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Abstract

Pretrained language models (LMs) are susceptible to generate text with nonfac-
tual information. In this work, we measure and improve the factual accuracy
of large-scale LMs for open-ended text generation. We design the FACTUALI-
TYPROMPTS test set and metrics to measure the factuality of LM generations.
Based on that, we study the factual accuracy of LMs with parameter sizes ranging
from 126M to 530B. Interestingly, we find that larger LMs are more factual than
smaller ones, although a previous study suggests that larger LMs can be less truthful
in terms of misconceptions. In addition, popular sampling algorithms (e.g., top-p)
in open-ended text generation can harm the factuality due to the “uniform random-
ness” introduced at every sampling step. We propose the factual-nucleus sampling
algorithm that dynamically adapts the randomness to improve the factuality of
generation while maintaining quality. Furthermore, we analyze the inefficiencies
of the standard training method in learning correct associations between entities
from factual text corpus (e.g., Wikipedia). We propose a factuality-enhanced
training method that uses TOPICPREFIX for better awareness of facts and sentence
completion as the training objective, which can vastly reduce the factual errors.

1 Introduction
Large-scale pre-trained language models (LMs) have demonstrated impressive natural language
generation results [1–4]. However, the generative LMs (e.g., GPT-3) are solely trained to model the
statistical correlations between subword tokens [5], and have limited capability to generate factually
accurate text as illustrated in Table 1. As a result, there are increasing concerns about the nonfactual
generations from large-scale pre-trained LMs [e.g., 6–8], which needs to be adequately addressed for
their safe deployment in real-world applications, e.g., content creation [9] and dialogue [10].

In previous studies, different metrics and methods have been proposed to measure and improve the
factual accuracy of language generation within different tasks [11], including text summarization [e.g.,
12–15], question answering [e.g., 16–18], and table-to-text generation [e.g., 19, 20]. However, these
works focus on the faithfulness (or factuality) of the fine-tuned LMs for particular downstream
tasks (i.e., factual consistency between source and target text). Little exploration has been made to
address the factual errors in pretrained LMs for general-purpose open-ended text generation, where
the goal is to generate a coherent continuation from the given context (e.g., the use cases from GPT-2).

One of the popular methods for enhancing generation factuality is to incorporate external knowl-
edge sources [21–23]. Structured knowledge bases and graphs have been utilized for grounded
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text generation [e.g., 24, 25], where the LMs are trained to select and copy relevant facts from
external knowledge sources. In contrast to the sizeable online text with factual information, the
structured knowledge graphs only encode a limited amount of knowledge as they require expensive
human annotations for high-quality construction. A method that can directly leverage plain text
knowledge (e.g., Wikipedia, encyclopedia books, peer-reviewed publications) would be desirable
for factuality enhancement as it can remove the human annotation bottleneck and easily scale up the
amount of injected knowledge. Augmenting LM with an information retrieval (IR) system is one
possible solution to leverage textual facts, however, at the cost of additional complexity and resource
overhead to the model [10, 26, 22, 27, 28]. Therefore, we explore an IR-free method that enhances
the innate factuality of LMs by continued training on a factually rich plain-text corpus.

In this work, we focus on measuring and improving the factuality of large-scale pre-trained language
models (LMs) for open-ended text generation. Specifically, we make the following contributions:

1. We build the benchmark and metrics 3 to measure the factual accuracy of pre-trained LM
for open-ended text generation. We demonstrate a good correlation between the proposed
automatic metrics and human assessment of factuality. Based on that, we systematically study
the factual accuracy of LMs with parameter sizes ranging from 126M to 530B and find that
large LMs have higher factual accuracy than smaller ones (e.g., named-entity factual error is
reduced from 63.69% to 33.3%).

2. We study the decoding algorithms of LM in terms of factual accuracy. We unveil that the
popular nucleus sampling algorithm [29] for open-ended text generation can easily mix up
different named entities or randomly fabricate information due to the “uniform randomness”
introduced at every decoding step. We propose factual-nucleus sampling algorithm that
promotes generation factuality while maintaining the quality and diversity.

3. We explore training methods that can effectively leverage text corpus with rich facts (e.g.,
Wikipedia). We find that directly continuing the training of LM on factual text data [30] does
not guarantee the improvement of factual accuracy. We propose factuality-enhanced training
to address the underlying inefficiencies of this baseline. Our method consists of i) an addition
of a TOPICPREFIX that improves the awareness of facts during training, and ii) a sentence
completion task as the new objective for continued LM training [e.g., 30].

4. We demonstrate that the factual accuracy of large-scale LMs (up to 530B) can be significantly
enhanced (i.e., named-entity factual error is reduced from 33.3% to 14.5%) after applying the
proposed factuality-enhanced training with factual-nucleus sampling algorithm.

We organize the rest of the paper as follows. We discuss related work in § 2 and present our benchmark
setup with evaluation protocol in § 3. We study the factual accuracy of LMs with respect to model
size, prompt type, and choice of decoding algorithm in § 4. After that, we present factual-nucleus
sampling algorithm in § 5, and factuality-enhanced training in § 6. We conclude the paper in § 7.

