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ABSTRACT

Massive activations, which manifest in specific feature dimensions of hidden
states, introduce a significant bias in large language models (LLMs), leading to
an overemphasis on the corresponding token. In this paper, we identify that mas-
sive activations originate not from the hidden state but from the intermediate state
of a feed-forward network module in an early layer. Expanding on the previous
observation that massive activations occur only in specific feature dimensions, we
dive deep into the weights that cause massive activations. Specifically, we define
top-k massive weights as the weights that contribute to the dimensions with the
top-k magnitudes in the intermediate state. When these massive weights are set to
zero, the functionality of LLMs is entirely disrupted. However, when all weights
except for massive weights are set to zero, it results in a relatively minor perfor-
mance drop, even though a much larger number of weights are set to zero. This
implies that during the pre-training process, learning is dominantly focused on
massive weights. Building on this observation, we propose a simple plug-and-
play method called MacDrop (massive weights curriculum dropout), to rely less
on massive weights during parameter-efficient fine-tuning. This method applies
dropout to the pre-trained massive weights, starting with a high dropout proba-
bility and gradually decreasing it as fine-tuning progresses. Through experiments,
we demonstrate that MacDrop generally improves performance across zero-shot
downstream tasks and generation tasks.

1 INTRODUCTION

Large language models (LLMs), such as GPT (Achiam et al., 2023) and Llama (Touvron et al.,
2023; Dubey et al., 2024), have achieved remarkable success across diverse natural language tasks
(Roziere et al., 2023; Mitra et al., 2024; Labrak et al., 2024; Wu et al., 2023). Their success is
largely attributed to the pre-training phase, during which they are trained on extensive high-quality
corpora datasets to predict the next token (Longpre et al., 2024; Zhao et al., 2024; Shen et al., 2023).
However, despite the impressive achievements of LLMs, a crucial gap remains in our understanding
of the underlying mechanisms that drive their remarkable performance.

Recently, Xiao et al. (2024) uncovered an intriguing phenomenon in LLMs, referred to as atten-
tion sinks: an unexpectedly large portion of attention is directed toward the initial tokens, regardless
of their semantic context, after a small number of early layers. They demonstrated that under a
restricted budget, focusing attention solely on recent window leads to poor performance, and that
performance is recovered when initial tokens are included. Based on this observation, they proposed
StreamingLLM, which retains the key-value caches of the initial sink tokens and the recent tokens
for streaming use of LLMs. Yu et al. (2024) further investigated the attention sinks phenomenon,
finding that attention sinks can appear both in the initial tokens and in later tokens with less seman-
tic importance (e.g., ‘.’ and ‘\n’). They showed that when sink tokens appear later in a sequence, sink
tokens can potentially result in performance degradation. Inspired by this observation, they proposed
a head-wise attention calibration technique without requiring additional training. Concurrently, Sun
et al. (2024a) discovered the existence of massive activations in the hidden states of LLMs, with
magnitudes substantially larger than the others. Massive activations are jointly identified based on
their sequence and feature dimensions within the hidden states. Specifically, massive activations
occur at the initial tokens and weak semantic tokens according to the model, and are consistently
present in only a few fixed feature dimensions. Moreover, they connected massive activations with
attention sinks, suggesting that massive activations inject implicit bias into the self-attention mech-
anism throughout the pre-training phase.
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(a) Massive weights. (b) Examples of generated responses.

Figure 1: (a) Massive weights are defined as the rows of Wgate and Wup in a specific layer l using
the bos token, which produce the top-k magnitudes of the intermediate state ĥinter

l . Because massive
weights are defined within a single layer l, the ratio of massive weights is significantly low compared
to the overall number of parameters. For instance, in the case of Llama-3-8B, the proportion of the
top-5 massive weights is 0.0005% of the model’s total parameters. (b) When the top-5 massive
weights are zeroed out, instruction-tuned LLMs completely lose their ability to generate text. On the
other hand, when only the top-5 massive weights remain unchanged in Wgate and Wup, instruction-
tuned LLMs retain their generation capability.

In this paper, we first delve deeper into massive activations, providing two key observations. (1) The
bos token placed at the starting position always has massive activations in the same feature dimen-
sions and makes attention sinks. This observation enables us to focus only on the feature dimensions,
instead of both the sequence and feature dimensions, when addressing massive activations. Namely,
a simplified and consistent analysis of massive activations can be achieved by using only the bos to-
ken. (2) Massive activations originate in the intermediate state ĥinter

l within an early layer l, before
appearing in the hidden state hl, as illustrated in Figure 1(a). Namely, massive activations triggered
in ĥinter

l are subsequently and continuously propagated through skip connections. This observation
implies that the feed-forward network in layer l plays a crucial role in LLMs.

Next, we shift our focus from activations to the weights, relying on the fact that massive activations
consistently appear in the same feature dimensions. In detail, we define the top-k massive weights
as the rows of Wup and Wgate in the feed-forward network at layer l that produce the top-k mag-
nitudes of the intermediate state ĥinter

l , as illustrated in Figure 1(a). It is important to note that
massive weights, defined within a single layer l, account for a substantially small fraction compared
to the model’s total parameters. This holds true even when compared to the entire Wup and Wgate.
Nevertheless, massive weights are crucial factors that can completely influence the performance of
LLMs. Figure 1(b) presents the generated responses of three models to the given user prompt: orig-
inal model, top-5 massive weights attacked model, and other weights attacked model. Here, other
weights represent all weights in Wup and Wgate at layer l that do not belong to the top-5 massive
weights, and an attack sets corresponding weights to zero. When the massive weights are attacked,
the model becomes poor and repeats the user prompt. On the contrary, when other weights are at-
tacked, the model does not entirely lose its generation capability, even though a much greater number
of weights are set to zero in the same projection matrices. These observations imply that massive
weights are dominantly learned during pre-training and highly related to the performance of LLMs.

Finally, we propose a straightforward plug-and-play method during parameter-efficient fine-tuning,
named massive weights curriculum dropout (MacDrop). This method applies dropout to the pre-
trained massive weights, rather than additional trainable weights, starting with a high dropout rate
that is progressively reduced throughout the fine-tuning phase. The intuition behind MacDrop is
that a high initial dropout rate encourages the model to lessen dependence on the massive weights
predominantly learned during the pre-training phase. Then, reducing the dropout rate facilitates a
more stable convergence, ensuring the pre-trained model is leveraged with neglectable damage by
the end of fine-tuning. In zero-shot downstream tasks and generation tasks, we demonstrate that
MacDrop generally enhances model performance.
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Figure 2: (Top) Magnitudes of the hidden state and (Bottom) attention scores after Softmax of
Mistral-7B, according to the position of the bos token. The described hidden state is the output
of layer 16 (i.e., h16). The attention scores are calculated at layer 17 (i.e., after massive activations
appear) and averaged across different heads.

2 MASSIVE WEIGHTS

In this section, we review the key observations on massive activations reported by Sun et al. (2024a)
and extend the analysis by exploring various states using the bos token, which was not covered.
Based on this expanded analysis, we formally define top-k massive weights in a specific layer and
investigate their importance through two opposite types of attacks.

