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Abstract

Gradient attacks and data poisoning tamper with the training of machine learning algorithms
to maliciously alter them and have been proven to be equivalent in convex settings. The
extent of harm these attacks can produce in non-convex settings is still to be determined.
Gradient attacks are practical for fewer systems than data poisoning but have been argued to
be more harmful since they can be arbitrary, whereas data poisoning reduces the attacker’s
power to only being able to inject data points to training sets, via e.g. legitimate participation
in a collaborative dataset. This raises the question whether the harm made by gradient
attacks can be matched by data poisoning in non-convex settings. In this work, we provide
a positive answer and show how data poisoning can mimic gradient attacks to perform an
availability attack on (non-convex) neural networks. Through gradient inversion, commonly
used to reconstruct data points from actual gradients, we show how reconstructing data
points out of malicious gradients can be sufficient to perform a range of attacks. This allows
us to show, for the first time, a worst-case availability attack on neural networks through
data poisoning, degrading the model’s performances to random-level through a minority (as
low as 1%) of poisoned points.

1 Introduction

Security in Machine Learning requires considering various attackers with a wide range of capabilities. In
training time attacks, an attacker may only need to participate in the training procedure and send strategically
chosen, yet legitimate-looking participation. We call gradient attacks the cases where the attacker can send
gradients, and data poisoning when they send data points. The severity of attacks range from integrity
attacks, where the model’s reliability or consistency can be altered, to the most severe, availability attacks,
where the model is plainly unusable, e.g. due to performances being too low to allow for normal operations.

So far, unless the objective function is convex [Biggio et al.| (2013]), availability attacks have only been possible
through gradient attacks Blanchard et al.| (2017)); |El-Mhamdi et al.| (2018]); Baruch et al| (2019), leaving
an open question, whether gradient attacks are fundamentally more powerful than data poisoning attacks
outside the convex setting. What can be the damage that data poisoning can cause in a worst-case
scenario, and can it match the damage of gradient attacks? In this work, we answer this question by
providing empirical evidence that poisoning attacks can lead to availability attacks on (non-convex) neural
networks, under a worst-case threat model that allows for comparing both gradient and data poisoning
attacks.

An “apple-to-apple” comparison of data poisoning attacks and gradient attacks is not straightforward because
the literature associates them with different threat models offering different levels of knowledge and
interventions. For instance, gradient attacks can be crafted at each iteration, while data poisoning attacks
are usually crafted once and for all. In order to remove this confounding factor, we consider a threat
model in which both attacks can be executed by allowing an attacker to intervene at each iteration,
similarly to Algorithm 1 in [Steinhardt et al.| (2017), may it be gradients or data poisoning (Figure . Once
this confounding factor removed, the fundamental difference between gradient and data poisoning attacks
comes from the limited expressivity of data poisoning compared to the arbitrary gradient attacks.
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Figure 1: Territory of known availability attacks (in red) within a domain of constraints. The closer to the
origin, the more constrained is the setting for the attacker to realize an availability attack. #: [Geiping et al.
2020b)); [Zhao & Lao| (2022); [Ning et al.| (2021)); [Huang et al. (2020), ©: Blanchard et al. (2017); Baruch et al.

in subsection@ B: Result B in subsection@

Our approach leverages gradient inversion methods,
previously used in privacy attacks in distributed
learning to reconstruct training data points from
actual gradients they induced. Contrary to privacy
attacks, malicious gradients might not be achievable
by the gradient operator if participants are expected
to send legitimate-looking inputs (Figure [2). We
reconstruct data points whose induced gradient can
replicate as much as possible a malicious gradient,
and show that they can constitute a sufficient data
poisoning to achieve an availability attack.

In our experiments, we exhibit a successful availabil-
ity attack on neural network architectures, trained on
an image classification task with different optimiza-
tion algorithms, even when protected by a defense
mechanism against gradient attacks. We show that:
(1) the additional constraints under which data poi-

2019)), &: [El-Mhamdi et al.| (2018), & so far only in convex settings : [Farhadkhani et al.| (2022)), A: Result A
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Figure 2: Images of the gradient operator on different
sets. R? is where an attacker can craft unrestricted
gradient attacks. VoL(ho(X),)) is the set of possible
gradients given an unrestricted data poisoning (Result
B in Section [5.3), and VyL(he(Fx), Fy) is the set of
possible gradients when data poisoning is restricted to a
feasible set Fxy x Fy C X' x Y (Result A in Section.

soning attacks operate, compared to gradient attacks, make them overall less effective than plain gradient
attacks, and (2) the severity of data poisoning attacks covers the same range as gradient attacks, including
availability attacks, even on non-convex neural networks.

Our contributions are the following:

o We leverage gradient inversion mechanism from privacy attacks to reconstruct data poisoning from
existing gradient attacks and perform attacks on various settings;

o We introduce a worst-case threat model that allows for a fair comparison between gradient attacks
and data poisoning attacks, by allowing the attacker to intervene at each iteration;

e« We demonstrate that in our worst-case threat model, data poisoning could perform an availability
attack on neural networks degrading them to random chance performances.
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Paper structure. The rest of the paper is organised as follows. Section |2 reviews related work on the
broader effort to understand various types of attacks, Section [3] describes the formal setup , Section [4 provides
our solution to invert the most important gradient attacks back in the training data domain, and provides
a table of correspondence between gradient attacks and data poisoning attacks, Section [p] implements our
solution describing empirical outcomes, finally, Section [6] discusses our work and provides concluding remarks.