2 Related Work

Factuality vs. Model Size Lin et al. [31] propose the TruthfulQA benchmark to measure the
falsehood generations from different sized LMs. The result suggests that bigger LMs pre-trained
on web text are generally less truthful than smaller ones in terms of false belief or misconception.
At first glance, this is contradictory to our observation, however, our work focuses on different
knowledge to TruthfulQA work. The TruthfulQA benchmark focuses on conceptual knowledge,
while our benchmark focuses on factual knowledge [32] 4. Large LMs can be good at recalling
factual knowledge given substantial pre-training corpus, suggested by previous studies on LM’s
parameteric knowledge [33], but there still remains room for improvement for reasoning conceptual
knowledge [34, 35].

Parametric Factual Knowledge A group of work addresses the factual errors in the parametric
knowledge of LMs that is acquired from training corpus [36–38]. The correctness of the parametric
knowledge is commonly tested in cloze-style question answering format [33] (e.g., Person X is
born in __). Efforts are made to fine-tune the pre-trained LM to “inject” more knowledge and
improve its ability to answer factual questions without consulting external knowledge source [17].

3The implementation can be found in https://github.com/nayeon7lee/FactualityPrompt
4According to Krathwohl [32], knowledge can be categorized into four types: i) factual knowledge, ii)

conceptual knowledge, iii) procedural knowledge, and iv) metacognitive knowledge.
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Table 1: Example of continuations from the 530B LM with greedy decoding and nucleus sampling p = 0.9,
along with the continuation from factuality-enhanced 530B LM with factual-nucleus sampling. Red represents
nonfactual, green represents factual, and strikethrough represents repetition. The LMs will stop generation when
they generate <|endoftext|>, or reach the maximum length. See Appendix A for more examples.

[Factual Prompt] One of lung cancer’s symptoms is shortness of breath.

[Greedy] The American Cancer Society estimates that more than 228,000 people will be diagnosed with
lung cancer in the United States this year.\n\n The American Cancer Society estimates that more than
228,000 people will be diagnosed with lung cancer in the United States this year.\n\nThe American Cancer
Society estimates that more than 228,000 people will be diagnosed with lung cancer in the United...

[p=0.9] That would make an oxygen mask one of the more popular treatments for this devastating disease.
It helps ease breathing and give patients back their strength. Learn more here.<|endoftext|>"

[Ours] Other symptoms include coughing (including coughing up blood), chest pain, hoarseness, weight
loss, and loss of appetite. The symptoms of lung cancer may resemble those of a bad cold or pneumonia. A
chest x - ray is necessary to confirm the diagnosis. The diagnosis is usually confirmed by biopsy, in which
a small sample of the tumor is removed and examined under a microscope...

[Non-Factual Prompt] Cancer can be prevented by drinking too much alcohol.

[Greedy] \nCancer can be prevented by eating too much red meat.\n\nCancer can be prevented by eating
too much sugar.\n\nCancer can be prevented by eating too much fat.\n\nCancer can be prevented by eating
too much processed food.\n\nCancer can be...

[p=0.9] More than 90% of hepatocellular carcinoma is associated with alcohol use.\n\nAbout 9 percent
of cancers can be prevented if we don’t eat more than 1.5 ounces of processed meat each day.\n\nDiet is
believed to play a role in 7% of cancers and...

[Ours] Cancer is often treated with some combination of radiation therapy, surgery, chemotherapy and
targeted therapy. Pain and symptom management are an important part of care. Palliative care is particularly
important in people with advanced disease. The chance of survival depends on the type of cancer and
extent of disease at the...

Moreover, some works attempt to edit and fix the factual errors [39–41]. However, it is unclear if the
improvement of fine-tuned LM for QA-style task can help to mitigate factual errors in open-ended
text generation task.

Hallucination in downstream NLG tasks There are active efforts to reduce the unfaithfulness
or factual errors of task-specific LMs fine-tuned for various downstream natural language gener-
ation (NLG) tasks such as summarization [42–48], data-to-text [49, 50, 20, 51–53] and dialogue
system [54–58]. In contrast to these works, we focus on general purpose LM for open-ended text
generation task.

Human-in-the-loop Human feedback or demonstrations are valuable to improve the factual accuracy
of LMs. For example, InstructGPT [59] fine-tune the LMs with collected human feedback for a
truthful generation. WebGPT [7] is trained to cite its sources when it generates output, thus allowing
humans to evaluate factual accuracy by checking whether a claim is supported by a reliable source. In
this work, we focus on human-free solution to mitigate nonfactual generations, as it is less expensive
and easy to scale.

3 FACTUALITYPROMPTS and Evaluation Metrics

Our goal is to automatically measure and evaluate the factuality of large-scale pre-trained language
models (LMs) for open-ended text generation. Factuality refers to being coherent to provided ground-
truth knowledge sources in NLP [11]. The biggest challenge of evaluating factuality for open-ended
text generation is associated with locating the ground-truth knowledge from the myriad of world
knowledge. Evaluating open-ended text generation can be challenging due to the lack of ground-truth
references for generation [29, 60]. In this study, the scope of our ground-truth knowledge source is
set to Wikipedia 5 because this helps simplify the evaluation setup.

5Note that Wikipedia is one of the most commonly-used, accessible, large-scale, good quality, unstructured
knowledge sources. Our proposed methods can easily generalize to other knowledge sources in plain text (e.g.,
arXiv papers, medical reports, reliable newspapers).
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Figure 1: Illustration of our evaluation framework

As illustrated in Fig 1, our evaluation framework consists of the following phases. In phase 1, LM
generates the continuations from the provided test prompts (§3.1). In phase 2, we first identify check-
worthy continuations, which refers to the generations with facts that require factuality evaluation.
One may refer to Appendix B for details. This step is necessary as open-ended text generation may
generate text that does not contain facts such as personal opinion or chitchat-style text (e.g., “I like
eating apples!”). Then, we prepare relevant ground-truth knowledge required for factual verification
of check-worthy continuations (§3.2). Lastly, we calculate the factuality and quality measures (§3.3).