2.1 PREREQUISITE: MASSIVE ACTIVATIONS

Autoregressive Transformers (Vaswani et al., 2017) are structured with L decoding layers. Each
layer l ∈ [1, L] includes an attention (ATTN) module and a feed-forward network (FFN) module.
These modules are connected via residual connections (He et al., 2016), each following a layer
normalization (LN) layer (Ba, 2016). The previous hidden state hl−1 is fed into layer l and processed
to produce the subsequent hidden state hl:

hl = ĥl + FFN(LN(ĥl)),where ĥl = hl−1 + ATTN(LN(hl−1)) (1)

Sun et al. (2024a) primarily concentrated on the activations within hidden states, identifying that
certain activations exhibit exceptionally large magnitudes, which they termed massive activations.
Massive activations are observed at the starting position (i.e., input-agnostic) or at the delimiter
tokens, depending on the model. Furthermore, these activations are confined to a small number of
fixed feature dimensions, even within these tokens. These activations initially emerge after passing
through several early layers and then decreases as they near the last layer.

Massive activations are strongly tied to the attention sinks phenomenon, as identified by Xiao et al.
(2024), in which attention is abnormally concentrated on a small subset of tokens. In detail, a given
query state tends to have positive cosine similarity with the key states of the tokens exhibiting mas-
sive activations, and negative cosine similarity with those of other tokens. Consequently, attention is
heavily skewed toward the tokens associated with massive activations.

2.2 FURTHER ANALYSIS ON MASSIVE ACITVATIONS

We primarily utilize the Llama-3-8B model (Dubey et al., 2024) and explicitly specify other models
when necessary.
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(a) Various states in early layers.

(b) Hidden states.

(c) Intermediate states.

Figure 3: (a) Magnitudes of various states and (b and c) the top three and median magnitudes of
hidden states and intermediate states across layers. These results show that massive activations in
the hidden state originate from those in the intermediate state in a FFN module in an early layer.

bos token placed at the starting position always has massive activations. We begin by examin-
ing whether any specific condition consistently triggers massive activations. The existence of such
a condition would greatly facilitate the analysis and algorithm development for handling massive
activations. Following Sun et al. (2024a), massive activations are observed when any token is placed
at the starting position; however, we find the cases where the token at the starting position does not
trigger massive activations and attention sinks, such as Mistral-7B.

Figure 2 describes the magnitudes of activations of the hidden state and normalized attention scores
of Mistral-7B according to the position of the bos token, after massive activations appear. The reason
for arbitrarily inserting the bos token is based on the previous observation that nonsemantic tokens
can trigger massive activations in certain LLMs. We use the implementation1 of massive activations
for this example and visualization. Mistral-7B has massive activations at the first delimiter token
‘.’, not at the starting position (first column). However, when the bos token is placed at the starting
position, it triggers massive activations and the first delimiter token loses its massive activations
(second column). When the bos token is inserted in the middle or ending position after the first
delimiter token, massive activations are observed in both tokens (third and fourth columns). On the
other hand, there are models that respond to the starting position but not to the bos token, such as
Llama-2, detailed in Appendix C. Therefore, by considering both conditions, we use only the bos
token placed at the starting position for the continuation of analysis and algorithm development.

Massive activations originate in the intermediate state of a FFN module. Next, we trace vari-
ous states in early layers until the first massive activations appear, using the bos token. Specifically,
we monitor hl−1, LN(hl−1), ATTN(LN(hl−1)), ĥl, LN(ĥl), and FFN(LN(ĥl)) in Eq. (1) through-
out early layers. Figure 3(a) illustrates the magnitudes of various states in layers l ∈ [1, 3]. It is
observed that FFN(LN(ĥ2)) has massive activations before h2. With Figure 3(b), which describes
the top three and median magnitudes of the hidden state1, it is observed that the massive activations
generated within a FFN module at layer 2 are transmitted directly to the next hidden state and then
propagated solely through the residual connections.

Furthermore, we decompose a FFN module into Wdown(σ(Wgate(·)) ⊙ Wup(·)), to analyze the
intermediate states (i.e., the output of σ(Wgate(·)) ⊙ Wup(·)). Figure 3(c) describes the top three
and median magnitudes of the intermediate state across layers. It is demonstrated that massive acti-
vations originate in the intermediate state of a FFN module in an early layer l. This result implies
that Wup and Wgate in layer l are closely tied to massive activations. Additional results for other
LLMs are provided in the Appendix D.

1https://github.com/locuslab/massive-activations
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Table 1: Perplexity and zero-shot downstream tasks performance according to the attack.

Models WikiText C4 PG-19 Avg. (↓) ARC-E ARC-C BoolQ PIQA WG Avg. (↑)
Llama-3-8B 5.75 9.94 8.98 8.22 77.4 52.7 81.4 80.8 72.9 73.0

top-5 zeroing 104.57 132.83 130.83 122.74 29.1 22.0 41.8 53.8 50.3 39.4
top-5 retaining 10.15 23.98 28.72 20.95 75.0 48.0 80.2 77.7 74.1 71.0

Llama-3-70B 2.68 7.59 6.02 5.43 85.8 64.2 85.3 84.6 80.5 80.1

top-5 zeroing 11135.81 7288.86 4696.49 7707.05 28.6 22.8 38.0 55.5 49.5 38.9
top-5 retaining 3.47 9.93 7.26 6.89 45.9 25.6 83.9 64.6 77.0 59.4

Llama-3.1-405B (8bit) 1.41 6.20 3.23 3.61 86.3 66.0 88.2 85.0 81.1 81.3

top-5 zeroing 1785.56 985.36 633.40 1134.77 26.6 25.9 37.8 49.7 50.3 38.1
top-5 retaining 2.47 9.36 5.61 5.81 83.0 62.5 83.1 83.2 70.3 76.4

2.3 MASSIVE WEIGHTS

Massive weights are defined based on massive activations in the intermediate state at layer l, denoted
as ĥinter

l , when the bos token is fed into LLMs. To elaborate, we define the rows in the projection
matrix Wup (and Wgate, if it exists) that correspond to the indices of the top-k magnitudes in ĥinter

l
as top-k massive weights, depicted in Figure 1(a). It is noted that massive weights are defined within
one specific layer, which means the number of massive weights is significantly smaller compared to
the total number of parameters in LLMs. For example, in Llama-3-8B, the number of top-k massive
weights is calculated as 2× k× 4096, where 4096 represents the dimensions of hidden state. If k is
set to 5, massive weights account for approximately 0.0005% of the total parameters in Llama-3-8B,
approximately 0.0001% in Llama-3-70B, and approximately 0.00004% in Llama-3.1-405B.

Massive weights are extremely small in quantity, their impact is tremendous. To assess the
significance of massive weights, we conduct two types of attacks: top-k zeroing and top-k retaining.
Note that these attacks only affect the Wup and Wgate projection matrices in layer l, where massive
weights are present. The first attack is to set the top-k massive weights to zero (i.e., darker orange
weights in Figure 1(a)). In essence, this attack is very similar to the one proposed in Sun et al.
(2024a), where massive activations in the hidden state are zeroed out in a single layer. The difference
is that their attack targets the hidden state, while our attack targets the intermediate state. The second
attack is to set all weights to zero except for top-k massive weights (i.e., lighter orange weights in
Figure 1(a)). That is, the number of rows being damaged in each attack is k and the dimensions of
intermediate state − k, respectively.

