

000 001 002 003 004 005 M4V: MULTIMODAL MAMBA FOR EFFICIENT TEXT-TO- 006 VIDEO GENERATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Text-to-video generation has significantly enriched content creation and holds
032 the potential to evolve into powerful world simulators. However, modeling the
033 vast spatiotemporal space remains computationally demanding, particularly when
034 employing Transformers, which incur quadratic complexity in sequence processing
035 and thus limit practical applications. Recent advancements in linear-time
036 sequence modeling, particularly the Mamba architecture, offer a more efficient
037 alternative. Nevertheless, its plain design limits its direct applicability to multi-
038 modal and spatiotemporal video generation tasks. To address these challenges, we
039 introduce **M4V**, a multimodal Mamba framework for efficient text-to-video gener-
040 ation. Specifically, a MultiModal diffusion Mamba (MM-DiM) block is designed
041 within the framework to enable seamless integration of multimodal information
042 and spatiotemporal modeling. In detail, we introduce a novel multimodal token
043 re-composition design, which employs a bidirectional scheme for multimodal infor-
044 mation integration through simple token arrangement, along with visual registers
045 to enhance spatial-temporal consistency. As a result, the MM-DiM blocks in
046 M4V reduce FLOPs by 45% compared with the attention-based alternative when
047 generating videos at 768×1280 resolution. Additionally, several training strategies
048 are explored in this work to provide a better understanding of training text-to-video
049 models using only publicly available datasets. Extensive experiments on text-to-
050 video benchmarks demonstrate M4V’s ability to produce high-quality videos while
051 significantly lowering computational costs. Code will be made publicly available.
052
053

1 INTRODUCTION

034 Text-to-video (T2V) generation, which aims at creating video content from natural language instruc-
035 tions, is recognized as one of the most challenging tasks in generative AI. This area has recently
036 received significant attention following the impressive results showcased by OpenAI’s Sora (Brooks
037 et al., 2024). Notably, Transformer-based diffusion models, such as DiT (Peebles & Xie, 2023), have
038 been identified as a key factor in achieving Sora’s high-quality video synthesis. Despite their potential
039 effectiveness, Transformer-based models suffer from high computational costs due to their quadratic
040 complexity, making the already computationally demanding task even more resource-intensive.
041

042 Recently, a novel architecture called Mamba (Gu & Dao, 2023) has demonstrated the potential to
043 match or even surpass Transformers in language modeling tasks. Building on the success of state-
044 space models (SSMs) (Gu et al., 2021), Mamba variants (Dao & Gu, 2024) enhance the long-range
045 modeling capacity of SSMs while maintaining the linear-time complexity in sequence processing.
046 This positions Mamba as a promising alternative to Transformers.
047

048 However, unlike Transformers (Vaswani, 2017), which have driven remarkable advancements in
049 generation tasks across both natural language processing and computer vision, Mamba remains
050 largely unexplored in multimodal generative tasks. The limitation arises primarily from the following
051 aspects: (1) Mamba is inherently designed for processing unidirectional 1D sequences, whereas
052 high-resolution image and video generation require sophisticated spatial and temporal modeling
053 capabilities; (2) the lack of design for multimodal interactions, resulting in its limited exploration in
text-conditioned visual generation tasks.

054 In this paper, we address these two limitations by proposing a unified design that lever-
 055 ages Mamba for generating high-fidelity videos from text inputs, results in the MultiModal
 056 Diffusion Mamba (MM-DiM) block. Specifically, to model the 3D video distribution,
 057 we decouple the information flow into 2D
 058 spatial scans and 1D temporal processing, lever-
 059 aging the autoregressive and unidirectional
 060 nature of videos along the temporal
 061 dimension. This decoupling enables
 062 us to seamlessly exploit the advantages
 063 of Mamba without increasing architectural
 064 complexity. To address the second limita-
 065 tion of Mamba, we introduce a Multi-
 066 Modal Token Re-Composition (MM-Token
 067 Re-Composition) strategy before the SSMs.
 068 Specifically, to enable multimodal fusion
 069 of text and 3D visual information, both text
 070 and visual tokens are re-arranged, allowing each modality to perceive global information through
 hidden states within SSMs.

071 As a result, our proposed model, named **M4V**, significantly reduces computational FLOPs, partic-
 072 ularly in long video generation scenarios, highlighting the advantages of adopting the Mamba structure
 073 for this challenging task, as shown in Figure 1. In our experiments, we provide a comprehensive
 074 analysis of the model design, demonstrating the potential of Mamba for efficient T2V generation.
 075 Additionally, we find that our design generalizes well across base architectures, and also achieving
 076 state-of-the-art performance.

077 Our core contributions are as follows: (1) We introduce M4V, a Mamba-based framework for efficient
 078 T2V generation that significantly reduces computational overhead while maintaining the ability
 079 to generate high-quality videos. (2) By designing the MultiModal Diffusion Mamba (MM-DiM)
 080 block, which enables unified and effective multimodal integration and spatiotemporal modeling,
 081 we successfully overcome Mamba’s limitations in complex T2V generation. (3) We provide a
 082 comprehensive analysis of architectural design choices, demonstrating M4V’s efficiency, reasonability
 083 and also generalizability across different base architectures.

2 RELATED WORK

088 **Text-to-video Generation.** Text-to-video generation has recently entered a new era, driven by
 089 advancements in generative models. The success of diffusion models (Ho et al., 2020) in text-to-
 090 image generation (Podell et al., 2023; Esser et al., 2024; Tu et al., 2023; Guo et al., 2025) has
 091 inspired the development of several diffusion-based text-to-video generation models (Ho et al., 2022;
 092 He et al., 2022; Chen et al., 2024b). By scaling up Transformer-based diffusion architectures (Peebles
 093 & Xie, 2023; Black Forest, 2023), recent models like Sora (Brooks et al., 2024), Kling (Kuaishou,
 094 2024), HunyuanVideo (Kong et al., 2024) have achieved remarkable high-fidelity video generation
 095 quality (Wang et al., 2025a; Yin et al., 2024; Xu et al., 2024; Ma et al., 2025; Sand-AI, 2025;
 096 Chen et al., 2025; He et al., 2025b). However, the substantial computational costs associated
 097 with these approaches severely limit their scalability in both training and deployment. Recently,
 098 PyramidFlow (Jin et al., 2024) introduced a novel approach to leverage redundancy in video data by
 099 compressing visual tokens both spatially and temporally, achieving significant reductions in training
 100 costs. Despite its progress, the quadratic complexity of attention mechanisms continues to constrain
 the deployment efficiency.

101 **Mamba and Vision Mamba.** State-space models (SSMs) (Gu et al., 2021) are a family of models
 102 inspired by linear-time continuous systems for processing 1D sequences. Despite their efficiency,
 103 they are constrained by their time-invariance property, which limits their performance compared with
 104 modern large foundation models. To address this limitation, Mamba (Gu & Dao, 2023), a novel
 105 form of SSM, introduces time-varying parameters to enhance modeling capacity and employs a
 106 hardware-aware selective scan algorithm to maintain linear-time efficiency. The flexibility of Mamba
 107 and its variants (Dao & Gu, 2024) enables performance on par with Transformer-based language
 models. Building on this, recent studies (Waleffe et al., 2024; Lieber et al., 2024; Li et al., 2025b)

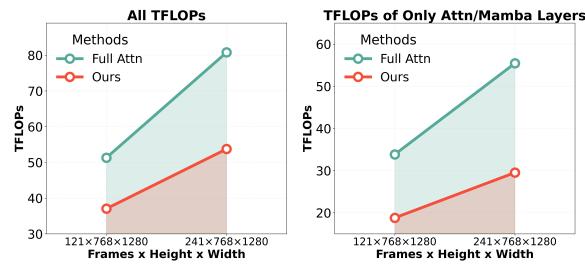


Figure 1: Comparison of FLOPS between full attention baseline and ours.

108 show that hybrid architectures combining Mamba and Transformer blocks can achieve strong results
 109 in language processing. Motivated by their success, several efforts have extended Mamba to vision
 110 tasks. For instance, Zhu et al. (2024); Li et al. (2025a; 2024b); Chen et al. (2024a); Wang et al.
 111 (2024a); He et al. (2025a) adapt Mamba for image recognition. Other works (Gao et al., 2024; Hu
 112 et al., 2024; Oshima et al., 2024; Fu et al., 2024) explore integrating Mamba with diffusion models
 113 for class-conditioned video or image generation, but these studies remain limited to relatively small
 114 datasets and do not handle text inputs. In this work, we investigate Mamba for the more challenging
 115 task of text-to-video generation, which requires producing high-resolution videos from free-text
 116 inputs.

117

118 3 METHOD

119

120 3.1 PRELIMINARIES

121

122 Before presenting our method, we first provide essential background for clarity. Specifically, we
 123 introduce the definition, notation and rationale of the Mamba block. Then, we present an overview of
 124 PyramidFlow (Jin et al., 2024), a flow-matching-based (Lipman et al., 2023) video generation model
 125 we primarily develop our model based on.

126

Mamba. Originating from the continuous-time linear system

127

$$128 \quad h'(\tau) = \mathbf{A}h(\tau) + \mathbf{B}x(\tau), \quad y(\tau) = \mathbf{C}h(\tau) + \mathbf{D}x(\tau), \quad (1)$$

129

130 modern state-space models (SSMs) (Gu et al., 2021) process 1-D sequences by discretizing the
 131 system with a time-sampling parameter Δ . The continuous parameters $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times 1}$
 132 are discretized as

$$133 \quad \bar{\mathbf{A}} = \exp(\Delta \mathbf{A}), \quad \bar{\mathbf{B}} = (\Delta \mathbf{A})^{-1} [\exp(\Delta \mathbf{A}) - \mathbf{I}] \Delta \mathbf{B}, \quad (2)$$

134

135 where n is the hidden state size. After discretization, an input sequence x is updated by

136

$$137 \quad h^\tau = \bar{\mathbf{A}}h^{\tau-1} + \bar{\mathbf{B}}x^\tau, \quad y^\tau = \mathbf{C}h^\tau + \mathbf{D}x^\tau. \quad (3)$$

138

139 Mamba further enhances modeling capacity by making \mathbf{A} , \mathbf{B} , \mathbf{C} , and Δ input-dependent, coupled
 140 with a *selective scan* mechanism for hardware-aware efficiency. This design enables dynamic
 141 encoding of global context within the hidden state h , allowing information to propagate across the
 142 sequence and improving long-range modeling.

143

PyramidFlow. is built on a modified version of FLUX (Black Forest, 2023), a multimodal diffusion
 144 transformers, with multi-level latent compressions and an autoregressive prediction paradigm. Specif-
 145 ically, it constructs compressed latent conditions forming “pyramids” along both spatial and temporal
 146 dimensions. Along the temporal axis, the prediction of frame x^i is conditioned on the compressed
 147 latents of preceding frames:

148

$$149 \quad c^i = [K_{\downarrow 2}(x^0), \dots, K_{\downarrow 2}(x^{i-3}), K_{\downarrow 1}(x^{i-2}), x^{i-1}], \quad (4)$$

150

151 where $K_{\downarrow k}(\cdot)$ denotes the compression (downsampling) operation with factor k . A temporal causal
 152 mask is applied during the attention operation to ensure that earlier frames cannot attend to later ones.

153

154 3.2 ARCHITECTURE OVERVIEW

155

156 Following PyramidFlow, we begin our exploration with the FLUX (Black Forest, 2023) model, and
 157 the overall network structure is illustrated in Figure 2(a). Specifically, the FLUX model adopted in
 158 PyramidFlow first encodes text and visual information using eight MM-DiT blocks (Esser et al., 2024),
 159 with separate parameters for language and visual inputs. Subsequently, sixteen unified Transformer
 160 blocks are employed to process text and visual tokens with shared parameters. In our work, we
 161 also follow such macro-level architecture and only focus on replacing all subsequent sixteen unified
 162 Transformer blocks with our proposed MM-DiM blocks, aiming to explore a **unified** multimodal
 163 processing block design based on Mamba. Note that in all of our experiments based on PyramidFlow,
 164 we retain the architecture of the eight MM-DiT blocks **unchanged**, as removing their separate
 165 parameterization is beyond the scope of this work. In our experiments, we further validate the
 166 proposed approach on the recent Wan2.1 model (Wang et al., 2025a) as an extension (see Section 4.3),
 167 where our MM-DiM blocks are deployed across all layers.

