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Abstract
Recent theories suggest that Neural Scaling Laws
arise whenever the task is linearly decomposed
into power-law distributed units. Alternatively,
scaling laws also emerge when data exhibit a hier-
archically compositional structure, as is thought
to occur in language and images. To unify these
views, we consider classification and next-token
prediction tasks based on probabilistic context-
free grammars—probabilistic models that gener-
ate data via a hierarchy of production rules. For
classification, we show that having power-law dis-
tributed production rules results in a power-law
learning curve with an exponent depending on
the rules’ distribution and a large multiplicative
constant that depends on the hierarchical struc-
ture. By contrast, for next-token prediction, the
distribution of production rules controls the local
details of the learning curve, but not the exponent
describing the large-scale behaviour.

1. Introduction
The improvement in the performance of many machine-
learning models with the amount of resources, including
the number of model parameters and training examples,
has been shown to follow a simple power-law behaviour
across several orders of magnitude (Hestness et al., 2017;
Kaplan et al., 2020). These power laws, known as neural
scaling laws, are used in practice as a guideline for scaling
up resources (Hoffmann et al., 2022; OpenAI, 2023).

Among scaling laws, the learning curve describes the im-
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provement of test performance in the data-limited regime,
where model capacity and compute are unlimited, and per-
formance is constrained primarily by the number of training
data. A simple approach, based on data memorisation, leads
to power-law learning curves under a Zipf, i.e. power-law,
distribution of the input data (Hutter, 2021; Michaud et al.,
2023). However, this view cannot explain how general-
isation performance improves. Alternatively, power-law
learning curves appear in kernel regression when the spec-
trum of the target function in the kernel eigenbasis is itself
a power law (Caponnetto & De Vito, 2007). Several the-
oretical studies of neural scaling laws are indeed based
on this result (Spigler et al., 2020; Bordelon et al., 2020;
Bahri et al., 2021; Favero et al., 2021; Maloney et al., 2022;
Cagnetta et al., 2023; Bordelon et al., 2024; Lin et al., 2024).
However, these approaches are restricted to kernel-based
approximations of deep learning methods, whose limited
power cannot explain the successes of modern language and
vision models.

In this respect, recent studies have identified hierarchical
generative models such as Probabilistic Context-Free Gram-
mars (PCFGs) as model datasets to explain the difference
in performance between deep and kernels/shallow learning
methods methods, while still allowing for some analyti-
cal understanding (Malach & Shalev-Shwartz, 2018; 2020;
Cagnetta et al., 2024; Sclocchi et al., 2025; Mei, 2024;
Tomasini & Wyart, 2024; Cagnetta & Wyart, 2024; Garnier-
Brun et al., 2024; Sclocchi et al., 2024; Oko et al., 2025). In
this work, we combine one such data model—the Random
Hierarchy Model (RHM) of (Cagnetta et al., 2024)—with
the hypothesis that the features of real datasets (e.g. the
words in a text corpus) are Zipf distributed.

1.1. Our contributions

• We introduce (section 2) a family of synthetic datasets
based on the RHM (Cagnetta et al., 2024), where data
are generated from their class labels according to a hier-
archy of production rules, mapping high-level features
to tuples of lower-level features. While in (Cagnetta
et al., 2024) all production rules have the same prob-
ability, we consider probabilities obeying Zipf’s law,
fk ∝ k−(1+a). These datasets model both the hierar-
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chical and compositional structure and the Zipfian dis-
tribution of the low-level features of realistic datasets;

• We show (section 4) that the Zipf distribution of fea-
tures changes the learning curve of classification tasks
from a sigmoidal to a power-law shape. In particular,
after a large pre-asymptotic phase of size controlled
by the hierarchical structure, the classification error of
a network trained on P data decays asymptotically as
P−a/(1+a);

• For next-token prediction tasks (section 5), where the
learning curves of the uniform RHM are already power
laws (Cagnetta & Wyart, 2024), the distribution of the
features does not change the asymptotic decay, while
it controls the curves’ local details. This result puts
forward the hierarchical structure of language—not the
Zipf distribution of features—as a prime candidate for
explaining the scaling laws of Large Language Models.

1.2. Additional related works

There is a growing number of studies using generative mod-
els from theoretical linguistics to understand the capabili-
ties of large language models, including n-grams (Svete &
Cotterell, 2024; Nguyen, 2024; Svete et al., 2024), and reg-
ular (Borenstein et al., 2024; Shai et al., 2024) and context-
free grammars (Allen-Zhu & Li, 2023; Zhao et al., 2023).
All these works concern either expressivity or the inter-
pretability of the representations of trained transformers.
(Zhao et al., 2023), in particular, showed that the operations
performed by BERT-like transformers resemble well-known
algorithms for grammatical inference, and proved that, for
PCFG data, these algorithms are optimal solutions of the
masked language modelling objective. However, when the
training data can be equally explained by a PCFG or a non-
hierarchical generative model, neither recurrent language
models (McCoy et al., 2020) nor transformer (Ahuja et al.,
2024) consistently prefer the hierarchical interpretation. In
addition, none of these works study the learning process and
the sample complexity.

2. Notation and setup
Hierarchical generative model. We consider synthetic
datasets generated via a probabilistic context-free grammar
(PCFG) (Rozenberg & Salomaa, 1997): a collection of sym-
bols and rules that prescribe how to generate input data
starting from their label. PCFGs consist of a vocabulary of
hidden (nonterminal) symbols, a vocabulary of observable
(terminal) symbols and production rules that quantify the
probability that one hidden symbol generates tuples of ei-
ther hidden or observable symbols. Generic PCFGs provide
a natural formalism for describing hierarchical structures
found in the syntax of natural languages (Pullum & Gazdar,

1982; Joshi, 1985), and have also been used to model seman-
tics (Knuth, 1968) and natural images (Zhu & Mumford,
2006). Here, for the sake of analytical tractability, we make
the following simplifying assumptions:

i) the nonterminal symbols are split into L finite vocabu-
laries (Vℓ)ℓ=1,...,L of finite size v and V ≡ V0 denotes
the vocabulary of terminal symbols, or tokens;

ii) All the production rules transform one level-(ℓ+1)
symbol into s level-ℓ symbols,