Following Sun et al. (2024a), we assess perplexity1 on three datasets: WikiText (Merity et al., 2017),
C4 (Raffel et al., 2020), and PG-19 (Rae et al., 2020). Additionally, we evaluate zero-shot accuracy2

on five tasks: Arc-Easy, Arc-Challenge (Clark et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), and WinoGrande (WG) (Sakaguchi et al., 2021). Table 1 presents the results of two
attacks on Llama-3-8B, Llama-3-70B, and Llama-3.1-405B (8bit)3, when k is set to 5. Llama-3-
8B has its massive weights in layer 2 out of 32 layers, Llama-3-70B in layer 4 out of 80 layers,
and Llama-3.1-405B in layer 6 out of 126 layers (Appendix B). The larger the difference from the
original performance, the stronger the attack.

Top-5 zeroing is a much stronger attack than top-5 retaining, even though top-5 retaining sets sev-
eral thousands times more weights to zero compared to top-5 zeroing does for the same projection
matrices. This means that in the projections Wup and Wgate at layer l, having only massive weights
is significantly better than having all weights except for massive weights. In detail, similar to the
findings of Sun et al. (2024a), the top-k zeroing attack proves to be highly effective in disrupting
the Llama-3 family, even for extremely large-scale models (e.g., 70B and 405B). On the other hand,
the top-k retaining attack does not cause complete damage. In conclusion, these findings reveal that
massive weights are predominantly learned during pre-training, highlighting their essential contri-
bution to the overall performance of LLMs.

2https://github.com/EleutherAI/lm-evaluation-harness
3We use 8xA100-80G GPUs for our work; therefore, we employ an 8-bit model.
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(a) Top-k zeroing. (b) Top-k retaining.

Figure 4: Mean zero-shot accuracy of top-k zeroing and retaining across various LLMs.

Figure 5: Probability of experts of Mixtral-8x7b for the bos token. In the layer with massive weights
(i.e., layer 2), the router probability between experts becomes completely skewed to one expert.

Moreover, massive weights also exist in instruction-tuned LLMs such as Llama-3-8B-Instruct. These
attacks are effective, as depicted in Figure 1(b). When massive weights are set to zero (i.e., darker
orange box), the model repeats the same text as the user prompt. On the other hand, when all weights
are set to zero except for massive weights (i.e., lighter orange box), the model retains its ability to
generate text, although the generated text differs from the original.

k, which affects performance, depends on the model architecture. We examine the robustness
of various LLMs against the top-k zeroing and retaining attacks, with a focus on the impact of the
parameter k. Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al., 2024), Mistral (Jiang et al.,
2023) and Mixtral (Jiang et al., 2024), Phi-3 (Abdin et al., 2024), and Gemma-2 (Team et al., 2024)
families are used. Figure 4 illustrates the mean zero-shot accuracy of LLMs under the two attacks,
according to the k. In top-k zeroing, more weights are set to zero as k increases, whereas in top-k
retaining, more weights are set to zero as k decreases. When k is 0 in top-k zeroing, it corresponds
to the original performance without any attack, whereas, when k is 0 in top-k retaining, it sets the
entire weights of Wup and Wgate in layer l to zero.

The Llama families are highly sensitive to massive weights. In the top-k zeroing, a noticeable perfor-
mance drop occurs even when k is as small as 3, irrespective of the model’s scale. In top-k retaining,
when k is set to 1 (i.e., with only one row active in Wup and Wgate in layer l), the performance
nearly reaches the original level in smaller-scaled models (≤ 13B). While, for larger-scaled models
(≥ 70B), the top-30 massive weights are required to maintain performance.

Similarly, Mistral is also disrupted, when k is set to 5. Mixtral is a sparse Mixture of Experts (MoE)
architecture that uses a top-2 routing mechanism, where two experts are activated among eight FFN
modules in each layer. To attack the Mixtral model, we identify the active experts in the layer with
massive weights using the bos token. Figure 5 describes the probability distribution of experts in
the Mixtral model across all layers. Notably, it is observed that when massive activations occur, a
single expert (i.e., expert 4) is assigned a significantly higher probability than the others. Therefore,
we target only the Wup and Wgate of this expert, rather than all experts. Although Mixtral does
not completely break down, there is a considerable decline in performance when the top-50 massive
weights are zeroed out. These results indicate that, despite the immense resources required to build
high-performance LLMs, they can collapse like a house of cards even under minimal attacks.

The Phi-3 family exhibits different robustness against attacks depending on the model size. As noted
by Abdin et al. (2024), the phi-3-mini (3.8B) is trained on 3.3T tokens, while the phi-3-medium
(14B) is trained on 4.8T tokens. A key architectural difference from the Llama family is the use
of dropout to the outputs of both the ATTN and FFN modules, formed by Eq. (2). While a specific
recipe for dropout is not provided in the technical report (Abdin et al., 2024), in the case of phi-
3-medium, applying dropout with longer pre-training might ensure that the residual connections
contribute meaningfully, mitigating the risk of excessive dependence on massive weights.

hl = ĥl + dropout(FFN(LN(ĥl))),where ĥl = hl−1 + dropout(ATTN(LN(hl−1))) (2)
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The Gemma-2 family is exceptionally resilient to the top-k zeroing attack, maintaining almost no
loss in performance even when k is large. Additionally, even if Wup and Wgate are entirely elim-
inated (i.e., k = 0 in top-k retaining), there is no noticeable performance degradation. This family
incorporates two additional LN layers after both the ATTN and FFN modules, formed by Eq. (3).
These added normalization layers result in completely different hidden and intermediate states com-
pared to other models, as described in Appendix D. Furthermore, attention sinks at the initial token
are not observed in the Gemma-2 family (Appendix E).

hl = ĥl + LN(FFN(LN(ĥl))),where ĥl = hl−1 + LN(ATTN(LN(hl−1))) (3)

Nevertheless, because most existing open-source models, except for a few, are still heavily depen-
dent on massive weights, it is critical to take them into account.

3 MASSIVE WEIGHTS CURRICULUM DROPOUT

In this section, we propose a straightforward plug-and-play method, termed massive weights
curriculum dropout (MacDrop), during parameter-efficient fine-tuning such as low rank adaptation
(Hu et al., 2022). This method applies dropout to the pre-trained massive weights with a curriculum
that gradually reduces the dropout probability. The reason for applying dropout to weights (Wan
et al., 2013) instead of activations (Srivastava et al., 2014) is that the number of massive activa-
tions is only k, but that of massive weights is k × d, where d is the dimension of the hidden states.
Note that our method is not applied to the trainable parameters of adapters. Therefore, MacDrop
can be applied orthogonally to the process of training the adapter. Algorithm 1 describes MacDrop
in a pseudo PyTorch (Paszke et al., 2019) style, and is implemented within the trainer code of
transformers4. Initially, massive weights are identified using the bos token before fine-tuning
(Lines 1-3). Subsequently, an adapter is trained while the pre-trained massive weights are dropped.
Meanwhile, a curriculum strategy is applied to progressively enable the use of the original pre-
trained weights without masking. Note that in Line 8, ‘model’ includes both the masked pre-trained
network and a trainable adapter.