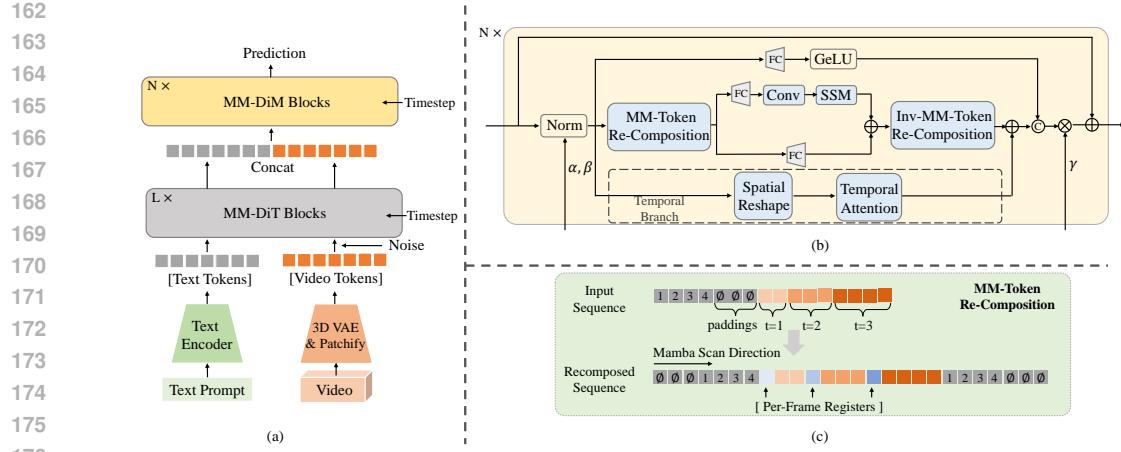


Figure 2: (a) Overview of the generation architecture. (b) Detailed structure of our MM-DiM Block. α, β, γ are introduced by projecting the timestep condition, and we omit the projection for simplicity. (c) Illustration of MM-Token Re-Composition.

3.3 MULTIMODAL DIFFUSION MAMBA (MM-DiM) BLOCK

Unlike attention mechanisms that utilize explicit query-key-value (QKV) interactions to integrate context, Mamba faces challenges in handling text conditioning integration. Therefore, prior Mamba-based works (Fei et al., 2024; Wang et al., 2024b; Li et al., 2024b) only process a single modality with Mamba, relying on additional cross-attention for text control. In contrast, our **MM-DiM block** addresses two key challenges for Mamba: (1) facilitating interactions and mutual influence between visual and text tokens, and (2) arranging 3D video latents to seamlessly operate with Mamba. As illustrated in Figure 2(b), an MM-DiM block comprises a major branch that processes multimodal input tokens through an MM-Token Re-Composition operation, followed by an Inv-MM-Token Re-composition step after passing through the SSM. To improve temporal consistency, a light weighted *temporal branch* is incorporated to capture long-range temporal correlations.

MM-Token Re-Composition. Different from the attention operation used in PyramidFlow, which requires a causal attention mask to enforce *temporal autoregressive* prediction, state-space models (SSMs) inherently operate in a unidirectional and autoregressive manner but lack the capability for multimodal integration and spatiotemporal awareness. To bridge this gap, as shown in Figure 2(c), we propose the *MM-Token Re-Composition* mechanism, which operates in three key steps:

Text Token Re-Composition. Given the input sequence $X = [Z, X_v]$, where Z denotes the text tokens and X_v the visual tokens, the text tokens Z are first put to the beginning of the sequence, with zero-valued paddings placed on the far left as $Z_l = [\emptyset, Z]$. Starting from a zero-initialized hidden state h , this arrangement ensures that h remain zero until the actual text tokens are encountered, as indicated in Equations (1) and (3). Afterward, the visual tokens X_v are appended after the text tokens to enable effective text conditioning, with SSM scanning from left to right. To further facilitate the propagation of visual information back into the text tokens and encourage multimodal alignment, the text tokens are also appended to the end of the sequence with right paddings $Z_r = [Z, \emptyset]$.

Video Token Re-Composition. To mitigate the loss of spatial-temporal information when rearranging a 3D tensor into a 1D sequence, we first adopt the zigzag scanning strategy proposed by Hu et al. (2024) over the spatial dimension. This method alternates between eight distinct scanning paths (see Appendix A.1 for details) across different layers, allowing the global hidden states h in each layer to remain sufficiently diverse to capture rich spatial relationships. Furthermore, as discussed in Section 3.1, the PyramidFlow model dynamically varies the number of conditional frames and their resolutions across pyramid levels. To make the SSM aware of these varying spatial and temporal levels, we introduce *Per-Frame Registers* for the video sequences, inspired by Wang et al. (2025b). Specifically, three types of learnable tokens, corresponding to three different resolution stages, are inserted between conditional frames to (1) signal the start of the next frame and (2) indicate resolution changes. With this design, the visual tokens $X_v = [x^0, \dots, x^{i-1}, x^i]$ are restructured as $\hat{X}_v = [r^0, x^0, \dots, r^1, x^{i-1}, r^2]$, where the *Per-Frame Registers* incur negligible computational overhead while significantly enhancing the model’s temporal awareness and alignment.

216 **Inv-MM-Token Re-Composition.** After MM-Token Re-Composition, the input sequence X is
 217 transformed into $\hat{X} = [Z_l, \hat{X}_v, Z_r]$ and processed by the SSM to obtain the output $\hat{X}' = [\hat{Z}'_l, \hat{X}'_v, \hat{Z}'_r]$.
 218 The subsequent Inv-MM-Token Re-Composition operation (1) removes the Per-Frame Registers from
 219 the sequence, (2) restores the original visual token order, and (3) aligns and sums the text sequences
 220 $Z' = \hat{Z}'_l + \hat{Z}'_r$. This operation restores the original sequence structure for processing in the next layer.
 221

222 **Temporal Branch.** Since pure Mamba models still fall behind Transformers when handling very
 223 long contexts (Dao & Gu, 2024; Waleffe et al., 2024), recent studies (Waleffe et al., 2024; Lieber
 224 et al., 2024) suggest that the most effective evolution of Mamba is a *hybrid architecture* that combines
 225 Transformer and Mamba layers to achieve a better efficiency–performance trade-off.
 226

227 Different from the heavy block-level hybrid designs in prior works, we propose a lightweight *temporal*
 228 *branch* running in parallel with the main branch, as illustrated in Figure 2(b), to enhance long-range
 229 temporal modeling. Specifically, given the conditioning latents $X_C = [x^0, x^1, \dots, x^{i-1}]$, we first
 230 downsample all conditioning frames to the smallest spatial resolution, obtaining $\mathbf{x}_s \in \mathbb{R}^{\frac{H}{K_s} \times \frac{W}{K_s} \times c \times i}$.
 231 Next, we flatten the spatial dimensions into the channel dimension to form a short sequence $\mathbf{x}_s \in \mathbb{R}^{i \times S}$, where $S = c \times \frac{H}{K_s} \times \frac{W}{K_s}$. The noisy latent x^i is then partitioned and reshaped into K_s tokens
 232 with hidden dimension S , and concatenated with the compressed conditioning latents. Finally, a
 233 causal attention mechanism is applied along the temporal dimension. The processed latent is reshaped
 234 back to its original size and added to the input via a residual connection.
 235

236 3.4 ADDITIONAL IMPROVEMENT

237 Given the complexity of the T2V task, commonly used public datasets such as WebVid-10M (Bain
 238 et al., 2021) are known to be insufficient due to the limited quality of the videos (Zheng et al.,
 239 2024). A straightforward strategy adopted by previous works is to scale up the training data (Zheng
 240 et al., 2024; Kong et al., 2024; Polyak et al., 2024), in some cases even expanding it to the order of
 241 $O(100M)$ samples (Polyak et al., 2024).

242 Instead of expanding the dataset, we explore a post-training strategy to enhance generation quality.
 243 Specifically, suppose the model is trained with the flow-matching objective (Yan et al., 2025). Given
 244 the predicted velocity of the last frame \hat{v}^i at a randomly selected timestep t with noise scale σ_t ,
 245 where $\sigma_s \leq \sigma_t \leq \sigma_e$ ($\sigma_s = 0$, $\sigma_e = 1$ in Lipman et al. (2023)), we assume the predicted velocity
 246 approximates the true velocity, i.e., $\hat{v}^i \approx v^i = x_e^i - x_s^i$. Using this, a one-step denoising operation is
 247 performed to obtain

$$248 \hat{x}_1^i = \frac{1}{\sigma_e} \left(x_t^i + \frac{\sigma_e - \sigma_t}{\sigma_e - \sigma_s} \hat{v}^i - (1 - \sigma_e) x_0^i \right), \quad (5)$$

250 where x_0^i is the noisy input and \hat{x}_1^i is the predicted clean latent. The latent \hat{x}_1^i is then decoded and
 251 evaluated using reward models r_1 and r_2 , where we adopt HPSv2 (Wu et al., 2023) and CLIP (Radford
 252 et al., 2021) in our experiments:

$$253 \mathcal{L}_{\text{reward}} = -r_1(D(\hat{x}_1^i)) - r_2(D(\hat{x}_1^i)), \quad (6)$$

255 where D denotes the decoder of the 3D VAE. This reward loss is backpropagated as additional
 256 supervision to refine the generation of each frame.
 257

258 4 EXPERIMENTS

260 4.1 EXPERIMENTAL SETTINGS

262 **Training Dataset.** Our model is trained on a diverse and extensive collection of publicly available
 263 and proprietary image and public video datasets. For image data, we utilize the LAION-aesthetic
 264 dataset (Schuhmann et al., 2022), 40 million synthetic images generated by Midjourney, 40 million
 265 images sourced from Instagram, and 10 million internally curated portrait images. For video
 266 data, we incorporate WebVid-10M (Bain et al., 2021), OpenVid-1M (Nan et al., 2024), 1 million
 267 high-resolution, watermark-free videos from the Open-Sora Plan (PKU-Yuan Lab, 2024). After
 268 preprocessing, the final training set comprises approximately 10 million single-shot video clips.
 269

Implementation Details. Our primary study is built upon the PyramidFlow framework, which
 270 enables efficient training with both spatial and temporal pyramids. Unless otherwise specified,

270 Table 1: Benchmark results on VBench (Huang et al., 2024). The best results among models trained on
 271 public data are marked in **bold**. †: Reproduced results using official code and the same training data as in our
 272 experiments. *: Models that are initialized (or partially initialized) from public models.

273 Model	274 Video Training Data	275 Total Score	276 Quality Score	277 Semantic Score	278 Motion Smoothness	279 Dynamic Degree	280 Aesthetic Quality	281 Imaging Quality
275 Gen-2	276 Proprietary	277 80.58	278 82.47	279 73.03	280 99.58	281 18.89	282 66.96	283 67.42
275 CogVideoX-5B	276 Proprietary	277 81.61	278 82.75	279 77.04	280 96.92	281 70.97	282 61.98	283 62.90
275 Kling	276 Proprietary	277 81.85	278 83.38	279 75.68	280 99.40	281 46.94	282 61.21	283 65.62
275 Gen-3 Alpha	276 Proprietary	277 82.32	278 84.11	279 75.17	280 99.23	281 60.14	282 63.34	283 66.82
275 HunyuanVideo	276 Proprietary	277 83.24	278 85.09	279 75.82	280 98.99	281 70.83	282 60.36	283 67.56
275 Wan2.1	276 Proprietary	277 84.70	278 85.64	279 80.95	280 96.92	281 94.35	282 61.53	283 67.28
275 VideoCrafter2*	276 Public	277 80.44	278 82.20	279 73.42	280 97.73	281 42.50	282 63.13	283 67.22
275 T2V-Turbo*	276 Public	277 81.01	278 82.57	279 74.76	280 97.34	281 49.17	282 63.04	283 72.49
275 Open-Sora Plan v1.1	276 Public	277 78.00	278 80.91	279 66.38	280 98.28	281 47.72	282 56.85	283 62.28
275 Open-Sora 1.2	276 Public	277 79.76	278 81.35	279 73.39	280 98.50	281 42.39	282 56.85	283 63.34
275 Pyramidflow	276 Public	277 81.72	278 84.74	279 69.62	280 99.12	281 64.63	282 63.26	283 65.01
275 Pyramidflow†	276 Public	277 81.61	278 83.54	279 73.90	280 99.32	281 66.66	282 63.96	283 61.69
275 M4V (Pyramidflow)	276 Public	277 81.55	278 83.31	279 74.47	280 99.33	281 60.55	282 64.08	283 62.22
275 M4V* (Wan2.1)	276 Public	277 86.14	278 87.56	279 80.45	280 99.18	281 96.70	282 67.52	283 65.62

286 all results reported in the following experiments are based on the PyramidFlow framework, with
 287 the scope of replacing all unified Transformer blocks with our MM-DiM blocks. To accelerate the
 288 training of Mamba blocks, inspired by Wang et al. (2024c), we initialize part of the parameters in
 289 Mamba with pre-trained attention weights (see Section D.2 for more details). Besides, we introduce
 290 linearly increasing levels of corruptive noise to the conditioning frames, which improves the training
 291 stability in the early training stages. To efficiently pretrain the M4V model, we adopt a progressive
 292 training strategy. The process begins with text-to-image (T2I) training at 384p resolution, then
 293 gradually increase from 384p to 768p and extend the video length from 57, 121 and 241 frames,
 294 training with both image and video data. This staged approach facilitates stable adaptation to more
 295 complex tasks and longer token sequences. More details can be found in Sections A.3 and D.