µ(ℓ+1) → µ
(ℓ)
1 , . . . , µ(ℓ)

s ; (1)

iii) There are m unambiguous production rules per non-
terminal symbol, i.e. two distinct nonterminals cannot
generate the same s-tuple. These rules are randomly
chosen and frozen for a given instance of the RHM;

iv) Each rule can be picked with probability f (ℓ)

k , with
k=1, . . . ,m and

∑
k f

(ℓ)

k =1 for all ℓ;

The Random Hierarchy Model (RHM) of (Cagnetta et al.,
2024) corresponds to setting f

(ℓ)
k =1/m for all k’s and

ℓ’s. Here, mimicking the power-law distribution of word
frequencies (Corral et al., 2015), we set the production rule
distribution to be uniform in all but one layer ℓ, where it
follows a Zipf law (Hutter, 2021; Michaud et al., 2023),
f (ℓ)

k ∝ k−(1+a). 1

Given an RHM instance, input data are generated by picking
a class label y (or level-L symbol) uniformly at random,
then picking a production rule emanating from that label and
replacing the label with the right-hand side of the production
rule. Repeatedly applying the production rules L times
yields the input sequence x=(x1, . . . , xd), with d= sL.
The process can be represented graphically with a tree, as
illustrated in Fig. 1, known as the derivation of the sequence
x. Each token xi is represented as a v-dimensional one-hot
vector (xi,µ)µ=1,...,v, with xi,µ =1 if xi encodes for the
µ-th element of the vocabulary and 0 otherwise.

Learning Setup. We consider both classification and
next-token prediction tasks. For classification, deep con-
volutional networks (CNNs) are trained to approximate
the probability of the root (label) conditioned on the in-
put, P {Y = y|X1 = x1, . . . , Xd = xd}. For next-token
prediction, we train deep transformers to approximate

1Having Zipf production rules at all levels would change the
input features distribution, as their probability will be given by
the product of several Zipf-distributed numbers. Nevertheless, we
believe that our theoretical framework and the main conclusion of
our paper would still hold: the exponent of the scaling law is con-
trolled by the Zipf distribution of production rules for classification
and by the hierarchical structure for next-token prediction.
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Figure 1. Pictorial representation of a derivation according to the
RHM, with depth L=3 and branching factor s=2. A classifi-
cation task requires predicting the root label (blue square) from
the leaves. The correlations between the 2-tuples of leaves (e.g.
(x5, x6)) and the label y can be used to infer the hidden symbol
above the 2-tuple (µ(1)

3 for (x5, x6)). A next-token prediction task
requires predicting the last observable symbol (red square) from
the previous d− 1. In this case, hidden symbols can be deduced
from the correlations of 2-tuples with the last token xd.

the conditional probability of the last token given the
other d− 1, P {Xd = y|X1 = x1, . . . , Xd−1 = xd−1}. In
both cases, training proceeds by updating the model’s
parameters via gradient descent over the empirical
cross-entropy loss. Numerical experiments are per-
formed in PyTorch (Paszke et al., 2019), with the code
available at https://github.com/fracagnetta/
random-hierarchy-model. The specifics of the ma-
chine learning models, including training hyperparameters
and computational resources, are designed to reflect the
data-limited regime, as detailed in Appendix A.

3. Theoretical background
3.1. Hutter’s theory of learning

In the scenario proposed in (Hutter, 2021), each datum
consists of a single discrete feature k=1, . . . ,∞, which
uniquely determines the label. Data are drawn i.i.d. ac-
cording to some probability distribution fk, and correct
classification requires that the feature k has appeared at
least once in the training set. The resulting test error is the
(average) probability that the test feature has not been seen
during training,

ε(P ) =

∞∑

k=1

fk(1− fk)
P , (2)

where P denotes the number of training examples. Assum-
ing a Zipf distribution of the features, fk ∝ k−(1+a), leads
to the asymptotic power-law ε(P ) ∼ P−a/(1+a) (Hutter,

2021).

3.2. Learning the Random Hierarchy Model

Unlike Hutter’s model, RHM data are characterised by
the hidden hierarchical structure, i.e. the sequence of
production rules used during generation. Multiplying
the probabilities of all these production rules yields the
conditional probability of the input sequence, given the
root label, P {X1 = x1, . . . , Xd = xd|Y = y}. As shown
in (Cagnetta et al., 2024), production rules can be in-
ferred from the correlations between the root label Y (blue
box in Fig. 1) and s-tuples of contiguous input tokens
Xj =(X(j−1)s+1, . . . , Xjs) (black box in Fig. 1),

Cj(y,µ) := P
{
Y = y;X(j−1)s+1 = µ1, . . . , Xjs = µs

}

− P {Y = y}P {Xj = µ} . (3)

Indeed, due to the context-free structure of the generative
model, the Cj(y,µ) are identical for all the s-tuples µ gen-
erated by the same level-1 nonterminal symbol µ(1). With
sufficient training data, empirical estimates of these corre-
lations can be used to cluster s-tuples by their generating
nonterminal, enabling a bottom-up reconstruction of the
hidden hierarchical structure. This approach was further
extended in (Cagnetta & Wyart, 2024) to next-token pre-
diction, where the relevant correlations are those between
s-tuples of input tokens and the final token of the sequence
(red box in Fig. 1), instead of the root label.

The role of correlations in learning the RHM can be for-
malised via the following

Assumption 3.1. Each production rule is learnt when its
effect on correlations can be detected from the training data.