MacDrop is motivated by the observation that massive weights are predominantly learned during
the pre-training phase, and that zeroing them can severely undermine LLMs. Therefore, at the early
stages of fine-tuning, the objective is to reduce the reliance on massive weights, as their excessive
dominance may lead the model to over-rely on specific patterns. Moreover, considering that the
undamaged pre-trained model is used after fine-tuning is finished, we develop a strategy to adjust
the dropout rate using a curriculum.

Algorithm 1: Top-k Massive Weights Curriculum Dropout in pseudo PyTorch style
// Dropout is only executed in layer l,

// where the massive intermediate state hinter
l appears.

Input: k, massive intermediate state hinter
l of the bos token, initial dropout probability p0, total steps T

// massive activations in the intermediate state

1 , sorted indices = torch.sort(torch.abs(hinter
l ), descending=True)

2 massive indices = sorted indices[:k]
// massive weights

3 massive W up = copy(W up[massive indices, :]); massive W gate = copy(W gate[massive indices, :])
4 for t = 1 to T do

// decreasing dropout probability
5 p = p0 × (1− t

T
)

// pre-trained massive weights dropout
6 mask = (torch.rand(massive W up.shape) > p).int()
7 W up[massive indices, :] *= mask; W gate[massive indices, :] *= mask
8 tr loss step = training step(model, inputs)

// pre-trained massive weights rollback
9 W up[massive indices, :] = massive W up; W gate[massive indices, :] = massive W gate

4https://github.com/huggingface/transformers/tree/main/src/transformers
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Table 2: Zero-shot downstream tasks performance.

Model Method ARC-Easy ARC-Challenge BoolQ PIQA WinoGrande Avg.

Llama-3-8B

LoRA 79.6 58.2 83.9 82.4 75.9 76.0
+ MacDrop 82.9 58.3 83.9 82.6 75.0 76.5

DoRA 80.8 57.7 83.9 82.5 75.8 76.1
+ MacDrop 81.9 58.2 83.9 82.2 75.6 76.4

Mistral-7B

LoRA 78.5 54.9 84.9 82.9 75.3 75.3
+ MacDrop 80.9 56.7 85.0 83.0 75.3 76.2

DoRA 78.4 55.1 85.0 82.9 75.1 75.3
+ MacDrop 80.6 56.7 85.3 82.9 75.1 76.1

Table 3: Generation tasks performance measured by Prometheus-2-7B.

Model Method MT-1 MT-2 translation summarization QA math reasoning RAG Avg.

Llama-3-8B

LoRA 3.71 3.54 4.50 3.24 4.35 3.64 3.74 3.82
+ MacDrop 3.76 3.49 4.51 3.39 4.29 3.50 3.71 3.81

DoRA 3.85 3.71 4.56 3.34 4.35 3.59 3.73 3.80
+ MacDrop 3.79 3.41 4.55 3.26 4.29 3.79 3.85 3.85

Mistral-7B

LoRA 3.55 3.30 4.61 3.33 4.41 3.45 4.05 3.81
+ MacDrop 3.75 3.42 4.58 3.26 4.35 3.30 3.98 3.81

DoRA 3.55 3.29 4.64 3.34 4.49 3.35 3.88 3.79
+ MacDrop 3.49 3.29 4.59 3.52 4.41 3.33 3.95 3.80

4 EXPERIMENTS

4.1 ZERO-SHOT DOWNSTREAM TASK

We fine-tune the Llama-3-8B and Mistral-7B using the alpaca gpt4 en dataset (Peng et al., 2023)
for 3 epochs (579 steps), and evaluate on five zero-shot tasks. We use two parameter-efficient fine-
tuning methods, LoRA (Hu et al., 2022) and DoRA (yang Liu et al., 2024). DoRA decomposes
the pre-trained weights into two components, magnitude and direction, and applies LoRA to the
direction component. Our method is based on the implementation of Llama-Factory (Zheng et al.,
2024)5. For MacDrop, k and p0 are set to 5 and 0.8, respectively. Details for implementations are
explained in Appendix A. Table 2 presents the results on zero-shot downstream tasks. For both the
models and methods, MacDrop consistently leads to performance gains, especially in ARC-Easy
and ARC-Challenge tasks.

4.2 GENERATION TASK

We evaluate on the generated texts of the same models in Section 4.1 using the Spec-Bench dataset
(Xia et al., 2024). This benchmark includes six subtasks, each containing 80 instances: multi-turn
(MT) conversation from MT-bench (Zheng et al., 2023), translation from WMT14 DE-EN (Bojar
et al., 2014), summarization from CNN/Daily Mail (Nallapati et al., 2016), question answering (QA)
from Natural Questions (Kwiatkowski et al., 2019), mathematical reasoning from GSM8K (Cobbe
et al., 2021), and retrieval-augmented generation (RAG) from Natural Questions (Kwiatkowski et al.,
2019). We utilize the direct assessment of Prometheus-2-7B (Kim et al., 2024) to evaluate the gener-
ated texts using a 5-point Likert scale. Prometheus-2-7B is an open-source language model specifi-
cally designed for evaluation purposes6. Table 3 presents the results on generation tasks. MT-1 and
MT-2 indicate the first turn and second turn, respectively. Unfortunately, MacDrop shows limited
performance improvements in generation tasks. Examples of the generated texts and judgements are
provided in Appendix I.

5https://github.com/hiyouga/LLaMA-Factory
6https://github.com/prometheus-eval/prometheus-eval
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4.3 ABLATION STUDY

We further provide ablation studies related to MacDrop using Llama-3-8B. Unless otherwise stated,
for MacDrop, k and p0 are set to 5 and 0.8.

4.3.1 DROPOUT SCOPE AND PROBABILITY

Figure 6: Mean zero-shot accuracy according to
the dropout scope and probability p.

We investigate the effect of dropout scope
and probability compared to the original per-
formance achieved through LoRA without
dropout. This ablation study is also conducted
on the Wup and Wgate projection matrices
in layer l. The dropout scope is divided into
three categories: all weights, massive weights,
all weights except for massive weights. Addi-
tionally, to assess the impact of dropout prob-
ability, it is kept constant throughout the fine-
tuning process, without using a curriculum.

Figure 6 illustrates the mean zero-shot accuracy according to the dropout scope and dropout prob-
ability p. It is observed that among three scopes, the original performance (i.e., without dropout),
represented by the dotted line at 76.0, can be surpassed only when dropout is applied solely to
massive weights. Nevertheless, if strong dropout (e.g., p ≥ 0.85) is maintained on the pre-trained
massive weights during fine-tuning, performance deteriorates. This highlights the need to safeguard
the pre-trained massive weights during the final stages of fine-tuning, because we are ultimately
using them without causing any damage.

4.3.2 CURRICULUM METHODS AND INITIAL DROPOUT PROBABILITY

Figure 7: Curriculum methods.

We investigate the effect of curriculum methods and ini-
tial dropout probability p0 in MacDrop, when LoRA is
applied. We compare four curriculum methods: step-wise
linear (Step), before epoch-wise linear (Epoch(before)),
after epoch-wise linear (Epoch(after)), and exponential
(Exp.). In formula, Step is defined as p = p0×(1− tstep

Tstep
).