296 Besides, to validate the generalizability of our design, we further extend our method to the recent
 297 Wan2.1 (Wang et al., 2025a) framework. For this extension, we directly replace all self-attention layers
 298 in Wan2.1 with our MM-DiM blocks, and partially initialize the network from the official Wan2.1
 299 pre-trained weights following a strategy similar to Wang et al. (2024c). To facilitate comparison
 300 with the official Wan2.1, we adopt the same resolutions and frame numbers as in Table 2. We reuse
 301 Wan2.1’s text encoder and VAE. As Wan2.1’s framework is non-autoregressive and does not employ
 302 a pyramid structure, M4V (Wan2.1) and M4V (PyramidFlow) differ in data formatting and loss
 303 computation during training. M4V (Wan2.1) does not perform pyramidal downsampling of video
 304 latents, and both flow matching loss calculation and reward learning are applied to the entire video
 305 latent; thus, inference is also performed on the whole video latent simultaneously. Aside from these
 306 differences, other training settings, such as the training data and stages, are consistent with our M4V
 307 (PyramidFlow). Due to the increased memory requirements of M4V (Wan2.1), we utilize DeepSpeed
 308 Zero Stage 3 for optimized training. The 480p T2V/T2I hybrid training is conducted using a learning
 309 rate of 1×10^{-4} , 128 GPUs, and 60k steps. For 720p, we train the model with a learning rate of
 310 5×10^{-5} , using 128 GPUs for 35k steps.

311 **Evaluation Metrics.** For quantitative comparison, we utilize VBench (Huang et al., 2024), a widely
 312 adopted benchmark designed for comprehensive T2V evaluation. VBench assesses T2V performance
 313 using 1,000 prompts that cover diverse scenarios. For each text prompt, we generate five videos using
 314 different random seeds, each containing 121 frames at 768p resolution for evaluation. The *Total
 315 Score* on VBench is computed as a weighted average of the *Quality Score* and *Semantic Score*. For
 316 more details, please refer to Section B.1 and the VBench paper.

317 **Fast Evaluation Protocol.** For architectural-level design studies, conducting full-cycle training
 318 for each variant during ablation is computationally prohibitive, often requiring thousands of GPU
 319 hours, and VBench evaluation is also time-intensive. To address this, we propose a fast evaluation
 320 protocol. Specifically, in our ablation studies, each Mamba variant is trained at 5s–384p for only
 321 20k steps, starting from the same initialization of an attention-based model pre-trained on 2-second
 322 videos. Generation performance is evaluated using 50 prompts sampled from VBench. Since not all
 323 metrics can be reliably computed on this subset, we report only a subset of evaluation metrics that
 324 best capture the differences between variants, including *subject consistency*, *aesthetic quality*, *image
 325 quality*, and *overall consistency*. Although this fast evaluation protocol may not perfectly reflect the

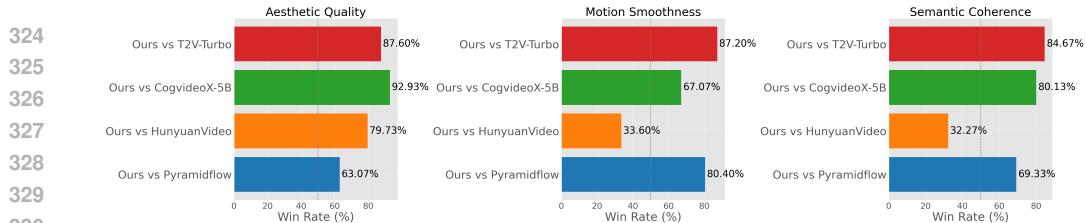


Figure 3: User study between Ours, T2V-Turbo, CogvideoX, HunyanVideo and Pyramidflow.

behavior of fully trained models, it provides *relative* performance trends at early training stages that effectively guide architectural design. For further details, please refer to Appendix C.

Human Evaluation. In addition to automated metrics, we also include a user study to assess human preferences of generated videos from different models. Following the setup in Jin et al. (2024), we selected 50 video prompts sourced from both VBBench and the Internet. Participants were asked to rank videos based on three criteria: aesthetic quality, motion smoothness, and semantic coherence.

4.2 EFFICIENCY ANALYSIS AND COMPARISON

The integration of Mamba significantly reduces computational overhead in video generation compared to recent models that heavily rely on 3D full-attention structures. For a video with T frames and M spatial tokens, the complexity of full-sequence attention, as used in DiT, is $\mathcal{O}((TM)^2)$. In contrast, the SSM requires only $\mathcal{O}(TM)$, and the temporal attention adds $\mathcal{O}(T^2)$. Given that $T \ll M$, the MM-DiM block achieves a substantial improvement in training efficiency with an overall complexity of $\mathcal{O}(TM + T^2)$. We provide quantitative analysis in terms of TFLOPs and shown in Table 4. Notably, for generating a 241-frame video, our model reduces the computational cost of the mixer layers by 45% (from 55.44 to 29.52 TFLOPs).

Table 2: Generation speed comparison across models.

Model	Video Size	Time (s)↓
HunyanVideo	720 × 1280 × 129	1890
PyramidFlow	768 × 1280 × 241	812
M4V (PyramidFlow)	768 × 1280 × 241	613
Wan2.1	720 × 1280 × 81	1700
M4V (Wan2.1)	720 × 1280 × 81	1210

Efficiency Comparison. In Table 2, our M4V achieves substantially faster generation at high resolutions and long video sequences. Noted that different models are trained with varying video resolutions and frame counts, making a strictly fair efficiency comparison across all methods infeasible.

4.3 MAIN RESULTS

Quantitative Results. We evaluate M4V’s text-to-video generation performance and compare it with other methods on VBBench (Huang et al., 2024), as shown in Table 1. First, with PyramidFlow as baseline method, M4V achieves a comparable Total Score to PyramidFlow (81.55% vs. 81.61%), while significantly reducing computational cost, as discussed in Section 4.2. Besides, when extending our method to the recent Wan2.1 model. By replacing all self-attention layers with our proposed MM-DiM blocks and fine-tuning on our training data, we surprisingly observe both improved performance in Table 1 over the original Wan2.1 and increased inference efficiency in Table 2.

Human Preference. To better understand how our method compares to other approaches based on human judgments, we conducted a user study comparing our model with four state-of-the-art baselines: PyramidFlow, CogVideoX (Yang et al., 2024), T2V-Turbo (Li et al., 2024a), and HunyanVideo (Kong et al., 2024). As illustrated in Figure 3, our method shows a clear advantage in semantic coherence and motion smoothness compared to open-source models such as PyramidFlow, CogVideoX, and T2V-Turbo. Although our model lags behind HunyanVideo in these two aspects, it outperforms it in aesthetic quality. This result is consistent with the quantitative evaluation of *Aesthetic Quality* on VBBench, where HunyanVideo tends to produce overly realistic videos. A detailed description of the user study setup, selected prompts, and comprehensive results can be found in Section B.1, and corresponding video samples are included in the supplementary materials.

4.4 EFFECT OF MODEL DESIGN

This section provides a comprehensive ablation study to evaluate the effectiveness of MM-DiM block based on our *Fast Evaluation Protocol* described in Section 4.1.

378 Table 3: Ablation study of the model architecture using the proposed fast evaluation protocol. **Text**: Enables
 379 bi-directional information aggregation through text token re-composition. **Vis**: Adds per-frame registers within
 380 the visual sequence. Temp: Incorporates a temporal branch within each block. **Overall-Con** measures the
 381 consistency between the generated video and the input text, while the other metrics assess different aspects of
 382 video quality. Significant metric changes with **Text** and **Vis** are highlighted for clarity.

Text	Vis	Temp	Sub-Cons	Aes-Qual	Img-Qual	Overall-Cons	Avg.
			93.28	46.60	63.16	19.77	55.70
✓			92.19	45.39	54.83	21.23	53.41
	✓		95.41	48.69	64.18	18.86	56.79
✓	✓		93.53	49.82	63.79	21.26	57.10
✓	✓	✓	95.67	51.25	66.38	21.68	58.75

383
 384 Table 4: Computational analysis of architectural designs. TFLOPs are calculated for mixer layers, *i.e.*, attention
 385 or Mamba. Both TFLOPs and inference time are estimated at 768p resolution, on a single NVIDIA A100 GPU.

Model	Params (B)	TFLOPs		Inference Time (s)		Avg. Score
		121-frms	241-frms	121-frms	241-frms	
Full Attn	1.97	33.84	55.44	296	812	59.84
<i>Parallel</i>	2.21	50.19	82.03	313	858	59.97
<i>Post-half</i>	2.00	25.20	41.04	224	661	58.17
<i>Pre-half</i>	2.00	25.20	41.04	224	661	58.69
<i>Interleaved</i>	2.00	25.20	41.04	224	661	58.60
<i>Full</i>	2.04	16.35	26.64	210	570	57.10
<i>Full+Temp-Branch</i>	2.21	18.80	29.52	226	613	58.75

391 **Component-wise Ablation.** We systematically ablate each component of our block design, as
 392 summarized in Table 3. The first row excludes our proposed designs, using only zigzag scan
 393 paths (Hu et al., 2024) along the spatial dimension and adding positional encodings to each token for
 394 processing with Mamba. First, incorporating Text Token Re-Composition significantly improves the
 395 *Overall Consistency* metric, indicating enhanced text–video alignment, although the text-focused
 396 design may slightly degrade certain visual quality metrics. Next, integrating Per-Frame Registers into
 397 the video sequence improves all video quality metrics, demonstrating their effectiveness in helping
 398 Mamba capture spatial–temporal dependencies. When combined, these two components lead to
 399 consistent gains across all metrics compared to the baseline. Finally, adding the lightweight temporal
 400 branch further enhances performance on all reported metrics, reflecting the complementary benefits
 401 of combining SSMs with attention mechanisms.

402 **Design of Model Structure.** In light of recent hybrid architectures (Waleffe et al., 2024; Lieber
 403 et al., 2024), we investigate how different configurations of attention and Mamba blocks influence
 404 both computational cost and generation quality. Specifically, based on the overall architecture
 405 described in Section 3.2, we ablate the block choice for the sixteen target blocks using the following
 406 configurations: (1) *Full*: all target blocks employ Mamba; (2) *Post-half*: Mamba is applied only to
 407 the latter half of the target blocks, with attention used in the first half; (3) *Pre-half*: Mamba is applied
 408 to the first half of the target blocks, with attention used in the latter half; (4) *Parallel*: Mamba and
 409 attention operate in parallel within each target block, sharing the same MLP layers; (5) *Interleaved*:
 410 Mamba and attention alternate sequentially across the target blocks.

411 Variant *Full* is expected to yield the lowest computational cost but may suffer from limited modeling
 412 capacity. In contrast, *Parallel* leverages the complementary strengths of Mamba and attention across
 413 all layers, but at the highest computational cost.

