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ABSTRACT

Images of the natural world, collected by a variety of cameras from drones to indi-
vidual phones, are increasingly abundant sources of biological information. There
is an explosion of computational methods and tools, particularly computer vi-
sion, for extracting biologically relevant information from images for science and
conservation. Yet, currently, most of these are bespoke approaches designed for a
specific task and are not easily adaptable or extendable to new questions, contexts,
and datasets. We develop the first large-scale multimodal model, BIOCLIP, as a
foundation for general organismal biology questions on images. We leverage the
unique properties of biology as the the application domain for computer vision,
namely the abundance and variety of images about plants, animals, and fungi, to-
gether with the availability of rich structured biological knowledge. We curate
and release TREEOFLIFE-10M (the largest and most diverse available dataset of
biology images), train BIOCLIP, rigorously benchmark our approach on diverse
fine-grained biology classification tasks, and find that BIOCLIP consistently and
substantially outperforms existing baselines (by 17% to 20% absolute). Intrinsic
evaluation further reveals that BIOCLIP has learned a hierarchical representation
conforming to the tree of life, shedding light on its strong generalizability.1

1 INTRODUCTION

Digital images and computer vision are quickly becoming pervasively used tools to study the natural
world, from evolutionary biology (Borowiec et al., 2022; Lürig et al., 2021) to ecology and biodi-
versity (Tuia et al., 2022; Beery, 2021; Steenweg et al., 2017). The capability to rapidly convert
vast quantities of images from museums (Pearson et al., 2020), camera traps (Beery et al., 2020;
2021; Steenweg et al., 2017; Norouzzadeh et al., 2021; Ahumada et al., 2020), and citizen science
platforms (Høye et al., 2021; Nugent, 2018; Sullivan et al., 2014b; Antonelli et al., 2023; McKin-
ley et al., 2017; Sullivan et al., 2014a; Swanson et al., 2015; Parham et al., 2017; Simpson et al.,
2014; Van Horn et al., 2015; 2018; Norman et al., 2017) into actionable information (e.g. species
classification, individual identification, and trait detection) has accelerated or enabled new advances
in tasks such as species delineation (Hansen et al., 2020), understanding mechanisms of adapta-
tion (Hoyal Cuthill et al., 2019; Ezray et al., 2019), abundance and population structure estima-
tion (Høye et al., 2021; Teng et al., 2023; Norman et al., 2017; Araujo et al., 2022), and biodiversity
monitoring and conservation (Tuia et al., 2022).

However, applying computer vision to answer any biological question is still a laborious task requir-
ing substantial machine learning expertise and effort—biologists must manually label sufficient data
for the specific taxa and task of interest, and find and train a suitable (often bespoke) model for the
task. Meanwhile, foundation models (Bommasani et al., 2021) such as CLIP (Radford et al., 2021)
and GPT-3 (Brown et al., 2020) have proven their extraordinary capability and value in enabling
zero-shot or few-shot learning for a wide range of tasks. A foundation model for biology that can
be used for tasks spanning the entire tree of life (Hinchliff et al., 2015; Maddison & Schultz, 2007)
will significantly lower the barrier and help democratize AI for biology, empowering scientists and
informing conservation efforts.

In this work, we develop the first foundation model for the tree of life. To be broadly useful for
real-world biology tasks, this model should meet the following desiderata. First, it should support

1All the data, code, and models will be publicly released on Github and Hugging Face upon acceptance.
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fine-grained classification, which necessitates learning a fine-grained representation of images
of organisms. This is because biology tasks often deal with organisms that are visually similar, e.g.,
closely related species belonging to the same genus (Pinho et al., 2022) or species that mimic others
appearance to gain fitness advantage (Hoyal Cuthill et al., 2019). Second, it should generalize to
the entire tree of life to the comprehensive extent possible to be a versatile tool for researchers
with biological domain expertise. This is needed to ensure it is a not a niche tool but an ally for
researchers studying many different clades. Further, it is infeasible to collect training data that covers
the millions of known taxa (Hobern et al., 2021; IUCN, 2022), so the model must be generalizable to
taxa not present in training data. Finally, due to the high cost of biology data collection and labeling,
strong performance in the low-data regime (i.e., zero-shot or few-shot) is desired.

To this end, we introduce BIOCLIP, the first foundation model for the tree of life, and outline the
conceptual framework, design considerations, and contributions below:

1. TREEOFLIFE-10M: a large-scale, diverse biology image dataset. We curate and release the
largest-to-date dataset of biology images containing over 10 million images covering 527 thousand
taxa in the tree of life. In comparison, the current largest available biology image dataset, iNat21
(Van Horn & Mac Aodha, 2021), contains only 2.7 million images covering 10 thousand taxa. Every
image in TREEOFLIFE-10M is labeled with its taxon label to the finest level possible, as well as
higher taxonomic ranks in the tree of life. TREEOFLIFE-10M enables training BIOCLIP as well as
future biology foundation models.