Then, the learning curve is derived by linking the generali-
sation performance of a model to the number of production
rules that can be inferred from the training data. For in-
stance, in a classification task with uniform production rules,
all the rules are learnt once the training set size exceeds
P ∗ = vmL (Cagnetta et al., 2024). This sample complexity
is derived by balancing two sources of variance: the vari-
ance between correlations corresponding to different level-1
nonterminals—scaling as (v3mL+1)−1—and the sampling
noise induced by finite data, scaling as (v2mP )−1. When
P ≫P ∗, the correlations become distinguishable, allowing
the model to reliably infer level-1 rules. Since the data struc-
ture is recursive, resolving the first hidden level of the tree
simplifies the problem, allowing reconstruction of the full
tree. Consequently, the learning curve exhibits a sigmoidal
shape, with an inflection point that scales as P ∗ = vmL, as
confirmed empirically in experiments with deep CNNs.
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4. Root classification
4.1. Nonuniform production rules at the bottom layer

When only level-1 production rules have a nonuniform dis-
tribution, it is convenient to factorise the contribution of
these rules in the data probability:

P {X1 = x1, . . . , Xd = xd|Y = y} =



sL−1∏

j=1

P
{
Xj =µj |X(1)

j = µ
(1)
j

}

×

P
{
X

(1)
1 = µ

(1)
1 , . . . , X

(1)

sL−1 = µ
(1)

sL−1 |Y = y
}
. (4)

The conditional probability of level-1 nonterminals given
the root is equal to the probability of a uniform RHM with
L− 1 layers. The factors inside the brackets, instead, are
nothing but the probabilities of level-1 rules: given the rank
k(µj) of the tuple µj , i.e. the index k ∈ 1, . . . ,m of the
unique production rule that generates µj , the corresponding
probability equals fk(µj). By summing over all the tuples
but the j-th, we get

P {Xj = µ|Y = y} = fk(µ)P
{
µ(1)

j = µ1(µ)|Y = y
}
,

(5)
where µ1(µ) denotes the unique level-1 features that gen-
erates µ. Summing over y yields a similar result for the
probability of µ: P {Xj = µ} = fk(µ)P

{
µ(1)

j = µ1(µ)
}

.
Then, by Eq. 3,

C
(L)
j (µ, y) = fk(µ)C

(L−1)
j (µ1(µ), y), (6)

where the dependence on the number of layers has been
made explicit.

Since the layers above the first have uniform production
rules, we can use the results of (Cagnetta et al., 2024) for
the variance of C(L−1)

j (µ1, y), i.e. (v3mL−1)−1, yielding

a variance of f2
k(µ)/(v

3mL−1) for C(L)
j (µ, y). In contrast

with the uniform case, the variance depends on the rank
k(µ) of the low-level tuple µ. However, it correctly reduces
to the uniform case result when fk(µ) =1/m. The sampling
noise is also affected by the probability of the production
rules, as the probability of data with Xj = µ is proportional
to fk(µ) and the variance due to sampling is proportional to
the event’s probability. This effect is equivalent to replacing
P by P/(fk(µ)m), so that the variance due to the sampling
noise reads fk(µ)/(v

2P ). Consequently, the sample size
necessary to resolve the correlations of the tuple µ with the
label is P ∗(µ)= vmL−1/(fk(µ)).

Ranking all the low-level tuples by the probability of the cor-
responding production rules yields a sequence of m sample
complexities P ∗

k = vmL−1/(fk). To estimate the learning
curve, we assume that, following 3.1, when P >P ∗

k the
model can correctly classify data consisting of tuples with

probability higher than fk. In other words, the model clas-
sifies the input correctly if and only if all the sL−1 input
patches are resolvable. 2 The resulting test error reads

ε(P ) = 1−


 ∑

k|P∗
k<P

fk




sL−1

. (7)

When P ≫ P ∗
1 ≃ vmL−1, this expression implies, as

shown in Appendix B,

ε(P ) ≃ sL−1

(
P

vmL−1

)−a/(1+a)

. (8)

4.2. Nonuniform distribution of production rules at
arbitrary layer

When the nonuniform distribution of production rules af-
fects an arbitrary layer ℓ ̸=1, the probabilities of low-level
tuples can be decomposed as sums of conditional probabili-
ties over a specific choice of production rules. As a result,
the correlations of Eq. 3 can also be written as a sum of con-
tributions due to production rules of a given probability f (ℓ)

k .
In analogy with Eq. 6, these contributions can be split into a
factor of f (ℓ)

k times a label-to-level-ℓ correlation and a level-
(ℓ− 1)-to-input correlation. These two correlations depend
solely on uniformly distributed production rules, thus they
can be computed again using the results of (Cagnetta et al.,
2024), and the arguments of the previous paragraphs apply.

4.3. Empirical scaling laws of deep CNNs

We confirm Eqs. (7) and (8) empirically by measuring the
learning curves of deep CNNs trained on root classification
of the RHM for i) varying Zipf exponent a and ii) vary-
ing the number m of production rules per symbol. The
results, shown in Fig. 2 and Fig. 3 left panels, respectively,
display remarkable agreement with our predictions. Fur-
thermore, the right panel of Fig. 2 shows that having Zipf-
distributed production rules in the first instead of the last
RHM layer leads to a similar learning curve. The right panel
of Fig. 3, instead, highlights that the asymptotic scaling law
P−1/(1+a) kicks in for P ≫ vmL−1—the sample complex-
ity of a uniform RHM with L− 1 layers. We conclude that,
for classification, the hierarchical structure controls the size
of the preasymptotic phase, whereas the Zipf distribution
determines the asymptotic decay. Further empirical tests are
presented in Appendix C.

2We remark that, depending on the m/vs−1, the root might still
be inferred without resolving all the patches. The corresponding
probability was derived in (Sclocchi et al., 2024) for an optimal
decoder. However, if m= vs−1 as in Fig. 2 and 3, changing one
patch changes the root label with high probability, implying that
all patches need to be resolved.
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Figure 2. Left: Learning curves of 3-layers CNNs trained on RHM data with L=2, s=2, v=m=25 and Zipf exponent a indicated
in caption. Solid lines are the empirical learning curves whereas dotted lines are predictions from Eq. (7). The dashed line represents
the scaling law ϵ ∼ P−a/(1+a). Right: As in the left panel, but v=m=100. Here a is fixed and the layer where production rules are
Zipf-distributed changes. The black dotted line represents the scaling law ϵ ∼ P−a/(1+a).
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Figure 3. Left: Learning curves in the same setting as Fig. 2, with Zipf exponent a=1 and m = v indicated in caption. Solid lines are
the empirical learning curves whereas dotted lines are predictions from Eq. (7). Right: all the curves collapse when rescaling the x-axis
by vmL−1—the sample complexity of an RHM with uniform production rules and L− 1 layers. The black dotted line represents the
scaling law ϵ ∼ P−a/(1+a).