414 To ensure a fair comparison, all variants are trained with same steps and using the fast evaluation
 415 protocol as described in Section 4.1. The performance results are presented in Table 4. Among all
 416 variants, *Parallel* achieves the highest performance but comes with a substantial computational cost
 417 while offering only a marginal 0.09% improvement over full attention. The *Full* variant, which applies
 418 Mamba to all blocks, significantly reduces computational overhead with comparable performance
 419 with others. When incorporating the proposed temporal branch to *Full*, the model achieves the best
 420 overall scores while maintaining lower computational costs.

421 4.5 EFFECT OF ADDITIONAL TRAINING DESIGNS

422 As discussed in Section 3.4, we additionally explore training strategies to improve generation quality
 423 given the limitation of public datasets.

(a) A determined individual in a sleek, black athletic outfit jogs along a winding forest trail, surrounded by towering trees and dappled sunlight filtering through the leaves.

(b) A young person, wearing a cozy gray hoodie and black-rimmed glasses, sits in a dimly lit room, intensely focused on a video game. The glow from the TV screen illuminates their face.

Figure 4: Visualization of text-to-video generation results which are generated at 5s, 768p, 24fps.

First, we consider using reward models for post-training, named *Reward Learning*, and the results are shown in Table 5. With an additional post-training stage using $\mathcal{L}_{\text{reward}}$, the generation performance improves by 0.16% on VBench. We also provide a visual analysis about our $\mathcal{L}_{\text{reward}}$ in Figure 5.

As shown, such post-training can visually help the model to correct undesirable motions, resulting in outputs that more closely align with the input prompts, thereby enhancing prompt adherence and improving the Semantic Score in Table 5.

Furthermore, we conduct an initial investigation on augmenting our training data with approximately 80,000 videos synthesized using HunyuanVideo (Kong et al., 2024) with prompts provided by GPT-4o, primarily depicting subjects engaged in diverse motion activities. Incorporating these generated videos into the final-stage training further enhances generation performance, particularly when combined with our $\mathcal{L}_{\text{reward}}$.

4.6 VISUAL RESULTS

Figure 4 shows some visual results generated by our model. With our advanced design, the model is able to produce visually consistent videos with high aesthetic quality. Additional T2V and image-conditioned T2V results can be found in Section E and the supplementary materials.

5 CONCLUSION AND LIMITATIONS

In this work, we introduce **M4V**, a Mamba-based framework for text-to-video generation. Given the multimodal nature of this task, we propose the **MultiModal Diffusion Mamba (MM-DiM) Block**, a unified module that overcomes Mamba’s inherent limitations in multimodal modeling. As a result, M4V achieves substantial reductions in computational cost while maintaining high generation quality. Our experiments provide a comprehensive analysis of architectural design choices with respect to both performance and efficiency, demonstrating the potential of linear-time models as a compelling alternative to attention-based methods. Furthermore, extending our design to the recent Wan2.1 model confirms the generalizability of our approach. We also explore additional training strategies that further enhance generation quality when using only publicly available datasets.

Limitations. While our lightweight temporal branch complements the MM-DiM block effectively, it potentially can be replaced by a Mamba design, though the efficiency gain may be marginal. Moreover, when using PyramidFlow as the base model, M4V exhibits slightly lower performance on the Dynamic Degree metric, possibly due to the multi-level compression in PyramidFlow, which makes it more challenging for the SSM hidden states to capture global information. Future work would include further exploring improved temporal modeling within the Mamba framework.

Table 5: Ablation study of training improvements on official VBench (Huang et al., 2024).

Training Design		Total Score	Quality Score	Semantic Score
Reward Learning	Generated Data			
		81.55	83.31	74.47
✓		81.71	83.32	75.27
	✓	81.59	83.35	74.52
✓	✓	81.91	83.36	76.10

Figure 5: Visual analysis of reward learning.

486 ETHICS STATEMENT
487488 This work does **not** include any human subjects, potentially harmful insights, privacy, sensitive, or
489 personal information that may raise questions regarding the Code of Ethics.
490491 REPRODUCIBILITY STATEMENT
492493 Reproducibility is a key goal in our development for contributing to the text-to-video generation
494 community. In this work, all experiments are conducted using publicly available datasets. The main
495 paper and appendix provide complete details on data preprocessing, model architectures, training
496 procedures, and evaluation protocols. We will make our models and code, including both training
497 and evaluation scripts, publicly available upon acceptance.
498499 REFERENCES
500

501 Pika art. Pika art. <https://pika.art>, 2024.

502

503 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and
504 image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international conference*
505 *on computer vision*, pp. 1728–1738, 2021.

506

507 Labs Black Forest. Flux. <https://github.com/black-forest-labs/flux>, 2023.

508

509 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
510 Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. 2024.
511 *URL* <https://openai.com/research/video-generation-models-as-world-simulators>, 3, 2024.

512

513 Guo Chen, Yifei Huang, Jilan Xu, Baoqi Pei, Zhe Chen, Zhiqi Li, Jiahao Wang, Kunchang Li, Tong
514 Lu, and Limin Wang. Video mamba suite: State space model as a versatile alternative for video
515 understanding. *arXiv preprint arXiv:2403.09626*, 2024a.

516

517 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
518 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
519 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
520 7310–7320, 2024b.

521

522 Shoufa Chen, Chongjian Ge, Yuqi Zhang, Yida Zhang, Fengda Zhu, Hao Yang, Hongxiang Hao, Hui
523 Wu, Zhichao Lai, Yifei Hu, Ting-Che Lin, Shilong Zhang, Fu Li, Chuan Li, Xing Wang, Yanghua
524 Peng, Peize Sun, Ping Luo, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu. Goku: Flow
525 based video generative foundation models. *arXiv preprint arXiv:2502.04896*, 2025.

526

527 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
528 structured state space duality. *arXiv preprint arXiv:2405.21060*, 2024.

529

530 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
531 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
532 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
533 2024.

534

535 Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue
536 Dong, Jingwen He, Dongwei Pan, et al. Vchitect-2.0: Parallel transformer for scaling up video
537 diffusion models. *arXiv preprint arXiv:2501.08453*, 2025.

538

539 Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, Youqiang Zhang, and Junshi Huang.
540 Dimba: Transformer-mamba diffusion models. *arXiv preprint arXiv:2406.01159*, 2024.

541

542 Yunxiang Fu, Chaoqi Chen, and Yizhou Yu. Lamamba-diff: Linear-time high-fidelity diffusion
543 models based on local attention and mamba. *arXiv preprint arXiv:2408.02615*, 2024.

544

545 Yu Gao, Jiancheng Huang, Xiaopeng Sun, Zequn Jie, Yujie Zhong, and Lin Ma. Matten: Video
546 generation with mamba-attention. *arXiv preprint arXiv:2405.03025*, 2024.

540 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 541 *preprint arXiv:2312.00752*, 2023.
 542

543 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 544 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.

545 Qin Guo, Ailing Zeng, Dongxu Yue, Ceyuan Yang, Yang Cao, Hanzhong Guo, Fei Shen, Wei
 546 Liu, Xihui Liu, and Dan Xu. UniMC: Taming diffusion transformer for unified keypoint-guided
 547 multi-class image generation. In *Forty-second International Conference on Machine Learning*,
 548 2025. URL <https://openreview.net/forum?id=HemldRNffY>.

549

550 Xuanhua He, Ke Cao, Jie Zhang, Keyu Yan, Yingying Wang, Rui Li, Chengjun Xie, Danfeng Hong,
 551 and Man Zhou. Pan-mamba: Effective pan-sharpening with state space model. *Information Fusion*,
 552 115:102779, 2025a.

553 Xuanhua He, Quande Liu, Zixuan Ye, Weicai Ye, Qiulin Wang, Xintao Wang, Qifeng Chen, Pengfei
 554 Wan, Di Zhang, and Kun Gai. Fulldit2: Efficient in-context conditioning for video diffusion
 555 transformers. *arXiv preprint arXiv:2506.04213*, 2025b.

556

557 Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion models
 558 for high-fidelity long video generation. *arXiv preprint arXiv:2211.13221*, 2022.

559

560 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 561 neural information processing systems*, 33:6840–6851, 2020.

562

563 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 564 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
 2022.

565

566 Vincent Tao Hu, Stefan Andreas Baumann, Ming Gui, Olga Grebenkova, Pingchuan Ma, Johannes
 567 Fischer, and Björn Ommer. Zigma: A dit-style zigzag mamba diffusion model. In *European
 568 Conference on Computer Vision*, pp. 148–166. Springer, 2024.

569

570 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
 571 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
 572 generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 573 Recognition*, pp. 21807–21818, 2024.

574

575 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
 576 Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.
 577 *arXiv preprint arXiv:2410.05954*, 2024.

578

579 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 580 Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative
 581 models. *arXiv preprint arXiv:2412.03603*, 2024.

582

583 Kling Ai Kuaishou. Kling ai: Next-generation ai creative studio. <https://kling.kuaishou.com>, 2024.

584

585 Jiachen Li, Weixi Feng, Tsu-Jui Fu, Xinyi Wang, Sugato Basu, Wenhui Chen, and William Yang
 586 Wang. T2v-turbo: Breaking the quality bottleneck of video consistency model with mixed reward
 587 feedback, 2024a. URL <https://arxiv.org/abs/2405.18750>.

588

589 Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
 590 State space model for efficient video understanding. In *European Conference on Computer Vision*,
 591 pp. 237–255, 2024b.

592

593 Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for
 594 multi-dimensional data. In *European Conference on Computer Vision*, pp. 75–92. Springer, 2025a.

595 Yixing Li, Ruobing Xie, Zhen Yang, Xingwu Sun, Shuaipeng Li, Weidong Han, Zhanhui Kang,
 596 Yu Cheng, Chengzhong Xu, Di Wang, et al. Transmamba: Flexibly switching between transformer
 597 and mamba. *arXiv preprint arXiv:2503.24067*, 2025b.

594 Zhichao Liao, Xiaokun Liu, Wenyu Qin, Qingyu Li, Qiulin Wang, Pengfei Wan, Di Zhang, Long
 595 Zeng, and Pingfa Feng. Humanaeexpert: Advancing a multi-modality foundation model for
 596 human image aesthetic assessment. *arXiv preprint arXiv:2503.23907*, 2025.

597

598 Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmédigos, Erez Safahi,
 599 Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
 600 mamba language model. *arXiv preprint arXiv:2403.19887*, 2024.

601 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 602 matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

603

604 Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan,
 605 Ranchen Ming, Xiaoniu Song, Xing Chen, et al. Step-video-t2v technical report: The practice,
 606 challenges, and future of video foundation model. *arXiv preprint arXiv:2502.10248*, 2025.

607

608 Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang,
 609 and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation. *arXiv
 610 preprint arXiv:2407.02371*, 2024.

611 Yuta Oshima, Shohei Taniguchi, Masahiro Suzuki, and Yutaka Matsuo. Ssm meets video diffusion
 612 models: Efficient video generation with structured state spaces. In *5th Workshop on practical ML
 613 for limited/low resource settings*, 2024.

614

615 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 616 the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

617 Tuzhan AI PKU-Yuan Lab. Open-sora plan. <https://github.com/PKU-YuanGroup>, 2024.

618

619 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 620 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 621 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

622 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
 623 Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media foundation
 624 models. *arXiv preprint arXiv:2410.13720*, 2024.

625

626 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 627 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 628 models from natural language supervision. In *International conference on machine learning*, pp.
 629 8748–8763. PMLR, 2021.

630 Runway. Runway gen-3 alpha. [https://runwayml.com/research/
 631 introducing-gen-3-alpha](https://runwayml.com/research/introducing-gen-3-alpha), 2024.

632 Sand-AI. Magi-1: Autoregressive video generation at scale, 2025. URL https://static.magi.world/static/files/MAGI_1.pdf.

633

635 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 636 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 637 open large-scale dataset for training next generation image-text models. *Advances in Neural
 638 Information Processing Systems*, 35:25278–25294, 2022.

639 Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, and Xuansong Xie. Anytext: Multilingual
 640 visual text generation and editing. *arXiv preprint arXiv:2311.03054*, 2023.

641

642 Dani Vavlevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
 643 game engines. *arXiv preprint arXiv:2408.14837*, 2024.