2. BIOCLIP: the first foundation model for the tree of life. With a large-scale labeled dataset like
TREEOFLIFE-10M, an intuitive and standard strategy (as adopted by other vision foundation mod-
els like ResNet50 (He et al., 2016) and Swin Transformer (Liu et al., 2021)) is to use a supervised
classification training objective and learn to predict the taxon label from the input image. However,
this strategy fails to recognize and leverage the rich structure of taxon labels—taxa do not exist in
isolation but are interconnected in a comprehensive taxonomy. Consequently, a foundation model
trained with supervised classification may not generalize well to taxa not covered by the training
data, nor would it support zero-shot classification of unseen taxa.

Instead, we propose a novel strategy combining CLIP-style multimodal contrastive learning with the
rich biological taxonomy for BIOCLIP: we “flatten” the taxonomy from Kingdom to the distal-most
taxon rank into a string called taxonomic name, and use the CLIP contrastive learning objective to
learn to match images with their corresponding taxonomic names. Intuitively, this helps the model
generalize to unseen taxa—even if the model has not seen a species, it has likely learned a reason-
able representation for that species’ genus or family. BIOCLIP also supports zero-shot classification
with the taxonomic name of unseen taxa. We further propose, and demonstrate the effectiveness of,
a mixed text type strategy; by mixing different text types (e.g., taxonomic vs. scientific vs. common
names) during training, we retain the generalization from taxonomic names while being more flex-
ibility at test time. For example, one can still use BIOCLIP even when only common names are
available.

3. Comprehensive benchmarking. We comprehensively evaluate BIOCLIP on 10 fine-grained
image classification datasets covering animals, plants, and fungi, including a newly curated dataset
focusing on rare species unseen during training. Under zero-shot and few-shot settings, we show that
BIOCLIP achieves strong performance and substantially outperforms both CLIP (Radford et al.,
2021) and OpenCLIP (Ilharco et al., 2021), leading to an average absolute improvement of 20%
(zero-shot) and 17% (few-shot). Intrinsic analysis further reveals that BIOCLIP has learned a more
fine-grained hierarchical representation over the tree of life, illustrating its superior generalization.

2 DATA

Recent work has shown that data quality and diversity is critical when training CLIP models (Fang
et al., 2022; Nguyen et al., 2022; Gadre et al., 2023). We curate TREEOFLIFE-10M, the largest and
most diverse public dataset for computer vision models in biology. We also compile 10 biologically-
relevant fine-grained classification datasets for evaluation.
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Table 1: Training data sources used in TREEOFLIFE-10M.

Dataset Description Images Unique Classes

iNat21 Citizen scientist labeled image dataset from iNaturalist for
fine-grained classification. 2.7M 10,000

BIOSCAN-1M Expert labeled image dataset of insects for classification. 1.1M 10,635

EOL Citizen scientist and expert labeled images and labels ag-
gregated by and downloaded from Encyclopedia of Life. 6.6M 518,118

TREEOFLIFE-10M Largest-to-date dataset of labeled biology images. 10.4M 527,316
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(a) Treemap of the different phyla in TREEOFLIFE-10M. Different colors
are different phyla; nested boxes represent classes, orders, etc.

(b) Image size (pixel count, calcu-
lated by width×height) cumulative
distributions.

Figure 1: 1a shows the overall distribution of images among the 49 phyla present in TREEOFLIFE-
10M. 1b shows that TREEOFLIFE-10M has more diversely sized images than iNat21.

2.1 TREEOFLIFE-10M

The largest existing biology image dataset is iNaturalist 2021 (Van Horn & Mac Aodha, 2021),
which contains 2.7M images of 10K species. Despite this breadth, 10K species is limited for biology.
The International Union for Conservation of Nature (IUCN) reported over 2M total described species
in 2022, with over 10K bird species and over 10K reptile species alone (IUCN, 2022). iNat21 is thus
relatively limited in diversity as a potential dataset to pre-train a foundation model. Furthermore,
data diversity is also critical for training high quality visual representations (Nguyen et al., 2023).

Motivated to find high-quality biology image data with a focus on diversity, we turn to the Encyclo-
pedia of Life project (EOL; eol.org). EOL collaborates with a variety of institutions to gather and
label millions of images, which are then available for download via an API. These labels connect
them within the taxonomic hierarchy to related species. We downloaded 6.6M images from EOL,
expanding our dataset by an additional 175K species and 84K genera.

Because insects are such a diverse class (IUCN listed 1M+ unique described insect species in their
2022 report), we also incorporate BIOSCAN-1M (Gharaee et al., 2023), a recent dataset of 1M lab
images of insects, covering 494 different families with 3,445 genera and 8,356 species represented.
Though BIOSCAN-1M is a rich source of information about insects, it has limitations in its granu-
larity. The vast majority of the datatset is labeled only to the family level (only 22.5% and 7.5% of
the data have genus or species indicated, respectively), and 13.6% of the data is even missing this
designation. The major contribution of this dataset lies in the rich biological information provided
to the level of order, for which all entries have been identified into 19 orders (order is a higher-level
taxon represented by the third level of the treemaps in Fig. 1a). Nonetheless, this still introduces a
significant amount of diversity to the dataset generating more than 10K unique classes for analysis.

