When & How to Transfer with Transfer Learning

Adrian Tormos Dario Garcia-Gasulla
Barcelona Supercomputing Center Barcelona Supercomputing Center
adrian.tormos@bsc.es dario.garcia@bsc.es
Victor Gimenez-Abalos Sergio Alvarez-Napagao
Barcelona Supercomputing Center Barcelona Supercomputing Center
victor.gimenez@bsc.es sergio.alvarez@bsc.es
Abstract

In deep learning, transfer learning (TL) has become the de facto approach when
dealing with image related tasks. Visual features learnt for one task have been
shown to be reusable for other tasks, improving performance significantly. By
reusing deep representations, TL enables the use of deep models in domains with
limited data availability, limited computational resources and/or limited access to
human experts. Domains which include the vast majority of real-life applications.
This paper conducts an experimental evaluation of TL, exploring its trade-offs
with respect to performance, environmental footprint, human hours and computa-
tional requirements. Results highlight the cases were a cheap feature extraction
approach is preferable, and the situations where an expensive fine-tuning effort
may be worth the added cost. Finally, a set of guidelines on the use of TL are
proposed.

1 Introduction

Training a deep learning (DL) model for image classification requires (1) powerful computational
devices, (2) long execution times, (3) lots of energy, (4) large storage spaces, (5) data labelling
efforts, and (6) time from human experts. Research has focused on mitigating these needs: Neu-
ral architecture search tackles 2, 3 and 6. Semi-supervised, weakly-supervised or self-supervised
learning tackle 5. This paper focuses on transfer learning, which can mitigate all six requirements.

Transfer learning (TL) assumes representations learnt by a model can be reused for other tasks. The
conditions and consequences of transferring parameters across tasks have been studied from the
perspective of performance only [B1, I8, 1, 5]. The general conclusion being that parametric reuse
is better than starting from a random state, requiring less data for achieving higher generalisation.

In image classification tasks, the most common approaches of parametric reuse are feature extraction
(FE) and fine-tuning (FT). In FE, the model’s parameters are preserved statically, and the network’s
activations for the target task data are extracted and fed to another model. In FT, the model’s param-
eters are further optimised for the new task, starting from their initial state. Both approaches have
different pros and cons, and no clear guidelines exists to support a choice between both. This work
fills that gap, by taking into account different perspectives, including the availability of pre-trained
models on similar tasks, data volume, and the trade-offs between performance, carbon footprint,
human cost and computational requirements.

Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems (NeurIPS 2022).

2 Related work

Transfer learning is thoroughly used to improve the development of DL models, as large-scale
datasets have been released with the main purpose of producing pretrained models available for
TL [8, T7]. Among the characteristics that positively influence the transferability, previous works
have identified similarity between tasks [B1]], generality of the patterns learnt [B1, I¥], and size and
variety of pretraining data [Z¥, [['7].

Beyond the pretraining model, target dataset size is also key. When little data is available, FT all
the parameters of a large model easily leads to overfitting. One may freeze part of the parameters,
or even discard them making the model shallower. Another way of preventing this is to use the pre-
trained model to transform the data through its learnt patterns [[]. This FE is most commonly per-
formed using features from a late layer (e.g., the last or second to last layer of CNN models [25, [7]),
and use those features to train linear models [[Z]. Since the depth of the layer may affect transferabil-
ity, one may transfer the entire network representation while reducing its complexity without losing
descriptive features (e.g., through discretisation) like the Full-Network Embedding (FNE) [IT].

3 Methodology

To assess the pros and cons of FT and FE we use publicly available pretrained models, applying
them for the resolution of 10 different tasks. This work has been performed using the Tensorflow
and Keras libraries, version 2.6.0. FT experiments have used an IBM Power9 8335-GTH processor
and an NVIDIA V100 GPU; FE experiments have used an AMD EPYC 7742 processor. Footprint
metrics have been estimated on a sample of experiments performed in an NVIDIA GeForce RTX
3090 GPU and an Intel Core i7-5820K CPU, tracking power with CodeCarbon®. Each experiment
was performed once using a random seed.