3.1 FACTUALITYPROMPTS Testset

We design our test prompts (FACTUALITYPROMPTS) that follows a similar setup as in RealToxici-
tyPrompts [61], which has toxic and nontoxic prompts to evaluate the toxicity of LM continuations.
FACTUALITYPROMPTS consists of factual and nonfactual prompts that allow us to study the impact
of prompts’ factuality on the LM continuation; this simulates the real-world scenario where input
texts are not guaranteed to be factual. The data construction and statistic details are provided in
Appendix D, and we will release the constructed FACTUALITYPROMPTS for future research.

3.2 Ground-Truth Knowledge Preparation

To evaluate the factuality of a given generation, we need to prepare relevant ground-truth knowledge.
The required ground-truth knowledge can be either document-level or sentence-level, depending on
the type of factuality metrics (discussed in §3.3). The correctness of factuality evaluation is crucially
dependent on the correctness of the ground-truth knowledge. To ensure that our factuality evaluation
is not distorted by the irrelevant provision of ground-truth knowledge, we do the following:

For document-level ground-truth knowledge, we directly use the Wikipedia document annotation
from the FEVER dataset. This way, we can mitigate any potential error from automatic document
retrieval. For sentence-level ground-truth knowledge, we do automatic sentence selection by using
two different methods to maximize the chance of recalling the relevant ground-truth knowledge.
We treat the generated text as query q and Wikipedia sentences as a pool of candidates C =
{c1, c2, c3, ...cN} where N is the number of sentences in the Wikipedia document. One ground-truth
sentence is retrieved by obtaining TF-IDF vector representations of q and C and selecting the ci with
the highest cosine similarity with the q. Another is retrieved by obtaining the contextual representation
of q and C using SentenceTransformer [62] and selecting the cj with the highest cosine similarity.

3.3 Evaluation Metrics

We adapt commonly used metric designs from the hallucination literature [11]: named-entity (NE)
based metric and textual entailment based metric. Each metric captures a different aspect of factuality,
so we use both metrics for better understanding of factuality.

Hallucinated NE Error Since NEs are one of the core building blocks of “fact”, NE-related metric
design is one of the common choices in literature [11, 63, 64]. In this work, we specifically adopt
the NE-based metric [64] that is designed with a belief that a model is hallucinating (making factual
errors) if it generates a NE that does not appear in the ground-truth knowledge source.
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We define our NE-based metric to be: NEER = |HALLUNE| / |ALLNE| where ALLNE is the set of all
the NEs detected in the LM generation, and HALLUNE is subset of NEAll that does not appear in the
ground-truth Wikipedia document. Note that evaluating NEER requires document-level ground-truth.
To ensure the quality of the metric, we also take the same precautions used by [64]. For named
entities consisting of multiple words, partial n-gram overlaps are also treated as a “match”. This
ensures we can address the shortened form of named entities – e.g., “Barack Hussein Obama II” vs.
“Obama”. Note that stopwords (e.g., the, a) are not considered in the partial n-gram overlaps. The
named entities are detected using a publicly available pre-trained NE detection model from Spacy.io.
Entailment Ratio Textual Entailment (or natural language inference) is a task of determining
whether a hypothesis is entailed by, refuted by, or neutral to a given premise [65]. Entailment-
based metrics are based on the rationale that factual generation will be entailed by the ground-truth
knowledge [11, 12, 66–68].

We define the entailment ratio as: EntailR= |ENTAILgen| / |ALLgen|, where ALLgen is set of all
generations, and ENTAILgen is the set of generations that are entailed by a entailment model. To
obtain the entailment scores, we leverage a pretrained entailment model that is publicly available 6;
a RoBERTa [69] model fine-tuned on MNLI [70] dataset. EntailR requires sentence-level ground-
truth because only a few Wikipedia sentences are relevant to specific factual information in a given
generation. For example, “Barack Obama was born in Hawaii” is only relevant to the Wikipedia
sentence that mentions his birth location. Note that our EntailR is a stricter form of metric that does
not treat neutral class to be factual.
Generation Quality Evaluation We also evaluate the generation quality from three aspects:
i) Fluency is an important aspect of text generation. We measured it by the mean perplexity of
generated continuations evaluated with a large pretrained LM, which is 1.3B LM in this work .
ii) Diversity is an important characteristic of LM that makes the generation more interesting and
engaging – it is bland and boring to always generate same texts. It is measured using the mean
number of distinct n-grams (we report 4-gram), normalized by the length of text [71, 72] among the
10 generations for each prompt (i.e., in total, 160,000 generations to evaluate the diversity of each
method). iii) Repetition is a common form of degeneration that is very undesirable. We measure the
number of repetitive substrings that get generated at the end of the generations by using the publicly
available metric code from Holtzman et al. [29].

3.4 Correlation with Human Judgement

Table 2: Pearson correlation coefficients
between human factuality annotation and
our factuality metrics. p-values for all results
are 0.00.