Aggregation The final TREEOFLIFE-10M dataset integrates iNat21 (training split), our curated
EOL dataset, and BIOSCAN-1M by aggregating the images and unifying the labels. The label inte-
gration procedure can be found in Appendix A.
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Table 2: Datasets used for evaluation. All tasks are classification evaluated with Top-1 accuracy. We
grouped these tasks into broad categories: Animals, Plants & Fungi, and Biologically-Motivated,
which are tasks directly related to current biology challenges in computer vision.

Name Description Examples Classes Labels

A
ni

m
al

s

Birds 525 Scraped dataset of bird images from web search.
(Piosenka, 2023) 2,625 525 Taxonomic

Plankton Expert-labeled genus and species level in situ im-
ages of plankton (Heidi M. Sosik, 2015). 4,080 102 Mixed

Insects Expert and volunteer-labeled in-the-wild citizen sci-
ence images of insects (Serret et al., 2019). 4,680 117 Scientific

Insects 2 Mixed common and scientific name classification
for insect pests (Wu et al., 2019). 4,080 102 Mixed

Pl
an

ts
&

Fu
ng

i

PlantNet Citizen science species-labeled plant images, some
drawings (Garcin et al., 2021). 1,000 25 Scientific

Fungi Expert-labeled images of Danish fungi (Picek et al.,
2021). 1,000 25 Scientific

Plant Village Images of leaves on paper, classes are common
name healthy or the disease (G. & J., 2019). 1,520 38 Common

Medicinal Leaf Species classification of leaves from mature, healthy
medicinal plants (S & J, 2020). 1,040 26 Scientific

PlantDoc 17 diseases for 13 plant species (Singh et al., 2020). 1,080 27 Common

Rare Species
Subset of species in the IUCN Red List categories:
Near Threatened through Extinct in the Wild (iuc-
nredlist.org).

12,000 400 Taxonomic

Statistics Table 1 presents dataset statistics. Because different datasets are annotated at different
taxonomic levels, we report the number of “unique classes”, which are the unique taxonomic names
used for training. Fig. 1 shows the distribution of images by phyla and the respective lower-rank taxa
(order through family) and the image size distribution of TREEOFLIFE-10M compared to iNat21.

2.2 BENCHMARK

We curate a diverse set of 10 biologically-relevant classification tasks to comprehensively bench-
mark BIOCLIP’s potential as a foundation model for the tree of life. Table 2 provides an overview
of the datasets; they comprise a variety of label types from full taxonomic names to only scientific
or common name, or a mix of the latter.

Rare Species & Unseen Generalization Classifying “rare” species is an important and challenging
computer vision application in biology, particularly in the context of conservation efforts around
the world (Tuia et al., 2022). To the best of our knowledge, there is no publicly available rare
species classification dataset; we aim to fill this gap to better leverage computer vision models for
biology. To do so, we collect all the species on the IUCN Red List (iucnredlist.org) classification2

of Near Threatened, Vulnerable, Endangered, Critically Endangered, and Extinct in the Wild. There
are approximately 25,000 species that fall into these categories, though image availability is not
consistent across species. We select 400 species from the list under the condition that we have at
least 30 images per species in our EOL dataset. These species are then completely removed from
TREEOFLIFE-10M, creating an unseen rare species test set. This dataset demonstrates both 1)
BIOCLIP’s out-of-distribution generalization on unseen taxa and 2) its potential applications.

Meta-Album We extend our benchmark to include biologically-relevant datasets from Meta-
Album (Ullah et al., 2022). Meta-Album is a collection of datasets developed for meta-learning,
encompassing various subjects, from small animals to plant diseases. Specifically, we use the Plank-
ton, Insects, Insects 2, PlantNet, Fungi, Plant Village, Medicinal Leaf, and PlantDoc datasets. While

2IUCN has classified 150,388 species and generally updates their list twice per year (IUCN Update Sched-
ule). The classifications used for this dataset are current as of July 13, 2023.
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Table 3: Text types considered in the training of BIOCLIP.

Text Type Example

Common black-billed magpie
Scientific Pica hudsonia
Taxonomic Animalia Chordata Aves Passeriformes Corvidae Pica hudsonia
Scientific + Common Pica hudsonia with common name black-billed magpie

Taxonomic + Common Animalia Chordata Aves Passeriformes Corvidae Pica hudsonia with common name
black-billed magpie

Meta-Album is primarily intended for meta-learning applications, we realize that it can also serve
as a testbed for biology foundation models, thanks to its comprehensive coverage.

Birds 525 Birds 525 (Piosenka, 2023) is a natural choice for bird classification. It is continuously
updated and commonly used so that a public record of inaccuracies is maintained for reliability.

2.3 DATA DOCUMENTATION AND RELEASE

We will release our curated training data (TREEOFLIFE-10M) and benchmark datasets on Hug-
gingFace (with DOIs) under a public domain license, to the extent primary source licenses allow.
For each dataset, this will include a CSV with image metadata with links to the primary source.

3 MODELING

BIOCLIP is initialized from the public CLIP checkpoint and pre-trained on TREEOFLIFE-10M
with CLIP’s multimodal contrastive learning objective.

