIFAR dataset. We used three architectures: WideResnet28x10, Pyramid101, and Densenet121 with
an input size of 32× 32 for CIFAR datasets. To replicate the baseline experiments, we followed the
hyperparameters provided in the original papers. Specifically, for CIFAR-100, we set ρ = 0.1, and for
CIFAR-10, we used ρ = 0.05 for SAM, VASSO and Align-SAM. The same procedure and settings
were applied to ASAM and Align-ASAM, with the perturbation radius ρ = 1.0 for CIFAR-100 and
ρ = 0.5 for CIFAR-10. Other training configurations are consistent with those used in the ImageNet
experiments, except for data augmentations (horizontal flipping, four-pixel padding, and random
cropping). We use θ = 0.9 as the default parameter for VASSO. The results are reproduced and
reported in Tables 2, while the SGD results are referenced from Foret et al. (2021).

Our proposed method outperforms the baselines across various settings. On both ImageNet and
Food101, it significantly surpasses the baselines, with a notable improvement in both Top-1 and Top-5
accuracy. For CIFAR-10, performance is close to the saturation point, making further improvements
challenging. Nevertheless, Align-SAM achieves slight enhancements across all cases. On CIFAR-
100, where models are more prone to overfitting compared to CIFAR-10, Align-SAM still delivers
competitive results.

4.2 TRANSFER LEARNING

In this subsection, we further evaluate Align-SAM in the transfer learning setting using the ImageNet
pre-trained models to fine-tune both small-size, mid-size, and large-size datasets. All initialized
weights are available on the Pytorch library.

First, we conduct experiments on ImageNet using three models from the ResNet family and a
ViT-Adapter-S (which incorporates lightweight Adapter modules with a plain ViT-Small backbone).
The ResNet models are pre-trained on ImageNet, while the backbone ViT-Small of ViT-Adapter-S
is pre-trained on ImageNet-21k. Each model is then fine-tuned for 50 epochs using either SAM
or Align-SAM with a learning rate of 0.01. We set ρ = 0.05 for SAM and Align-SAM; basic
augmentation techniques are the same as training from the scratch setting. Results reported in Table 3
show that our methods outperform baselines with a significant gap in both top-1 and top-5 accuracies.

Next, we examine this setting on small and mid-sized datasets on three models of the EfficientNet
family. We fine-tune with a learning rate of 0.05 in 50 epochs and use ρ = 0.1 for all experiments
of SAM, VASSO (with θ = 0.9 as the default) Li & Giannakis (2024), and Align-SAM. In Table 4,
Align-SAM achieves a noticeable improvement compared to most of the baselines on all small-size,
mid-size, and large-size datasets, demonstrating its robustness and stability across various experiment
settings.
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Table 2: Classification accuracy on the CIFAR datasets. All models are trained from scratch three
times with different random seeds and we report the mean and standard deviation of accuracies.

Method WideResnet28x10 Pyramid101 Densenet121

Dataset CIFAR-100

SGD Foret et al. (2021) 81.20 ± 0.200 80.30 ± 0.300 -
SAM Foret et al. (2021) 83.00 ± 0.035 81.99 ± 0.636 68.72 ± 0.409
VASSO Li & Giannakis (2024) 83.11 ± 0.063 82.04 ± 0.127 69.00 ± 0.261
GSAM Zhuang et al. (2022) 83.13 ± 0.099 81.87 ± 0.143 68.88 ± 0.201
LookSAM (k=1) Liu et al. (2022) 82.89 ± 0.111 82.25 ± 0.273 69.05 ± 0.182
Align-SAM 83.72 ± 0.049 82.53 ± 0.282 69.10 ± 0.311
ASAM 83.16 ± 0.296 82.02 ± 0.134 69.62 ± 0.120
Align-ASAM 83.88 ± 0.042 82.31 ± 0.183 69.71 ± 0.339

Dataset CIFAR-10

SGD Foret et al. (2021) 96.50 ± 0.100 96.00 ± 0.100 -
SAM Foret et al. (2021) 96.87 ± 0.027 96.17 ± 0.174 91.28 ± 0.241
VASSO Li & Giannakis (2024) 96.84 ± 0.014 96.22 ± 0.035 91.18 ± 0.063
GSAM Zhuang et al. (2022) 96.91 ± 0.020 96.15 ± 0.113 91.50 ± 0.109
LookSAM(k=1) Liu et al. (2022) 97.00 ± 0.181 96.00 ± 0.207 91.10 ± 0.196
Align-SAM 96.91 ± 0.007 96.47 ± 0.219 91.54 ± 0.307
ASAM Kwon et al. (2021) 96.91 ± 0.063 96.45 ± 0.042 92.04 ± 0.240
Align-ASAM 97.15 ± 0.063 96.56 ± 0.261 92.02 ± 0.000

Table 3: Transfer learning on ImageNet with Resnet models.

Model Top-1 Acc Top-5 Acc

SAM Foret et al. (2021) Align-SAM SAM Foret et al. (2021) Align-SAM

Resnet18 70.44 ± 0.12 70.92 ± 0.05 89.63 ± 0.04 89.90 ± 0.04
Resnet34 73.06 ± 0.48 73.94 ± 0.14 91.29 ± 0.03 91.81 ± 0.03
Resnet50 75.17 ±—– 75.91 ±—– 92.58 ±—– 92.83 ±—–
ViT-Adapter-S 79.96 ±—– 80.04 ±—– 95.35 ±—– 95.39 ±—–

Table 4: Transfer learning accuracy of small and medium datasets. All models are fine-tuned from
pre-trained weights on ImageNet.