Annotation EntailR NEER

Expert 0.81 -0.77

Majority-voting 0.47 -0.46

Although NE-based and entailment-based metrics have
been used in downstream NLG tasks [11], they have not
been utilized for evaluating factual accuracy in open-ended
text generation. To ensure their validity, we collect human
annotations to evaluate the correlation between our auto-
matic factuality metrics with human judgement – i.e., are
generations with higher EntailR and lower NEER errors,
more likely to be perceived as factual by human?

We obtained human annotations for 200 randomly chosen
LM continuations of varying NEER and EntailR scores.
The annotators are asked to fact-check the LM continuations against Wikipedia and assign factuality
label (1 = Factual : can find supporting Wikipedia evidence. 0 = Non-factual : cannot find supporting
Wikipedia evidence).

The fact-checking annotation is a challenging and time-consuming task, as it requires the annotator to
carefully read multiple evidences and reason over them. To improve the annotation quality, we have
two types of annotations. The first type is two annotations from average English speaking workers on
Appen.com platform, and the second type is one “expert” annotation from one of the authors who
is familiar with the task and spent solid amount of time checking each samples. Based on these
three annotations, we do majority voting and report the Pearson correlation results in Table 2. We
also report the correlation result solely using the expert annotations, and show that there is strong
correlation between human judgement of factuality and the proposed automatic metric NEER and
EntailR. NEER is negatively correlated with factuality because the lower the NEER error, the better
the factuality.

6Refer to the code snippet provided in https://pytorch.org/hub/pytorch_fairseq_roberta/
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Table 3: The factuality of LMs with different parameter size from 12M to 530B. NEER refers to the named-entity
error, EntailR refers to entailment ratio, Div. refers to distinct 4-grams, and Rep. refers to repetition. " means the
higher the better, and # means the lower the better.

Size Decode Factual Prompt Nonfactual Prompt
NEER# EntailR" Div." Rep.# NEER# EntailR" Div." Rep.#

126M p=0.9 63.69% 0.94% 0.90 0.58% 67.71% 0.76% 0.90 0.38%
greedy 48.55% 8.36% 0.03 59.06% 54.24% 6.25% 0.03 59.90%

357M p=0.9 56.70% 2.01% 0.87 0.55% 60.80% 1.42% 0.88 0.35%
greedy 43.04% 14.25% 0.03 45.18% 46.79% 9.89% 0.04 46.30%

1.3B p=0.9 52.42% 2.93% 0.88 0.24% 56.82% 2.04% 0.89 0.25%
greedy 39.87% 12.91% 0.05 33.13% 45.02% 8.75% 0.05 36.20%

8.3B p=0.9 40.59% 7.07% 0.90 0.11% 47.49% 3.57% 0.91 0.08%
greedy 28.06% 22.80% 0.07 19.41% 32.29% 15.01% 0.07 13.26%

530B p=0.9 33.30% 11.80% 0.90 0.13% 40.49% 7.25% 0.92 0.08%
greedy 20.85% 31.94% 0.08 15.88% 27.95% 19.91% 0.08 16.28%

4 Factuality Analysis of Pretrained LMs

In this section, we perform a factuality analysis of LMs from three aspects: i) model size, ii) prompt
type and iii) decoding algorithm.

Model Size Researchers have observed the trend of larger LMs outperforming smaller ones in
various downstream tasks [73, 3, 2]. However, contradicting to these general observations, recent
studies suggest that more misconceptions tend to be generated from larger models [31], and zero-shot
fact-checking performance tend to stagnate with LM scaling [6]. We study the factuality of LMs with
a range of parameter sizes (126M, 357M, 1.3B, 8.3B, 530B) to understand whether such surprising
trend also applies to open-ended text generation. Note that, all LMs are pretrained on the same corpus
as in [4]. As shown in Table 3, generation factuality does improve with the scaling of model size,
e.g., NEER drops from 63.99% to 33.30% when parameter size scales up from 126M to 530B.

Prompt Type Prompts provided to the LM are known to significantly affect the quality and
characteristics of LM continuations [61, 74, 75]. We use our factual and nonfactual prompts to test
the behavior of LMs. Results in Table 3 show that both factual and nonfactual prompts can lead
to nonfactual generations, although factual prompts always result in less nonfactual generations.
Interestingly, the performance gap between factual and nonfactual prompts gets more prominent as
the model size increases (4% to 7% in NEER as parameter size increases from 126M to 530B). This
could be due to the larger LM can better understand the prompts and imitate the factual or nonfactual
prompts in the continuations.

Decoding Algorithm We investigate the choice of decoding algorithms and their impacts on the
factuality of generations. In particular, we compare two representative decoding algorithms that
are greedy decoding (i.e., maximize generation likelihood) and nucleus sampling [29]. Nucleus
sampling algorithm (a.k.a. top-p) samples only from the top subword candidates with total cumulative
probability p. It is popular for open-ended text generation because it solves the degeneration problems
of the greedy decoding algorithm (e.g., repetition). However, the results in Table 3 show that top-p
decoding underperforms greedy decoding in terms of factuality, although it obtains higher generation
diversity and less repetition. This intuitively makes sense because top-p can be seen as adding
“randomness” to encourage diversity, which as a result, can lead to factual errors. It is important
to understand that factuality of a sentence can be easily altered by one wrong choice of word. For
example, “Barack Obama was born in 1961” will be nonfactual if “1961” is changed to “1962”.
In the same sense, greedy decoding is more factual because its way of choosing the word with the
highest probability minimizes randomness and maximizes the utilization of parametric knowledge of
LM [33, 36]. However, greedy decoding sacrifices generation diversity and quality.