3.1 WHY CLIP-STYLE MULTIMODAL CONTRASTIVE LEARNING?

Compared with general domain computer vision tasks, one of the most salient differences for the
biology domain is its rich label space. Not only are the taxon labels large in quantity (there are
2M+ recorded species as of 2022 (IUCN, 2022)), but they are also connected with each other in
a hierarchical taxonomy. This poses a great challenge for training a good foundation model that
can achieve satisfactory coverage and generalization. On the other hand, the intricate structure in
the label space, accumulated through centuries of biology research, provides very rich signals for
learning better generalization. Intuitively, if the label space’s structure is successfully baked into a
foundation model, even if the model has not seen a certain species, it likely will have learned a good
representation for that species’ corresponding genus or family. Such a hierarchical representation
serves as a strong prior to enable few-shot or even zero-shot learning of new taxa.

Most vision foundation models, such as ResNet (He et al., 2016) and Swin Transformer (Liu et al.,
2021), adopt a supervised classification objective and directly learn the mapping from input images
to class labels. As a result, each class label is treated as a distinct symbol and their relationships are
neglected. A key realization of our work is that the multimodal contrastive learning objective used
in CLIP can be repurposed for leveraging the hierarchical structure of the label space. Note that this
is not an obvious choice; after all, TREEOFLIFE-10M is largely labeled with class labels and not
with freeform text like image captions.

CLIP trains two uni-modal embedding models, a vision encoder and a text encoder, to (1) maximize
feature similarity between positive (image, text) pairs and (2) minimize feature similarity between
negative (image, text) pairs, where positive pairs are (image, text) pairs from the training data and
negative pairs are all other possible (image, text) pairings in a batch. After training, CLIP’s encoder
models can embed individual instances of their respective modalities into a shared feature space.
Next, we discuss how we format the text input to CLIP to incorporate the taxonomic structure.

3.2 TEXT TYPES

An advantage of CLIP is the text encoder accepts free-form text. In biology, unlike other classifica-
tion tasks, class names are diversely formatted. We primarily consider the following:
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Taxonomic name. A standard seven-level biology taxonomy from higher to lower level is kingdom,
phylum, class, order, family, genus and species. For each species, we “flatten” the taxonomy by
concatenating all the labels from root to leaf into a single string, which we call the taxonomic name.

Scientific name. Scientific names are composed of genus and species (e.g., Pica hudsonia) and are
used as a species’ unique identifier.

Common name. Taxonomy categories are usually Latin, which is not often seen in generalist
image-text pre-training datasets. Instead, the common name, such as “black-billed magpie,” is more
widespread. Note that common names may not have 1-to-1 mapping to taxa. For a species, there
could exist multiple common names. The same common name may also refer to multiple species.

For certain use cases of BIOCLIP, it is possible that only one type of label, e.g., scientific names,
is available. To improve the flexibility at inference time, we propose a mixed text type training
strategy: at each training step, we pair each input image with a text randomly sampled from all of
its available text types (shown in Table 3). We empirically show that this simple strategy retains the
generalization benefits of taxonomic names while providing more flexibility in using other names at
inference time (§4.5). To get the final text input to CLIP, we put the names into the standard CLIP
template, e.g., “a photo of Pica hudsonia”.

4 EXPERIMENTS

We hope to understand (1) how dataset diversity and scale affects BIOCLIP’s performance and (2)
how labels used during BIOCLIP training affect generalization to unseen taxa.

4.1 TRAINING AND EVALUATION DETAILS

To train BIOCLIP, we initialize with a CLIP model ViT-B/16 (Radford et al., 2021) that has a
vision transformer (Dosovitskiy et al., 2020) image encoder and a 77-token causal autoregressive
transformer text encoder. We continue pre-training it on TREEOFLIFE-10M for 100 epochs with
a cosine learning rate schedule (Loshchilov & Hutter, 2017). We train on 8 NVIDIA A100-80GB
GPUs over 2 nodes with a global batch size of 32,768. We also train a baseline model on only the
iNat21 dataset and six ablation models on 1M examples randomly sampled from TREEOFLIFE-
10M (§4.5), following the same procedure for BIOCLIP except with a smaller global batch size
16,384 on 4 NVIDIA A100 GPUs on 1 node. More hyperparameters are in Appendix B.

For zero-shot learning, we follow the same procedure as CLIP. For few-shot learning, we follow
SimpleShot (Wang et al., 2019) to use a nearest-centroid classifier. For k-shot learning, we first
randomly sample k examples for each class and obtain the image embedding from the visual encoder
of the pre-trained models. We then compute the average feature vector of the k embeddings as the
centroid for each class. All the examples left in the dataset are used for testing. After applying
mean subtraction and L2-normalization to each centroid and test feature vector, we choose the class
with the nearest centroid to the test vector as the prediction. We repeat each few-shot experiment 5
times with different random seeds and report the mean accuracy in Table 4. Results with standard
deviations are reported in Appendix C.