2 Background

Gradient attacks have long been studied in the standard Robust Distributed Learning literature, when
an attacker can send arbitraryEl gradients. Lemma 1 in [Blanchard et al.| (2017) shows that with stochastic
gradient descent (SGD), availability attacks are possible with only a single malicious worker. The attacker’s
freedom allows for a variety of attacks by exploiting the geometry of honest gradients and the inevitable
weaknesses |[El-Mhamdi et al.| (2018)); Baruch et al.| (2019); Xie et al.| (2020)); Shejwalkar & Houmansadr| (2021)
of robust gradient aggregators when the model is high-dimensional or when the data is heterogeneous. The
attacker’s goal is to bring the average gradient to another direction, making a step toward their objective.
There is no naive way to determine if a gradient is legitimate or not. In such settings, defending is often
considered as a task of robust mean estimation. Robust aggregation of gradients is hence a possible defense
mechanisms one can deploy Blanchard et al.| (2017)); El-Mhamdi et al|(2018); |Yin et al.| (2018]). Still, with
better defense mechanisms came better attacks Baruch et al.| (2019). Even stronger, Theorem 2 in [El-Mhamdi
shows the impossibility of robust mean estimation below a certain threshold that grows with
data heterogeneity and model size. Our work relies on these gradient attacks and shows how they can be
transferred to data poisoning as successful availability attacks, even in non-convex settings.

Data poisoning is the manipulation of training data of ML algorithms with the goal of influencing the
algorithms’ behavior. Several approaches exist to generate poisons: label flipping [Shejwalkar et al.| (2022)),
generative methods Mutioz-Gonzélez et al| (2019)); |Zhao & Lao| (2022)), and gradient-based approaches
Munoz-Gonzélez et al| (2017); Shafahi et al.|(2018); |Geiping et al|(2020b)). The last allows to finely control
the resulting gradient on the poisonous points instead of relying on another proxy. Although [Shejwalkar et al.|
(2022); Shejwalkar & Houmansadr| (2021) consider data poisoning to be of limited harm and gradient-based
approach to be too computationally intensive, clean-label attacks based on gradient matching have shown
to be both stealth and effective when performing a targeted integrity attack |Geiping et al.| (2020Db). It was
also demonstrated in practical settings such as state of the art image classifiers [Bouaziz et al.| (2025a)), audio
classification Bouaziz et al|(2025¢), and even language modeling Bouaziz et al.|(2025b)). To the best of our
knowledge, our work is the first to achieve an availability attack on a neural network using data poisoning.

Availability attacks have been demonstrated in a range of settings. As shown in Figure [1} we can
compare these settings in term of attacker knowledge (from black box to omniscient) and degree of freedom
(from a single constrained interaction to an omnipotent attacker). The data poisoning literature on neural
networks only allows an attacker to craft a poison once to insert it in the training set, with various levels
of knowledge. |Geiping et al. (2020b)) operate both in black-boz setting and with sole model architecture
knowledge. [Munoz-Gonzélez et al.|(2019)) assume an omniscient attacker and [Munoz-Gonzalez et al.| (2017)
add scenarios with attackers not having access to the model weights or to the training data. [Farhadkhani
assume an attacker who can interfere at the embedding level of the last layer of a neural network.
This particular case is equivalent to attacking a logistic regression which is a convex setting for which an
equivalence between data poisoning and gradient attacks holds. Previous works in data poisoning on neural
networks were only able to slightly decrease the performance of the attacked algorithm and have yet to
demonstrate a complete availability attack that bring a model down to chance-level Zhao & Lao (2022);
. Gradient attacks, on the other hand, have established effective ways of making a model utterly
useless. Blanchard et al| (2017) show how an omniscient attacker sending unconstrained gradients at each
iteration can arbitrarily change the model’s weights. [Baruch et al/ (2019) assume an attacker with access to
model’s weights and a fraction of the training set (similar to our auziliary dataset). [El-Mhamdi et al. (2020
suppose an omniscient attacker or one that does not know the legitimate gradients. Finally, [Liu et al. (2023

1Often called Byzantine attacks, in reference to the Byzantine faults model in distributed computing |Lamport et a1.| 41982[)
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claim a data poisoning availability attack, but they not only require a high poisoning ratio (at least 80%) but
also the degradation of performances is not as severe as in gradient attacks (Figure 3 in [Liu et al.| (2023])).

In this work, we extend the domain of known availability attacks and demonstrate how they are possible in
settings were the attacker knows the model weights and can craft a data poisoning at each iteration in a
constrained set or not, similarly to Algorithm 1 in |Steinhardt et al.| (2017)) (Result A and B in subsection [5.3)).