5. Next-token prediction
In this section, we use Assumption Theorem 3.1 to derive
the learning curves of next-token prediction tasks. Remark-
ably, the effect on the production rules distribution differs
from the classification case, as the exponent governing the
large-scale behaviour of the curves depends entirely on the
hierarchical structure and not on Zipf’s law exponent a.

Uniform RHM. In contrast with classification, next-token
prediction tasks are learnt in a stepwise fashion (Cagnetta
& Wyart, 2024). Each step corresponds to learning all the
rules associated with the tree up to one of the ancestors of
the last token Xd (e.g. µ(1)

4 , µ(2)

2 and y for the tree in Fig. 1).
At the ℓ-th step, the model learns the depth-ℓ tree generated
by the level-ℓ ancestor of Xd. As in classification, the
hidden variables forming these subtrees can be deduced
from correlations. As the root label is not provided, we
consider correlations between Xd and the j-th s-tuple of

input tokens,

Cj(µ, ν) := P {Xj = µ, Xd = ν}
− P {Xj = µ}P {Xd = ν} . (9)

In the uniform RHM, these correlations are random vari-
ables over different dataset realisations, having 0 mean and
variance (Cagnetta & Wyart, 2024),

〈(
Cj(µ, ν)

2
)〉

=
1

v2m

(
1−m/vs−1

)

vm2ℓ−1
, (10)

where ℓ is the level of the lowest common ancestor of
Xd and Xj . Comparing this variance with that due to
sampling—given by (v2mP )−1/2—yields a sequence of
sample complexities Pℓ to learn the production rules within
the subtree descending from the level-ℓ ancestor of Xd.
When P ≫ Pℓ, the model outputs the sℓ-gram approxima-
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tion of the last-token probability,

P
{
Xd = xd|Xd−(sℓ−1) = xd−(sℓ−1), . . . , Xd−1 = xd−1

}
.

(11)

Combining the scaling of Pℓ with ℓ with that of the average
cross-entropy losses of the sℓ-grams, Lℓ, yields the scaling
law (Cagnetta & Wyart, 2024)

L(P ) ∼ P− log (m/vs−1)/(2 logm), (12)

where ∼ implies that P -independent factors are neglected.

5.1. Nonuniform production rules at the bottom layer

First step via memorisation. In the first step the model
learns that the value of Xd is affected by all the other tokens
in the last s-tuple, (Xd−(s−1), . . . , Xd−1), and outputs the
s-gram next-token probability p(xd|xd−(s−1), . . . , xd−1).
As there are no hidden variables that summarise the effect
of the context (Xd−(s−1), . . . , Xd−1) on Xd, the simplest
strategy is to memorise all the possible s-tuples. Hence, the
first step can be described within the framework of (Hutter,
2021). There are mv s-tuples, split into m groups accord-
ing to the probability fk of the corresponding production
rule. Assuming that the level-1 nonterminal is uniformly
distributed over the v vocabulary entries, which is true in the
limit of large m (Cagnetta et al., 2024), then each s-tuple
occurs with probability fk/v in the data. Therefore, the
model learns the v most frequent rules with v/f1 data, then
the second most frequent with v/f2 data, until converging to
the s-gram probability with v/fm ≃ vm1+a data. This sce-
nario is confirmed in Fig. 4, showing the empirical learning
curves of a one-layer transformer trained to predict the last
token of a depth-1 RHM. In the left panel, a green vertical
dashed line marks the sample complexity v required to learn
the most frequent rules. Notice that, when a≥ 1, v/f1 ≃ v,
indeed at P ≃ v, the test loss departs from the initial value
log v, corresponding to a random guess of the last token,
and slowly converges towards the average entropy of the
s-gram probability L1(a), which can be computed exactly
knowing the rules of the RHM. As in (Hutter, 2021), the con-
vergence to the average s-gram entropy follows the power
law ∼ P−a/(1+a) (right panel).

Further steps via reconstruction of the tree. Starting
from the second step, the simple memorisation strategy
can be improved by replacing all the s-tuples of visible
tokens with the corresponding hidden variables. Let us
consider, for instance, the data structure depicted in Fig. 1.
The pair (x5, x6) appears in the s2-gram p(x8|x5, x6, x7).
Since there is only one level-1 nonterminal µ(1) generating
(x5, x6), p(x8|x5, x6, x7)= p̃(x8|µ(1)(x5, x6), x7). There-
fore, a model having access to the level-1 nonterminals
does not need to memorise all combinations of (x5, x6) and

could reach the s2-gram approximation with fewer training
examples. To derive the sample complexity we resort again
to Assumption 3.1. As we found in section 4, due to the dif-
ference in production rule probabilities, the statistics of the
tuple-token correlations Cj(µ, ν) depend not only on the
level of the lowest common ancestor ℓ, but also on the rank
k(µ) of the tuple µ. In particular, the variance of Cj(µ, ν)
over RHM realisations reads,

〈
(Cj(µ, ν))

2
〉
=
(
fk(µ)

)2
(

m∑

k′=1

f2
k′

) (
1−m/vs−1

)

v3m2ℓ−3
,

(13)

where ℓ≥ 2. The detailed derivation of Eq. 13 is provided
in Appendix D. The term

∑
k′ f2

k′ is the inverse participa-
tion ratio of the production rules distribution: it ranges from
1/m to 1. It measures the localisation of the distribution fk,
with 1/m corresponding to a uniform distribution and 1 to
the case where all the probability is concentrated on 1 pro-
duction rule. Therefore, Eq. 10 is recovered in the uniform
case. For a general Zipf exponent a> 0,

∑
k′ f2

k′ converges
to some finite, a-dependent number. The variance due to
sampling is also affected by the production rules distribution,
going from 1/(mv2P ) of the uniform case to fk(µ)/(v

2P ).
Equating the variance due to sampling to Eq. 13 gives the
following sample complexities, for reconstructing the k-th
rule of the ℓ-th level with ℓ≥ 2:

Pℓ,k =
vm2ℓ−3

(1−m/vs−1)fk (
∑

k′ f2
k′)

. (14)

Notice that, despite the acquired dependence on the rule
rank k, the dependence on the level ℓ is the same as in the
uniform case, Pℓ ∼m2ℓ.