Epoch(before) and Epoch(after) are defined as p = p0 ×
(1 − tepoch−1

Tepoch
) and p = p0 × (1 − tepoch

Tepoch
), respectively.

Exp. is defined as p = p0×exp(−αtstep). Figure 7 describes dropout probability p according to cur-
riculum methods, when p0 is 1.0. The distinct difference between Epoch(before) and Epoch(after)
is that at the final epoch, the former continues to apply dropout to the pre-trained massive weights
with a probability of p0 × 1

Tepoch
, while the latter fully utilizes the pre-trained massive weights.

Table 4: Mean zero-shot accuracy ac-
cording to curriculum methods and ini-
tial dropout probability.

Curriculum p0
Method 0.2 0.5 0.8 1.0

Step 76.0 76.3 76.5 75.5
Epoch(before) 76.1 76.1 76.1 75.5
Epoch(after) 75.9 76.0 76.2 76.3

Exp. (α = 0.01) 76.0 76.2 76.5 76.4
Exp. (α = 0.05) 76.0 76.1 76.2 76.3
Exp. (α = 0.10) 76.0 76.1 76.1 76.2

Mean 76.0 76.1 76.3 76.0

Table 4 presents mean zero-shot accuracy according to
curriculum methods and initial dropout probability p0.
It is observed that step-based curriculum methods (e.g.,
Step and Exp.) generally achieve greater performance im-
provements compared to epoch-based curriculum meth-
ods (e.g., Epoch(before) and Epoch(after)). Nevertheless,
when the initial dropout probability is relatively low (e.g.,
p0 ≤ 0.2), even step-based curriculum methods fail to
bring any performance gain compared to the original per-
formance of 76.0. Additionally, it is shown that using
a smaller α in the Exp. method leads to greater perfor-
mance improvements, suggesting that a rapid decline in
dropout probability to zero can diminish the effective-
ness of MacDrop. On the other hand, for the Step and
Epoch(before) methods, a significant performance drop
is observed at a p0 value of 1.0, highlighting the necessity of a near-zero dropout probability for
the end of fine-tuning. In conclusion, for MacDrop, we recommend using the Step or Exp. with a
smaller α, initiated from a moderately high p0.
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5 RELATED WORK

The attention sinks phenomenon and their importance, uncovered by Xiao et al. (2024), have been
widely used to compress key-value caches. For quantization, KVQuant (Hooper et al., 2024) applies
attention sink-aware quantization, which retains only the first token in fp16. CushionCache (Son
et al., 2024) inserts sink tokens into the prefix to mitigate massive activations in the middle of the
sequence, enhancing the performance of quantized models. For token eviction and token merging,
sink tokens are never evicted or merged; they remain unchanged (Xiao et al., 2024; Ge et al., 2024;
Li et al., 2024; Zhang et al., 2023; Wang et al., 2024; Zhang et al., 2024).

Nevertheless, there has been limited in-depth research on the phenomenon itself. In fact, the idea
of global attentions, such as [CLS] and [SEP] tokens–similar to attention sinks–was introduced and
emphasized even before the LLM era (Zaheer et al., 2020; Beltagy et al., 2020). In the LLM era, Yu
et al. (2024) showed that sink tokens can appear not only at the beginning of a sentence but also in
the middle, and they are often shown to be nonsemantic (e.g., ‘.’). Sun et al. (2024a) discovered the
presence of massive activations in the hidden state space of sink tokens, demonstrating that massive
activations trigger the attention sinks phenomenon. Meanwhile, in vision transformers, similar phe-
nomenon is observed (Darcet et al., 2024). They showed that training with register tokens, which
is additional meaningless tokens similar to sink tokens, resulted in improved dense prediction and
interpretability. Different from previous work, we explore this phenomenon in the weight space.

Specifically, we define the massive weights in an activation-aware manner using the bos token.
Similarly, Wanda (Sun et al., 2024b) with a structured pruning (An et al., 2024) and AWQ (Lin
et al., 2024) calculate weight importance scores based on a small of calibration data. However, it is
important to note that the massive weights are confined to a specific single layer, whereas Wanda
and AWQ identify important weights within every linear layer. In other words, the massive weights
would be included among those selected through Wanda or AWQ. Our contribution focuses more
deeply on a narrowly defined aspect compared to these studies.

6 CONCLUSION

In this paper, we explore the weight space of LLMs and identify the presence of massive weights
within a FFN module in an early layer, which are predominantly pre-trained and have a significant
impact on the performance of LLMs. Based on our observation, we propose a plug-and-play fine-
tuning method called MacDrop, which applies dropout to the pre-trained massive weights, rather
than to the parameters of adapters, during parameter-efficient fine-tuning. We hope that our findings
will inspire future research in weight space of LLMs, including model merging (Li et al., 2023) and
model editing (Yao et al., 2023).

REPRODUCIBILITY

For our analysis in Section 2, we conduct a consistent and reproducible analysis using only the bos
token (Section 2.2) and provide the specific position of massive weights across various models in
Appendix B. For our algorithm, MacDrop, we provide PyTorch-style pseudo code in Section 3 and
training details in Appendix A. Furthermore, we present github links for all our implementations
with footnotes, when necessary.
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A IMPLEMENTATION DETAILS

We use 8xA100-80GB, for our all implementations. As discussed in Section 2.2, we use only the bos
token to analyze massive activations and massive weights, and design MacDrop. In Section 2.2, we
use the example and visualization of massive activations. For parameter-efficient fine-tuning, Llama-
Factory is used and configurations are summarized in Table 5. For evaluation, we use the code of
massive activations for perplexity, use lm-eval-harness for zero-shot accuracy, and use FastChat and
Prometheus for generation tasks. Related papers and codes are cited in the main.

Table 5: Configuration for low rank adaptation (LoRA and DoRA).

Argument Setting

dataset alpaca gpt4 en
validation size 0.05

per device train batch size 8
gradient accumulation steps 4
learning rate 1e-4
num train epochs 3
warmup ratio 0.05
adam β1 0.9
adam β2 0.999

lora target all linear layers except for embedding layer and lm head
lora rank 16
lora alpha 16

B POSITION OF MASSIVE WEIGHTS

Table 6 summarizes the position of massive weights across various models. These are selected based
on the magnitudes of intermediate state in Appendix D.

Table 6: Layer and indices of top-5 massive weights.