Defenses against data poisoning have been studied through different approaches such as data sanitization
Steinhardt et al.| (2017)), data augmentation Borgnia et al.| (2021)), bagging [Wang et al.| (2022|) or pruning and
fine-tuning |Liu et al.| (2018). However, the effectiveness of such defenses rely on strong assumptions such as
the learner having access to a clean dataset, on the convexity of the loss w.r.t. the model’s parameters or the
learner’s ability to train a very large number of models. And still, attackers could find ways to break these
defenses |[Koh et al.| (2022)). Even if a theoretically sound and impenetrable defense mechanism against data
poisoning might be impossible [El-Mhamdi et al.| (2023); Hardt et al.| (2023), making the attacker’s job harder
by adding several imperfect yet constraining defenses in a “Swiss cheese’ﬂ-like model is still necessary.

Inverting gradients has recently been studied in privacy attacks to reconstruct training samples based on
the resulting gradient |Geiping et al.| (2020a)); |Zhao et al| (2020). Their central recovery mechanism relies on
maximizing a similarity measure Sim between a targeted gradient g(*9") that has been computed on the data
which the attacker wants to reconstruct and the gradients G(¢®) = {Vg, L(hq, (1), Y)}(z,y)es computed on
nrec reconstructed samples S and aggregated through the AGG function:

arg Se(gaii()"'rec Sim(g(tgt)’ AGG(G(rec))) (1)

Similarly, we try to recover data points that induce the closest gradient possible to a malicious gradient. The
existence of a solution for in the privacy attack setting is known, since actual data points have given rise
to the targeted gradient ¢(*99). More surprisingly, several works |Geiping et al.| (2020b)); [Bouaziz et al| (2025a))
have shown that it is possible to construct data points whose gradients match a targeted sample’s gradient.
On the contrary, gradient attacks are not actually calculated from a data point hence there is no guarantee
that the inversion can find an existing solution.

3 Framework

3.1 Learning Setting

We consider a classification setting where the model is trained on a dataset Dyygin = {(%i, )}, sampled
from a distribution D over X x ). The learner trains a neural network hy parametrized by 6 € R? with an
iterative optimization algorithm on the (non-convex) loss function L. Tts goal is to achieve the lowest test
loss on a heldout test set Dy.s: that is not necessarily sampled from the same distribution D as the training
set. We formulate the objective as the following optimization problem:

L(hg(x),y)

. 1
arg min
0€O Nyiest
(,y)ED¢est

We consider that learning occurs through a set of n, Gradient Generation Units {V;}*, each of which reports
a message in a set S? = MESSAGE(Dypqin, t) = {vi(}12, at each iteration . Messages are then aggregated
through an aggregator AGG and the model weights are updated using the UPDATE algorithm:

0t+1 = [JPDATE(at7 AGGa Sf)

This abstraction allows us to represent a large spectrum of learning settings, from centralized learning to fully
distributed learning and settings in between (such as federated learning).

2a cybersecurity defense model, see https://en.wikipedia.org/wiki/Swiss_cheese_model
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Figure 3: Threat model. The attacker has access to § but does not have access to the batch S? and uses
an auxiliary dataset D, to craft S? the set of poisoned messages. Both the batch and the poisons set are
gathered into Sf “P The attacker’s goal is either to slow down the training or attack the model’s availability.

e In the common centralized setting, when training a neural network, the MESSAGE operator returns a
batch of data points sampled from the training set S? = {(z;.4,vi+)} 2, the aggregator AGG is the
AVERAGE of their gradients, computed by the learner and the update algorithm is SGD or ADAM.

o In the federated learning setting, the MESSAGE operator returns a batch of gradients (or equivalently
model updates) that each worker computed separately, the default aggregator is the AVERAGE of the
messages and the update algorithm is FEDERATED AVERAGING McMahan et al.[(2017)) or LocALSGD
Stich| (2018)).

This allows us to study a common framework for both gradient attacks and data poisoning attacks,
normally operating on different settings, characterized by different MESSAGE operators. The choice for the
MESSAGE operator boils down to entrusting the calculation of gradients to the workers or not. This, in turn,
gives different degrees of freedom for a malicious Gradient Generation Unit to influence the training: in the
scope of this paper, respectively gradient attacks or data poisonindﬂ

In our experiments, we consider an image classification task on the CIFAR10 dataset on which the attacker
can tamper with messages (data point or gradient depending on the learning setting). We use the SGD
and ADAM update algorithms as well as AVERAGE and MULTIKRUM [Blanchard et al.| (2017) aggregators.
MULTIKRUM <5 is a robust aggregator which can withstand a ratio of malicious elements up to f and is
defined for a set of vectors {v;}; as the average of the n(1 — f) — 2 vectors minimizing the score function
(i) =2 llvi — v;||?, with @ — j the indices of the n(1 — f) — 2 closest vectors to v;.

The selection of the update algorithm and aggregator is crucial, as both are regarded as defense mechanisms
in the Robust Distributed Learning literature [El-Mhamdi et al.| (2020)).