Error Types We conduct a qualitative analysis of the factual errors from greedy generation of
530B LM, to understand what are the remaining errors when the randomness from decoding choice
is strictly restricted. The two notable error types were:
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Table 4: 1.3B LM results with different decoding algorithms. NEERrefers to named-entity error, EntailRrefers
to entailed class ratio, Div. refers to distinct 4-grams, and Rep. refers to repetition. " means the higher, the better,
and # means the lower, the better. For factual-nucleus sampling, p, � and ! are nucleus probability, decay factor,
and decay lowerbounds respectively. See more results with different hyperparameters in Figure 2a and 2b.

Decoding Factual Prompt Nonfactual Prompt
NEER# EntailR" Div." Rep.# NEER# EntailR" Div." Rep.#

Greedy 39.9% 12.9% 0.05 33.1% 45.0% 8.8% 0.05 36.2%
Top-p 0.9 52.4% 2.9% 0.88 0.2% 56.8% 2.0% 0.89 0.3%

p | � Top-p + �-decay

0.9 | 0.9 41.1% 10.8% 0.43 30.7% 45.7% 6.8% 0.47 34.5%
0.9 | 0.5 39.9% 13.0% 0.08 33.1% 44.9% 9.1% 0.09 35.9%

p | � Top-p + �-decay + p-reset

0.9 | 0.9 41.5% 10.3% 0.52 10.3% 45.4% 6.3% 0.57 9.1%
0.9 | 0.5 39.3% 12.8% 0.34 17.8% 44.5% 8.4% 0.45 18.9%

p | � | ! Top-p + �-decay + p-reset + !-bound (factual-nucleus sampling)

0.9 | 0.9 | 0.7 46.2% 5.0% 0.78 1.2% 52.2% 3.2% 0.80 0.5%
0.9 | 0.9 | 0.3 42.1% 10.1% 0.55 7.1% 46.5% 5.6% 0.59 6.4%
0.9 | 0.9 | 0.2 41.7% 9.9% 0.52 8.6% 45.6% 6.2% 0.56 7.6%
0.9 | 0.5 | 0.3 41.0% 12.2% 0.47 13.0% 46.0% 7.0% 0.51 12.7%
0.9 | 0.5 | 0.2 39.3% 12.8% 0.38 16.1% 45.2% 7.8% 0.42 16.9%

• Named Entity Mix-up: Mixing up similar types of the named entity. For example, LM
generated “The movie is based on the novel of the same name by Gayle Forman.” about a film
called “The Best of Me”. However, the correct author’s name is “Nicholas Sparks”, not “Gayle
Forman”. Note that Gayle Forman is also an American young adult fiction author who writes
similar type of novels as Nicholas Sparks.

• Fabricated Fact: Fabricating some random facts. For example, “Samuel Witwer’s father
is a Lutheran minister.” Note that, the pretraining corpus contains non-factual or fictional
information, which can also contribute to such fabricated facts.

Both error types can be viewed as wrong associations of entities that appear at different parts of the
training corpus with similar context. Such behavior is unsurprising because these LMs are uniformly
trained with the next subword prediction objective instead of a fact-related objective.

(a) Diversity vs. NEER (b) Repetition vs. NEER

Figure 2: Comparison between nucleus sampling (blue line) and factual-nucleus sampling (orange
line). The x-axis is named entity error NEER. The y-axes are diversity and repetition in (a) and (b)
respectively. The lower the repetition, the better. It is evident that factual-nucleus sampling has better
trade-offs between factuality and diversity/repetition. For a reference, the diversity score of randomly
sampled 5000 Wikipedia documents is 0.767.
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5 Factual-Nucleus Sampling

In this section, we propose a new sampling algorithm that achieves a better trade-off between
generation quality and factuality than existing decoding algorithms.

5.1 Method

We hypothesize that the randomness of sampling is more harmful to factuality when it is used to
generate the latter part of a sentence than the beginning of a sentence. There is no preceding text
at the start of a sentence, so it is safe for LM to generate anything as long as it is grammatical
and contextual. However, as the generation proceeds, the premise become more determined, and
fewer word choices can make the sentence factual. Given the example “Samuel Witwer’s father is
a Lutheran minister”, the beginning of the sentence “Samuel Witwer’s father is” is not nonfactual.
However, the continuation of “Lutheran minister” makes the sentence nonfactual. Therefore, we
introduce the factual-nucleus sampling algorithm that dynamically adapts the “nucleus” p along the
generation of each sentence. In factual-nucleus sampling, the nucleus probability pt to generate the
t-th token within each sentence is,

pt = max{!, p⇥ �t�1},

where � is the decay factor for top-p probability, and ! lower bounds the decay of probability.
Specifically, it has the following parts:

• �-decay: Given that top-p sampling pool is selected as a set of subwords whose cumulative
probability exceeds p, we gradually decay the p value with decay factor � at each generation
step to reduce the “randomness” through time.

• p-reset: The nucleus probability p can quickly decay to a small value after a long generation. So,
we reset the p-value to the default value at the beginning of every new sentence in the generation
(we identify the beginning of a new sentence by checking if the previous step has generated a
full-stop). This reduces the unnecessary cost of diversity for any long generations.

• !-bound: If �-decay is applied alone, the p-value could become too small to be equivalent to
greedy decoding and hurt diversity. To overcome this, we introduce a lower-bound ! to limit
how far p-value can be decayed.