We compare BIOCLIP with the original OpenAI CLIP (Radford et al., 2021) as well as OpenCLIP
(Ilharco et al., 2021) trained on LAION-400M (Schuhmann et al., 2021). Intuitively, common names
of organisms are most pervasive in the training data of CLIP and OpenCLIP and these models
work best with common names. This is also confirmed in our preliminary tests. Therefore, we use
common names as class labels for CLIP and OpenCLIP by default, unless that is not available for a
dataset. BIOCLIP is able to leverage taxonomic names, so we use taxonomic + common names by
default. However, as noted in Table 2, the test datasets come in a variety of labels. Whenever the
preferred label type is not available, we just use the labels comes with each dataset.

4.2 ZERO-SHOT CLASSIFICATION

Table 4 shows that BIOCLIP substantially outperforms both baseline CLIP models for zero-shot
classification. Domain-specific training on iNat21 leads to strong improvements on Plant & Fungi
tasks: iNat21 has 4.6K plant and fungi species with 1.2M images. TREEOFLIFE-10M leads to
further improvements across the board: BIOSCAN-1M adds 1.1M insect images to iNat21’s 663K
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Table 4: Zero-, one- and five-shot classification top-1 accuracy for different CLIP models. Bold
indicates best accuracy. All models use the same architecture: ViT-B/16 vision encoders, 77-token
text encoder. “iNat21 Only” follows the same procedure as BIOCLIP but uses iNat21 instead of
TREEOFLIFE-10M. ∆ denotes the difference in mean accuracy with CLIP.
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Mean (∆)

Random Guessing 0.2 1.2 1.0 1.0 4.0 4.0 2.6 4.0 3.7 0.3 2.2

Zero-Shot Classification

CLIP 49.9 3.2 9.1 9.8 58.5 10.2 5.4 15.9 26.1 26.6 21.4 –
OpenCLIP 54.7 2.2 6.5 9.6 50.2 5.7 8.0 12.4 25.8 31.0 20.6 −0.8
BIOCLIP 74.7 5.4 32.7 21.2 91.0 51.8 24.0 48.1 27.5 39.2 41.5 +20.1

– iNat21 Only 55.7 2.7 29.9 12.0 89.3 42.7 16.4 22.2 18.8 19.4 30.9 +9.7

One-Shot Classification

CLIP 43.7 25.1 21.6 13.7 42.1 17.2 49.7 70.1 24.8 28.4 33.6 –
OpenCLIP 53.7 32.3 23.2 14.3 45.1 18.4 53.6 71.2 26.8 29.3 36.7 +3.1
BIOCLIP 71.5 32.4 54.9 21.9 63.9 38.7 62.2 81.8 33.1 45.8 50.6 +17.0

– iNat21 Only 74.6 28.9 53.8 19.4 66.8 36.3 54.3 75.9 28.2 37.2 47.5 +13.9

Five-Shot Classification

CLIP 73.5 41.2 39.9 24.6 65.2 27.9 71.8 89.7 35.2 46.9 51.5 –
OpenCLIP 81.9 52.5 42.6 25.0 68.0 30.6 77.8 91.3 42.0 48.4 56.0 +4.5
BIOCLIP 89.9 51.1 77.2 34.4 83.6 60.6 81.8 96.0 47.6 66.4 68.8 +17.3

– iNat21 Only 89.8 47.7 73.2 32.2 84.5 55.6 76.4 93.7 40.5 56.0 64.9 +13.4

insect images, and EOL adds 1.7M plant and fungi images across 89K unique species. In short, we
attribute much of BIOCLIP’s strong zero-shot performance on this broad and diverse set of tasks to
the broad and diverse image and classes present in TREEOFLIFE-10M. With multimodal contrastive
learning (§3.1) and the incorporation of taxonomic structure(§3.2), BIOCLIP can capitalize on this
data diversity for strong zero-shot generalization.

4.3 FEW-SHOT CLASSIFICATION

While labeling data is expensive in specialized domains like biology, biologists naturally label sev-
eral instances of a given species for resources such as field guides or museum collections. There-
fore, we also evaluate BIOCLIP’s performance on few-shot classification on the same set of biology
datasets with 1 and 5 shots, in Table 4.

We find that BIOCLIP also substantially improves over CLIP baselines in few-shot accuracy. No-
tably, while Radford et al. (2021) find that CLIP one-shot and two-shot classification is often worse
than zero-shot (because few-shot settings cannot use the semantic information in the class name),
BIOCLIP has learned useful visual representations that are useful even with only one labeled exam-
ple: BIOCLIP’s mean one-shot accuracy is 9.1% higher than zero-shot accuracy.

4.4 INTRINSIC EVALUATION

BIOCLIP demonstrates strong performance in the low-data regime on our extrinsic evaluation, but
why? We further conduct an intrinsic evaluation and directly visualize the image feature represen-
tations BIOCLIP has learned to shed light on this question (Fig. 2). The visualization is based on
iNat21’s validation set, which contains 100K images not seen during training of BIOCLIP. We
reduce feature dimensionality from 512 to two using t-SNE (Van der Maaten & Hinton, 2008), then
color the points based on the image’s taxonomic label. For each plot, we run t-SNE independently
on the subset of examples under the labeled taxonomical rank. Each plot visualizes one rank of the
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Figure 2: T-SNE visualization of image features, colored by taxonomic labels. CLIP features are
visualized in rows two and four with label (O) and BIOCLIP in rows one and three with label (B).
At each taxonomic rank, we only plot the six most common classes to avoid visual clutter.

taxonomic hierarchy and the top six categories, based on number of examples, of the following rank,
e.g., the top left plot visualizes the top six phyla of the Animalia kingdom.