644 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

645

646 Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
 647 Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
 based language models. *arXiv preprint arXiv:2406.07887*, 2024.

648 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, and Di Chen. Wan: Open and advanced
 649 large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025a.
 650

651 Feng Wang, Jiahao Wang, Sucheng Ren, Guoyizhe Wei, Jieru Mei, Wei Shao, Yuyin Zhou, Alan Yuille,
 652 and Cihang Xie. Mamba-r: Vision mamba also needs registers. *arXiv preprint arXiv:2405.14858*,
 653 2024a.

654 Feng Wang, Jiahao Wang, Sucheng Ren, Guoyizhe Wei, Jieru Mei, Wei Shao, Yuyin Zhou, Alan
 655 Yuille, and Cihang Xie. Mamba-reg: Vision mamba also needs registers. In *Proceedings of the*
 656 *Computer Vision and Pattern Recognition Conference*, pp. 14944–14953, 2025b.

657

658 Hongjie Wang, Chih-Yao Ma, Yen-Cheng Liu, Ji Hou, Tao Xu, Jialiang Wang, Felix Juefei-Xu,
 659 Yaqiao Luo, Peizhao Zhang, Tingbo Hou, et al. Lingen: Towards high-resolution minute-length
 660 text-to-video generation with linear computational complexity. *arXiv preprint arXiv:2412.09856*,
 661 2024b.

662 Junxiong Wang, Daniele Paliotta, Avner May, Alexander M Rush, and Tri Dao. The mamba in the
 663 llama: Distilling and accelerating hybrid models. *arXiv preprint arXiv:2408.15237*, 2024c.

664

665 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 666 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
 667 synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

668

669 Jiaqi Xu, Xinyi Zou, Kunzhe Huang, Yunkuo Chen, Bo Liu, MengLi Cheng, Xing Shi, and Jun
 670 Huang. Easyanimate: A high-performance long video generation method based on transformer
 671 architecture. *arXiv preprint arXiv:2405.18991*, 2024.

672

673 Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
 674 Piecewise rectified flow as universal plug-and-play accelerator. *Advances in Neural Information
 675 Processing Systems*, 37:78630–78652, 2025.

676

677 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 678 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 679 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

680

681 Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and
 682 Xun Huang. From slow bidirectional to fast autoregressive video diffusion models. *arXiv preprint
 683 arXiv:2412.07772*, 2, 2024.

684

685 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
 686 Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, 2024. URL
 687 <https://arxiv.org/abs/2412.20404>.

688

689

690

691

692

693

694

695

696

697

698

699

700

701

A IMPLEMENTATION DETAILS

A.1 SPATIAL SCAN PATH IN MM-DiM BLOCK.

As shown in Figure 6, we follow (Hu et al., 2024) to apply eight type of scan paths along the spatial dimension for Mamba, which include:

- (a) top-left to the bottom-right, following a “downward first, then rightward” direction.
- (b) top-left to the bottom-right, following a “downward right, then downward” direction.
- (c) bottom-left to the top-right, following a “upward first, then rightward” direction.
- (d) bottom-left to the top-right, following a “rightward first, then upward” direction.
- (e) bottom-right to the top-left, following a “upward first, then leftward” direction.
- (f) bottom-right to the top-left, following a “leftward first, then upward” direction.
- (g) top-right to the bottom-left, following a “downward first, then leftward” direction.
- (h) top-right to the bottom-left, following a “leftward first, then downward” direction.

Following (Hu et al., 2024), we apply a single type of scan path per layer, while alternating the type across layers.

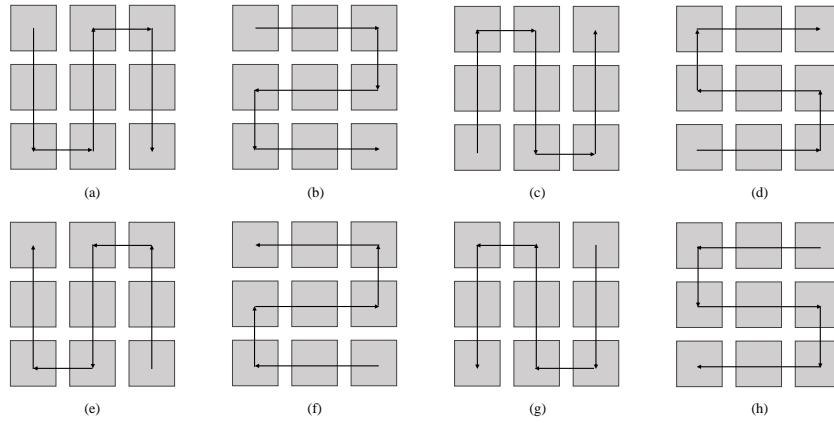


Figure 6: Spacial scan paths for Mamba.

A.2 OVERALL ARCHITECTURE

We retain $L = 8$ *dual-stream blocks* from MM-DiT (Esser et al., 2024), which use separate parameter sets for different modalities. While replacing all dual-stream modules with Mamba blocks could theoretically reduce TFLOPs further (from 29.52 to 22.416), our preliminary experiments reveal that this substitution introduces significant latency during training (approximately a $1.5\times$ increase per iteration). This overhead arises from the need to separately process text and video tokens for Mamba, involving additional reshaping, slicing, concatenation, and causal `conv1d` operations to prepare inputs for the state-space model (SSM). As a result, full replacement proves impractical for our architecture-level exploration.

Therefore, our design modifications focus exclusively on the *single-stream* blocks, where the M4V model employs MM-DiM blocks throughout. This choice ensures a balance between efficiency gains and manageable training costs. In future work, this limitation could potentially be mitigated through engineering optimizations, for instance, by developing custom PyTorch kernels to better utilize GPU resources. While such improvements would enhance runtime efficiency, they may also reduce flexibility for iterative architectural evolution.

A.3 LINEAR SCALING TEMPORAL CORRUPTION NOISE

As introduced in Section 3.1, the prediction of a frame x^i is conditioned on

$$c^i = [K_{\downarrow 2}(x^0), \dots, K_{\downarrow 2}(x^{i-3}), K_{\downarrow 1}(x^{i-2}), x^{i-1}]. \quad (7)$$

756 However, due to the error accumulation during autoregressive video generation, latter frames tend
 757 to have lower quality than previous ones. Besides, as indicated by (Valevski et al., 2024), using
 758 clean latent during training would lead to training-inference inconsistency. Therefore, similar to
 759 PyramidFlow (Jin et al., 2024), we add corruption noise to the condition frames during training.
 760 However, different from PyramidFlow, we use a linear scaling corruption noise instead of a constant
 761 noise across frames. Specifically, given a corruption ratio η , we randomly sample the maximum
 762 corruption scale η_t^{max} in range $[0, \eta]$ and a minimum corruption scale η_t^{min} in range $[0, \eta_t^{max}]$. Then
 763 we add per-frame noise to the condition frames with noises $[\sigma_{\eta_t^{min}}, \dots, \sigma_{\eta_t^{max}}]$ with linear intervals.
 764 This design brings slight improvement in convergence speed in our early training stages.
 765

766 B EXPERIMENTAL SETTINGS.

768 B.1 QUANTITATIVE EVALUATION SETTING

770 In this work, we include various baseline methods for comparisons on VBench. Specifically,
 771 we include fully open-sourced methods including Open-Sora Plan (PKU-Yuan Lab, 2024), Open-
 772 Sora 1.2 (Zheng et al., 2024), and PyramidFlow (Jin et al., 2024) for our major comparison. We
 773 also include approaches that uses proprietary data for reference, including Pika 1.0 (art, 2024),
 774 CogVideoX (Yang et al., 2024), Kling (Kuaishou, 2024), Runway Gen-3 Alpha (Runway, 2024),
 775 and HunyuanVideo (Kong et al., 2024). VideoCrafter2 (Chen et al., 2024b), T2V-Turbo (Li et al.,
 776 2024a), Vchitect-2.0 (Fan et al., 2025). We directly source the results for all methods from the
 777 official leaderboard for comparison. All compared baseline methods are based on attention for
 778 spatialtemporal modeling, while we use Mamba instead.

779 VBench is an automatic benchmark designed for text-to-video generation models. It scores each
 780 submission along *sixteen* objective dimensions that jointly capture (i) low-level visual fidelity—e.g.
 781 absence of flicker, smooth motion and high aesthetic / imaging quality—and (ii) high-level semantic
 782 faithfulness such as correct object classes, actions, colours and scene composition. For every prompt
 783 the model must generate five clips; the per-metric scores are averaged, then linearly normalised with
 784 official *min–max* statistics and multiplied by a dimension weight (dynamic-degree is down-weighted
 785 to 0.5, all others to 1.0). The normalised scores are grouped into a Quality Score (7 metrics) and
 786 a Semantic Score (9 metrics). As summarised in Table 6, VBench reports the weighted mean of
 787 each block and finally fuses them with a 4:1 ratio so that perceptual quality carries four times the
 788 importance of semantic accuracy:

$$789 \text{Total Score} = \frac{4 \text{ Quality} + 1 \text{ Semantic}}{5}.$$

791 This single scalar is used for leaderboard ranking, while the two component scores still expose a
 792 model’s individual strengths and weaknesses.
 793

794 795 Table 6: Composition of the VBench headline scores.

796 Score	797 Included sub-metrics
798 Quality Score	799 subject consistency; background consistency; temporal flickering; 800 motion smoothness; aesthetic quality; imaging quality; dynamic 801 degree (0.5× weight)
802 Semantic Score	803 object class; multiple objects; human action; color; spatial rela- 804 tionship; scene; appearance style; temporal style; overall consis- 805 tency
806 Total Score	807 Total = $\frac{4 \times \text{Quality} + 1 \times \text{Semantic}}{5}$

808 B.2 HUMAN PREFERENCE SETTING

809 In order to evaluate the performance of our method, we conducted a user study to compare it against
 four state-of-the-art (SOTA) models: PyramidFlow, CogVideoX, T2V-Turbo, and HunyuanVideo.

810 The user study aimed to assess the generated video quality across three key aspects: aesthetic quality,
 811 motion smoothness, and semantic coherence. The design and methodology of the study are outlined
 812 as follows.

813 The study involved five methods: our proposed approach and the four SOTA models mentioned above.
 814 A total of 50 video prompts were selected for evaluation, sourced from both VBench and the Internet.
 815 These prompts were carefully chosen to cover a broad spectrum of content types and video scenarios,
 816 ensuring that the evaluation reflects a diverse range of real-world use cases.

817 Over 50 participants, including both experts and non-experts, took part in the study. Each participant
 818 was asked to rank the generated videos for each method based on three criteria: aesthetic quality,
 819 motion smoothness, and semantic coherence. The ranking scale used was from 1 to 5, with 1
 820 representing the highest quality and 5 representing the lowest.

821 For each of the 50 prompts, the participants were shown videos generated by all five methods, and
 822 they were asked to assign a score to each model in the three evaluation categories. The win rates
 823 between ours and the compared methods were then aggregated across all participants.

825

826 B.3 DETAIL RESULTS OF USER STUDY

827

828 We list the average ranking of all prompts in Fig. 7 and all prompts bellow:

829

830 **1.** A breathtaking coastal beach in spring, where gentle waves caress the golden sand in super slow
 831 motion. The scene captures the delicate dance of turquoise waters, each wave rolling gracefully and
 832 retreating with a soft whisper.

833

834 **2.** A bustling city street comes alive with vibrant energy, lined with towering skyscrapers and historic
 835 buildings. The scene captures the essence of urban life, with people of all ages and backgrounds
 836 walking briskly, some carrying shopping bags, others engaged in animated conversations.

837

838 **3.** A bustling hospital corridor, filled with the soft hum of activity, features doctors in white coats and
 839 nurses in scrubs moving purposefully. The walls are adorned with calming artwork and information.

840

841 **4.** A bustling train station platform comes to life in the early morning light, with commuters clad in
 842 winter coats and scarves, their breath visible in the crisp air. The platform is lined with vintage
 843 lampposts casting a warm glow, and a sleek, modern train pulls in, its doors sliding open with a soft
 844 hiss.

845

846 **5.** A charming panda, wearing a chef's hat and a red apron, stands in a cozy, rustic kitchen filled with
 847 wooden cabinets and colorful utensils. The panda carefully chops vegetables on a wooden cutting
 848 board, its furry paws moving with surprising dexterity.