Average cross-entropy of the sℓ-grams. According to
Assumption 3.1, we expect that, when P >Pℓ,m, a deep
machine-learning model trained on P performs at least as
well as the sℓ-gram from Eq. 11. Conversely, if P <Pℓ,1,
the model can at most match the performance of the sℓ−1-
gram. Therefore, we can combine the average sℓ-grams
cross-entropies with the Pℓ,k’s to determine the scaling law
of next-token prediction. These cross-entropies are given by

Lℓ =
〈
Ex

[
− log p(xd|xd−(sℓ−1), . . . , xd−1)

]〉
. (15)

Let us start by rewriting Eq. 15 using the tree struc-
ture of the generative model. The resolved context win-
dow (xd−(sℓ−1), . . . , xd−1) consist of sℓ−1 − 1 complete
s-tuples and one incomplete tuple For instance, in Fig. 1
with ℓ=2, the context window (x5, x6, x7) contains the 2-
tuple (x5, x6) and x7. Due to the unambiguity of the rules,
each complete s-tuple corresponds to a unique level-1 non-
terminal (µ(1)

3 in the example of the figure). Since m<vs−1,
the generative process can only generate a fraction of the
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Figure 4. Left: Empirical learning curve of one-layer transformers trained for next-token prediction on RHM data with L=1, s=2,
v=128, m=32 and Zipf exponent a as in the key. Vertical dashed lines mark the sample sizes required to learn the most frequent rules:
vm in the uniform case (equivalent to setting a= − 1 in Zipf’s law) and v with Zipf-distributed production rules. The leftmost horizontal
dashed lines denote the test loss of the trivial prediction where the next-token probability is uniform over the vocabulary, L0 = log v.
The rightmost horizontal dashed lines denote the average cross-entropy of the s-gram approximation, L1(a). Right: subtracting L1(a)
reveals the power-law decay P−a/(1+a), highlighted by coloured dashed lines.

possible sequences of sℓ−1 level-1 nonterminal symbols.
As a result, knowledge of the sℓ−1 − 1 nonterminals above
the complete s-tuples of the context window constrains the
parent node of the last token (µ(1)

4 in the figure). Denoting
with Vc(xd−(sℓ−1), . . . , xd−s) the set of the level-1 symbols
compatible with such constraint,

Lℓ =

〈
Ex

[
− log

1

Z(xd−(sℓ−1), . . . , xd−s)
×

∑

µ(1)∈Vc,ℓ

p(xd|xd−(s−1), . . . , xd−1;µ
(1))



〉
, (16)

where Z(xd−(sℓ−1), . . . , xd−s) denotes the normalisation∑
µ(1),xd

p(xd|xd−(s−1), . . . , xd−1;µ
(1)). Notice that, as

the sℓ−1 − 1 tuples in (xd−(sℓ−1), . . . , xd−s) can be re-
placed with the corresponding level-1 nonterminals, Vc,ℓ

depends only on the highest L− 1 levels of the tree. There-
fore, it can be thought of as the set of terminal tokens com-
patible with the context of size sℓ−1 − 1 in a uniform RHM
with L− 1 layers The average size of this set over RHM
realisations is given by (Cagnetta et al., 2023)

⟨|Vc,ℓ|⟩ =
1

1−m/vs−1
+ v

( m

vs−1

)ℓ−1

. (17)

In the limit where 1≪m≪ vs−1, ⟨|Vc,ℓ|⟩ approaches 1 as
ℓ grows. In this limit, and for large ℓ, we can neglect the
cases where |Vc,ℓ|> 2. As a result, most of the data will
give a null contribution to Eq. 16, since the context uniquely
determines the content of the last token as xd. The only
data yielding a positive term are those where there is one

other vocabulary entry, x̃ ̸=xd, compatible with the con-
text. Hence, we estimate Lℓ as the fraction of data with
a positive contribution to the entropy, times this contribu-
tion. The fraction of data can be derived by examining the
possible sources of ambiguity: either |Vc,ℓ|=1 and there
are 2 distinct production rules compatible with the context
and the level-1 symbol, |Vc,ℓ|=2 and the extra production
rule can also come from a different level-1 symbol. The
entropic contribution per datum is the logarithmic sum of
two probabilities taken from the set (fk) of production rules
probabilities, thus it depends on the distribution of low-level
production rules but not on the other levels of the hierarchy.
The derivation of Lℓ following this argument is presented
in Appendix E and leads to

Lℓ −−−−−−−−→
1≪m≪vs−1

H2,a,m

(
m/vs−1

1−m/vs−1
+ v

( m

vs−1

)ℓ)
,

(18)

where H2,a,m denotes the average entropic contribution of
data with 2 compatible entries of the last token. Notice
that Eq. 18 displays the same dependence on ℓ as the uni-
form production rules case (Cagnetta & Wyart, 2024).

We can confirm this argument by computing the values of
the Lℓ’s for a given set of rules exactly via Eq. 16. The
results of this calculation averaged over RHM realisations
with fixed s, v, m and varying production rules distribution
are shown in Fig. 5, and confirm that the approach of Lℓ to
the limiting, residual cross-entropy L∞(a) is independent of
a and follows the same scaling as the uniform case, shown
as a black dashed line.
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Figure 5. Average cross-entropies of the sℓ-grams versus ℓ, for
RHM datasets with s=2, v=32, m=8, with the colour denoting
the Zipf exponent. The points are obtained by averaging the cross-
entropies over 32 independent realisations of the RHM. The cross-
entropies of the uniform production rules case are shown in blue
for comparison. For all a’s, the cross-entropies Lℓ decay with ℓ
towards some a-dependent value L∞(a) (Top panel). However,
the approach to L∞(a) is independent of a (Bottom panel) and
follows the behaviour of the test loss bound derived in (Cagnetta
& Wyart, 2024) in the uniform case (black dashed line).