At higher ranks like kingdom (omitted for space) and phylum, both CLIP and BIOCLIP have good
separation, but one can already see that BIOCLIP’s representation is more fine-grained and contains
a richer clustering structure. At lower ranks, BIOCLIP produces evidently more separable features,
while CLIP’s features tend to be cluttered and lack a clear clustering structure. This shows that BIO-
CLIP has learned a rich feature representation following the hierarchical structure of the taxonomy,
which helps explain its strong generalization across the tree of life.

4.5 ABLATION ON TEXT TYPES

We conduct an ablation study on the impact of text types used in both training and test by training
BIOCLIP on a 10% subset of TREEOFLIFE-10M (10% due to computational constraints). We use
our Rare Species benchmark because the test classes have every text type, and all species are ex-
cluded from training, making it ideal for testing generalization to unseen taxa. Nguyen et al. (2022)
find that the diversity of captions makes stronger vision models and Santurkar et al. (2022) randomly
use one of five different captions for each image during training rather than a single fixed caption.
Similarly, we use a mixed text type strategy (§3.2). How does that affect model performance?

The zero-shot classification ablation results are in Table 5; there are several salient observations.
First, using taxonomic + common names yields the strongest performance, showing the importance
of incorporating the taxonomic structure for generalization. Second, when only using a single text
type for training, performance degrades substantially when a different text type is used at test time.
Using mixed text types for training, while not the strongest, yields consistently strong performance
across the board. These results indicate that mixed text type pre-training largely retains the general-
ization benefits of using taxonomic names while also providing flexibility of different text types for
inference, an important property for a foundation model that may be used for diverse downstream
tasks. Finally, using 1M examples from TREEOFLIFE-10M outperforms using 2.7M examples from
iNat21, further confirming the importance of the added data diversity from TREEOFLIFE-10M.

5 RELATED WORK

Multimodal Foundation Models CLIP (Radford et al., 2021) trained state-of-the-art vision models
from noisy, web-scale (100M+) image-text datasets using a contrastive pre-training objective that
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Table 5: Zero-shot accuracy on rare species unseen during training. Green indicates best accuracy
and Orange indicates second-best accuracy. Using the taxonomic name over the scientific name
always improves accuracy (see 23.2→25.6 and 27.9→28.9). The final rows uses the full iNat21
dataset and TREEOFLIFE-10M for reference. Note that training on 1M images over XX classes
(TreeOfLife-1M) outperforms training on 2.7M images over 10K classes (iNat21).

Dataset ↓Train/Test→ Com. Sci. Tax. Sci. + Com. Tax. + Com.

TreeOfLife-1M

Common 25.7 11.0 4.5 23.7 19.3
Scientific 12.3 23.2 8.3 20.4 11.1
Taxonomic 10.5 15.4 25.6 15.7 23.6
Sci. + Com. 24.9 15.0 9.0 28.7 23.9
Tax. + Com. 22.6 12.8 20.1 25.8 30.4
Mixture 25.2 21.0 23.4 27.9 28.9

iNat21 (2.7M) Mixture 14.7 15.6 20.6 19.8 19.4
TREEOFLIFE-10M Mixture 32.9 32.7 35.6 37.8 39.2

optimized for image retrieval. ALIGN (Jia et al., 2021) and BASIC (Pham et al., 2023) further scaled
the number of training examples from 400M to 6.6B, improving vision representation quality.

However, dataset size is not as important as dataset diversity (Fang et al., 2022; Nguyen et al., 2022).
TREEOFLIFE-10M directly addresses this issue, adding over 500K classes to iNat21’s 10K.

Domain Specific Data Domain-specific training often outperforms general training (Gu et al., 2021;
Chia et al., 2022). This means smaller, domain-specific datasets like TREEOFLIFE-10M are relevant
and useful despite the existence of datasets like COCO (Chen et al., 2015), YFCC100M (Thomee
et al., 2016), LAION-400M (Schuhmann et al., 2021) or LAION-5B (Schuhmann et al., 2022).

Unfortunately, labeling domain-specific datasets can be prohibitively expensive because annotators
must be subject-matter experts. Image-text training is thus particularly potent because annotations
are not required; models can learn from noisy image-text pairs. For example, both Ikezogwo et al.
(2023) and Lu et al. (2023) gather 1M+ image-text pairs for use in computational pathology, where
expert-labeled examples are difficult to gather due to both time and privacy. We gather 10× the
images, combining data from multiple sources to further improve image diversity.

Nakkab et al. (2023) use the iNat21 dataset with to train a CLIP model with LiT fine-tuning on
the text encoder only. Indeed, they improve top-1 and top-5 accuracy with this approach, but only
the iNat21 benchmark is evaluated, so it is unclear whether this performance is maintained across
diverse and challenging applications relevant to research such as our Rare Species dataset.