For FT, we tune the model while freezing a variable number of initial layers, and randomising the
last two layers. Training stopped when three consecutive epochs show a non-improving validation
loss as early stopping policy. A minimum of 10 and a maximum of 25 epochs are computed. Batch
size is 64. For FE we use the FNE, which extracts activations from a percentage of layers starting
from the last before logits, using an average pooling operation on convolutional layers to extract
one number per channel. Activations are feature-wise standardised and discretised to values in
{—1,0, 1} [IT]. Experiments are given a time limit of 24 hours. Data augmentation is used in both
FT and FE, using 10 crops per sample (4 corners and central, with horizontal mirroring). During
inference, crop predictions are aggregated using majority voting. Full code can be found in 2.

We use two VGG16 [Z7], one trained on ImageNet 2012 [23] (IN, 1.2M train images) with Top-
1/Top-5 accuracy of 71.3/90.1, the other trained on Places 2 [33] (P2, 1.8M train images) with
55.2/85.0 accuracy. These are publicly available at ® and ¥, respectively. The tasks used for eval-
uation are chosen to be representative of a variety of scenarios. Some are direct subsets (C) of a
pretraining dataset, some intersect (M) with them, and some are entirely disjoint (&). Details can be
found in Annex [Al.

To assess the trade-offs between FT and FE we use metrics from four categories. (/) Performance:
Validation and test mean class accuracies (Vacc, Tacc), and ovetfitting (Vacc —Tacc)- (2) Foot-
print: power average in kW (P4y) in a sample of trainings, estimated greenhouse gas emissions
in Kg of COs (Eco,). (3) Computational requirements: execution time in hours (7°), amount of
experiments (ngx p). (4) Human cost: Time analysing results and designing experimentation (A).

4 Hyperparameter search comparison

We perform model selection processes to compare the costs and benefits in the standard process of
looking for a well-performing model. These are run for the 20 possible pretrained model and task
pairs, and consider a few hyperparametric variables, chosen by their impact on performance. The

"https://codecarbon.io/
*https://github.com/HPAI-BSC/tl-tradeoff
3https://keras.io/api/applications
*https://github.com/CSAILVision/places365

Table 1: Performance (Vacc and T'acc, average), footprint (P4y ¢ average, Eco, sum), computa-
tional requirements (1" sum, ng x p total) and human cost (A, sum) of the hyperparameter searches.

Vace Tacc Pave Eco, T npxp A
FT 7746 73.86 276.1W 201.54kg 1,825.72h 480 4-6h
FE 74.65 7273 124.1W 3.84kg 60.02h 80 0-1h

chosen hyperparameter values, the results for all metrics and the configuration with the best Vacc
for each task are detailed in Annexes C1l and C2.

Performance In 8§ out of 10 tasks, FT obtained the better performing model (mean of 2.8448.66%).
In overfitting (Vacc — Tacc), FT shows a slightly higher drop in test performance (mean drop of
3.6%, for FE’s 1.92%).

Footprint The average power consumption in FT was 276.1W, 222% bigger than that of FE
(124.1W). FT emitted 52.5 times more CO- than FE. In the context of the performance-footprint
trade-off, notice this increase in footprint produces a mean improvement in Voo of 2.81%. For
TACC’ only 1.13%.

Computational requirements The FT search lasted a total 1,825.72 hours, 30.4 times more than
the FE search. In 9 out of 10 tasks, the FE search was faster than FT. Each FT search also required 6
times more experiments, influenced by a larger hyperparameter selection.

Human cost The time dedicated by experts on analysing results and designing experimentation
(A), show how FE results are significantly easier to process thanks to its plain performance metrics.
However, when performing FT, it is relevant to look at the tables beyond simple metrics, as part of
the information regarding model convergence is lost when looking at a single performance metric.
Thus, processing the results from FT entails the analysis of multiple training curves, which require
in the order of 4 to 6 times more time. That being said, current deep learning frameworks are more
oriented towards FT, which make FE slightly harder to implement.