849

850 **6.** A cheerful individual stands in a lush backyard, surrounded by vibrant greenery and blooming
 851 flowers, tending to a sizzling barbecue grill. They wear a red apron over a casual white t-shirt and
 852 jeans, with a chef's hat perched jauntily on their head.

853

854 **7.** A colossal, hyper-realistic spaceship descends gracefully onto the rugged Martian surface, its sleek
 855 metallic hull reflecting the crimson hues of the planet. Dust and small rocks scatter as the landing
 856 thrusters engage, creating a dramatic cloud of Martian soil.

857

858 **8.** A contemplative individual, dressed in a dark, hooded jacket, stands alone on a dimly lit urban
 859 street, the soft glow of streetlights casting long shadows. They lift a cigarette to their lips, the ember
 860 glowing brightly in the night.

861

862 **9.** A cozy, dimly-lit restaurant exudes warmth and charm, with rustic wooden tables adorned with
 863 flickering candles and fresh flowers. Soft, ambient music plays in the background, enhancing the
 864 serene atmosphere.

865

866 **10.** A cozy, dimly-lit restaurant with rustic wooden tables and chairs, adorned with flickering candles
 867 and fresh flowers in glass vases, creates an intimate ambiance. The walls are lined with vintage
 868 photographs and shelves filled with wine bottles, adding a touch of nostalgia.

869

870 **11.** A determined individual in a sleek, black athletic outfit jogs along a winding forest trail,

871 surrounded by towering trees and dappled sunlight filtering through the leaves. Their rhythmic

864 strides create a sense of purpose and focus, with the soft crunch of leaves underfoot adding to the
 865 serene ambiance.

866

867 **12.** A determined individual, dressed in a red flannel shirt, blue jeans, and sturdy boots, pushes a
 868 weathered wooden cart along a narrow, cobblestone street. The scene is set in a quaint, old-world
 869 village with charming stone buildings and ivy-covered walls.

870

871 **13.** A drone captures a breathtaking aerial view of a festive celebration in a snow-covered town
 872 square, centered around a towering, brilliantly lit Christmas tree adorned with twinkling lights and
 873 ornaments.

874

875 **14.** A fluffy orange cat with striking green eyes sits calmly to the right of a large, friendly golden
 876 retriever, both facing the camera. The cat's fur is meticulously groomed, and it wears a small, elegant
 877 collar with a bell.

878

879 **15.** A golden retriever with a shiny coat strolls leisurely through a sun-dappled forest path, the
 880 morning light filtering through the trees casting a warm glow. The dog's tail wags gently as it sniffs
 881 the air, ears perked up, taking in the serene surroundings.

882

883 **16.** A grand, historic mansion stands majestically atop a hill, its stone facade adorned with ivy and
 884 intricate carvings, bathed in the golden light of a setting sun. The camera pans to reveal tall, arched
 885 windows reflecting the vibrant hues of the sky, while the meticulously manicured gardens, with their
 886 blooming flowers and ornate fountains, add a touch of elegance.

887

888 **17.** A joyful dog, a golden retriever, sits proudly in a vibrant yellow turtleneck, its fur contrasting
 889 beautifully against the dark studio background. The dog's eyes sparkle with happiness, and its mouth
 890 is open in a cheerful pant, showcasing its playful nature.

891

892 **18.** A joyful individual, bundled in a red winter coat, knitted hat, and gloves, stands in a
 893 snow-covered park, rolling a large snowball to form the base of a snowman. The scene is set against
 894 a backdrop of snow-laden trees and a serene, overcast sky.

895

896 **19.** A joyful, fuzzy panda sits cross-legged by a crackling campfire, strumming a small acoustic
 897 guitar with enthusiasm. The panda's black and white fur contrasts beautifully with the warm glow of
 898 the fire.

899

900 **20.** A lone adventurer, clad in a bright red life jacket and a wide-brimmed hat, paddles a sleek, yellow
 901 kayak through a serene, crystal-clear lake surrounded by towering pine trees and majestic mountains.

902

903 **21.** A lone astronaut, clad in a pristine white spacesuit with reflective visors, floats gracefully against
 904 the vast, star-studded expanse of space. As the camera pans left, the astronaut's movements are slow
 905 and deliberate, capturing the serene beauty of weightlessness.

906

907 **22.** A lone rider, clad in a sleek black leather jacket, matching helmet, and dark jeans, navigates a
 908 winding mountain road on a powerful motorcycle. The sun sets behind the peaks, casting a golden
 909 glow on the rugged landscape.

910

911 **23.** A lone stormtrooper, clad in iconic white armor, stands on a sunlit beach, holding a futuristic
 912 vacuum cleaner. The scene opens with the stormtrooper methodically vacuuming the golden sand,
 913 the ocean waves gently lapping in the background.

914

915 **24.** A majestic steam train, with its vintage black and red carriages, chugs along a winding
 916 mountainside track, enveloped in a cloud of white steam. The train's powerful engine, adorned with
 917 brass accents.

918

919 **25.** A playful panda, with its distinctive black and white fur, sits on a wooden swing set in a lush
 920 bamboo forest. The panda's eyes sparkle with joy as it grips the ropes tightly, swaying back and forth.

921

922 **26.** A playful squirrel, with its bushy tail flicking, sits on a park bench, holding a miniature burger in
 923 its tiny paws. The scene is set in a vibrant, sunlit park with lush green grass and colorful flowers in
 924 the background.

925

926 **27.** A plump rabbit, adorned in a flowing purple robe with golden embroidery, ambles through an
 927 enchanting fantasy landscape. The rabbit's large, expressive eyes take in the vibrant surroundings,
 928 where towering mushrooms with glowing caps and bioluminescent flowers light up the path.

929

918 **28.** A plush teddy bear, with soft brown fur and a red bow tie, stands on a stool in a cozy, vintage
 919 kitchen. The bear's tiny paws are submerged in a sink filled with soapy water, bubbles floating
 920 around.

921 **29.** A pristine white bicycle stands alone on a cobblestone street, its sleek frame and vintage design
 922 catching the morning light. The bike is adorned with a wicker basket on the front, filled with fresh
 923 flowers, adding a touch of charm.

924 **30.** A pristine white cat with striking blue eyes lounges gracefully on a sunlit windowsill, its fur
 925 glistening in the warm afternoon light. The cat stretches luxuriously, its paws extending and tail
 926 curling elegantly.

927 **31.** A quaint bakery shop, bathed in warm, golden light, showcases an inviting display of freshly
 928 baked goods. The rustic wooden shelves are lined with an assortment of crusty baguettes, flaky
 929 croissants, and golden-brown pastries, each meticulously arranged.

930 **32.** A refined couple, dressed in elegant evening attire, navigates a bustling street under a heavy
 931 downpour. The man, in a tailored black tuxedo, and the woman, in a flowing crimson gown, both
 932 hold delicate paper umbrellas adorned with intricate patterns.

933 **33.** A serene cow with a glossy brown coat lies comfortably on a bed of fresh straw inside a rustic,
 934 sunlit barn. The gentle rays of the afternoon sun filter through the wooden slats, casting a warm,
 935 golden glow over the scene.

936 **34.** A serene individual sits in a cozy, sunlit nook, surrounded by shelves filled with books, wearing a
 937 soft, oversized sweater and glasses. They hold an old, leather-bound book, its pages slightly yellow.

938 **35.** A serene individual, dressed in a flowing white blouse and light blue jeans, stands at a rustic
 939 wooden table in a sunlit room filled with greenery. They carefully select vibrant blooms from a
 940 wicker basket, including roses, lilies, and daisies, and begin arranging them in a crystal vase.

941 **36.** A skilled artisan, wearing protective gloves and a welding mask, stands in a dimly lit workshop
 942 filled with tools and metal scraps. The person carefully heats a metal rod with a blowtorch, the
 943 orange flames casting a warm glow on their focused face.

944 **37.** A sleek Mars rover, equipped with advanced scientific instruments and cameras, traverses the
 945 rugged, reddish terrain of the Martian surface. The scene opens with a panoramic view of the barren
 946 landscape, featuring rocky outcrops and distant mountains under a dusty, pinkish sky.

947 **38.** A sleek, black motorcycle with chrome accents roars to life on an open highway, its rider clad in
 948 a black leather jacket, helmet, and gloves. The camera captures a close-up of the rider's gloved hand.

949 **39.** A sleek, modern train glides effortlessly along the tracks, its metallic exterior gleaming under the
 950 bright midday sun. The train's windows reflect the passing landscape of lush green fields and distant
 951 mountains, creating a mesmerizing blend of nature and technology.

952 **40.** A sleek, silver airplane glides gracefully through a clear blue sky, its wings cutting through the
 953 air with precision. As it descends, the sun glints off its polished surface, casting a radiant glow.

954 **41.** A spirited individual rides a vintage bicycle along a sunlit, tree-lined path, wearing a casual outfit
 955 of a white t-shirt, denim shorts, and sneakers. The scene captures the golden hour, with sunlight.

956 **42.** A young man with long, flowing hair sits on a rustic wooden stool in a cozy, dimly lit room,
 957 strumming an acoustic guitar. He wears a vintage denim jacket over a white t-shirt and faded jeans,
 958 his fingers skillfully moving across the strings.

959 **43.** A young person, dressed in a vibrant red jacket and black jeans, rides a sleek electric scooter
 960 through a bustling city street. The scene captures the energy of urban life, with towering skyscrapers
 961 and colorful storefronts lining the background.

962 **44.** A young person, wearing a cozy gray hoodie and black-rimmed glasses, sits in a dimly lit room,
 963 intensely focused on a video game. The glow from the TV screen illuminates their face, highlighting
 964 their concentration.

965 **45.** A young woman with glasses is jogging in the park wearing a pink headband.