Domain-Specific Benchmarking High-quality benchmarks lead to consistent progress. Domain-
specific benchmarks are especially challenging because they require expensive, accurately labeled
data. Guha et al. (2023) develop a benchmark for legal NLP models by crowdsourcing tasks and
Zhang et al. (2023) compile existing benchmarks for biomedical vision-language models. We com-
pile existing benchmarks and develop a biologically-motivated benchmark in our rare species task.

6 CONCLUSION

We introduce TREEOFLIFE-10M and BIOCLIP, a large-scale diverse biology image dataset and
the first foundational model for the tree of life, respectively. Through extensive benchmarking,
we show that BIOCLIP is a strong fine-grained classifier for biology in both zero- and few-shot
settings. We corroborate our hypothesis that using the entire taxonomic name leads to stronger
generalization than other caption types through ablation studies on unseen species and by visualizing
BIOCLIP’s representations, finding that images embedded by BIOCLIP better match the hierarchy
in the evolutionary taxonomy.

Although we leverage the CLIP objective to efficiently learn visual representations over hundreds of
thousands of taxa, BIOCLIP is fundamentally still trained with a classification objective. In future
work, we will collect richer textual descriptions of species’ appearances such that BIOCLIP can
extract fine-grained trait-level representations.
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REPRODUCIBILITY STATEMENT

We will ensure reproducibility of our results by releasing our dataset, data pre-processing code,
training code, evaluation code, code to generate all figures (Figs. 1 and 2) and pre-trained model
weights. With these resources, anyone with sufficient compute resources can download the original
data, then reproduce the pre-processing, training, and evaluation. For those with limited compute,
the pre-trained model weights will enable full reproducibility of our evaluation results (Sections 4.2
and 4.3).
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Ellen G Denny, Elizabeth R Ellwood, Hervé Goëau, J Mason Heberling, et al. Machine learning
using digitized herbarium specimens to advance phenological research. BioScience, 70(7):610–
620, 2020.

Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu,
Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, et al. Combined scaling for zero-shot transfer
learning. Neurocomputing, 555:126658, 2023.

13

http://tolweb.org
http://tolweb.org
https://www.sciencedirect.com/science/article/pii/S0006320716301963
https://www.sciencedirect.com/science/article/pii/S0006320716301963
http://academic.oup.com/bioscience/article/67/12/1029/4641655
https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.13504
https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.13504


Under review as a conference paper at ICLR 2024

Lukas Picek, Milan Sulc, Jiri Matas, Jacob Heilmann-Clausen, Thomas S. Jeppesen, Thomas Laes-
soe, and Tobias Froslev. Danish fungi 2020 - not just another image recognition dataset. 2021.

Catarina Pinho, Antigoni Kaliontzopoulou, Carlos A Ferreira, and João Gama. Identification of
morphologically cryptic species with computer vision models: wall lizards (Squamata: Lacer-
tidae: Podarcis) as a case study. Zoological Journal of the Linnean Society, 198(1):184–201,
10 2022. ISSN 0024-4082. doi: 10.1093/zoolinnean/zlac087. URL https://doi.org/
10.1093/zoolinnean/zlac087.

Gerald Piosenka. Birds 525 species - image classification. 05 2023. URL https://
www.kaggle.com/datasets/gpiosenka/100-bird-species.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Roopashree S and Anitha J. Medicinal leaf dataset. Oct 2020. doi: 10.17632/nnytj2v3n5.1. URL
https://data.mendeley.com/datasets/nnytj2v3n5/1.

Shibani Santurkar, Yann Dubois, Rohan Taori, Percy Liang, and Tatsunori Hashimoto. Is a Caption
Worth a Thousand Images? A Controlled Study for Representation Learning, July 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Cristoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Jenia Jitsev, and Aran Komatsuzaki. LAION-400M: Open dataset of CLIP-filtered 400 million
image-text pairs. In Proceedings of Neurips Data-Centric AI Workshop, 2021.

Hortense Serret, Nicolas Deguines, Yikweon Jang, Gregoire Lois, and Romain Julliard. Data quality
and participant engagement in citizen science: comparing two approaches for monitoring polli-
nators in france and south korea. Citizen Science: Theory and Practice, 4(1):22, 2019.

Robert Simpson, Kevin R. Page, and David De Roure. Zooniverse: observing the world’s
largest citizen science platform. In Proceedings of the 23rd International Conference on
World Wide Web, pp. 1049–1054, Seoul, Korea, 2014. Association for Computing Machinery.
ISBN 978-1-4503-2745-9. URL https://doi.org/10.1145/2567948.2579215. Type:
10.1145/2567948.2579215.

Davinder Singh, Naman Jain, Pranjali Jain, Pratik Kayal, Sudhakar Kumawat, and Nipun Batra.
Plantdoc: A dataset for visual plant disease detection. In Proceedings of the 7th ACM IKDD
CoDS and 25th COMAD, CoDS COMAD 2020, pp. 249–253, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery. ISBN 9781450377386. doi: 10.1145/3371158.3371196. URL
https://doi.org/10.1145/3371158.3371196.