Dataset Top-1 Acc Top-5 Acc

SGD SAM VASSO Align-SAM SGD SAM VASSO Align-SAM

EfficientNet-B2

Stanford Cars 89.14 ± 0.11 89.68 ± 0.17 89.91 ± 0.24 90.39 ± 0.07 97.60 ± 0.20 98.04 ± 0.07 98.03 ± 0.09 98.30 ± 0.09
FGVC-Aircraft 85.83 ± 0.23 86.25 ± 0.36 86.23 ± 0.22 87.22 ± 0.27 95.72 ± 0.02 95.87 ± 0.06 95.94 ± 0.05 95.94 ± 0.03
Oxford IIIT Pets 92.17 ± 0.19 92.34 ± 0.11 92.40 ± 0.16 92.64 ± 0.17 99.23 ± 0.02 99.35 ± 0.02 99.34 ± 0.01 99.35 ± 0.07
Flower102 95.06 ± 0.01 95.22 ± 0.14 95.37 ± 0.11 95.43 ± 0.10 99.08 ± 0.18 99.11 ± 0.19 99.23 ± 0.09 99.18 ± 0.02
Food101 83.50 ± 0.01 85.12 ± 0.07 84.65 ± 0.03 85.51 ± 0.02 96.10 ± 0.32 96.83 ± 0.08 96.60 ± 0.09 97.14 ± 0.00
Country211 11.94 ± 0.14 12.48 ± 0.03 12.49 ± 0.10 13.41 ± 0.00 23.70 ± 0.13 25.49 ± 0.07 24.90 ± 0.13 27.06 ± 0.16

EfficientNet-B3

Stanford Cars 89.01 ± 0.19 89.40 ± 0.09 89.55 ± 0.12 89.86 ± 0.14 97.73 ± 0.21 98.03 ± 0.07 98.01 ± 0.05 98.10 ± 0.01
FGVC-Aircraft 84.88 ± 0.08 85.19 ± 0.11 85.15 ± 0.19 85.78 ± 0.25 95.53 ± 0.12 95.67 ± 0.00 95.67 ± 0.02 96.26 ± 0.10
Oxford IIIT Pets 92.68 ± 0.25 92.58 ± 0.02 92.64 ± 0.06 92.75 ± 0.19 99.00 ± 0.01 99.19 ± 0.05 99.23 ± 0.10 99.26 ± 0.11
Flower102 94.59 ± 0.10 94.73 ± 0.14 94.94 ± 0.17 95.32 ± 0.26 98.95 ± 0.08 99.12 ± 0.16 99.13 ± 0.07 99.26 ± 0.07
Food101 83.75 ± 0.12 85.79 ± 0.13 85.69 ± 0.14 85.95 ± 0.13 96.22 ± 0.02 97.12 ± 0.00 97.07 ± 0.09 97.33 ± 0.00
Country211 12.96 ± 0.01 13.38 ± 0.09 13.36 ± 0.08 13.61 ± 0.05 26.11 ± 0.56 25.78 ± 0.08 25.91 ± 0.05 26.71 ± 0.26

EfficientNet-B4

Stanford Cars 84.72 ± 0.04 85.08 ± 0.16 85.06 ± 0.07 85.46 ± 0.32 96.41 ± 0.07 96.45 ± 0.01 96.53 ± 0.04 96.81 ± 0.00
FGVC-Aircraft 79.95 ± 0.61 79.96 ± 0.04 80.02 ± 0.38 80.53 ± 0.51 94.87 ± 0.08 94.65 ± 0.08 94.68 ± 0.13 94.74 ± 0.01
Oxford IIIT Pets 91.89 ± 0.13 92.02 ± 0.23 92.04 ± 0.18 92.07 ± 0.00 99.28 ± 0.10 99.43 ± 0.07 99.59 ± 0.08 99.44 ± 0.02
Flower102 92.73 ± 0.04 93.02 ± 0.14 93.02 ± 0.16 93.07 ± 0.16 98.49 ± 0.07 98.68 ± 0.02 98.73 ± 0.07 98.63 ± 0.05
Food101 84.55 ± 0.14 86.13 ± 0.06 86.18 ± 0.10 86.40 ± 0.44 96.31 ± 0.03 97.07 ± 0.01 97.07 ± 0.03 97.31 ± 0.02
Country211 14.63 ± 0.09 14.80 ± 0.13 14.97 ± 0.11 15.26 ± 0.16 27.60 ± 0.00 28.09 ± 1.77 28.00 ± 0.18 28.24 ± 0.14
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4.3 TRAIN WITH NOISY LABEL

In addition to mitigating data shifts between training and testing datasets, we evaluate the robustness
of Align-SAM against noisy labels on the standard training procedure. Specifically, we adopt a
classical noisy-label setting for CIFAR-10 and CIFAR-100, in which a portion of the training set’s
labels are symmetrically flipped with noise fractions {0.2, 0.4, 0.6, 0.8}, while the testing set’s labels
remain unchanged.

Table 5: Results under label noise on CIFAR datasets with ResNet32. Each experiment is conducted
three times using different random seeds, and we report their averages and standard deviations.

Method Noise rate (%)

0.2 0.4 0.6 0.8

Dataset CIFAR-100

SGD 66.22 ± 0.355 59.26 ± 0.045 46.77 ± 0.020 26.49 ± 0.640
SAM 66.16 ± 0.721 59.95 ± 0.622 50.81 ± 0.353 24.26 ± 1.209
FSAM 65.73 ± 0.219 58.96 ± 0.381 49.36 ± 1.103 25.92 ± 1.173
VASSO (θ = 0.9) 66.52 ± 0.254 59.67 ± 0.318 50.09 ± 0.353 20.85 ± 0.077
VASSO (θ = 0.2) 65.16 ± 0.042 59.07 ± 0.820 48.35 ± 1.046 28.49 ± 0.551
Align-SAM 66.78 ± 0.657 60.78 ± 0.636 51.03 ± 0.502 27.66 ± 1.265
ASAM 66.88 ± 0.593 61.53 ± 0.487 52.77 ± 0.561 30.33 ± 1.788
Align-ASAM 67.38 ± 0.106 62.72 ± 0.304 54.58 ± 0.572 32.77 ± 0.388