5.2. Empirical scaling laws of deep transformers

Since both the sample complexities and the loss plateaus
display the same behaviour with ℓ as the uniform case, we
predict that the power-law distribution of level-1 produc-
tion rules does not change the scaling law of the problem
in Eq. 12. We confirm this prediction empirically in Fig. 6,
showing the learning curves of deep transformers trained
on RHM data for several distributions of production rules,
from the uniform case of (Cagnetta & Wyart, 2024) to the
extreme case where all the probability mass of the fk’s is
concentrated on one production rule. The asymptotic decay
of the learning curves agrees with Eq. 12, highlighted in the
figure by a red dashed line.
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100

L
−
L ∞
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zipf, a = 0.0

zipf, a = 1.0
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1Figure 6. Empirical scaling laws of depth-4 transformers trained
on RHM next-token prediction with L=4, s=2, v=32, m=8
and varying a. The limit a → ∞ corresponds to having only one
production rule per level-1 nonterminal symbol. The red dashed
line is a guide to the eye for the asymptotic decay of Eq. 12.

6. Conclusions
We studied how the scaling laws of deep networks trained
in a feature-learning and data-limited regime are affected
by two ubiquitous properties of natural data: hierarchical
compositionality and Zipfian distribution of features. Re-
markably, the effects of these two structural properties on
learning greatly differ between classification and next token
prediction tasks.

For classification, we have shown that the learning curve
of simple context-free grammars becomes a power law due
to the broad distribution of production rules. Specifically,
if production rules are power-law distributed with some
exponent a, then the learning curve decays as P−a/(a+1).
The exponent a/(a + 1) is also found in elementary toy
models of memorisation of Zipf-distributed data (Hutter,
2021; Michaud et al., 2023). Yet, in our case, as in real data,
this behaviour is not simply caused by memorisation, as the
probability of each single datum decays exponentially with
the dimension of the input. Interestingly, the pre-asymptotic
phase of the learning curve can be very large and depends
on the hierarchical structure of the problem.

In next-token prediction, as in classification, our analysis
predicts that production rules leading to rare features require
more data to be learnt and cannot be deduced from more
frequent rules. Nevertheless, this effect only changes the
asymptotic test loss L∞ and not the scaling exponent de-
scribing how this limit is approached. The slow decay of the
curve rather stems from this effect: as the training set grows,
the model can resolve increasingly long-range correlations—
allowing it to reconstruct deeper levels of the data’s latent
hierarchical structure. This suggests that the origin of scal-
ing laws in LLMs trained for next-token prediction lies not
in superficial statistics, such as feature frequency, but in the
deeper hierarchical structure of the data.

8
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Limitations
The model of data considered is simpler than natural data,
for which the topology of the tree of latent variables could
vary. Furthermore, context-dependent effects may occur
that cannot be described with a tree-like model. Including
these properties is a promising avenue for explaining the
performance differences between transformer and convolu-
tional architectures, as well as phenomena such as in-context
learning.
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A. Methods
A.1. Deep CNNs

The deep CNNs we consider are made by stacking standard convolutional layers. To tailor the network to the structure of
the data generative model, we fix both the stride and filter size of these layers to s. Since each layer reduces the spatial
dimensionality by a factor s, the input size d must be an integer power of s and the CNNs depth equals log d/ log s.

We use the Rectified Linear Unit (ReLU) σ(x)=max (0, x) as activation function, set the number of channels to H for each
layer, and consider the maximal update parametrization (Yang & Hu, 2020), where the weights are initialised as random
gaussian variables with zero mean and unit variance, all the hidden layers but the last are rescaled by a factor H−1/2,
whereas the last is rescaled by H−1. This factor causes the output at initialisation to vanish as H grows, which induces
representation learning even in the H → ∞ limit. In practice, H is set to 512. Increasing the number of channels further
does not affect any of the results presented in the paper.

Deep CNNs are trained with SGD, with the learning rate set to H to compensate for the factor of H−1. A cosine annealing
scheduler reduces the learning rate by 10 over 3× 104 training epochs. The batch size is set to the minimal size allowing
convergence, where we define convergence as the training cross-entropy loss reaching a threshold value of 10−2. We use
a validation set of size 221 to select the model with the best validation loss over the training trajectory. Reported results
for a given value of the RHM parameters are averaged over 10 jointly independent instances of the RHM and network
initialisation for m≤ 20, and 3 instances for m> 20.

A.2. Multi-layer self-attention (RHM)

The deep Transformers that we train on RHM data are made by stacking standard Multi-Head Attention layers (Vaswani
et al., 2017), without any residuals, layer normalisation and multi-layer perceptron in between. We found that the removed
components do not affect the model’s performance on data generated from the RHM. Each layer has the same number
of heads nh and embedding dimension demb =nh × v, with v the vocabulary size. The input dimension is adapted to the
embedding dimension via a learnable linear projection, to which we add learnable positional encodings. The choice of
nh follows two principles: the model should be large enough for the training loss to reach a threshold value of 10−3 and
changing nh should not affect performance beyond the fluctuations due to the model initialisations. Specifically, we set
nh =16 and notice no significant change in performance up to nh =64. Also scaling demb up to 4nh × v does not impact
performance.

Multi-layer self-attention networks are trained with the Adam optimizer, with a warmup scheduler bringing the learning rate
to 10−2 within the first 16 training steps. As for CNNs, the batch size is set to the lowest value allowing for convergence.
We use a validation set of size 217 to select the model with the best validation loss over the training trajectory. Reported
results for a given value of the RHM parameters are averaged over 8 jointly independent instances of the RHM and network
initialisation.

B. Asymptotics of the learning curve ε(P )

This section contains a detailed derivation of the asymptotic learning curve for classification, Eq. 8.