971

972		Aesthetic Quality					Motion Smoothness					Semantic Coherence					
		A	B	C	D	E	A	B	C	D	E	A	B	C	D	E	
973	Prompt ID																
974	1	0.966667	0.9	1.433333	2.066667	2.133333	1.966667	1.233333	0.9	1.3	2.1	1.533333	1.3	0.833333	1.7	2.133333	
975	2	0.966667	0.833333	1.366667	2.2	2.133333	1.833333	1.1	0.966667	1.666667	1.933333	1.633333	0.9	0.966667	2.066667	1.933333	
976	3	1.1	1.033333	1.633333	2.066667	1.666667	1.833333	1.133333	1.033333	1.3	2.2	1.433333	1.1	0.966667	1.8	2.2	
977	4	1.166667	0.733333	1.433333	2.3	1.866667	1.7	1.1	1.033333	1.6	2.066667	1.366667	1.3	1.033333	1.633333	2.166667	
978	5	0.933333	1.166667	1.666667	2.166667	1.566667	1.733333	1.133333	0.8	1.5	2.333333	1.433333	1.433333	0.966667	1.8	1.866667	
979	6	1.1	0.8	1.433333	2.066667	2.1	2	1.166667	0.866667	1.433333	2.033333	1.533333	1.1	0.8	2	2.066667	
980	7	1.4	0.866667	1.366667	2.033333	1.833333	1.866667	1.133333	0.866667	1.4	2.233333	1.533333	1.1	0.833333	2	2.033333	
981	8	1	0.833333	1.633333	2.1	1.933333	1.833333	1.266667	0.866667	1.5	2.033333	1.433333	1.166667	0.933333	1.766667	2.2	
982	9	1.066667	0.733333	1.533333	2.166667	2	1.833333	1.3	0.933333	1.166667	2.266667	1.766667	1.066667	0.866667	1.9	1.9	
983	10	1.266667	0.866667	1.366667	2.1	1.9	1.7	1	0.933333	1.666667	2.2	2.1	1.466667	1.133333	0.9	1.733333	2.266667
984	11	1	0.866667	1.533333	2.166667	1.933333	2.033333	1.233333	0.933333	1.4	2.1	1.433333	1.266667	0.933333	1.766667	2.1	
985	12	1	1	1.433333	2.133333	1.933333	1.866667	1.3	0.833333	1.4	2.1	1.433333	1.266667	0.933333	1.766667	2.033333	
986	13	1.2	1	1.433333	2.1	1.766667	1.933333	1.266667	0.9	1.333333	2.066667	1.633333	1	0.866667	1.966667	2.033333	
987	14	1.133333	1.033333	1.6	1.966667	1.766667	1.733333	1.233333	1.166667	2.133333	1.3	1.2	0.866667	2.133333	2		
988	15	1.333333	0.833333	1.266667	2.233333	1.833333	2.066667	1.333333	0.533333	1.766667	2	1.733333	1.1	0.8	1.866667	2	
989	16	0.933333	0.866667	1.666667	2.266667	1.766667	1.933333	0.933333	0.966667	1.6	2.066667	1.433333	1.066667	0.966667	1.9	2.133333	
990	17	1.366667	1.2	1.333333	2	1.6	1.833333	1.133333	0.866667	1.433333	2.233333	1.2	1.266667	0.966667	2.1	1.966667	
991	18	0.966667	1	1.566667	2.233333	1.733333	2.033333	1.2	1	1.333333	1.933333	1.633333	1.2	0.8	1.8	2.066667	
992	19	1.4	0.8	1.433333	2.233333	1.633333	1.933333	1.233333	0.766667	1.433333	2.133333	1.7	1.2	0.7	1.9	2	
993	20	1.166667	0.766667	1.6	1.966667	2	1.7	1	1.033333	1.533333	2.133333	1.5	1.3	0.733333	1.666667	2.3	
994	21	1.233333	0.7	1.5	2.066667	2	1.833333	1.366667	0.766667	1.5	2.033333	1.5	1.1	0.933333	1.833333	2.133333	
995	22	1.066667	0.933333	1.466667	2.1	1.933333	2	1.166667	0.833333	1.466667	2.033333	1.5	1.3	0.7	1.766667	2.233333	
996	23	1.166667	0.133333	1.466667	2.133333	1.7	1.866667	1.066667	0.7	1.6	2.066667	1.666667	0.866667	0.833333	1.966667	2.166667	
997	24	1.066667	0.833333	1.433333	2.3	1.866667	1.933333	0.933333	0.966667	1.5	2.166667	1.466667	1.5	1.366667	0.9	1.8	1.933333
998	25	1.3	0.733333	1.533333	2.2	1.7	1.733333	1.8	0.133333	0.9	1.6	2.166667	1.5	1.066667	0.966667	1.666667	
999	26	1.2	0.6	1.7	2	2	1.7	1.366667	1	1.6	1.833333	1.633333	1.233333	0.833333	1.766667	2.033333	
1000	27	1.033333	1	1.666667	2.066667	1.733333	1.8	1.466667	1	1.3	1.933333	1.533333	1.166667	0.766667	1.9	2.133333	
1001	28	1.033333	0.866667	1.6	2.033333	1.966667	1.7	1.2	0.9	1.6	2.1	1.4	1	1.1	1.933333	1.966667	
1002	29	1.033333	0.833333	1.5	2.166667	1.966667	1.933333	1.166667	1.033333	1.366667	2	1.466667	1.2	0.766667	1.966667	2.1	
1003	30	1.2	0.766667	1.666667	2.133333	1.833333	2.033333	1.7	1.2	0.833333	1.466667	2.3	1.2	0.633333	1.833333	2.2	
1004	31	1.133333	0.833333	1.5	1.966667	2.066667	1.666667	1.266667	0.766667	1.6	2.1	1.533333	1.066667	0.933333	2.033333	2	
1005	32	1.266667	0.766667	1.433333	1.933333	2.1	1.9	1.233333	0.733333	1.6	2.033333	1.6	1.066667	0.8	1.866667	2.166667	
1006	33	1.166667	0.9	1.5	2.166667	1.766667	1.733333	1.333333	0.833333	1.533333	2.066667	1.366667	1.333333	0.833333	1.9	2.066667	
1007	34	1	0.866667	1.533333	2.066667	2.033333	1.966667	0.866667	1	1.5	2.166667	1	1.4	1.133333	0.8	2	2.066667
1008	35	1.066667	0.866667	1.5	2.233333	1.833333	2.1	0.9	0.933333	1.433333	2.133333	1	1.566667	0.7	1.433333	2.2	
1009	36	1.2	1	1.466667	2.066667	1.766667	1.966667	1.166667	0.9	1.433333	2.033333	1.266667	1.2	0.766667	2.166667	2.1	
1010	37	1.033333	1.033333	1.5	2.2	1.733333	2	1.066667	1	1.3	2.133333	1.466667	1.133333	0.866667	2.033333	2	
1011	38	1	0.966667	1.433333	1.9	2	2.1	1.866667	1.433333	0.933333	1.433333	1.833333	1.7	1.1	1.033333	1.733333	1.933333
1012	39	1.033333	0.733333	1.566667	2.1	1.2	1.066667	1.866667	1.166667	0.866667	1.433333	2.166667	1.766667	1.166667	0.7	1.666667	2.2
1013	40	0.933333	1.033333	1.433333	2.166667	1.933333	1.833333	1.1	0.9	1.466667	2.2	1.366667	1.4	0.833333	2	1.9	
1014	41	1.066667	0.866667	1.733333	2.033333	1.8	1.833333	1.066667	0.866667	1.466667	2.266667	1.5	1.166667	1	1.766667	2.066667	
1015	42	1.033333	0.966667	1.566667	2.133333	1.8	1.933333	1.166667	0.833333	1.6	1.233333	1.6	1.233333	1	1.833333	1.833333	
1016	43	1	0.933333	1.9	1.9	1.766667	1.866667	1.166667	0.866667	0.8	1.466667	2.2	1.5	1.233333	0.966667	2.133333	
1017	44	1	0.866667	1.333333	2.366667	1.933333	1.866667	1	0.866667	1.633333	2.033333	1.3	1.4	1.266667	0.766667	2.033333	
1018	45	0.933333	0.866667	1.6	2.233333	1.866667	1.933333	1.166667	0.9	1.533333	1.966667	1.566667	1.133333	0.933333	1.733333	2.133333	
1019	46	1.133333	0.7	1.433333	2.233333	2	1.766667	1.166667	1.066667	1.666667	2.333333	1	1.133333	0.9	2	1.966667	
1020	47	1.133333	0.766667	1.6	2.2	1.8	1.966667	1.033333	0.933333	1.533333	2.033333	1.366667	1.033333	1.666667	1.833333	2.1	
1021	48	1.166667	0.933333	1.6	2.066667	1.733333	1.666667	1.233333	0.733333	1.666667	2.2	1.833333	1.066667	0.866667	1.733333	2	
1022	49	1.133333	1.066667	1.3	2.133333	1.866667	2.1	1.133333	0.833333	1.466667	1.966667	1.333333	0.733333	1.7	2.166667	1.066667	
1023	50	1.2	0.766667	1.566667	2.133333	1.833333	1.966667	0.866667	1.833333	1.566667	2.266667	1.733333	0.966667	1.866667	1.966667	1.066667	

46. A young woman with long, dark hair sits alone in a dimly lit room, her face illuminated by the soft glow of a nearby lamp. Tears stream down her cheeks, glistening in the light, as she clutches a crumpled letter in her trembling hands.

48. a child is playing the guitar in a flower garden.

49. a couple of friends is biking in a living room.

50. a group of school children is seen walking together, with smartphones.

1026 **C ABLATION STUDY SETTINGS**
10271028 **C.1 EVALUATION PROTOCOL**
10291030 To address the computational challenges of comprehensive evaluation, we employ a *customized*
1031 *VBench* as our primary assessment methodology. This choice is motivated by the fact that a full
1032 *VBench* evaluation requires over 160 hours per model variant on a standard NVIDIA A100 GPU,
1033 rendering full metric computation impractical for iterative ablation studies. Our customized protocol
1034 uses a carefully selected subset of 50 video-generation prompts. All ablation experiments strictly
1035 adhere to this fixed prompt set, ensuring direct comparability across architectural variants while
1036 reducing the average evaluation time to 4 hours per model.1037 For these ablation studies, we report seven metrics that can be computed with this prompt subset:
1038 two visual consistency metrics—*subject consistency*, *background consistency*; two motion-related
1039 metrics—*temporal flickering*, *motion smoothness*; two visual quality-related metrics—*aesthetic*
1040 *quality*, *image quality*; and one video-text alignment metric—*overall consistency*. In Table 4, the
1041 Avg. Score is the arithmetic mean of these metrics.1042
1043 **C.2 EXPERIMENTAL DESIGN**
10441045 Our ablation study of architecture design adopts a strategic weight initialization approach to enable
1046 efficient hypothesis testing. We first pre-train the model with attention operation and then initialize
1047 part of the Mamba layer’s projection matrices the using pre-trained weights, following the technique
1048 in (Wang et al., 2024c). Subsequent training is constrained to 20,000 iterations with a learning rate
1049 1e-4, using the same training dataset for all models. This design ensures that each architectural variant
1050 undergoes identical optimization conditions, with only the target module parameters being modified
1051 between experimental conditions.1052
1053 **D TRAINING DETAILS.**
10541055 **D.1 MULTI-STAGE TRAINING**
10561058 To efficiently pre-train the M4V model, we adopt a progressive training strategy. The process begins
1059 with text-to-image (T2I) training at 384p resolution. During the subsequent text-to-video (T2V)
1060 pre-training phase, we gradually increase the resolution from 384p to 768p and extend the video
1061 length from 57 to 121 and 241 frames, training with a combination of image and video data. This
1062 staged approach ensures stable adaptation and longer token sequences. For the T2I phase, we follow
1063 the training settings from (Jin et al., 2024), using our own image dataset.1064 **T2V Training.** Direct training on 5-second (121-frame) videos led to very slow convergence. To
1065 address this, we first trained on 2-second (57-frame) video data at 384p resolution. This stage utilized
1066 the WebVid10M, OpenSora-Plan 1M, and OpenVid1M datasets. The 2-second T2V training was
1067 conducted using a learning rate of 1×10^{-4} , 64 GPUs, and 40k steps. We then transitioned to training
1068 on 5-second (121-frame) videos using the same datasets but with extended frame lengths. This phase
1069 used the same learning rate, 64 GPUs, and 60k steps.1070 **Upscaling to 768p.** To further improve visual fidelity and motion smoothness, we performed training
1071 on 768p videos with lengths of 121 or 241 frames. This step significantly enhanced video clarity and
1072 extended generation duration. At this stage, only the OpenSora-Plan 1M and OpenVid1M datasets
1073 were used, due to the relatively lower quality of WebVid10M. The model was trained with a learning
1074 rate of 5×10^{-5} , using 128 GPUs for 20k steps.1075 **Quality Tuning with Synthetic Data.** We observed that existing datasets lacked sufficient motion
1076 diversity (e.g., walking, running), limiting generalization in dynamic scenarios. To alleviate this,
1077 we synthesized approximately 80,000 videos using models such as HunyuanVideo. These were
1078 generated from GPT-4o prompts focused on various subject motions. In the final training stage, we
1079 incorporated these generated videos alongside OpenSora-Plan 1M and OpenVid1M, training the
model with a learning rate of 5×10^{-5} , using 128 GPUs for 30k steps.

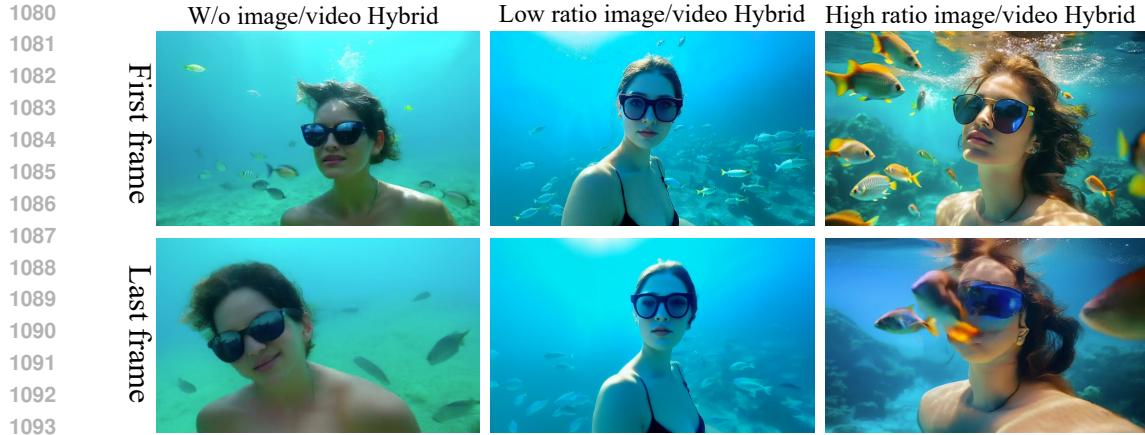


Figure 8: Ablation study of different image/video ratio.