Dataset CIFAR-10

SGD 89.98 ± 0.070 84.83 ± 0.085 75.06 ± 0.385 54.47 ± 1.265
SAM 91.26 ± 0.007 88.19 ± 1.060 83.43 ± 0.622 61.69 ± 0.289
FSAM 91.35 ± 0.318 87.58 ± 0.353 82.78 ± 2.057 58.09 ± 2.276
VASSO (θ = 0.9) 91.47 ± 0.487 88.17 ± 0.890 83.75 ± 0.480 67.71 ± 4.129
VASSO (θ = 0.2) 90.45 ± 0.855 86.28 ± 0.997 77.33 ± 0.806 70.95 ± 0.770
Align-SAM 92.38 ± 0.007 90.20 ± 0.318 85.33 ± 0.268 70.02 ± 0.403
ASAM 91.98 ± 0.007 89.24 ± 0.572 84.39 ± 0.445 64.82 ± 6.880
Align-ASAM 92.06 ± 0.367 90.01 ± 0.282 86.09 ± 0.657 73.25 ± 0.353

All experiments are conducted using the ResNet32 architecture, with models trained from scratch
for 200 epochs. The batch size is set to 512 for the training mini-batches and 128 for the auxiliary
mini-batches. Following Foret et al. (2021), we set ρ = 0.1 SAM, FSAM Li et al. (2024), VASSO Li
& Giannakis (2024), and Align-SAM, ρ = 1.0 for ASAM and Align-ASAM when training with all
noise levels. Exceptionally, for the setting with 80% noisy labels, the perturbation radius for SAM,
FSAM, Align-SAM, ASAM, and Align-ASAM is reduced by half to ensure more stable convergence.
This observation is also noted in Li et al. (2024) and Foret et al. (2021).

In line with Li et al. (2024), we apply additional cutout techniques along with the basic augmentations
outlined in Section 4.1. We report the results of VASSO with θ = {0.2, 0.9}, as presented in their
paper Li & Giannakis (2024), where θ = 0.2 is expected to yield better performance. However, we
observe that θ = 0.2 performs better only in the setting with 80% noisy labels, while in other noisy
label settings, it gives a lower result compared to θ = 0.9. Each experiment is repeated three times
with different random seeds, and we report the average and standard deviation of the results in Table
5. Note that training with SGD is prone to overfitting as the number of epochs increases. Therefore,
we present the best results for SGD training at both 200 and 400 epochs.

5 ABLATION STUDY

5.1 COSINE SIMILARITY OF GRADIENTS

We present the cosine similarity of gradients before and update the model using SAM and Align-SAM
in Figure 1. Detail analysis is presented in Appendix A.3.

The size of the auxiliary subset |Ba| and complexity, the sensitivity of trade-off coefficient λ,
the analysis of loss landscape, and details of these experiments are presented in Appendix A.3.
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(a) Before updating model (b) After updating model (c) Improvement after updating

Figure 1: Cosine similarity of two gradients∇θLBt (θl) and∇θLBa

(
θ̃al

)
(a) before updating model,

(b) after updating model and (c) the improvement of this similarity.

6 CONCLUSION AND LIMITATION

In conclusion, this work revisits Sharpness-Aware Minimization (SAM) through the lens of cross-
subset alignment, offering a fresh perspective on generalization. While SAM encourages flat minima
to improve generalization, we argue that effective generalization also hinges on the alignment
between two independently sampled subsets from the same data distribution. Building on this insight,
we introduce Align-SAM to find models that minimize sharpness and loss on the primary subset
while simultaneously maintaining low loss on the auxiliary subset, thereby ensuring stability across
resamplings of the data distribution. By explicitly aligning the optimization process across both
subsets, Align-SAM produces models that are not only robust to perturbations but also more resilient
to distributional shifts. Extensive experiments confirm that Align-SAM delivers consistent gains in
generalization, particularly under challenging conditions such as label noise and data scarcity. One
limitation to note is that using an additional auxiliary subset in each training iteration may increase
training time (depending on the size of the auxiliary sets). We view this as a trade-off between
performance and training complexity. However, this issue could potentially be mitigated by reusing
the gradients from the previous steps. We leave this as a direction for future work to reduce training
complexity while maintaining performance.
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A APPENDIX / SUPPLEMENTAL MATERIAL

In this appendix, we present the proofs in our paper and additional experiments. We open-source
our code and provide instruction, scripts, and log files to reproduce experiments at https://
anonymous.4open.science/r/AlignSAM-43CD/README.md

A.1 ALL PROOFS

Proof of Theorem 1

Proof. We use the PAC-Bayes theory in this proof. In PAC-Bayes theory, θ could follow a distribution,
says P , thus we define the expected loss over θ distributed by P as follows:

LD(θ, P ) = Eθ∼P

[
LD(θ)

]
LS(θ, P ) = Eθ∼P

[
LS(θ)

]
.

For any distribution P = N (0, σ2
P Ik) and Q = N (θ, σ2Ik) over θ ∈ Rk, where P is the prior

distribution and Q is the posterior distribution, use the PAC-Bayes theorem in Alquier et al. (2016a),
for all β > 0, with a probability at least 1− δ, we have

LD(θ,Q) ≤ LS(θ,Q) +
1

β

[
KL(Q∥P ) + log

1

δ
+Ψ(β,N)

]
, (9)

where Ψ is defined as

Ψ(β,N) = logEPEDN

[
exp

{
β
[
LD(fθ)− LS(fθ)

]}]
.

When the loss function is bounded by L, then

Ψ(β,N) ≤ β2L2

8N
.

The task is to minimize the second term of RHS of (9), we thus choose β =
√
8N

KL(Q∥P )+log 1
δ

L .
Then the second term of RHS of (9) is equal to√

KL(Q∥P ) + log 1
δ

2N
× L.

The KL divergence between Q and P , when they are Gaussian, is given by formula

KL(Q∥P ) =
1

2

[
kσ2 + ∥θ∥2

σ2
P

− k + k log
σ2
P

σ2

]
.