Let us define k(P ) as the largest integer k such that fk > vmL−1/P , corresponding to the rank of production rules that can
be learnt given P data according to Assumption 3.1. Substituting Zipf’s law for fk yields

k−1−a

∑m
j=1 j

−1−a
>

vmL−1

P
⇒ k(P ) ≃

(
P

vmL−1

) 1
1+a

. (19)

Let us now define g(P ) as the total probability of all the production rules that are learnt with P data,

g(P ) =

k(P )∑

k=1

fk =

∑k(P )
k=1 k−1−a

∑m
j=1 j

−1−a
. (20)

Notice that, from Eq. 7, ε(P )= 1− g(P )s
L−1

. To determine the asymptotic behaviour of g(P ), we use the Euler-Maclaurin
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formula, which relates sums to integrals:

b∑

k=a

f(k) =

∫ b

a

f(x) dx+
f(b)− f(a)

2
+

n∑

j=1

B2j

(2j)!
f (2j−1)(x)

∣∣∣∣
b

a

,

where B2j are the Bernoulli numbers. In particular,

k(P )∑

k=1

k−1−a =

∞∑

k=1

k−1−a −
∞∑

k=k(P )+1

k−1−a

= ζ(1 + a)−
∫ ∞

k(P )

x−1−a dx+
k(P )−(1+a)

2
−

∞∑

j=1

B2j

(2j)!

Γ(2j + a)

Γ(1 + a)
(k(P ))

−(2j+a)
, (21)

where ζ(s) is the Riemann zeta function and we used that if f(x)=x−(1+a), then
f (j)(x)=

(
(−1)jΓ(1 + a+ j)/Γ(1 + a)

)
x−(1+a+j). Since k(P ) increases with P , the asymptotics of the right-

hand side of Eq. 22 are controlled by the integral term, equal to k(P )−a/a. Analogously,

m∑

k=1

k−1−a =

∞∑

k=1

k−1−a −
∞∑

k=,+1

k−1−a

= ζ(1 + a)−
∫ ∞

m

x−1−a dx+
m−(1+a)

2
−

∞∑

j=1

B2j

(2j)!

Γ(2j + a)

Γ(1 + a)
(m)

−(2j+a)

≃ ζ(1 + a)−m−a/a, (22)

hence

g(P ) ≃ ζ(1 + a)− k(P )−a/a

ζ(1 + a)−m−a/a
≃ 1− k(P )−a −m−a

aζ(1 + a)
. (23)

Notice how g(P ) converges to 1 as k(P ) approaches m, when all production rules are learnt. For k(P )≪m, instead,

g(P ) ≃ 1− c

(
P

vmL−1

)− a
1+a

, (24)

with c=(aζ(1 + a))−1. By plugging this back into the equation for ε(P ) we get

ε(P ) = 1− g(P )s
L−1 ≃ 1−

[
1− c

(
P

vmL−1

)− a
1+a

]sL−1

≃ sL−1c

(
P

vmL−1

)− a
1+a

, (25)

which yields the desired asymptotic behaviour in P .

C. Empirical learning curves for classification with L=3

This section collects additional empirical tests of the predictions of section 4 for RHM data with L=3.

D. Token-token correlations with Zipf-distributed production rules
In this section, we derive Eq. 13 for the variance of tuple-token correlations with Zipf-distributed production rules,

〈
(Cj(µ, ν))

2
〉
=
(
fk(µ)

)2
(

m∑

k′=1

f2
k′

) (
1−m/vs−1

)

v3m2ℓ−3
. (26)
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Figure 7. Learning Curves of classification with L = 3. Left: Learning curves of 4-layers CNNs trained on RHM data with L=3, s=2,
v=m=10 and Zipf exponent a indicated in caption. Solid lines are the empirical learning curves whereas dotted lines are predictions
from Eq. (7). Right: As in the left panel, but a is fixed and the layer where production rules are Zipf-distributed changes. The black
dotted line represents the scaling law ϵ ∼ P−a/(1+a).
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Figure 8. Learning curves with varying m values. Left: Learning curves in the same setting as above, with Zipf exponent a=2 and
m = v indicated in caption. Solid lines are the empirical learning curves whereas dotted lines are predictions from Eq. (7). Right: All
curves collapse when rescaling the x-axis by vmL−1—the sample complexity of an RHM with uniform production rules and L− 1 layers.
The black dotted line represents the scaling law ϵ ∼ P−a/(1+a).
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The starting point is the definition of the tuple-token correlation for a level-ℓ lowest common ancestor (compare with
Eq. (124) of (Cagnetta & Wyart, 2024), Appendix F),

C(ℓ)(µ, ν) =
∑

µ1,ν1

p
(1)
i1

(µ|µ1)p
(1)
j1

(ν|ν1)C(ℓ−1)(µ1, ν1). (27)

Level-1 rules are power-law distributed. The corresponding probabilities can be written as sums over production rules,

p
(1)
i (ν|ν1) =

m∑

k=1

fkδ(rk,i(ν1), ν), (28)

where the δ function equals 1 if the i-th symbol on the right-hand side of the k-th production rule coming from ν1 equals ν
and 0 otherwise. C(ℓ−1)(µ1, ν1) only involves uniformly-distributed production rules and has 0 mean, thus the mean of
C(ℓ)(µ, ν) also vanishes. The variance reads, denoting with k(µ) the rank of the unique production rule generating the
tuple µ, and omitting the position indices i1 and j1 to ease the notation, (compare with Eq. (125) of (Cagnetta & Wyart,
2024), Appendix F)

〈(
C(ℓ)(µ, ν)

)2〉
= (fk(µ))

2
∑

ν1,κ1

〈
p(1)(ν|ν1)p(1)(ν|κ1)

〉〈
C(ℓ−1)(µ1(µ), ν1)C

(ℓ−1)(µ1(µ), κ1)
〉

= (fk(µ))
2
∑

ν1

〈
p(1)(ν|ν1)p(1)(ν|ν1)

〉〈(
C(ℓ−1)(µ1, ν1)

)2〉

+ (fk(µ))
2
∑

ν1,κ1 ̸=ν1

〈
p(1)(ν|ν1)p(1)(ν|κ1)

〉〈
C(ℓ−1)(µ1(µ), ν1)C

(ℓ−1)(µ1(µ), κ1)
〉
. (29)