The following section explores the role of training set size on performance, using the best hyperpa-
rameter configuration found before. However, such configuration may not remain competitive while
using a different number of training samples. To verify this, we repeat the selection process for two
subsets of the Caltech 101 task, using only 5 and 10 samples per class — instead of the original 20
(sampling done to avoid the footprint reaching tons of COs). The results, detailed in Annex (3, in-
dicate FT is more brittle to changes in dataset size, requiring additional hyperparametric exploration
when that happens. In this regard, some experiments from Section B, may be using sub-optimal
settings, and slightly underestimating the potential accuracy of FT approaches.

5 Few-shot learning

We study the effects of limited data availability, by subsetting the target datasets prior to training.
For each target and number of instances per class (IC), we generate 5 random subsets (to mitigate
statistical variance). We train FT and FE models and extract their final T'4c¢. The distribution and
mean relative difference in T4c¢ of the five runs for each IC' are shown in Figure [. These results
allow us to categorise datasets in two types: those where FT overtakes FE given enough samples
per class, and those where FT and FE converge to the same accuracy. This distinction can be made
at around 25 instances per class: if FT has not overcome FE with that amount or less, it will not
happen regardless of data availability. Notice such threshold may depend on the architecture or
source dataset employed [28, I[7].

Figure [illustrates how, for those datasets that are disjoint from the pretraining dataset, FT and FE
performance tends to converge. On the other hand, for those datasets which overlap (either intersect
or subset) with the pretraining dataset, FT outperforms FE. We are unsure about the cause of this
difference in behaviour. Another factor to consider here is time until convergence. While both
methods scale linearly with IC' (see Annex O for details), the cost of FT grows 7 times faster than
the cost of FE.

Let us remark that FT results may be slightly underestimated, as the hyperparameter search was not
conducted for all IC values. However, since the chosen hyperparameters are those that perform best

<

S T FT better

5 30

® CUB200

£

$ 20

E

o Stanford Dogs
£ 10 Oxford-IIIT-Pet

k= B
2 Food-101
I 0 .“HTDi%B

o —— MAMe
(Y

£ -10

©

2

& -20

©

= —— Subset datasets (<)

§ 30 Intersecting datasets (n)

° / —— Disjoint datasets (@)

é / | FE better —— Feature extraction mean acc. (reference)

= —40

] 0 5 10 20 30 40 50 60 70 80 90 100

Samples per class
Figure 1: Relative difference in test accuracy (100 - ¥.=FE), w.rr. the train split size. Shadowed
regions show the minimum and maximum differences among the 5 random subsets. Black line
represents point in which FE and FT have same performance.

on the highest IC — the last point of each curve in Figure [— the final difference shown in Figure [I
remains reliable, while the intermediate slope may vary.

6 Discussion and future work

While FT is superior in performance, FE is better in terms of footprint, computational requirements
and human cost. This is important in domains where TL is unfavourable (i.e., one cannot find
pretraining models close to the target task). Domains in which data availability is highly variable
(e.g., because of new data constantly being added) also favour FE, as FT requires for constant and
expensive hyperparameter searches while FE does not.

The gain in performance provided by FT over FE is, on average, 2.8% on Vicc, and 1.1% on T'scc.
Meanwhile, FT produces in the order of 7,000% more CO5 than FE, and demands between 4 and 6
times more of human effort. It this context, researchers and practitioners of TL deciding between
FT and FE should consider the relevance of limited performance gains for each application. While
additional performance gains for FT over FE could be obtained by intensive data gathering, labelling
and pretraining efforts, these would correspondingly increase cost FT, allowing this point to hold.

In few-shot learning scenarios (around 5 or less samples per class), the previous performance gain of
FT vanishes, making FE the best performing model in most settings. Starting at samples per class of
5 and above, intersecting and subset (C, M) targets can have FT overtake FE by considerable amounts.
For disjoint datasets FT may require more than 100 samples per class to outperform FE, while the
latter remains as a competitive baseline. We believe these results will hold for architectures and
pre-training datasets comparable to the ones used here (i.e., CNNs and datasets in the order of a few
millions of training samples). Beyond that, these experiments will need to be reassessed.