For given posterior distribution Q with fixed σ2, to minimize the KL term, the σ2
P should be equal to

σ2 + ∥θ∥2/k. In this case, the KL term is no less than

k log
(
1 +
∥θ0∥2

kσ2

)
.

Thus, the second term of RHS is√
KL(Q∥P ) + log 1

δ

2N
× L ≥

√
k log

(
1 + ∥θ∥2

kσ2

)
4N

× L ≥ L

when ∥θ∥2 > σ2
{
exp(4N/k) − 1

}
. Hence, for any ∥θ∥2 > σ2

{
exp(4N/k) − 1

}
, we have the

RHS is greater than the LHS, and the inequality is trivial. In this work, we only consider the case:

∥θ∥2 < σ2
(
exp{4N/k} − 1

)
. (10)

Distribution P is Gaussian centered around 0 with variance σ2
P = σ2 + ∥θ∥2/k, which is unknown

at the time we set up the inequality, since θ is unknown. Meanwhile, we have to specify P in advance,
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since P is the prior distribution. To deal with this problem, we could choose a family of P such that
its means cover the space of θ satisfying inequality (10). We set

c = σ2
(
1 + exp{4N/k}

)
Pj = N

(
0, c exp

1− j

k
Ik
)

P :=
{
Pj : j = 1, 2, . . .

}
Then the following inequality holds for a particular distribution Pj with probability 1 − δj with
δj =

6δ
π2j2

Eθ′∼N (θ,σ2)LD
(
fθ′

)
≤ Eθ′∼N (θ,σ2)LS

(
fθ′

)
+

1

β

[
KL(Q∥Pj) + log

1

δj
+Ψ(β,N)

]
.

Use the well-known equation:
∑∞

j=1
1
j2 = π2

6 , then with probability 1 − δ, the above inequality
holds with every j. We pick

j∗ :=

⌊
1− k log

σ2 + ∥θ∥2/k
c

⌋
=

⌊
1− k log

σ2 + ∥θ∥2/k
σ2(1 + exp{4N/k})

⌋
.

Therefore,

1− j∗ =

⌈
k log

σ2 + ∥θ∥2/k
c

⌉
⇒ log

σ2 + ∥θ∥2/k
c

≤ 1− j∗

k
≤ log

σ2 + ∥θ0∥2/k
c

+
1

k

⇒ σ2 + ∥θ∥2/k ≤ c exp

{
1− j∗

k

}
≤ exp(1/k)

[
σ2 + ∥θ∥2/k

]
⇒ σ2 + ∥θ∥2/k ≤ σ2

Pj∗
≤ exp(1/k)

[
σ2 + ∥θ∥2/k

]
.

Thus the KL term could be bounded as follow

KL(Q∥Pj∗) =
1

2

[
kσ2 + ∥θ∥2

σ2
Pj∗

− k + k log
σ2
Pj∗

σ2

]

≤ 1

2

[
k(σ2 + ∥θ∥2/k)
σ2 + ∥θ∥2/k

− k + k log
exp(1/k)

(
σ2 + ∥θ∥2/k

)
σ2

]

=
1

2

[
k log

exp(1/k)
(
σ2 + ∥θ∥2/k

)
σ2

]
=

1

2

[
1 + k log

(
1 +
∥θ0∥2

kσ2

)]
For the term log 1

δj∗
, with recall that c = σ2

(
1 + exp(4N/k)

)
and

j∗ =
⌊
1− k log σ2+∥θ∥2/k

σ2(1+exp{4N/k})

⌋
, we have

log
1

δj∗
= log

(j∗)2π2

6δ
= log

1

δ
+ log

(π2

6

)
+ 2 log(j∗)

≤ log
1

δ
+ log

π2

6
+ 2 log

(
1 + k log

σ2
(
1 + exp(4N/k)

)
σ2 + ∥θ∥2/k

)
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + k log

(
1 + exp(4N/k)

))
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + k

(
1 +

4N

k

))
≤ log

1

δ
+ log

π2

6
+ log(1 + k + 4N).
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Hence, the inequality

LD

(
θ′,N (θ, σ2Ik)

)
≤ LS

(
θ′,N (θ, σ2Ik)

)
+

√
KL(Q∥Pj∗) + log 1

δj∗

2N
× L

≤ LS

(
θ′,N (θ, σ2Ik)

)
+

L

2
√
N

√
1 + k log

(
1 +
∥θ∥2
kσ2

)
+ 2 log

π2

6δ
+ 4 log(N + k)

≤ LS

(
θ′,N (θ, σ2Ik)

)
+

L

2
√
N

√
k log

(
1 +
∥θ∥2
kσ2

)
+O(1) + 2 log

1

δ
+ 4 log(N + k).

Since ∥θ′ − θ∥2 is k chi-square distribution, for any positive t, we have

P
(
∥θ′ − θ∥2 − kσ2 ≥ 2σ2

√
kt+ 2tσ2

))
≤ exp(−t).

By choosing t = 1
2 log(N), with probability 1−N−1/2, we have

∥θ′ − θ∥2 ≤ σ2 log(N) + kσ2 + σ2
√
2k log(N) ≤ kσ2

(
1 +

√
log(N)

k

)2

.

By setting σ = ρ×
(√

k +
√
log(N)

)−1
, we have ∥θ′ − θ∥2 ≤ ρ2. Hence, we get

LS

(
θ′,N (θ, σ2Ik)

)
= Eθ∼N (θ,σ2Ik)ES

[
fθ′

]
=

∫
∥θ′−θ∥≤ρ

ES
[
fθ′

]
dN (θ, σ2I)

+

∫
∥θ′−θ∥>ρ

ES
[
fθ′

]
dN (θ, σ2I)

≤
(
1− 1√

N

)
max

∥θ′−θ∥≤ρ
LS(θ

′) +
1√
N

L

≤ max
∥θ′−θ∥2≤ρ

LS(θ
′) +

2L√
N

.