We will show the importance of each parts with ablation studies.

5.2 Result

We report our decoding experimental results with 1.3B LM 7 in Table 4. Additions of �-decay helps
improve top-p 0.9 factuality results – for instance, with decay rate � = 0.5, there is 12.5% drop
in NEER and 10.1% gain in EntailR. However, this affects the diversity and repetition to become
similar to greedy decoding. p-reset mitigates the repetition issue and improves diversity metric
without losing much in factuality metric. The effect is more drastic for the � = 0.5 option, where it
achieves 0.26 gains in diversity metric with negligible changes in factuality scores. By also adding
!-bound, we obtain the anticipated factuality performance (i.e., similar to greedy decoding), with
great improvement in generation quality over greedy; with p=0.9, �=0.9, !=0.3, we achieve ⇥11
improvement in diversity and ⇥4.6 improvement in repetition over greedy. Although our factual-
nucleus sampling still under-performs top-p 0.9 in terms of diversity, we believe this is an acceptable
trade-off to improve the factuality of LM for factually sensitive open-ended generation tasks. Our
proposed decoding does not harm the sentence fluency; its perplexity do not exceed the perplexity of
top-p. Refer to Appendix F for full perplexity results.

To further illustrate the underlying trade-off, we also compare the proposed factual-nucleus sampling
against the nucleus sampling with lower p values that are also expected to have lower randomness,
thus less factual error, in generations. Specifically, we plotted results for nucleus sampling with
p = {0.9, 0.7, 0.6, 0.5, 0.4, 0.3}, and factual nucleus sampling with the following p | � | ! choices:
0.9|0.9|0.7, 0.9|0.9|0.5, 0.9|0.9|0.4, 0.9|0.9|0.3, 0.9|0.7|0.3. The Fig 2a and Fig 2b respectively show
that the factual nucleus sampling method has better trade-offs than top-p in factuality-vs-diversity
and factuality-vs-repetition. In other words, it always achieves better factuality score with the same
level of diversity and repetition scores.

71.3B LM is mainly used as it is big enough to have good learning capacity yet not too resource expensive.
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6 Factuality-Enhanced Continued Training
This section introduces factuality-enhanced method for continued training of LMs [30]. We introduce
the TOPICPREFIX for better awareness of facts and the sentence completion loss as training objective.

6.1 Prepending TOPICPREFIX

Unstructured factual knowledge typically exists at a document level (i.e., a group of factual sentences
about an entity). This means that sentences can contain pronouns (e.g., she, he, it), making these
sentences factually useless standalone. To illustrate with an example from Barack Obama’s Wikipedia
page, “He previously served as a U.S. senator from Illinois from 2005 to 2008” cannot be a useful
standalone fact because it is unclear who “He” is. Due to the GPU memory limit and computation
efficiency, it is common to chunk documents in LM training corpus. This causes the “fragmentation”
of information and leads to wrong associations of entities that appear in independent documents
with similar contexts. As a remedy, we propose to prepend TOPICPREFIX to sentences in the factual
documents to make each sentence serve as a standalone fact. In our experiments, we mainly utilize
Wikipedia as the factual corpus and the Wikipedia document name as the TOPICPREFIX.

6.2 Sentence Completion Loss

We propose a sentence completion loss to address the incorrect association learned between entities.
To explain our rationale, let us recall the nonfactual example from §5: “Samuel Witwer’s father is
a Lutheran minister”. This sentence is nonfactual because LM failed to generate factually correct
information after “is”. In other words, LM failed to accurately complete the sentence given the
generated context. One reason is that the LM is uniformly trained to predict each subword token
within the sentence, when ensuring the correct prediction at the latter section of sentence is more
critical for factuality. Therefore, we construct a sentence completion loss, which makes the LM focus
on predicting the subwords later in the sentence. For implementation, we determine a pivot t for each
sentence, and then apply zero-masking for all token prediction losses before t. This pivot is only
required during training (i.e., no pivot needed during inference time).

We emphasize that this loss masking is different from the input token masking applied in BERT [73]
or BART [76], and the LM is still trained in an autoregressive manner. Note that many BART-based
summarization models are known to still suffer from factual errors, suggesting that masked prediction
at the encoder level may not effectively transfer well to autoregressive text generation.

In this work, we explore three strategies (from simple to complex) to determine the pivot t:
• SCHALF: pivot t = 0.5⇥ sentence-length.
• SCRANDOM: random pivot, e.g., t ⇠ uniform[0.25, 0.75]⇥ sentence-length.
• SCROOT: pivot t = position of ROOT (relation) from dependency parsing.

Our experiments show that the simplest SCHALF performs on par with the complex ones (such as
SCROOT), thus, we suggest future work to choose SCHALF strategy.

6.3 Results

The results are reported in Table 5, and experimental setups are reported in Appendix C.

Inefficiency of Domain Adaptive Training The pre-training corpus of LM contains both factual
texts (e.g., Wikipedia) and potentially nonfactual texts (e.g., rumors, fake news) 8. The nonfactual
domain of the training corpus could be the problem. Thus, we conduct a baseline experiment that
does domain-adaptive training with strictly factual domain text only (i.e., Wikipedia). Interestingly,
we find that domain-adaptive training can hardly improve generation factuality.