Yes Yes No

Ye Feature
s Extraction
o Less than 5 No Growing No Pretrain similar |__Yes | Less than 100 | =2TEeTOn
samples/class dataset to target samples/class :
. Fine
ithe .
| Tuning

Figure 2: Flowchart for FE and FT recommendation, prioritising performance over other metrics.
Either stands for both Yes and No, as FT is recommended regardless of the case.

As for specific hyperparametric findings, FT’s best models are obtained by freezing 75% of layers.
This is influenced by the quality and variety of internal features, and by the reduced number of
trainable parameters, which prevents early overfitting. For FE, the percentage of extracted layers had
a limited impact in performance (less than 2% on all cases). Thus, if marginal gains are irrelevant
for the problem at hand, any of these settings is likely to provide competitive results. If margin gains
are relevant, an exhaustive search can be conducted given the limited cost of the approach.

The scope of this work is limited to one architecture (VGG) and two pre-training datasets (ImageNet
and Places 2), to limit the sources of variance. Extending the analysis would multiply the costs
associated to this work (which are already high as seen in Table H). At the same time, while related
architectures or larger pre-training datasets may provide higher performance, this is likely to happen
for both FT and FE, although the difference between performance gains may change the threshold
values. As an additional contribution, Figure O includes a visual guide for the selection of model
when prioritising performance metrics only.

7 Acknowledgement

We acknowledge the contributions of Ferran Parés and Armand Vilalta in the conceptualization and
early iterations of this work. This work was partially supported by the Al4Media European project
(Grant agreement 951911).

References

[1] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. Factors of transferabil-
ity for a generic convnet representation. /EEE transactions on pattern analysis and machine
intelligence, 38(9):1790-1802, 2015.

[2] S. Basha, S. K. Vinakota, S. R. Dubey, V. Pulabaigari, and S. Mukherjee. Autofcl: auto-
matically tuning fully connected layers for handling small dataset. Neural Computing and
Applications, 33(13):8055-8065, 2021.

[3] L. Bossard, M. Guillaumin, and L. V. Gool. Food-101-mining discriminative components with
random forests. In European conference on computer vision, pages 446—461. Springer, 2014.

[4] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16,
page 785794, New York, NY, USA, 2016. Association for Computing Machinery.

[5] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild.
In Conference on computer vision and pattern recognition.

[6] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie. Large scale fine-grained categorization
and domain-specific transfer learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4109-4118, 2018.

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep
convolutional activation feature for generic visual recognition. In International conference on
machine learning, pages 647-655. PMLR, 2014.

[8] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In Computer
vision and pattern recognition workshop, page 178, 2004.

[9] E. Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Consistency
properties. International Statistical Review/Revue Internationale de Statistique, 57(3):238—
247, 1989.

[10] M. Gao, D. Qi, H. Mu, and J. Chen. A transfer residual neural network based on resnet-34 for
detection of wood knot defects. Forests, 12(2):212, 2021.

[11] D. Garcia-Gasulla, A. Vilalta, F. Parés, E. Ayguadé, J. Labarta, U. Cortés, and T. Suzumura.
An out-of-the-box full-network embedding for convolutional neural networks. In IEEE Inter-
national Conference on Big Knowledge (ICBK), 2018.

[12] P. Goyal, P. Dollér, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[13] A. Imran and V. Athitsos. Domain adaptive transfer learning on visual attention aware data
augmentation for fine-grained visual categorization. In International Symposium on Visual
Computing, pages 53—65. Springer, 2020.

[14] M. Jbene, A. D. El Maliani, and M. El Hassouni. Fusion of convolutional neural network
and statistical features for texture classification. In 2019 International Conference on Wireless
Networks and Mobile Communications (WINCOM), 2019.