It follows that

LD(θ) ≤ max
∥θ′−θ∥≤ρ

LS(θ
′) +

4L√
N

[√
k log

(
1 +
∥θ∥2
ρ2

(
1 +

√
log(N)/k

)2)
+ 2

√
log

(N + k

δ

)
+O(1)

]

= LD(θ | S) +
4L√
N

[√
k log

(
1 +
∥θ∥2
ρ2

(
1 +

√
log(N)/k

)2)
+ 2

√
log

(N + k

δ

)
+O(1)

]
.

By choosing θ = θ∗, which is the solution on a random subset St and S = Sa, which is another
subset, St, Sa ∼ D, hence N = Na, we reach the conclusion.

Proof of Theorem 2

Proof. We have

LBt

(
θ̃tl

)
= LBt

(θl) + η1∥∇θLBt (θl) ∥22 − η2∇θLBt (θl) · ∇θLBa

(
θ̃al

)
.
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This follows that

∇θLBt

(
θ̃tl

)
= ∇θLBt (θl) + 2η1HBt (θl)∇θLBt (θl)

− η2

[
HBt (θl)∇θLBa

(
θ̃al

)
+HBa

(
θ̃al

)
∇θLBt (θl)

]
,

where HBt (θl) = ∇2
θLBt

(θl) and HBa

(
θ̃al

)
= ∇2

θLBa

(
θ̃al

)
are the Hessian matrices.

∇θLBa

(
θ̃al

)
· ∇θLBt

(
θ̃tl

)
= ∇θLBt (θl) · ∇θLBa

(
θ̃al

)
+ 2η1∇θLBa

(
θ̃al

)T

HBt (θl)∇θLBt (θl)

− η2∇θLBa

(
θ̃al

)T

HBt (θl)∇θLBa

(
θ̃al

)
− η2∇θLBa

(
θ̃al

)T

HBa

(
θ̃al

)
∇θLBt (θl) .

We now choose η1 ≤
|∇θLBt (θl)·∇θLBa(θ̃a

l )|
12

∣∣∣∇θLBa(θ̃a
l )

T
HBt (θl)∇θLBt (θl)

∣∣∣ , we then have

η1

∣∣∣∣∇θLBa

(
θ̃al

)T

HBt (θl)∇θLBt (θl)

∣∣∣∣ ≤ 1

12

∣∣∣∇θLBt
(θl) · ∇θLBa

(
θ̃al

)∣∣∣ .
This further implies

η1∇θLBa

(
θ̃al

)T

HBt (θl)∇θLBt (θl) ≥ −
1

12

∣∣∣∇θLBt
(θl) · ∇θLBa

(
θ̃al

)∣∣∣ .
Next we choose η2 ≤ min

{
|∇θLBt (θl)·∇θLBa(θ̃a

l )|
6
∣∣∣∇θLBa(θ̃a

l )
T
HBt (θl)∇θLBa(θ̃a

l )
∣∣∣ , |∇θLBt (θl)·∇θLBa(θ̃a

l )|
6
∣∣∣∇θLBa(θ̃a

l )
T
HBa(θ̃a

l )∇θLBt (θl)
∣∣∣
}

,

we then have

η2

∣∣∣∣∇θLBa

(
θ̃al

)T

HBt (θl)∇θLBa

(
θ̃al

)∣∣∣∣ ≤
∣∣∣∇θLBt

(θl) · ∇θLBa

(
θ̃al

)∣∣∣
6

.

−η2∇θLBa

(
θ̃al

)T

HBt (θl)∇θLBa

(
θ̃al

)
≥ −

∣∣∣∇θLBt
(θl) · ∇θLBa

(
θ̃al

)∣∣∣
6

.

η2

∣∣∣∣∇θLBa

(
θ̃al

)T

HBa

(
θ̃al

)
∇θLBt (θl)

∣∣∣∣ ≤
∣∣∣∇θLBt (θl) · ∇θLBa

(
θ̃al

)∣∣∣
6

.

−η2∇θLBa

(
θ̃al

)T

HBa

(
θ̃al

)
∇θLBt (θl) ≥ −

∣∣∣∇θLBt (θl) · ∇θLBa

(
θ̃al

)∣∣∣
6

.

Finally, we yield

∇θLBa

(
θ̃al

)
· ∇θLBt

(
θ̃tl

)
≥ ∇θLBt

(θl) · ∇θLBa

(
θ̃al

)
− 1

2

∣∣∣∇θLBt
(θl) · ∇θLBa

(
θ̃al

)∣∣∣ .

Proof of Theorem 3

Proof. We first denote θ̂tl = θl + (ρ1 − ρ2)
∇LS(θl)

∥∇LS(θl)∥ . Using the β-smoothness, we have

LS (θl+1) ≤ LS (θl) +∇LS (θl) · (θl+1 − θl) +
β

2
∥θl+1 − θl∥2

≤ LS (θl)− η∇LS (θl) · ∇LBt

(
θ̃tl

)
+

βη2

2
∥∇LBt

(
θ̃tl

)
∥2.
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Taking the expectation, we gain

E [LS (θl+1)] ≤E [LS (θl)]− ηE
[
∇LS (θl) · ∇LBt

(
θ̃tl

)]
+

βη2

2
E
[
∥∇LBt

(
θ̃tl

)
∥2
]

≤E [LS (θl)]− ηE
[
∥∇LS (θl) ∥2

]
− ηE

[
∇LS (θl) ·

[
∇LBt

(
θ̃tl

)
−∇LS (θl)

]]
+

βη2

2
E
[
∥∇LBt

(
θ̃tl

)
∥2 |

]
=E [LS (θl)]− ηE

[
∥∇LS (θl) ∥2

]
− ηE

[
∇LS (θl) ·

[
∇LBt

(
θ̃tl

)
−∇LBt

(
θ̂tl

)]]
+

βη2

2
E
[
∥∇LBt

(
θ̃tl

)
∥2 |

]
− ηE

[
∇LS (θl) ·

[
∇LS

(
θ̂tl

)
−∇LS (θl)