3.2 Threat model

In order to study the expressivity of data poisoning in non-convex settings, we consider a worst-case threat
model that allows for a fair comparison with gradient attacks. Here, the attacker:

3The notion of Gradient Generation Units can be used as an abstraction for any source of input that is itself a gradient, a
model update, or that can be later transformed to a gradient, such as a training data point, a machine in distributed learning or
a user account in a social media platform, depending on the level of granularity that is considered.
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e has knowledge of the weights of the model 6, the update algorithm UPDATE, the aggregator AGG
function and the message operator MESSAGE as in, [Farhadkhani et al.| (2022); Blanchard et al.| (2017));
[Yin et al| (2018); [Shafahi et al.| (2018);

« does not have access to the batch S?, unlike the stronger standard assumption of omniscient attacker
in the robust distributed learning literature Blanchard et al.|(2017); El-Mhamdi et al.| (2020); Chen|
let al.| (2017)); [Yin et al.| (2018);

o has access to an auxiliary dataset D, ~ D that is a surrogate to the unobservable training set. This
is a standard assumption when not assuming omniscient attackers, as in [El-Mhamdi et al| (2018);
[Farhadkhani et al. (2022); El-Mhamdi et al.| (2020));

e has the control over a ratio a of Gradient Generation Units and the ability to append a set of
arbitrarily crafted poisoned messages (gradients or data points) S¢ = {v} Ji? ) to the clean batch

S at each iteration ¢ up to a level o of contamination (i.e. |SP|/|SPP| = ), as in |B1anchard et a1.|
(2017)); [El-Mhamdi et al,| (2018); [Yin et al.| (2018) for gradients attacks, in [Steinhardt et al.| (2017)
for data poisoning or in [Farhadkhani et al.| (2022) for both gradients attacks and data poisoning;

e constrains itselﬂ to only crafting poison in a feasible domain S¥ € F"», depending on the task and
data structure. For instance, for an image classification task of H x W RGB pixels encoded on 3
bytes and labels between 1 and C, we set F to be the set of possible such sized images and labels:
F = [0..255]H*Wx3 » [1..C] as in [Farhadkhani et al.| (2022), but without restricting ourselves to
convex settings.

The attacker’s goal is to perform an availability attack: degrading the learner’s performances as much as
possible. We also consider slow down attacks, in which the attacker tries to stall the learning procedure
as much as possible. This attack is important, given the cost for training large models and the financial
repercussion of slowing it down.

This threat model is inspired from gradient attacks and assumes much more communication between the
attacker and the model than traditional data poisoning threat models. The latter leads to poor availability
attacks performance. We hypothesized that once we allowed for the same amount of interactions between
gradient attacks and data poisoning, the two methods would display far less discrepancy of destructive power
than what is currently thought.

4 Method

At each iteration t, the attacker, controlling p Gradient Generation Units, computes an auxiliary batch

@ = MESSAGE(D,,t) and constructs S¥ such that UPDATE(f;, AGG, S{ U S¥) gives poorer performance on
D, than UPDATE(6;, AGG, S). This should, in turn, also decrease the model’s performances on Dy,.q:, under
the assumption it follows the same distribution as D®.

4.1 Gradient attacks

When the MESSAGE operator outputs gradients, a malicious Gradient Generation Units can participate in S?
with a gradient attack in R. At each iteration t, the attacker uses the auxiliary dataset D, as a surrogate
for the batch SP. Let S¢ = {g¢;}12y = {Va,L(ho,(2),y)} .y ep, be the set of per-sample auxiliary gradients
1

Na

and gf = =— > gess 9 the averaged auxiliary gradient. Similarly, g = nib > gest g denotes the averaged clean
batch gradient. The attacker constructs a set of n, attacking gradients G#* based on S and sends them
as message S?. We denote S??7 = $? U S? the set of poisoned batch of gradients, S*”7 = S U SP the set
of poisoned auxiliary gradients and g,l; “P and g “P their respective averages. We consider several gradient

attacks to perform an availability attack.

4Result A in subsection is our strongest result and is obtained under this constraint on the attacker. Result B is is
obtained without this constraint and serves to further understand the expressivity of data poisoning from inverted gradient
attacks.
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Gradient Ascent (GA) Blanchard et al. (2017): the attacker sends a gradient such that the averaged
poisoned gradient is anti-collinear with the mean clean gradients. This provokes a gradient ascent step with
the SGD update rule, AVERAGE, and \ > 0:

Egp[0141] = 6 — nEgp e
=0 + 1 Eg» [9¢]

Orthogonal Gradient (OG): the attacker sends a gradient such that the averaged poisoned gradient is
orthogonal to the mean clean gradient. This should stall the training.

Little is Enough (LIE) Baruch et al. (2019); |Shejwalkar & Houmansadr| (2021)): the attacker sends the
mean clean gradient deviated by a strategically chosen amount times the coordinate-wise standard deviation

of the clean gradients, with o[j] = |/Var({g[j]}4ess)-

itk = gp — move 2)
where 2™ € arg max || A7 — A7,
z€RY
and APPP = Aca(SP U {gf — zo}i))

A = Aca(Sy)

This attack has been shown to be effective against MULTIKRUM aggregator. Note that contrary to |Baruch
et al.| (2019)) and similarly to |Shejwalkar & Houmansadr| (2021]), we use an adaptive approach and choose
z™% to maximize the divergence of the poisoned gradients on the aggregation A?Up .