Model Layer Top-5 indices

Llama-2-7b-hf 2 [7890, 10411, 1192, 8731, 5843]
Llama-2-7b-chat-hf 2 [7890, 10411, 1192, 8731, 5843]
Llama-2-13b-hf 4 [7678, 8811, 11371, 6619, 12281]
Llama-2-13b-chat-hf 4 [7678, 8811, 11371, 6619, 12281]
Meta-Llama-3-8B 2 [2427, 198, 6412, 12657, 591]
Meta-Llama-3-8B-Instruct 2 [2427, 198, 6412, 591, 12657]
Meta-Llama-3-70B 4 [16581, 3590, 16039, 19670, 13266]
Meta-Llama-3-70B-Instruct 4 [16581, 3590, 16039, 19670, 13266]
Meta-Llama-3.1-405B (8bit) 6 [11891, 30740, 2392, 36238, 12328]
Meta-Llama-3.1-405B-Instruct (8bit) 6 [11891, 30740, 36238, 2392, 1073]
Mistral-7B-v0.1 2 [7310, 8572, 2514, 1878, 8693]
Mistral-7B-Instruct-v0.1 2 [7310, 8572, 2514, 2484, 1878]
Mixtral-8x7B-v0.1 2 (expert 4) [7310, 7530, 11981, 7492, 3178]
Mixtral-8x7B-Instruct-v0.1 2 (expert 4) [7310, 11981, 2514, 7530, 3178]
Phi-3-mini-4k-instruct 3 [808, 340, 3644, 2473, 2987]
Phi-3-medium-4k-instruct 6 [181, 7540, 19, 15874, 5137]
gemma-2-2b 2 [1257, 2896, 6954, 8624, 7118]
gemma-2-2b-it 2 [1257, 2896, 6954, 8624, 9140]
gemma-2-9b 1 [2769, 6656, 4889, 14293, 11065]
gemma-2-9b-it 1 [2769, 6656, 4889, 14293, 10429]
gemma-2-27b 10 [34659, 32862, 9590, 8959, 32744]
gemma-2-27b-it 10 [34659, 32862, 9590, 32744, 8959]
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C bos TOKEN ANALYSIS FOR VARIOUS LLMS

In this section, we provide the magnitudes of activations of the hidden state and normalized attention
scores according to the position of the bos token, after massive activations appear (specifically, in
the middle layer), similar to Figure 2, for various LLM families.

C.1 LLAMA-2 FAMILY

Llama-2-7B (Figure 8) has massive activations at the starting token or first delimiter token (first
column). When the bos token is placed in the starting position, it triggers massive activations and
the ‘Summer’ token loses its massive activations, while first delimiter token ‘.’ still keeps its massive
activations (second column). When the bos token is placed in the middle or ending position after the
first delimiter token, it does not trigger massive activations (third and fourth columns).

Llama-2-13B (Figure 9) has massive activations only at the starting token, other than Llama-2-7B
(first column). In cases where the bos token is inserted, the same tendencies are observed as with the
LLaMA-2-7B model.

Figure 8: (Top) Magnitudes of the hidden state and (Bottom) attention scores of Llama-2-7b-hf.

Figure 9: (Top) Magnitudes of the hidden state and (Bottom) attention scores of Llama-2-13b-hf.
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C.2 LLAMA-3 FAMILY

Llama-3-8B (Figure 10) does not have massive activations at delimiter tokens such as ‘.’ (first col-
umn). When the bos token is placed in the starting position, it triggers massive activations and the
‘Summer’ token loses its massive activations, similar to Llama-2 family (second column). When
the bos token is placed in the middle or ending position, it also triggers massive activations in the
same feature dimensions (third and fourth columns). Namely, the bos token has massive activations,
regardless of its position. What is intriguing is that, despite the difference in magnitude according to
the position, the bos token similarly exhibits attention sinks.

Llama-3-70B (Figure 11) generally exhibits similar trends to Llama-3-8B. One notable difference is
that the degree of sinking for the token at the first position is significantly stronger compared to that
of the Llama-3-8B.

Figure 10: (Top) Magnitudes of the hidden state and (Bottom) attention scores of Meta-Llama-3-8B.

Figure 11: (Top) Magnitudes of the hidden state and (Bottom) attention scores of Meta-Llama-3-
70B.
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C.3 MISTRAL AND MIXTRAL FAMILY

Mistral (Figure 12) does not exhibit massive activations at the starting position and does not trigger
attention sink, contrary to previous findings observed by Sun et al. (2024a). Rather, massive activa-
tions are observed only at the first delimiter token (first column). When the bos token is placed in the
starting position, the first delimiter token loses its massive activations (second column). However,
when the bos token is placed in the middle or ending position after the first delimiter token, massive
activations are observed in both tokens (third and fourth columns). Similar to Llama-3 family, the
bos token has massive activations, regardless of its position.

Mixtral (Figure 13) exhibits the same behavior as Mistral. The only difference is observed in the
magnitude of its massive activations, with Mixtral producing values approximately ten times higher
than Mistral.

Figure 12: (Top) Magnitudes of the hidden state and (Bottom) attention scores of Mistral-7B-v0.1.

Figure 13: (Top) Magnitudes of the hidden state and (Bottom) attention scores of Mixtral-8x7B-
v0.1.
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C.4 PHI-3 FAMILY

Phi-3-mini (Figure 14) and Phi-3-medium (Figure 15) exhibit a similar tendency to Llama-2-13B.
This family has massive activations only at the starting token (first column), with a similar response
when the bos token is inserted (second, third, and fourth column). A significant distinction between
the Llama-2-13B model and the Phi-3 family lies in their attention mechanisms. Specifically, the
Phi-3 family demonstrates weaker attention on the token at the first position than Llama-2-13B
model. This reduced attention appears to be primarily redistributed to recent tokens.

Figure 14: (Top) Magnitudes of the hidden state and (Bottom) attention scores of Phi-3-mini-4k-
instruct.

Figure 15: (Top) Magnitudes of the hidden state and (Bottom) attention scores of Phi-3-medium-4k-
instruct.
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C.5 GEMMA-2 FAMILY

The Gemma-2 family displays significantly distinct magnitudes of activations and attention scores
when compared to other model families. This divergence remains consistent regardless of the ab-
sence (first column) or presence (other columns) of the bos token.

Gemma-2-2b (Figure 16) and Gemma-2-9b (Figure 17) do not exhibit noticeably large values along
either the token axis or the feature dimension axis, from the perspective of magnitudes of activations
(first column, top). This suggests that massive activations are not present. As a result, the attention
mechanism avoids the attention sink phenomenon and demonstrates a strong attention on the locality
of recent tokens (first column, bottom). However, when the bos token is fed into these models, it
exhibits massive activations with extremely large values in certain feature dimensions, regardless
of its position (second, third, and fourth columns). Nevertheless, compared to other models where
attention sinks occur, they allocate significantly greater attention to recent tokens (especially, to its
own tokens).

Figure 16: (Top) Magnitudes of the hidden state and (Bottom) attention scores of gemma-2-2b.

Figure 17: (Top) Magnitudes of the hidden state and (Bottom) attention scores of gemma-2-9b.
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Gemma-2-27b (Figure 18) demonstrates a distinct behavior compared to smaller models. It exhibits
noticeably large values along the feature dimension axis across all tokens, from the perspective of
magnitudes of activations (first column, top). This distribution, where the differences between tokens
are not pronounced, fails to create attention sinks (first column, bottom). When the bos token is
placed in the starting position, it triggers massive activations and attention sinks by generating value
that exceed the magnitudes of other tokens by more than tenfold, in the certain feature dimension
(second column). However, when the bos token is placed in the middle or ending position, it does
not trigger massive activations, similar to when the bos token is absent (third and fourth columns).

Figure 18: (Top) Magnitudes of the hidden state and (Bottom) attention scores of gemma-2-27b.