Effect of TOPICPREFIX Continued pre-training of 1.3B LM with TOPICPREFIX preprocessed
Wikipedia alone can already improve the factuality, especially in terms of NEER. For example, it
reduces the NEERfrom 42.1% to 27.6% when we use the factual-nucleus decoding (0.9 | 0.9 | 0.3),
which even outperforms the 1.3B with greedy decoding (NEER: 27.6% vs. 39.9%) with much less
repetition (8.0% vs. 33.1%).

Effect of Sentence Completion Loss The proposed sentence completion loss further helps to
improve the factuality, especially for the EntailR. For example, when one uses factual-nucleus

8See [4] for details of pre-training corpus.
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Table 5: Results for factuality enhanced training. The decoding settings are formatted as: nucleus probability p,
decay rate �, lower-bound !.

Decoding Factual Prompt Nonfactual Prompt
(p | � | !) NEER# EntailR" Div. Rep. NEER EntailR Div. Rep.

Vanilla Pretrained LM (1.3B)

0.9 52.4% 2.9% 0.88 0.2% 56.8% 2.0% 0.89 0.3%
0.9 | 0.9 | 0.3 42.1% 10.1% 0.55 7.1% 46.5% 5.6% 0.59 6.4%

Factual Domain-Adaptive Training with Wikipedia (1.3B)

0.9 52.5% 2.8% 0.85 0.2% 55.8% 2.2% 0.86 0.1%
0.9 | 0.9 | 0.3 42.7% 7.1% 0.51 7.2% 48.2% 4.9% 0.56 6.0%

TOPICPREFIX (1.3B)

0.9 34.4% 4.2% 0.84 0.3% 36.2% 2.7% 0.85 0.2%
0.9 | 0.9 | 0.3 27.6% 8.7% 0.43 8.0% 30.5% 6.1% 0.47 6.9%

TOPICPREFIX + SCROOT (1.3B)

0.9 32.5% 6.7% 0.83 1.2% 34.3% 4.6% 0.84 1.1%
0.9 | 0.9 | 0.3 24.7% 15.8% 0.40 13.6% 27.6% 9.1% 0.44 13.7%

TOPICPREFIX + SCRANDOM (1.3B)

0.9 32.0% 7.9% 0.81 1.2% 34.2% 5.5% 0.83 1.1%
0.9 | 0.9 | 0.3 23.6% 17.6% 0.39 14.2% 26.9% 9.3% 0.42 13.2%

TOPICPREFIX + SCHALF (1.3B)

0.9 31.6% 7.6% 0.81 1.4% 33.5% 5.1% 0.83 1.5%
0.9 | 0.9 | 0.3 23.6% 17.4% 0.38 14.4% 27.2% 10.2% 0.42 13.1%

Vanilla Pretrained LM (530B)

0.9 33.3% 11.8% 0.90 0.1% 40.5% 7.25% 0.92 0.1%

TOPICPREFIX + SCHALF (530B)

0.9 18.3% 19.3% 0.68 0.1% 21.7% 13.7% 0.68 0.1%
0.9 | 0.9 | 0.3 14.5% 25.5% 0.33 0.2% 17.7% 20.0% 0.33 0.1%

decoding on trained 1.3B model, TOPICPREFIX + SCHALF can further improve EntailR from 8.7% to
17.4% than TOPICPREFIX alone, while reducing NEER from 27.6% to 23.6%. Note that the results
show consistent improvement across different pivot selection strategies, suggesting that the sentence
completion loss is robust. In particular, the simplest SCHALF performs as good as others or even
better in terms of several metrics. Thus we recommend it as the default option.

530B vs 1.3B As expected, our method on 530B LM further reduces the factual errors and achieves
the lowest NEER (14.5%) and the highest EntailR (25.5%). Surprisingly, our method on 530B LM
lead to less diverse generation than 1.3B LM despite the significant improvement in the generation
quality (i.e., near perfect repetition scores 0.1% 0.2%). We conjecture that this is the trade-off
between the factuality and diversity for 530B LM.

7 Conclusion

In this work, we establish a benchmark to measure and analyze factuality in open-ended text genera-
tion tasks. We propose factual-nucleus sampling that improves generation factuality at inference time,
and the combination of sentence completion loss and TOPICPREFIX pre-processing that improves
factuality with continued training. We demonstrate that our methods are effective in improving the
factuality. Lastly, our results shed light on the existence of the trade-off between diversity and factual-
ity. We strongly believe this is an important insight that will help researchers make a better-informed
decision about their model design - i.e., appropriately prioritize the desirable attribute of their LM
(factuality vs. diversity) according to the final goal of their task. Potential future work would be to
reduce the degree of the observed trade-offs.
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[30] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and
Noah A Smith. Don’t stop pretraining: adapt language models to domains and tasks. In ACL, 2020.

[31] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In ACL, 2022.

[32] David R Krathwohl. A revision of bloom’s taxonomy: An overview. Theory into practice, 41(4):212–218,
2002.

[33] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. Language models as knowledge bases? In EMNLP, 2019.

[34] Carlos Aspillaga, Marcelo Mendoza, and Alvaro Soto. Inspecting the concept knowledge graph encoded
by modern language models. In Findings of ACL, 2021.

[35] Xuhui Zhou, Yue Zhang, Leyang Cui, and Dandan Huang. Evaluating commonsense in pre-trained
language models. In AAAI, 2020.

[36] Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language models
know? Transactions of the Association for Computational Linguistics, 2020.