[15] A.Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel dataset for fine-grained image cat-
egorization: Stanford dogs. In Proc. CVPR Workshop on Fine-Grained Visual Categorization
(FGVC), volume 2. Citeseer, 2011.

[16] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin, and L. Fei-Fei. The
unreasonable effectiveness of noisy data for fine-grained recognition. In European Conference
on Computer Vision, pages 301-320. Springer, 2016.

[17] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. Van
Der Maaten. Exploring the limits of weakly supervised pretraining. In Proceedings of the
European conference on computer vision (ECCV), pages 181-196, 2018.

[18] B. Neyshabur, H. Sedghi, and C. Zhang. What is being transferred in transfer learning? Ad-
vances in neural information processing systems, 33:512-523, 2020.

[19] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of
classes. In Indian Conference on Computer Vision, Graphics & Image Processing, pages 722—
729. IEEE, 2008.

[20] F.Parés, A. Arias-Duart, D. Garcia-Gasulla, G. Campo-Francés, N. Viladrich, E. Ayguadé, and
J. Labarta. The mame dataset: on the relevance of high resolution and variable shape image
properties. Applied Intelligence, pages 1-22, 2022.

[21] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. Cats and dogs. In 2072 IEEE
conference on computer vision and pattern recognition, pages 3498-3505, 2012.

[22] A. Quattoni and A. Torralba. Recognizing indoor scenes. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 413-420. IEEE, 2009.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision, 115(3):211-252, 2015.

[24] H. Seong,J. Hyun, and E. Kim. Fosnet: An end-to-end trainable deep neural network for scene
recognition. IEEE Access, 8:82066-82077, 2020.

[25] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an
astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 806-813, 2014.

[26] O. Silvén, M. Niskanen, and H. Kauppinen. Wood inspection with non-supervised clustering.
Machine Vision and Applications, 13(5):275-285, 2003.

[27] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[28] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data
in deep learning era. In Proceedings of the IEEE international conference on computer vision,
pages 843-852, 2017.

[29] A. Tormos. On the trade-off between feature extraction and fine tuning in transfer learning.
Master’s thesis, Universitat Politecnica de Catalunya, 2022.

[30] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[31] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural
networks? Advances in neural information processing systems, 27, 2014.

[32] Y. Zhang, K. Jia, and Z. Wang. Part-aware fine-grained object categorization using weakly
supervised part detection network. IEEE Transactions on Multimedia, 22(5).

[33] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva. Places: An image database for
deep scene understanding. arXiv preprint arXiv:1610.02055, 2016.

A Target tasks

The 10 tasks chosen for evaluation are separated in three categories. Some are direct subsets® (C) of
a pretraining dataset, some intersect (N) with a pretraining dataset® but expand beyond it, and some
are entirely disjoint (&) to the pretraining datasets.

Each dataset category represents one of the three scenarios one may face when doing TL in practice.
Either you find a pretrained model which is a superset of the task at hand, one which at least inter-
sects with it, or in the worst case scenario, one which is completely unrelated to it. The tasks, along
with their state-of-the-art accuracy, are listed in Table D.

The Oulu Knots dataset suffers from large inter-class imbalance. Of the seven original classes, the
most underrepresented is 10% the size of the largest one. By removing the smallest of all classes we
derive a second dataset, which allows us to further scale experimentation in Section 5. This modified
dataset is referred as Knots6.

The Caltech 101, MAMe and Oxford-IIIT-Pet datasets have CC BY 4.0, CC BY-NC-ND 4.0 and CC
BY-SA 4.0 licenses, respectively. No license has been found for other datasets.

Table 2: Basic features and state-of-the-art accuracies of target datasets. Those marked with (¥)
had no validation split, and their train split was divided in train and validation for this work. Those
marked with (f) had a bigger validation split originally, which was reduced in favour of the train set.
Src indicates the superset or intersecting source dataset.