In summary,

• Llama-2, Llama-3, and Phi-3 families have massive activations at the first position.
• Llama-3, Mistral/Mixtral families, and Gemma-2-2/9b models have massive activations at

the bos token.
• All families have massive activations at the bos token placed at the first position.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D FUTHER ANALYSIS FOR VARIOUS LLMS

We investigate various LLM families: Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al., 2024),
Mistral (Jiang et al., 2023) and Mixtral (Jiang et al., 2024), Phi-3 (Abdin et al., 2024), and Gemma-2
(Team et al., 2024). Similar to Figure 3 in the main, we provide the top-3 and median magnitudes in
the hidden states and the intermediate states throughout the layers. In subcaptions, H and I represent
the hidden state and the intermediate state, respectively.

When comparing pre-trained LLMs (e.g., Llama-2-7b-hf) and instruction-tuned LLMs (e.g., Llama-
2-7b-chat-hf) of the same model, the shape of their graphs is almost identical. This suggests that
massive weights are formed during the pre-training process. Llama-2, Llama-3, Mistral, Mixtral,
and Phi-3 exhibit similar patterns in their hidden states: following a single explosive amplification
in an early layer, massive activations are sustained through residual connections almost until the final
layer, although Phi-3 experiences a few additional amplifications. In fact, as we discuss in the main,
such an explosion initially occurs in the intermediate state, and this phenomenon is observed across
different models. However, the behavior of the Gemma-2 family significantly deviates from that of
other models. Firstly, instead of the values being maintained in the hidden state, Gemma-2 shows a
continuous increase followed by a decrease. Secondly, the magnitude of the explosion observed in
the intermediate state is considerably lower compared to other models. These unique characteristics
suggest that Gemma-2 operates under different internal dynamics, which may influence its overall
performance and stability.

D.1 LLAMA-2 FAMILY

(a) Llama-2-7b-hf (H). (b) Llama-2-7b-hf (I).

(c) Llama-2-7b-chat-hf (H). (d) Llama-2-7b-chat-hf (I).

(e) Llama-2-13b-hf (H). (f) Llama-2-13b-hf (I).

(g) Llama-2-13b-chat-hf (H). (h) Llama-2-13b-chat-hf (I).

Figure 19: (Left) Hidden state and (Right) intermediate state of Llama-2 family.
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D.2 LLAMA-3 FAMILY

(a) Meta-Llama-3-8B (H). (b) Meta-Llama-3-8B (I).

(c) Meta-Llama-3-8B-Instruct (H). (d) Meta-Llama-3-8B-Instruct (I).

(e) Meta-Llama-3-70B (H). (f) Meta-Llama-3-70B (I).

(g) Meta-Llama-3-70B-Instruct (H). (h) Meta-Llama-3-70B-Instruct (I).

(i) Meta-Llama-3.1-405B(8bit) (H). (j) Meta-Llama-3.1-405B(8bit) (I).

(k) Meta-Llama-3.1-405B-Instruct(8bit) (H). (l) Meta-Llama-3.1-405B-Instruct(8bit) (I).

Figure 20: (Left) Hidden state and (Right) intermediate state of Llama-3/3.1 family.
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D.3 MISTRAL AND MIXTRAL FAMILY

(a) Mistral-7B-v0.1 (H). (b) Mistral-7B-v0.1 (I).

(c) Mistral-7B-Instruct-v0.1 (H). (d) Mistral-7B-Instruct-v0.1 (I).

(e) Mixtral-8x7B-v0.1 (H). (f) Mixtral-8x7B-v0.1 (I).

(g) Mixtral-8x7B-Instruct-v0.1 (H). (h) Mixtral-8x7B-Instruct-v0.1 (I).

Figure 21: (Left) Hidden state and (Right) intermediate state of Mistral and Mixtral family.

D.4 PHI-3 FAMILY

(a) Phi-3-mini-4k-instruct (H). (b) Phi-3-mini-4k-instruct (I).

(c) Phi-3-medium-4k-instruct (H). (d) Phi-3-medium-4k-instruct (I).

Figure 22: (Left) Hidden state and (Right) intermediate state of Phi-3 family.
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D.5 GEMMA-2 FAMILY

(a) gemma-2-2b (H). (b) gemma-2-2b (I).

(c) gemma-2-2b-it (H). (d) gemma-2-2b-it (I).

(e) gemma-2-9b (H). (f) gemma-2-9b (I).

(g) gemma-2-9b-it (H). (h) gemma-2-9b-it (I).

(i) gemma-2-27b (H). (j) gemma-2-27b (I).

(k) gemma-2-27b-it (H). (l) gemma-2-27b-it (I).

Figure 23: (Left) Hidden state and (Right) intermediate state of Gemma-2 family.
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E ATTENTION SINKS

Figure 24 describes attention after Softmax in the early layers (from layer 1 to layer 8) across various
models. Attention sinks are observed in the layers after the massive weights layer. In Llama-2-7B
(Figure 24(a)), Mistral-7B (Figure 24(c)), and Mixtral-8x7B (Figure 24(d)), sink tokens are the
initial token (‘Summer’) and the first delimiter token (‘.’), discovered by Sun et al. (2024a). In
Llama-3-8B (Figure 24(b)) and Phi-3-mini (Figure 24(e)), sink token is the only the initial token
(‘Summer’). Interestingly, in these five models, it is commonly observed that significant attention
is concentrated on non-semantic tokens (‘.’) before attention sinks occur. However, in Gemma-2
(Figure 24(f)), attention sinks do not happen and attention is primarily assigned to local tokens.
Note that what we provide is the average of the heads, and there might be heads that do not fully
sink when viewed individually.

(a) Llama-2-7B. Attention sinks happen from layer 3.

(b) Llama-3-8B. Attention sinks happen from layer 3.

(c) Mistral-7B. Attention sinks happen from layer 3.

(d) Mixtral-8x7B. Attention sinks happen from layer 3.

(e) Phi-3-mini-4k-instruct. Attention sinks happen from layer 4.

(f) gemma-2-2b. Attention sinks do not happen.

Figure 24: Attention after Softmax.
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F ZERO-SHOT DOWNSTREAM TASK ACROSS VARIOUS LLMS

Table 7 presents the results on zero-shot downstream tasks across different LLMs, similar to Table
2. Details for implementations are the same in Section 4. The results show that MacDrop is not
effective for models that are not sensitive to massive weights, such as Phi-3-medium and Gemma-2
family.

Table 7: Zero-shot downstream tasks performance across different LLMs.

Model Method ARC-Easy ARC-Challenge BoolQ PIQA WinoGrande Avg.