]]
≤E [LS (θl)]− ηE

[
∥∇LS (θl) ∥2

]
+

η

2
E
[
∥∇LS (θl) ∥2

]
+

η

2
E
[
∥∇LBt

(
θ̃tl

)
−∇LBt

(
θ̂tl

)
∥2
]

− ηE

[
∥∇LS (θl) ∥

θ̂tl − θl
ρ1 − ρ2

·
[
∇LS

(
θ̂tl

)
−∇LS (θl)

]]
+

βη2

2
E
[
∥∇LBt

(
θ̃tl

)
∥2
]

≤E [LS (θl)]−
η

2
E
[
∥∇LS (θl) ∥2

]
+

β2η

2
E
[
∥θ̃tl − θ̂tl∥2

]
+

βη2

2
E
[
∥∇LBt

(
θ̃tl

)
∥2
]

+ βηE
[
∥∇LS (θl) ∥
ρ1 − ρ2

∥θ̂tl − θl∥2
]

≤E [LS (θl)]−
η

2
E
[
∥∇LS (θl) ∥2

]
+

β2η

2
E

∥ρ1 ∇LBt (θl)

∥∇LBt (θl) ∥
− ρ2

∇LBa

(
θ̃al

)
∥∇LBa

(
θ̃al

)
∥
− (ρ1 − ρ2)

∇LS (θl)

∥∇LS (θl) ∥
∥2


+
βη2

2
E
[
∥∇LBt

(
θ̃tl

)
∥2
]
+ βηE

[
∥∇LS (θl) ∥
ρ1 − ρ2

∥θ̂tl − θl∥2
]

≤E [LS (θl)]−
η

2
E
[
∥∇LS (θl) ∥2

]
+ 3β2η

(
ρ21 + ρ22 − ρ1ρ2

)
+ (ρ1 − ρ2)βηE [∥∇LS (θl) ∥] +

βη2

2
E
[
∥∇LBt

(
θ̃tl

)
∥2
]

≤E [LS (θl)]−
η

2
E
[
∥∇LS (θl) ∥2

]
+ 3β2η

(
ρ21 + ρ22 − ρ1ρ2

)
+ (ρ1 − ρ2)βηE [∥∇LS (θl) ∥]

+ βη2E
[
∥∇LBt

(
θ̃tl

)
−∇LS

(
θ̃tl

)
∥2
]
+ βη2E

[
∥∇LS

(
θ̃tl

)
∥2
]

≤E [LS (θl)]−
η

2
E
[
∥∇LS (θl) ∥2

]
+ 3β2η

(
ρ21 + ρ22 − ρ1ρ2

)
+ (ρ1 − ρ2)βηE [∥∇LS (θl) ∥] + βη2

(
σ2 +G2

)
≤ E [LS (θl)]−

η

2
(E [∥∇LS (θl) ∥]−∆ρβ)

2
+

1

2
η∆ρ2β2

+ 3β2η
(
ρ21 + ρ22 − ρ1ρ2

)
+ βη2

(
σ2 +G2

)
Rearrange the terms, we obtain

(E [∥∇LS (θl) ∥]−∆ρβ)
2 ≤2

η
(E [LS (θl)]− E [LS (θl+1)])

+
1

2
η∆ρ2β2 + 3β2η

(
ρ21 + ρ22 − ρ1ρ2

)
+ βη2

(
σ2 +G2

)
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Take sum l from 1 to T , we reach

1

T

T∑
l=1

(E [∥∇LS (θl) ∥]−∆ρβ)
2 ≤ 2

ηT
(E [LS (θ0)]− E [LS (θT+1)]) + ∆ρ2β2

+ 6β2
(
ρ21 + ρ22 − ρ1ρ2

)
+ 2βη

(
σ2 +G2

)
≤ 2

ηT
(E [LS (θ0)]− L∗) + ∆ρ2β2 + 6β2

(
7ρ21 + 7ρ22 − 8ρ1ρ2

)
+ 2βη

(
σ2 +G2

)
≤2∆

ηT
+ 6β2

(
7ρ21 + 7ρ22 − 8ρ1ρ2

)
+ 2βη

(
σ2 +G2

)
Substitute η =

√
∆√

βT (σ2+G2)
, we arrive at

1

T

T∑
l=1

(E [∥∇LS (θl) ∥]−∆ρβ)
2 ≤

4
√

β∆(σ2 +G2)√
T

+ 6β2
(
7ρ21 + 7ρ22 − 8ρ1ρ2

)

Proof of Theorem 3.1

Proof. We have

min
l=0,...,T

|E [∥∇LS (θl) ∥]−∆ρβ| ≤ 1

T

T∑
l=1

|E [∥∇LS (θl) ∥]−∆ρβ|

≤

√√√√ 1

T

T∑
l=1

(E [∥∇LS (θl) ∥]−∆ρβ)
2

≤
2
[
β∆

(
σ2 +G2

)]1/4
T 1/4

+ β
√
6 (7ρ21 + 7ρ22 − 8ρ1ρ2)

This implies that

min
l=0,...,T

E [∥∇LS (θl) ∥] ≤
2
[
β∆

(
σ2 +G2

)]1/4
T 1/4

+ β
√
6 (7ρ21 + 7ρ22 − 8ρ1ρ2)

+ ∆ρβ.

A.2 CONVERGENCE ANALYSIS

To do convergence analysis for Align-SAM, we make the following assumptions (Si & Yun, 2023):

A1 (G-Lipchitz). The loss function LS is G-Lipchitz, i.e., |LS(θ)− LS(θ
′)| ≤ G∥θ − θ′∥.

A2 (β-smoothness). The loss function LS is β-smooth, if ∥∇LS (θ)−∇LS (θ′) ∥ ≤ β∥θ − θ′∥ for
all θ, θ′.