Reward Learning. To further enhance aesthetic quality in later frames, we introduced a post-training phase after the main training. This phase employed two reward models: one for aesthetic scoring (Wu et al., 2023; Liao et al., 2025) and another for text-image alignment (Radford et al., 2021). We set the reward loss weight to 0.1 and sampled the final 8 latent frames for fine-tuning. This phase used a learning rate of 1×10^{-5} , 64 GPUs, and ran for 10k steps.

Effect of Different Image/Video Ratio. In our experiments, we observe that a higher image-to-video ratio in the training data often leads to subject deformation in later frames. This may be due to the training gradients from image supervision dominating the learning process, causing the autoregressive model to overemphasize the generation of the first frame. Therefore, selecting an appropriate image-to-video mixing ratio is critical for improving the performance of the autoregressive model, as illustrated in the left part of Figure 8. We adopt an image:video ratio of 1:8 as our default setting.

D.2 PRE-TRAINING INITIALIZATION

To accelerate the learning process of the Mamba-based model, we first pre-train the model using attention operations, at the resolution of 384p. Following the strategy proposed in Mamba-in-LLaMA (Wang et al., 2024c), we initialize the Mamba layers using the pre-trained attention weights. Specifically, we initialize the projection matrices B , C , and the input projection x in the Mamba block with the weights W_q , W_k , and W_v from the attention layer, respectively.

After this initialization, we perform additional fine-tuning to adapt the remaining uninitialized weights, such as A and Δ . This fine-tuning stage is conducted with a learning rate of 1×10^{-4} , using 64 GPUs for 20k steps at the resolution of 384p.

E ADDITIONAL VISUAL RESULTS.

E.1 TEXT-TO-VIDEO RESULTS.

We show more visualisation results in Fig. 9. Our advanced design allows the model to create videos that are visually consistent and aesthetically high-quality.

E.2 IMAGE-TO-VIDEO RESULTS.

Since our model is an autoregressive diffusion model, it is inherently suited for the task of generating videos from images. Specifically, by setting a given image as the initial frame, the model can autoregressively generate the subsequent frames. We show some results in Fig. 10.

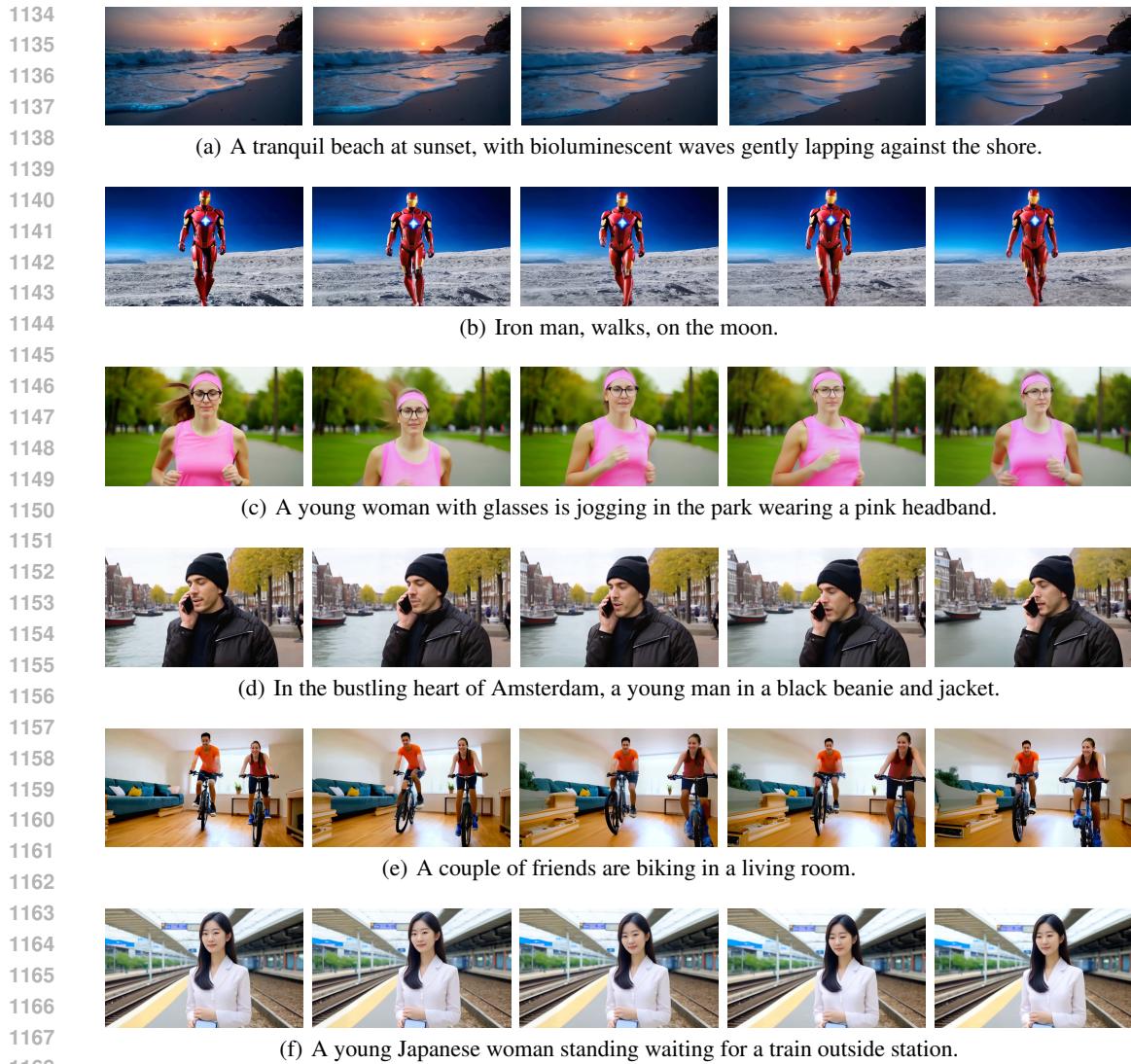


Figure 9: Visualization of text-to-video generation results which are generated at 5s, 768p, 24fps.

E.3 ADDITIONAL IMPROVEMENTS

In video generation, while the image quality, aesthetics, and motion of the earlier frames are generally good, the image quality of later frames tends to degrade. This is primarily due to the accumulation of errors from the previously generated frames, which impacts the subsequent ones. To prevent this error propagation, we propose the use of pure T2I-based correction. Specifically, when generating the first frame, the model effectively operates in an unconditional mode, similar to the unconditioned version of text generation. This allows us to leverage the model’s strong T2I capabilities to guide the autoregressive generation of subsequent frames.

Our approach introduces a novel strategy for adjusting the flow prediction during the inference stage. Initially, at the final stage of the pyramid, the model predicts a low-quality, aesthetically suboptimal flow velocity v_l . We then compute the predicted x_0 , and using forward noise addition, we re-input it back into the model to correct the quality. This process ensures that the autoregressive model’s limitations in fitting high-quality video frames are mitigated by leveraging the model’s capability in fitting high-quality image data during T2I tasks.

The self-quality guidance formula is defined as:

$$v_l = M(x_t, f, \emptyset) + w_p \cdot (M(x_t, f, p) - M(x_t, f, \emptyset)) \quad (8)$$

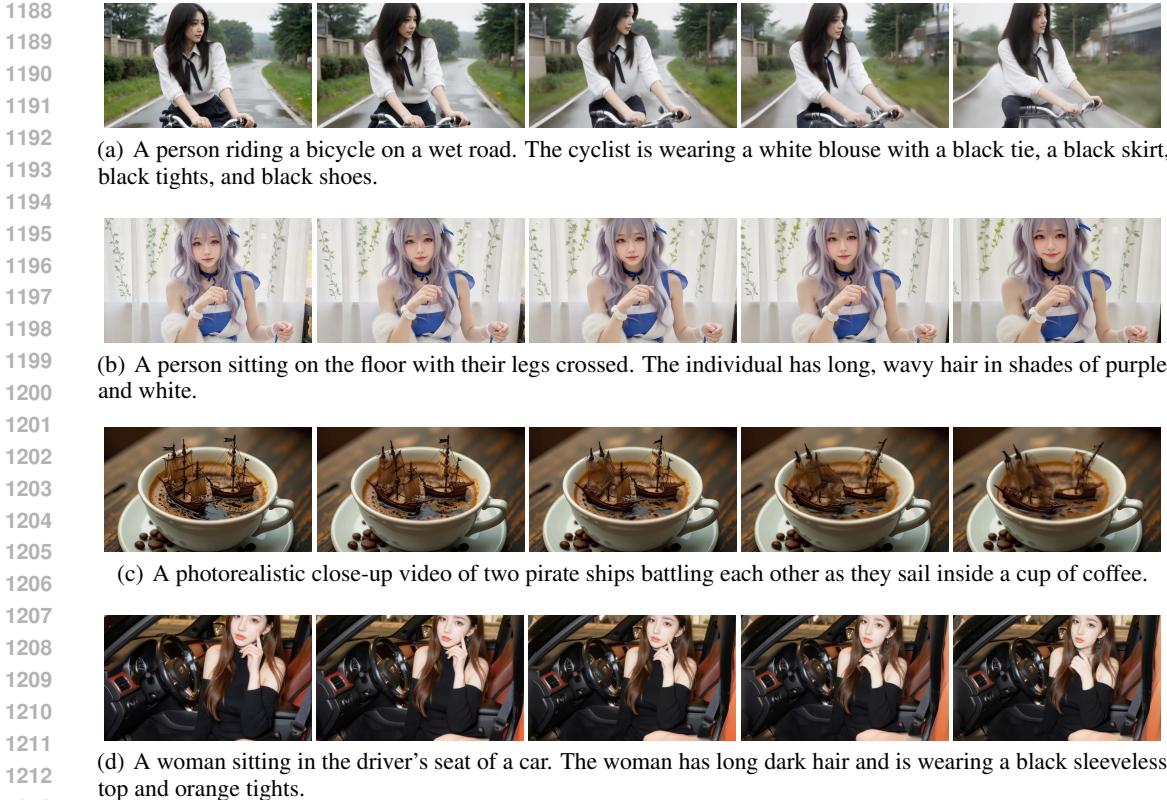


Figure 10: Visualization of image-to-video generation results which are generated at 5s, 768p, 24fps.

Table 7: Effect of self-guidance on *customized VBench* prompts.

	Sub-Cons	BG-Cons	Temp-Flick	Motion-Smooth	Aes-Qual	Img-Qual	Overall-Cons
w/o self-guidance	95.66	96.11	98.62	99.38	63.61	64.69	23.89
w/ self-guidance	95.60	96.12	98.61	99.38	63.89	66.38	26.62

$$v_h = M(x_t, \emptyset, \emptyset) + w_p \cdot (M(x_t, \emptyset, p) - M(x_t, \emptyset, \emptyset)) \quad (9)$$

$$v_{\text{sqg}} = v_l + w_{\text{sqg}} \cdot (v_h - v_l), \quad (10)$$

where M represents our model, f denotes the condition frames, and p refers to the text prompt. Since the earlier frames are typically generated with higher quality, we only apply self-quality guidance starting from the 8th latent frame. Additionally, due to the early stages of the denoising pyramid not yet forming the overall structure and content of the image frames, we begin using self-quality guidance only at the later stages of the pyramid when the texture and content become clearer. This functionality is similar to conventional classifier-free guidance, and its hyperparameters can be adjusted during inference depending on the case. Note that for **all** results in our main paper, we do **not** use the self-quality guidance. We consider this additional improvement as an optional but useful plug-in, which users may choose to enable. Table 7 shows the effect of the self-guidance on our customized VBench, with our final-stage model.

E.4 THE USE OF LARGE LANGUAGE MODELS (LLMs)

We utilize large language models only for grammar checking, style refinement, and language polishing. No LLMs are used for direct content generation or for research ideation.