By Eq. 28,
〈
p(1)(ν|ν1)p(1)(ν|ν1)

〉
=
∑

k1

(fk1
)2 ⟨δ(rk1

(ν1), ν)⟩

=
∑

k1,k2 ̸=k1

fk1fk2 ⟨δ(rk2(ν1), ν)δ(rk2(ν1), ν)⟩ , (30)

and
〈
p(1)(ν|ν1)p(1)(ν|κ1)

〉
=
∑

k1,k2

fk1
fk2

⟨δ(rk2
(ν1), ν)δ(rk2

(κ1), ν)⟩ , (31)

Using

⟨δ(rk(µ1), µ)⟩ = P
{
µ1

k−→ µ
}
RHM

=
1

v
, (32)

where PRHM denotes the probability over RHM realisations, and

⟨δ(rk1
(µ1), µ)δ(rk2

(ν1), ν)⟩ = P
{
µ1

k1−→ µ
}
RHM

P
{
ν1

k2−→ ν
∣∣∣µ1

k1−→ µ
}
RHM

, (33)

where

P
{
ν1

k1−→ ν
∣∣∣µ1

k2−→ µ
}
RHM

=





vs−1 − 1

vs − 1
, if ν1 = µ1, µ = ν,

vs−1 − 1

vs − 1
, if ν1 ̸= µ1, µ = ν,

(34)

we get

〈
p(1)(ν|ν1)p(1)(ν|ν1)

〉
=

(∑

k

f2
k

)
1

v
+

(
1−

∑

k

f2
k

)
1

v

vs−1 − 1

vs − 1
(35)
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and
〈
p(1)(ν|ν1)p(1)(ν|κ1)

〉
=

1

v

vs−1 − 1

v − 1
, (36)

In addition, the covariance of the correlations satisfies (Eq. (74) of (Cagnetta & Wyart, 2024))
∑

κ̸=ν

⟨C(µ, ν)C(µ, κ)⟩ = −
〈
C(µ, ν)2

〉
. (37)

Therefore,
〈(

C(ℓ)(µ, ν)
)2〉

= (fk(µ))
2
v

[(∑

k

f2
k

)
1

v
+

(
1−

∑

k

f2
k

)
1

v

vs−1 − 1

vs − 1
− 1

v

vs−1 − 1

v − 1

]〈(
C(ℓ−1)(µ1, ν1)

)2〉

= (fk(µ))
2

(∑

k

f2
k

)
vs

vs − 1

v − 1

v

〈(
C(ℓ−1)(µ1, ν1)

)2〉
, (38)

which, after substituting the correlations of the uniform case from (Cagnetta & Wyart, 2024), yields Eq. 13 in the limit of
large v.

E. Cross-entropy estimate in the limit 1≪m≪ vs−1

Here we derive the approximation of sℓ-gram cross-entropies Eq. 18. Let us start from Eq. 17 of the main,

⟨|Vc,ℓ|⟩ =
1

1−m/vs−1
+ v

( m

vs−1

)ℓ−1

. (39)

for the average size of the set of level-1 tokens compatible with the sℓ-gram context. In the limit where 1≪m≪ vs−1,
⟨|Vc,ℓ|⟩ approaches 1 as ℓ grows. In this limit, we can neglect the probability that |Vc,ℓ|> 2, i.e.

⟨|Vc,ℓ|⟩ =
v∑

n=1

nP {|Vc,ℓ| = n} ≃ q1 + 2q2, (40)

where {
q1 := P {|Vc,ℓ| = 1} = 2− ⟨|Vc,ℓ|⟩ ,
q2 := P {|Vc,ℓ| = 2} = ⟨|Vc,ℓ|⟩ − 1.

(41)

Accordingly, we split the RHM data x into those with |Vc,ℓ|=1 (fraction q1) and those with |Vc,ℓ|=2 (fraction q2).

If |Vc,ℓ|=1, then µ(1) can only attain the unique symbol µ̄(1) that generates the s-tuple (xd−(s−1), . . . , xd−1, xd). However,
there could be other production rules generating (xd−(s−1), . . . , xd−1, x̃) from µ̄(1), yielding a positive contribution to the
entropy. For each of the x̃ ∈ V0, the probability that such production rule exists is (m− 1)/(vs − 1). Since there are v − 1
elements of V0 other than xd, the total probability is (v − 1)(m− 1)/(vs − 1) ≃ m/vs−1. In the limit 1≪m≪ vs−1 this
probability is small, thus, as for the level-1 symbol µ((1), we neglect the possibility that there is more than one x̃ compatible
with (xd−(s−1), . . . , xd−1; µ̄

(1)). To sum up, there is a fraction q1(m/vs−1) of data having |Vc,ℓ|=1 but two distinct tokens
x̃ and xd compatible with the context (xd−(s−1), . . . , xd−1; µ̄

(1)).

When |Vc,ℓ|=2, µ(1) attains µ̄(1) or µ̃(1). One of the production rules emanating from µ̃(1) could be compatible with
(xd−(s−1), . . . , xd−1), yielding a positive contribution to the cross-entropy. The probability that this production rule exists is
again m/vs−1 and we neglect the possibility of two such rules as 1≪m≪ vs−1. Moreover, even if such a production rule
does not exist, there could be, as in the case |Vc,ℓ|=1, another x̃ compatible with (xd−(s−1), . . . , xd−1; µ̄

(1)). The resulting
fraction of data with positive entropy is 2q2(m/vs−1), yielding a total fraction (q1 + 2q2)(m/vs−1)= ⟨|Vc,ℓ|⟩ (m/vs−1)
of contexts compatible with 2 entries of xd. The entropy contribution of each of these contexts is the logarithmic sum of two
probabilities taken from the set (fk) of production rules probabilities. The average contribution over the possible choices of
two fk’s is independent of ℓ. Denoting this average with H2,a,m, and using Eq. 17 for ⟨|Vc,ℓ|⟩, we get Eq. 18 of the main
paper,

Lℓ −−−−−−−−→
1≪m≪vs−1

H2,a,m

(
m/vs−1

1−m/vs−1
+ v

( m

vs−1

)ℓ)
. (42)
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