A3 (Bounded variance). For any batch B ∼ S, EB

[
∥LB (θ)− LS (θ) ∥2

]
≤ σ2 for all θ.

Theorem 3. Assume that the loss function LS satisfies the assumptions A1,A2, and A3, and L∗ =

infθLS(θ) > −∞. Under Align-SAM, starting from θ0 and the learning rate η =
√
∆√

βT (σ2+G2)
, we

have

1

T

T∑
l=1

(E [∥∇LS (θl) ∥]−∆ρβ)
2 ≤

4
√

β∆(σ2 +G2)√
T

+ 6β2
(
7ρ21 + 7ρ22 − 8ρ1ρ2

)
,

where ∆ρ = ρ1 − ρ2 and ∆ = LS(θ0)− L∗.
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Table 6: Domain Generalization setting. All models are trained on ImageNet-1k and then evaluated
on ImageNet-1k (clean validation set), Imagenet-R, and Imagenet-C datasets.

Method Top-1 Acc Top-5 Acc

Imagenet ImageNet-R ImageNet-C Imagenet ImageNet-R ImageNet-C

ResNet18 - Transfer Learning
SAM 70.52 34.18 48.27 89.60 52.82 72.17
Align-SAM 70.88 34.38 48.69 89.94 53.23 72.61
ResNet18 - From Scratch
SAM 62.46 25.86 32.96 73.15 43.09 55.72
Align-SAM 63.64 26.20 34.06 73.45 43.99 57.42

Corollary 3.1. Under the assumptions as in Theorem 3, we have

min
l=0,...,T

E [∥∇LS (θl) ∥] ≤
2
[
β∆

(
σ2 +G2

)]1/4
T 1/4

+ β

(√
6 (7ρ21 + 7ρ22 − 8ρ1ρ2) + ∆ρ

)
.

It is well known that the normalized (practical) version of SAM does not converge to the minimizer
of the training loss, as rigorously demonstrated in Si & Yun (2023) (Theorem 4.6), one of the most
comprehensive analyses of SAM’s convergence behavior. Our proposed approach shares the same
convergence rate as standard SAM, as established in Si & Yun (2023) (Theorem 4.6).

A.3 ADDITIONAL EXPERIMENTS

Experiments of Domain Generalization To strengthen the claims about Align-SAM, we evaluated
Align-SAM’s robustness under domain shifts by training on ImageNet-1K and testing on ImageNet-
1K (clean test set), ImageNet-R (artistic renditions), and ImageNet-C (with various corruptions).
These shifts demonstrate Align-SAM’s robustness, as it consistently outperforms SAM across all
setups. The results are shown in Table 6.

Experiments of meta-learning setting The concept of Align-SAM is inspired by the agnostic
approach in the MAML setting, where the meta-model is optimized on the meta-training set but aims
to minimize loss on the validation set, assuming both the training and validation sets are from the
same data distribution. Different from this original idea, Align-SAM uses the gradient from another
auxiliary set as an indicator to close the generalization gap between the training and testing sets.
Despite this difference, both approaches share the same underlying objective, making it reasonable
to expect that applying Align-SAM in the MAML setting will result in improved generalization
performance.

Table 7: Meta-learning results on Mini-Imagenet dataset. All baseline results are taken from Abbas
et al. (2022)

Method Accuracy

5 ways 1 shot 5 ways 5 shots

MAML 47.13 62.20
SHARP-MAMLlow 49.72 63.18

Align-SAMlow 50.08 64.29

We compare our approach with standard MAML and Sharp-MAML (Abbas et al., 2022), which
also address the loss landscape flatness in bilevel models. MAML is typically framed as a bilevel
optimization problem, consisting of a meta-update step to learn a shared model initialization and a
fine-tuning step to adapt task-specific models. Sharp-MAML analyzes the geometry of MAML’s
loss landscape and introduces the use of SAM to avoid sharp local minima in MAML loss functions.
Sharp-MAML proposes three variants: Sharp-MAMLlow (applying SAM only to the fine-tuning step),
Sharp-MAMLup (applying SAM only to the meta-update step), and Sharp-MAMLboth (applying
SAM to both steps). Since our Align-SAM shares the same objective as SAM to improve model
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Table 8: Meta-learning results on Omniglot dataset. All baseline results are taken from Abbas et al.
(2022)

Method Accuracy

20 ways 1 shot 20 ways 5 shots

MAML 91.77 96.16
SHARP-MAMLlow 92.89 96.59

Align-SAMlow 92.66 97.28

generalization it can replace SAM optimization in both the meta-update and fine-tuning steps of the
MAML model.

The experiments follow the setup from Abbas et al. (2022), specifically using the Sharp-MAMLlow

variation, which focuses on minimizing the sharpness of meta-models fine-tuned on the meta-training
set. For Align-SAM, we set λ = 2 and follow the setup exactly for ρ, inner gradient steps, and
step size in Abbas et al. (2022) for both Sharp-MAMLlow and Align-SAMlow. The results are
reported in Tables 7 and 8. Our method outperforms most baselines with significant improvements,
demonstrating the effectiveness of Align-SAM and its flexibility across various settings.

Cosine similarity of gradients In Theorem 2, we prove that minimizing the loss function LBt

could encourage two gradients ∇θLBt

(
θ̃tl

)
and ∇θLBa

(
θ̃al

)
to be more congruent since our

update aims to maximize its lower bound, which is ∇θLBt (θl) · ∇θLBa

(
θ̃al

)
. In this sec-

tion, we measure the cosine similarity between two gradients ∇θLBt (θl) and ∇θLBa

(
θ̃al

)
be-

fore (denoted as cosineb in Figure 1a) and after (denoted as cosineain Figure 1b) updating the
model and measure the change of these two score (denoted as change). Mathematically, we

define cosineb =
∇θLBt (θl)·∇θLBa(θ̃a

l )
∥∇θLBt (θl)∥2∥∇θLBa(θ̃a

l )∥2
, cosinea =

∇θLBt (θl+1)·∇θLBa(θ̃a
l+1)

∥∇θLBt (θl+1)∥2∥∇θLBa(θ̃a
l+1)∥2

, and

change = cosinea−cosineb
cosinea

.