4.2 Data poisoning

When the MESSAGE operator outputs data samples, malicious Gradient Generation Units are expected to
participate via similarly structured messages, i.e. data poisoning. In our experiments, on CIFAR10 and its
32 x 32 RGB images, it leaves room for an attacker to participate in the training process via messages crafted
in [0, 255]32%32X3, This gives only 32 x 32 x 3 = 3,072 degrees of freedom, far less than commonly used deep
learning models’ number of parameter, hinting that data poisoning should be less expressive than gradient
attacks. Models’ non-linearities further constrain the dimension of the image space of the gradient operator
(as illustrated in Figure . Data poisoning is allegedly harder as it constitutes a far more constrained problem
than gradient attacks (in which the attacker can send an arbitrary gradient from R?).

At each iteration t, the attacker computes a given gradient attack g¢** in the same manner as above and

inverts the gradient operator to compute an associated set of data points S? = {(xf o yf’ t)}?:”l such that
n—lp >oi2y Vo, L(he, (zF,),y7,) = gi**. That set of data points is then sent as message S; and appended to S,
like in the gradient attack case.

Similarly to what is done in privacy attacks, we optimize a similarity measure between the gradient attack
and the gradients calculated on S?. Contrary to privacy attacks where the existence of a solution is knowrﬂ
there is no guarantee that the inversion can find an existing solution, let alone an effective data poison.

We can formulate our data poisoning as an optimization problem where the attacker aims to minimize a poison-
ing function f,. f, characterizes the dissimilarity of the data poison gradients G} = {Vy, L(ho, (%), 9)} (z.y)es?
with a gradient attack gf** calculated from the auxiliary dataset gradients G§ = {V, L(hg, (%), y)}(z,y)e S0

(since the attacker cannot have access to the batch SP) over a feasible domain F:

St € arg min fy(ho,, GY, 5) (3)

Since characterizing the image space of the gradient operator on the loss function L is a difficult task,
we cannot know beforehand if a vector can have an antecedent data point through the gradient operator.

5In privacy attacks, the gradient being inverted was produced by the data point that the attacker is trying to retrieve.
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Together with constraints on feasibility, finding data poisons which exactly reproduce the gradient attack
might be impossible. Since Iy = Vg, L(he,(Fx), Fy) C Vg, L(hg,(X),Y) C R%, the set Zy# might not
cover all the possible candidates for an effective gradient attack, if not any (Figure [2). Thus, achieving an
effective data poisoning that performs similarly to a gradient attack is non trivial.

We show in our experiments that an attacker can still produce data poisons which have significant impact
on the training procedure. Poisons are iteratively updated to minimize the poisoning objective f, using the
Adam optimizer and are projected on the feasible set F at each iteration of the poisoning optimization by
clipping. Table [1| details the formulas used to determine the gradient attacks and their equivalent poisoning
functions in the data poisoning case.

Table 1: Gradient attacks formula and their equivalent data poisoning objective functions to be optimized
following Equation [3] ¢P, g%, g®VP are respectively the averaged gradients computed on the data poisons, on
the auxiliary dataset, and the weighted average between them. cos is the cosine similarity. z™** and o are
defined as in eq.

Gradient attack Our data poisoning attack

g? € RY s.t. Iy
Gradient Ascent cos(g?P g%) = —1 cos (P, g%)
Orthogonal Gradient (g*“P, g%y =0 [cos (g7, g*)|?
Little is Enough gP = g% — 2MT x g lg? — g* + 2" |?

5 Experiments

5.1 Preliminary experiment

To give a better intuition of the capabilities of data poisoning, we present a preliminary experiment on the
XOR operator classification task. Sampling a point x in [0, 1], its label is y = 1{z[0] > 0.5} ® 1{z[1] > 0.5}
with 1 the indicator function and @ the XOR operator. We generate a set of possible poisons by regularly
sampling on the [0, 1]? grid and labeling them with XOR then flipping their labels. After training a multilayer
perceptron with Gradient Descent (i.e. full batch) on 1000 data points, we perform a single step of gradient
descent on the data poisoned with one of the possible poisons, repeated as to reach a contamination level a.
The resulting test accuracies obtained for all poisons are illustrated in Figure
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1.2 1.00

1.0 1

0.8 &

0.6

1.00

Min. poisoned accuracy

1.0 A
—=- Random

X2

0.8

0.2 1

0.0 061

Minimum accuracy

-0.2 T T 0.98 . 0.54 T T T : :
0.0 0.5 1.0 0.0 0.5 1.0 0.000 0.025 0.050 0.075 0.100

X1 X1 a

Figure 4: Landscape of accuracies after 1 poisoned step with the respective poison with two levels of
contamination o = 0.005 (left) and o = 0.1 (center). The black squares represent the border of the feasible
domain F. Right: The minimum accuracy in the landscape for different levels of contamination a.