Robin Steenweg, Mark Hebblewhite, Roland Kays, Jorge Ahumada, Jason T Fisher, Cole Burton,
Susan E Townsend, Chris Carbone, J Marcus Rowcliffe, Jesse Whittington, Jedediah Brodie,
J Andrew Royle, Adam Switalski, Anthony P Clevenger, Nicole Heim, and Lindsey N Rich.
Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sen-
sors. Frontiers in Ecology and the Environment, 15(1):26–34, February 2017. doi: https:
//doi.org/10.1002/fee.1448. URL https://doi.org/10.1002/fee.1448. ISBN: 1540-
9295 Publisher: John Wiley & Sons, Ltd Type: https://doi.org/10.1002/fee.1448.

Brian L. Sullivan, Jocelyn L. Aycrigg, Jessie H. Barry, Rick E. Bonney, Nicholas Bruns, Caren B.
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APPENDICES

We provide details omitted in the main text:

1. Appendix A: Details of training data aggregation
2. Appendix B: Training hyperparameters
3. Appendix C: Standard deviations for few-shot results

A TRAINING DATA AGGREGATION

We aggregate images and labels from the iNat21 training data, BIOSCAN-1M’s, and data down-
loaded from EOL. While every image has at least one taxonomic rank labeled, full taxonomic hi-
erarchies and common names are scraped on a best-effort basis from metadata providers, including
iNaturalist (iNaturalist Taxonomy DarwinCore Archive), Encyclopedia of Life (eol.org) and Inte-
grated Taxonomic Information System (ITIS) (itis.gov).

We create a lookup between scientific name and taxonomic hierarchy and a lookup between scien-
tific name and common name. We populate these lookups using the following sources in order of
descending prioritization, as earlier sources are considered more authoritative. That is, if a duplicate
appears in a later source, it is superceded by the higher priority source: BIOSCAN-1M metadata,
EOL aggregate datasets, the EOL graph API, information retrived using EOL page IDs with the
pages API, the full list of taxa provided by iNaturalist, the list of vernacular names provided by
iNaturalist, and the iNat21 training set class names.

B HYPERPARAMETERS

For all trained models, we use a learning rate of 1e-4, 1,000 warm-up steps, and set weight decay to
0.2. The images are resized to 224× 224 pixels.

C STANDARD DEVIATION OF MAIN RESULTS

Table C1: Standard deviation of five runs on animals and rare species in Table 4
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s

One-Shot Classification

CLIP 43.7± 0.26 25.1± 0.71 21.6± 1.05 13.7± 1.09 28.4± 0.92
OpenCLIP 53.7± 0.52 32.3± 0.63 23.2± 1.58 14.3± 0.67 29.3± 0.68
BIOCLIP 71.5± 0.72 32.4± 1.53 54.9± 1.56 21.9± 0.44 45.8± 0.85

– iNat21 Only 74.6± 0.32 28.9± 0.57 53.8± 0.66 19.4± 0.73 37.2± 1.00

Five-Shot Classification

CLIP 73.5± 0.37 41.2± 1.01 39.9± 0.86 24.6± 0.90 46.9± 0.21
OpenCLIP 81.9± 0.25 52.5± 0.83 42.6± 0.82 25.0± 0.83 48.4± 0.62
BIOCLIP 89.9± 0.14 51.1± 0.71 77.2± 0.70 34.4± 0.79 66.4± 0.32

– iNat21 Only 89.8± 0.19 47.7± 0.85 73.2± 0.75 32.2± 0.71 56.0± 0.16

16

https://eol.org
https://www.inaturalist.org/pages/developers
https://opendata.eol.org/dataset/tram-807-808-809-810-dh-v1-1/resource/942b7420-4f44-4c11-aad9-bd99a31f12ba
https://www.itis.gov/
https://opendata.eol.org/dataset?organization=encyclopedia_of_life
https://eol.org/docs/what-is-eol/data-services


Under review as a conference paper at ICLR 2024

Table C2: Standard deviation of five runs on plants and fungi in Table 4
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One-Shot Classification

CLIP 42.1± 3.40 17.2± 0.78 49.7± 2.53 70.1± 2.83 24.8± 1.61
OpenCLIP 45.1± 3.40 18.4± 1.26 53.6± 0.79 71.2± 3.58 26.8± 1.45
BIOCLIP 63.9± 5.61 38.7± 4.03 62.2± 1.68 81.8± 2.04 33.1± 1.17

– iNat21 Only 66.8± 0.46 36.3± 3.10 54.3± 2.25 75.9± 0.97 28.2± 1.64

Five-Shot Classification

CLIP 65.2± 1.25 27.9± 2.54 71.8± 1.46 89.7± 1.45 35.2± 1.59
OpenCLIP 68.0± 0.86 30.6± 1.26 77.8± 1.28 91.3± 0.85 42.0± 1.32
BIOCLIP 83.6± 0.44 60.6± 2.15 81.8± 0.64 96.0± 0.92 47.6± 0.75

– iNat21 Only 84.5± 1.15 55.6± 1.84 76.4± 0.66 93.7± 0.97 40.5± 1.84
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