As shown in Figure 1c, both SAM and Align-SAM improve the similarity after updating the model,
this improvement also increases across training epochs. However, the similarity score of our Align-
SAM is always higher than SAM across the training process, both before and after updating the
model. It is evident that our Align-SAM encourages gradients of the training subset and the auxiliary
subset to be more similar during the training process.

Batch size |Ba| and complexity Our method is to use a gradient on the auxiliary subset as a helper
indicator to lead the model to wider local minima while maintaining low loss on a random subset from
the same distribution, and the model should be updated mainly using training samples. Increasing
the batch size |Ba| could potentially increase performance and training time. In Table 9, we present
the results of Align-SAM with various sizes |Ba| of CIFAR-100 with Resnet32 while maintaining a
fixed training batch size |Bt| = 512. We consider performance and training complexity to be the
trade-off of Align-SAM and find that setting |Bt| = 4|Ba| works well for all experiments.

Additionally, we examine different numbers of epochs with SAM, Align-SAM, and LookBehind-
SAM Mordido et al. (2024). As presented in Table 9, Align-SAM outperforms both SAM and
Lookbehind-SAM under the same training time.

Sensitivity of trade-off coefficient λ Throughout this paper, we used a consistent setting of
λ = 2, which is the trade-off coefficient for combining gradients from Bt and Ba. While this
hyperparameter could be optimized for each experiment individually, we find that this configuration
delivers good performance across most experiments. By setting λ > 1, we ensure that the perturbed
model prioritizes maximizing the loss on the training mini-batch Bt rather than minimizing it on
the auxiliary mini-batch Ba. This approach encourages the model to focus primarily on minimizing
sharpness during the actual update step in Formula 6.
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Table 9: Experiments on different sizes of auxiliary mini-batch with a fixed size of training mini-batch
is 512 samples

Method Epoch Auxiliary Accuracy Training time
batch-size per epoch Total

SAM

200 70.31 ± 0.233 11s 36.6m
220 - 70.45 ± 0.303 11s 40.3m
250 70.06 ± 0.078 11s 45.8m
270 71.15 ± 0.293 11s 49.5m

Align-SAM 200

16 70.58 ± 0.219 11s 37.5m
32 71.07 ± 0.172 12s 40.0m
64 70.67 ± 0.049 13s 43.3m
128 71.21 ± 0.056 14s 46.6m
256 71.04 ± 0.207 15s 50.0m

SAM 220 - 70.45 ± 0.303 11s 40.3m
Align-SAM 170 128 70.83 ± 0.209 14s 39.6m

(a) Experiments with CIFAR-100 on Resnet32 (b) Experiments with Flower102 on EfficientNet-B2

Figure 2: Experiments of various trade-off λ with fixed perturbation radius ρ

To verify the impact of this hyperparameter on model performance, we conduct experiments with
varying values of trade-off λ and present the results in Figure 2. Notably, the configuration where
λ ≥ 1 consistently yields higher accuracy compared to the setting where λ < 1. When decreasing
λ, the model places more emphasis on minimizing the auxiliary loss, rather than sharpness on the
training set during the actual update step in Formula 6, ultimately reducing performance.

Analysis of loss landscape and eigenvalues of the Hessian matrix We demonstrate the effective-
ness of Align-SAM in guiding models toward flatter regions of the loss landscape, as compared to
both SAM and SGD, in Figures 3 and 4. The loss landscapes are visualized with the same setting, the
blue areas represent lower loss values, while the red areas indicate higher loss values. Although SAM
is shown to lead the model to a flatter region than SGD, Align-SAM achieves an even smoother and
significantly flatter loss landscape, especially in experiments with EfficientNet-B2 in Figure 3.

To further validate that Align-SAM successfully locates minima with low curvature, we compute the
Hessian of the loss landscape and report the five largest eigenvalues, sorted from λ1 to λ5, in Table 10.
These eigenvalues provide insight into the curvature of the model at the optimized parameters. Larger
eigenvalues indicate steeper curvature, meaning the model is more sensitive to small changes in its
parameters. Conversely, smaller eigenvalues suggest flatter minima, which are typically associated
with improved robustness, better generalization, and reduced sensitivity to overfitting. Negative
eigenvalues indicate non-convex curvature in certain directions.
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Figure 3: Loss landscape of EffecientNet-B2 trained on Flower102 dataset with (left) SGD, (middle)
SAM, and (right) Align-SAM.

Figure 4: Loss landscape of ResNet32 trained (left) SGD, (middle) SAM, and (right) Align-SAM
on Cifar100 dataset.

Methods Ratio of top-5 largest eigenvalues of Hessian matrix

λ1
λ1

λ2

λ1

λ3

λ1

λ4

λ1

λ5

EfficientNet-B2 on Flower102
SGD 2.05× 105 4.55 7.88 −4.36 −4.18
SAM 1.61× 103 1.27 1.31 1.54 −1.65
Align-SAM 0.61× 103 1.48 1.64 1.90 1.96

Resnet32 on Cifar100
SGD 3.07× 105 1.27 1.46 1.87 2.13
SAM 1.42× 105 1.47 1.65 1.79 1.89
Align-SAM 1.11× 105 1.32 1.68 1.85 2.09

Table 10: Eigenvalues of Hessian matrix

As shown in Table 10, Align-SAM consistently achieves positive and lower eigenvalues compared to
the baseline methods, suggesting that it effectively leads the model toward flatter regions of the loss
landscape. These results further support the efficacy of Align-SAM in optimizing for smoother and
more stable solutions across a variety of architectures and tasks.

A.4 ETHICAL STATEMENT AND THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) to help with editing this paper. It was only used for
simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All
ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the
reproducibility of our work.
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