While a single step at a = 0.005 is not enough to reduce the model accuracy down to random-chance, several
steps of poisoned update will do. A 10% level of contamination is already enough to bring the model close
to the level of a random guess, which suggests that a single step on poisoned data is enough to obtain an
availability attack on neural network for a task such XOR. This proof of concept could however be argued to
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require a high contamination ratio. We exhibit experimental evidences that lower contamination ratio can
actually be effective on, e.g. an image classification setting.

5.2 Experimental setup

Model & dataset We demonstrate our poisoning procedure on a custom convolutional neural network
(described in Table [5|in Appendix [B]) and on Vision Transformers models (ViT-tiny models with patch size
8) trained for 50 epochs on the CIFAR10 dataset partitioned in training, validation, and auxiliary datasets.
We use different optimization algorithms and aggregation rules to train the models: SGD & AVERAGE,
ADAM & AVERAGE, SGD & MULTIKRUM (with different levels of data truncation f € {0.1,0.2,0.4}). Since
MULTIKRUM is used as a defense mechanism, we expect it to be robust to the attacks operating within its
working assumptions. However, the Little is Enough attack was specifically designed to circumvent these
assumptions when using gradient attacks. We thus expect Little is Enough to bypass MULTIKRUM in the
gradient attacks situation.

Baseline In every setting, the learning rate is fixed to the value were the learner achieves the best
performances without any poisoning to set a baseline for the performances of the model. We then measure
the decay in performances caused by an attack. Each setting of this experiment is run 4 times for better
statistical significance. Each run has a different model and poisons initialization, and dataset split. Full
results can be seen in the Appendix.

Attacks In every setting, we perform either one of the considered attacks either via a gradient attack, or a
data poisoning attack as specified in section The n, crafted poisons are added to the batch of size n;
at each iteration so that n:ﬁ)n,, = « € [0.01,0.48]. Since the gradients induced by the poisoned data mimic
the malicious gradients, we expect our data poisoning is at best as good as the associated gradient attack.

Gradient attacks should thus be a topline for our data poisoning attack.

5.3 Results
5.3.1 Gradient attacks

Table [2| shows that gradient attacks do perform an availability attack, bringing the models’ performances
down to random-level. We also notice that the MULTIKRUM aggregation rule does act as a defense mechanism,
for levels of contamination lower than its tolerance parameter f. However, as expected, this defense is well
circumvented by the Little is Enough attack.

Table 2: Best validation accuracy under different attacks with different update rules, different aggregation
functions and different levels of contamination a.. A high validation accuracy (colored in apricot) indicates a
failed attack. A low validation accuracy (colored in pale green) indicates a successful attack.

UPDATE; Attack lo"
Acac 0.01 0.05 0.10 0.20 0.30 0.40 0.48
GA 10.0 9.8 10.0 10.0 10.0 10.1 10.0

ADAM;

AVERAGE oG 99 99 101 101 9.8 10.0 10.1
LIE 10.2 10.3 10.1 10.2 10.1 10.1 10.0
SGD: GA 10.1 10.1 10.1 9.9 10.0 10.0 10.0
AVERAé}E oG 10.2 10.2 10.0 99 101 10.1 10.2
LIE 102 99 102 99 9.9 10.0 10.0
SGD: GA 65.1 63.2 33.7 10.1 10.1 10.2 10.2

oG 65.1 653 659 10.0 10.1 10.2 9.9

MULTIKRUM=01 115 417 150 104 99 100 9.9 10.1
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5.3.2 Data poisoning

After performing the equivalent data poisoning attacks, the observed effects range from a slowdown of the
training procedure to its complete halt and up to degrading the performances down to random levels. Figure
compares the different attacks with a random data poisoning (uniformly sampled in [0,1]) at o = 0.01 with
its baseline counterpart. While the Gradient Ascent and Orthogonal attacks behave similarly and at most
only slightly slow down the training at most, Little is Enough attack strongly degrades performances, even
at such low levels of contamination. Figure [5b|shows for the Gradient Ascent and Little is Enough attacks
that the higher the level of contamination, the stronger the effect: validation accuracy increases slower or
plummets earlier. Therefore, our main result is the following.

Little is Enough

0.0

0.01
== 0.05
— 0.1
— 0.2
-— 0.3
— 0.4
-— (.48

Attack

None
20 { == Random 20
— GA

- 0G
10 | == LIE

[ 10 20 30 0 50 0 10 20 30 40 50 0 10

(a) Comparison of different attacks
at a = 0.01.

(b) Comparison of different levels of contamination for the
Gradient Ascent & Little is Enough attacks.

Figure 5: Validation accuracies during training in the SGD & AVERACGE setting under different attacks and
different level a of contamination. Error bars represent the standard error.

Availability attacks (Result A). To fairly compare each setting under that attack, each model has been
evaluated on the test set with the weights achieving the best validation accuracy. Figure [f] shows that for
the SGD & AVERAGE learner under the Little is Enough attack, a = 0.01 is enough to significantly
degrade the model’s performance. Among the 4 runs, 3 ended up diverging while every poison was in
the feasible set F. Figure [0]in the Appendix shows 50 of the first 500 poisons crafted by the attacker in
one of the diverging run. Similarly, in the SGD & MULTIKRUM—¢ 1 setting, the Little is Enough attack
with contamination level a = 0.05 finds data poisons that circumvent the robust aggregation rule
and drastically reduce the model’s performance.