Llama-2-13B

LoRA 77.1 51.9 82.2 81.6 72.8 73.1
+ MacDrop 78.8 52.6 82.2 71.4 71.9 73.4

DoRA 77.4 51.8 82.0 81.6 72.8 73.1
+ MacDrop 77.8 52.5 81.9 81.8 72.3 73.3

Llama-3-70B

LoRA 87.5 66.3 86.1 84.9 80.4 81.0
+ MacDrop 87.5 66.5 86.1 85.0 80.8 81.2

DoRA 87.5 66.6 86.1 85.0 80.8 81.2
+ MacDrop 87.4 66.6 86.0 85.1 80.9 81.2

Phi-3-mini

LoRA 72.5 53.7 86.4 80.1 74.0 73.3
+ MacDrop 75.0 54.7 86.2 80.5 74.0 74.1

DoRA 72.3 53.3 86.4 80.0 73.6 73.1
+ MacDrop 72.9 53.5 86.3 80.0 73.7 73.3

Phi-3-medium

LoRA 81.4 62.2 88.7 82.6 76.4 78.3
+ MacDrop 81.2 61.9 88.7 82.5 76.4 78.1

DoRA 80.9 62.0 88.6 82.4 76.2 78.0
+ MacDrop 80.8 61.9 88.5 82.4 76.2 77.9

Gemma-2-2b

LoRA 81.6 54.4 79.8 79.2 68.7 72.7
+ MacDrop 81.5 54.2 79.6 79.2 68.6 72.6

DoRA 81.4 54.0 79.6 79.3 68.7 72.6
+ MacDrop 81.6 53.9 79.4 79.3 68.7 72.6

Gemma-2-9b

LoRA 89.6 69.0 86.5 82.8 75.3 80.6
+ MacDrop 89.2 68.4 86.5 82.8 75.2 80.4

DoRA 89.4 68.9 86.2 82.7 75.8 80.6
+ MacDrop 89.2 68.5 86.3 82.8 75.7 80.5

Gemma-2-27b

LoRA 87.5 69.0 86.0 84.1 80.6 81.4
+ MacDrop 87.3 68.8 86.0 84.2 80.5 81.4

DoRA 88.5 69.4 85.6 84.5 80.0 81.6
+ MacDrop 88.1 69.2 85.7 84.3 80.0 81.5
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G ROBUSTNESS OF MACDROP

MacDrop aims to reduce dependence on massive weights during PEFT. To verify whether the de-
pendency on massive weights is reduced, the top-k zeroing attack is used. For pre-trained Llama-
3-8B and Mistral-7B models, the top-3 zeroing attack severely degrades the performance of the
models, as described Figure 4. Therefore, we examine the performance changes whether applying
MacDrop to Llama-3-8B and Mistral-7B under the top-3 zeroing attack. Table 8 shows the models
with MacDrop exhibit significantly better performance under attack, indicating better robustness.
Especially, when MacDrop is combined with DoRA, it demonstrates remarkable robustness.

Table 8: Zero-shot downstream tasks performance under the top-3 zeroing attack. Original perfor-
mance is provided in Table 2.

Model Method ARC-Easy ARC-Challenge BoolQ PIQA WinoGrande Avg.

Llama-3-8B

LoRA 29.9 22.9 45.7 52.9 50.7 40.4
+ MacDrop 36.8 24.7 64.3 58.5 54.1 47.7

DoRA 29.8 23.0 46.0 52.6 50.0 40.3
+ MacDrop 78.7 53.7 79.9 79.0 72.4 72.7

Mistral-7B

LoRA 54.6 34.8 58.0 74.8 57.5 55.9
+ MacDrop 69.2 45.0 78.3 79.3 64.1 67.2

DoRA 55.7 35.3 58.6 74.4 58.2 56.4
+ MacDrop 78.1 52.4 84.1 82.3 69.5 73.3

H LONG CONTEXT TASK

We evaluate the same models discussed in Section 4 on LongBench (Bai et al., 2024), a benchmark
specifically designed to assess the ability to understand long contexts. This includes 5 sub-categories
and 16 English datasets: single-document QA, multi-document QA, summarization, few-shot learn-
ing, synthetic, and code generation. We set the max length of models to 7,500. Table 9 shows that
MacDrop increases the performance when understanding long context is required.

Table 9: Long context tasks performance.

Single-document QA Multi-document QA Summarization Few-shot learning Synthetic Code
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rtv

Q
A

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s

TR
EC

Tr
iv

ia
Q

A

SA
M

Su
m

PC
ou

nt

PR
e

Lc
c

R
B

-P

Avg.

Model: Meta-Llama-3-8B

LoRA 26.03 30.38 53.38 26.30 23.05 11.96 29.00 22.81 26.43 72.50 81.14 44.27 2.63 32.00 72.90 69.70 39.03
+ MacDrop 25.31 34.05 46.84 38.06 28.99 17.92 29.62 22.86 26.64 72.00 89.34 45.08 3.00 27.50 73.17 68.25 40.54

DoRA 26.31 31.57 52.10 27.04 23.57 12.01 29.20 23.35 26.34 73.50 81.35 43.22 2.61 30.00 73.46 69.44 39.07
+ MacDrop 26.11 30.99 53.37 29.35 25.66 12.14 29.07 23.10 26.32 73.50 86.63 44.64 2.05 25.50 73.90 69.32 39.48

Model: Mistral-7B-v0.1

LoRA 22.52 34.64 35.65 32.11 19.80 12.73 27.22 21.98 26.73 69.00 87.50 41.70 1.00 21.00 71.57 65.47 36.91
+ MacDrop 23.49 38.51 36.11 37.78 27.60 14.91 26.40 22.53 26.92 69.50 89.92 37.07 1.55 20.00 70.37 65.87 38.03

DoRA 22.79 34.52 35.55 30.87 17.84 12.26 27.45 22.15 26.52 70.00 88.05 41.56 1.00 20.50 71.88 65.38 36.77
+ MacDrop 23.10 35.10 35.00 29.53 23.77 10.50 27.14 22.63 27.50 69.00 89.56 38.96 1.00 21.42 71.17 65.53 36.93
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I EXAMPLES IN GENERATION TASK

Assistant A and B indicate Llama-3-8B with and without MacDrop, respectively.

Table 10: Example of generation task (translation).

User Translate German to English: St. Hubertus war der Sage nach ein recht
rücksichtsloser Jäger, der durch eine Vision bekehrt und später zum Bischof von
Lüttich ernannt wurde.

Reference answer St. Hubert was, according to legend, a truly ruthless hunter, who converted following
a vision and was later appointed Bishop of Lüttich.

Assistant A According to legend, St. Hubertus was a rather ruthless hunter who was converted
and later appointed as the Bishop of Liège after a vision.

Judgment for A The response provided a translation that was generally accurate and relevant to the
user’s request. However, there were minor inaccuracies in the phrasing, such as
”rather ruthless” instead of ”truly ruthless,” which slightly deviated from the orig-
inal text. Additionally, the term ”Liège” was used instead of ”Lüttich,” which is the
correct name of the city in the original German text. Despite these minor issues, the
response still conveyed the main points of the legend about St. Hubertus. Therefore,
while the response was helpful and mostly aligned with the user’s inquiry, it did not
perfectly cater to the user’s needs due to the slight inaccuracies in the translation. So
the overall score is 4.

Assistant B According to legend, St. Hubertus was a rather reckless hunter who was converted
and later appointed as the Bishop of Liège after a vision.

Judgment for B The response provided a translation that was generally accurate and relevant to the
user’s request. However, there were slight deviations from the original text. For in-
stance, the term ”rather reckless” is less precise than ”truly ruthless,” which could
lead to some ambiguity. Additionally, the term ”Liège” is used instead of ”Lüttich,”
which is a minor inaccuracy. Despite these minor issues, the response still managed
to convey the main points of the original text, making it useful for the user’s needs.
Therefore, the response aligns well with the user’s inquiry, with only rare inaccura-
cies, and thus meets the criteria for a score of 4.
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