[37] Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [mask]: Learning vs. learning to recall.
arXiv preprint arXiv:2104.05240, 2021.

[38] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich Schütze, and
Yoav Goldberg. Measuring and improving consistency in pretrained language models. Transactions of the
Association for Computational Linguistics, 9:1012–1031, 2021.

[39] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In EMNLP,
2021.

[40] Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun Kim, Stanley Jungkyu
Choi, and Minjoon Seo. Towards continual knowledge learning of language models. arXiv preprint
arXiv:2110.03215, 2021.

[41] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual knowledge
in GPT. arXiv preprint arXiv:2202.05262, 2022.

12



[42] Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. Faithful to the original: Fact aware neural abstractive
summarization. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[43] Yue Dong, Shuohang Wang, Zhe Gan, Yu Cheng, Jackie Chi Kit Cheung, and Jingjing Liu. Multi-fact
correction in abstractive text summarization. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, pages 9320–9331, 2020.

[44] Luyang Huang, Lingfei Wu, and Lu Wang. Knowledge graph-augmented abstractive summarization
with semantic-driven cloze reward. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020.

[45] Yichong Huang, Xiachong Feng, Xiaocheng Feng, and Bing Qin. The factual inconsistency problem in
abstractive text summarization: A survey. arXiv preprint arXiv:2104.14839, 2021.

[46] Shuyang Cao and Lu Wang. Cliff: Contrastive learning for improving faithfulness and factuality in
abstractive summarization. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 6633–6649, 2021.

[47] Chenguang Zhu, William Hinthorn, Ruochen Xu, Qingkai Zeng, Michael Zeng, Xuedong Huang, and
Meng Jiang. Enhancing factual consistency of abstractive summarization. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 718–733, 2021.

[48] Sihao Chen, Fan Zhang, Kazoo Sone, and Dan Roth. Improving faithfulness in abstractive summarization
with contrast candidate generation and selection. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 5935–5941, 2021.

[49] Sam Wiseman, Stuart Shieber, and Alexander Rush. Challenges in data-to-document generation. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages
2253–2263. ACL, 2017.

[50] Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and Chin-Yew Lin. A simple recipe towards reducing
hallucination in neural surface realisation. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2673–2679. ACL, 2019.

[51] Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier. Plan-then-generate: Controlled
data-to-text generation via planning. Findings of EMNLP, 2021.

[52] Peng Wang, Junyang Lin, An Yang, Chang Zhou, Yichang Zhang, Jingren Zhou, and Hongxia Yang.
Sketch and refine: Towards faithful and informative table-to-text generation. ACL, 2021.

[53] Clément Rebuffel, Marco Roberti, Laure Soulier, Geoffrey Scoutheeten, Rossella Cancelliere, and Patrick
Gallinari. Controlling hallucinations at word level in data-to-text generation. Data Mining and Knowledge
Discovery, pages 318–354, 2022.

[54] Lei Shen, Haolan Zhan, Xin Shen, Hongshen Chen, Xiaofang Zhao, and Xiaodan Zhu. Identifying untrust-
worthy samples: Data filtering for open-domain dialogues with bayesian optimization. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Management, pages 1598–1608,
2021.

[55] Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation reduces
hallucination in conversation. In Findings of the Association for Computational Linguistics: EMNLP 2021.
ACL, 2021.

[56] Hannah Rashkin, David Reitter, Gaurav Singh Tomar, and Dipanjan Das. Increasing faithfulness in
knowledge-grounded dialogue with controllable features. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, pages 704–718. ACL, 2021.

[57] Zeqiu Wu, Michel Galley, Chris Brockett, Yizhe Zhang, Xiang Gao, Chris Quirk, Rik Koncel-Kedziorski,
Jianfeng Gao, Hannaneh Hajishirzi, Mari Ostendorf, et al. A controllable model of grounded response
generation. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 14085–14093, 2021.

[58] Nouha Dziri, Andrea Madotto, Osmar Zaiane, and Avishek Joey Bose. Neural path hunter: Reducing
hallucination in dialogue systems via path grounding. EMNLP, 2021.

13



[59] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155, 2022.

[60] Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi, and
Zaid Harchaoui. MAUVE: Measuring the gap between neural text and human text using divergence
frontiers. In NeurIPS, 2021.

[61] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Realtoxicityprompts:
Evaluating neural toxic degeneration in language models. In Findings in EMNLP, 2020.

[62] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

[63] Ben Goodrich, Vinay Rao, Peter J Liu, and Mohammad Saleh. Assessing the factual accuracy of generated
text. In ACM SIGKDD, 2019.

[64] Feng Nan, Ramesh Nallapati, Zhiguo Wang, Cicero Nogueira dos Santos, Henghui Zhu, Dejiao Zhang,
Kathleen McKeown, and Bing Xiang. Entity-level factual consistency of abstractive text summarization.
In EACL, 2021.

[65] Bill MacCartney and Christopher D. Manning. Modeling semantic containment and exclusion in natural
language inference. In Proceedings of the 22nd International Conference on Computational Linguistics
(Coling 2008), pages 521–528, Manchester, UK, August 2008. Coling 2008 Organizing Committee. URL
https://aclanthology.org/C08-1066.

[66] Tobias Falke, Leonardo FR Ribeiro, Prasetya Ajie Utama, Ido Dagan, and Iryna Gurevych. Ranking
generated summaries by correctness: An interesting but challenging application for natural language
inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 2214–2220, 2019.
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