Comparison of update rules. Figure [6] shows that

our data poisoning procedure failed at performing an Taple 3: Epoch of best validation accuracy (valida-

availability attack against the ADAM update rule. Be-
cause ADAM normalizes the aggregated gradients, the
training cannot diverge as abruptly as with SGD. How-
ever, the slow down attack can still be observed (e.g.
in Figure [§| in Appendix , meaning that the data
poisoning procedure could find a solution that perturbs

tion accuracies in parenthesis) for the CNN model
with ADAM optimizer and AVERAGE under different
data poisoning attacks. Higher levels of contamina-
tion induce slower training and lower performances.

the total gradient enough to slow down convergence, o GA oG LIE

but not enough to completely halt it. Table [3| shows

that higher levels of contamination lead to a lower best 0 4 (67.1) 4 (67.1) 4 (67.1)

validation accuracy but most importantly to a higher 0.01 5 (66.4) 5 (66.4) 6 (66.3)

number of epochs (hence a longer time) before reaching

it 0.05 7 (66.5) 7 (65.3) 7 (66.3)
0.1 19 (63.6) 14 (63.9) 10 (65.7)

Data poisoning against a robust aggregation rule. 0.2 34 (61.2) 17 (6255) 22 (62.1)

Table E| shows that with the MULTIKRUM y—¢.; aggrega-
tion rule, the attacker still manages to have some of its
messages not filtered out. For a > f, the aggregation

10
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SGD Adam MultiKrumy=o1 MultiKrumy=o2 MultiKrumy=o«

Figure 6: Test accuracy of the CNN model which achieved the best validation accuracy under the Little is
Enough attack. Each column represents a different setting of update function and aggregation rule. The blue
line is the test accuracy obtained with (SGD, AVERAGE) setting and no attack. Error bars are the standard
€rrors.

Table 4: Poison selection rates in the SGD & MULTIKRUM y—¢.1 averaged over all runs and all epochs. Each
row corresponds to a different attack. Standard deviations in parenthesis.

(8

0.01 0.05 0.1 0.2
GA 0.0 2x 1074 2x 1073 0.91

(0.0) (4x107%) (2x1073) (0.08)
oc 00 3x 1071 0.18 0.85

(0.0) (1x1073) (0.1) (0.05)
g 092 0.91 0.97 0.87

(0.07) (0.13) (0.02) (0.06)

rule does not play a defensive role anymore as per its functioning conditions. On the other hand, for a below
this point, the Little is Enough attack displays significantly higher selection rates than the other attacks.
This means that the attacker manages to produce data poisons whose gradients deceive MULTIKRUM .1,
similarly to the gradient version of the attack which is particularly designed for this purpose. However
Figure [6] shows that a higher selection rate does not necessarily mean success of attack. Even if the attacker
sometimes manages to successfully attack the model, MULTIKRUM overall enhances the robustness of the
model while slightly degrading its performances.

Influence of the feasible set (Result B). As the feasible set Fy changes, the attacker will only be
allowed to converge (in case of convergence) towards different poisons. We compare three increasingly
restrictive feasible sets to determine their influence on the success of the attack:

o Constraint-free set: the feasible set is simply the input domain Fygee = REXW X3,

o Image-encoding set: the feasible set ensures that the poisons respect the same encoding as the clean
data Foimg = [0..255]" "> and

e Neighborhood set: this is a subset of the previous one and is composed of all the images that are at

a L1 norm of at most € = % of an actual image Fxnei = {& € Frimg/ITa € Das.t. ||z — x4/, < €}

Figure[7]shows that the more constrained the feasible set, the less effective the resulting attack. It is important
to note, however, that early stopping helps in limiting the effects of the attack (Figure Appendix .

Neural Network architecture. We perform the same attacks on the same learning pipelines replacing
the CNN with a Visual Transformer (ViT, Dosovitskiy et al|(2020))) tiny with patch size 8. Since ViTs are
predominantly trained using ADAM-like approaches, we report the efficiency of our attacks using it. Figure
in the Appendix shows that ViTs are also vulnerable to our data poisoning, although with less success and
on higher levels of contamination.
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Figure 7: Final test accuracies for the SGD; AVERAGE setting under the Little is Enough attack for different
feasible sets. Error bars are the standard errors.

6 Concluding remarks

Our work shows that even in training settings involving deep neural networks, which are not restricted to
convex cases as in [Farhadkhani et al| (2022), inverting malicious gradients can result in an effective data
poisoning, achieving an availability attack, and mimicking the harm of gradient attacks. To compare both
type of attacks, our threat model uses assumptions that should be further explored in future work on at
least four different fronts. (1) The role of the auxiliary dataset. In our experiments, it appears that
the size of the auxiliary dataset plays only a small part in the success of the attack above a sufficient size.
Further experiments should consider an auxiliary dataset with a distribution different than the training set
or no auxiliary dataset at all. (2) Accessing the trained model’s weights. Performing an attack when
the attacker estimates the victim’s model with a surrogate model would open the threat model to a wider
variety of cases. (3) The role of the feasible set. Clean label poisoning Geiping et al.| (2020b); Shafahil
shows that it is possible to design data poisons which deceive human annotators by resembling
legitimate images. Future work should consider exploring more constraining feasible sets for the attacker to
reach such level of stealthiness. (4) Finally, while both the closest work’s threat model [Farhadkhani et al.|
and ours limit the fraction of poison that the attacker is allowed to inject each time, future work
should explore data poisoning availability attacks limiting also the number of times the attacker can
craft its poisons during the training phase.

Our work asks whether or not gradient attacks were fundamentally more effective than data poisoning. Our
experiments yield a nuanced response. On one hand, inverting malicious gradients sometimes results in a
devastating data poisoning, and our results are the first to show the feasibility of a total availability attack
on neural network via data poisoning. On the other hand, the success rate of our data poisoning attacks is
lower than for their gradient attack counterparts, but the mere possibility of mimicking gradient attacks with
feasible data poisoning should motivate further research in defense mechanisms for attacks that evade today’s
state of the art in robust machine learning.

7 Broader Impact Statement

This paper presents work whose goal is to advance the field of Robust Machine Learning. There are many
potential societal consequences of our work, all of which fall under the usual considerations to take into
account when considering tools that can facilitate data poisonning or make it more potent. In particular, our
technique of inverting gradient’ aims at showing that availability attacks — which were believed to be specific
to gradient attacks except for convex settings — are doable with data poisonning alone, and in small amount.
As such, this technique is of dual use and can be used (or is potentially already considered for use) by actors
trying to further poison the data reservoirs used to train machine learning models.
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Appendix
A Discussion on realistic values of o

Machine Learning practitioners process data scraped online [Luccioni & Viviano| (2021)); Schuhmann et al.
(2022)) or sent by users and trust their resulting models |[Hoang et al.| (2021)). Since data poisoning has proven
to be practical in real case scenario |Carlini et al.| (2023]), we should treat models trained on scrapped or
collaborative datasets with as much precaution as untrustworthy data. A few redditors unpurposefully
obtained a dedicated token in GPT-3’s tokenizer by artificially inflating their online presence on the platform
by massively posting over 160k posts on the “r/counting” subreddit on which people simply count ﬂ Even
worse, these data can potentially be sent by malevolent agents who can thus influence the models by
legitimately participating to these data sources.

Estimating a realist value for « is difficult since the point for attackers is to not be detected. Since bots
represent a non-negligible part of online users (between 5% |Z| and 15% [Varol et al. (2017)) on Twitter), we
could expect the ratio of stealthy malevolent agents to be somewhat similar (if not higher). “Armies” as large
as 2 million full-time individuals |(Charon & Vilmer| (2021)) could be conducing campaigns on social media
(each individual manually steering tens of social media accounts to escape automated-activity detection).
Collaborative datasets like Wikipedia |Carlini et al. (2023) could already be stealthily poisoned. As such,
we should not only presume that data we train on might have been poisoned, we should also consider the
contamination ratio to be much higher than a fraction of a percent. In this work, we considered a wide range
up to the extreme case of « = 0.48

We chose to solve the poisoning optimization problem with gradient-based approaches which are computa-
tionally intense, limiting us in experimenting with larger models and datasets. Stronger gradient attacks
that only require to steer the model in a direction only slightly dissimilar from honest gradients should also
be explored to increase the chances for a stealth data poison to exist and to improve the attack success
rate. Stronger or less computationally expensive data poisoning approaches (that may not rely on gradient
attacks) can be experimented to enhance the attack success rate. While the tested defense mechanisms for
the gradient case appear to generalize and defend against data poisoning, it has been shown that the latter
can bypass certain defense mechanisms [Koh et al.| (2022)) and that robust mean estimation only works up to
a certain point [EI-Mhamdi et al.[(2023]). This leaves room for potentially devastating data poisoning that
can bypass defenses while mimicking an unstoppable gradient attack.

B Complementary Figures and Tables

Table 5: Architecture of the 1.6M parameters convolutional neural network used for our experiments.

Layer  # of channels kernel stride

Conv2d 32 5 x5 2
ReLU

Conv2d 64 5 X5 2
ReLU

Linear 512

ReLU

Linear 64

ReLU

Linear 10

6SolidGoldMagikarp (plus, prompt generation)
"https://twitter.com/paraga/status/1626237585441296385
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Figure 8: Validation accuracies of the CNN during training with the SGD and ADAM update rule with the
AVERAGE aggregation function under the Gradient Ascent attack. This data poisoning manages to slow down
the training but not degrade the model’s performance to random levels. Error bars represent the standard

€error.

Figure 9: 50 of the first 500 poisons crafted in the (SGD & AVERAGE, Little is Enough, oo = 0.01) setting.
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Figure 10: Best test accuracies for the SGD; AVERAGE setting under the Little is Enough attack for different
feasible sets.
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Figure 11: Visual Transformer (ViT) tiny with patch size 8 under different attacks. Little is Enough performs
a slow down attack whereas Gradient Ascent and Orthogonal Gradient are able to perform an availability
attack for high enough contamination levels a.
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