Images per class

Dataset Classes Train Val Test Best Test Acc. (%) Type Src
Caltech 101* [R] 101 20 10 1-50 94.4 (2] C IN
CUB200* [30] 200 20 10 11-30 92.3 [16] N IN
DTDf [5] 47 70 10 40 75.7£0.7 [14] 1%} -
Food-101* [3] 101 190" 10 250 90.4 [6] N IN
MAMe [20] 29 200" 50 95-700 88.9 [20] %) -
MIT ISR* [227] 67 67-73 10 17-23 90.3 [24] - P2
Oulu Knots [26] 7 11143 0 336 98.7 [0 @ -
Knots6* 6 18-138 5 6-36 - 1%} -
Oxford Flower [[Y] 102 10 10 20-238 98.9 [I3] N IN
Oxford-IITT-Pet* [21] 37 83-90 10 88-100 95.4 [82] N IN
Stanford Dogs* [[I3] 120 90 10 50-152 92.9 [03] - IN

>Standford Dogs’ labels are a direct subset of IN. Some Caltech 101 classes are not found in IN, but there

non

are similar or visually analogous ones. For example, Caltech 101 has "metronome", "scissors" and "stapler".
IN has "buckle", "knot", "nail", "screw", "hair slide clip”, "combination lock", "padlock”, "safety pin", among
others.

IN has less than 30 types of dishes for Food’s 101, less than 60 birds for CUB’s 200, and less than 10
flowers for Flowers’s 102.

"Train splits of Food-101 and MAMe were reduced from 740 to 190 samples and from 700 to 200, respec-
tively.

8Reference performs data up-sampling for test inference, potentially biasing the accuracy. Alternative best
accuracy is 74.11+6.9 [IL1].

B Carbon footprint computation

The Eco, metric (estimated greenhouse gas emissions in Kg of CO») is approximated by using the
ratio of CO4 emissions from public electricity production provided by the European Environment
Agency for the 27 European Union countries in 2020% (230.7 g/kWh).

C Hyperparameter search comparison

C.1 Hyperparamter variables

The hyperparameter searches must be representative of real life model selection processes while
having a reasonable scale. As such, we consider a few variables, chosen by their impact on perfor-
mance. FT and FE hyperparameters are limited to 24 and 4 configurations, respectively. Note that
there are more possible hyperparameter variables in FT, thus more hyperparameter variables than FE
are explored. For FE, the classifier is fixed as a Linear SVM. For FT, the optimizer is fixed as SGD.

Table 3: List of tested hyperparameters on FT (up) and FE (down).

Percentage (absolute num.) of frozen layers Learning rate Weight Decay = Momentum
25% (4) 1 50% (8) / 75% (12) 0.01/0.001 0.001/0.0001 0.75/0.9
Percentage (absolute num.) of extracted layers
25% (3) 1 50% (7)1 75% (11) / 100% (15)

For FT, note that other minor hyperparameters have not been considered in an effort to limit the size
of the search. Particularly, batch size has not been considered in order to avoid unnecessary overlap
with the effect of learning rate [17].

In the case of FE, additional classifiers were initially considered such as RBF SVM, XGBoost [4] or
KNN [U]. The latter two were discarded from the hyperparametric space because of non-competitive
performance.

As for RBF SVM, the full model selection process were performed. It is the only variable we would
remove from any future experimentation. The RBF experiments amounted for 923.63 hours, as
opposed to 60.02 hours for LSVM. 32 out of 80 experiments did not even finish in the given 24
hours. In addition, they emitted 59.11kg of COs, as opposed to 3.84kg for LSVM. Coupled with
the fact that LSVM has consistently (46 out of 60 experiments) better validation accuracy than RBF
SVM, with the rest showing marginal improvements (1.04+0.72%), these results discourage the use
of RBF SVM.

Full results for all hyperparameter searches can be found in Appendix B of [29].

Table 4: Performance (Vacc, average), Footprint (Eco, sum) and computational requirements (7'
sum) of the FE hyperparameter searches, separated by classifier. If an experiment did not finish in
the given 24h, that much time was added to the 7" sum.

Vacce Eco, T
Linear SVM 74.65 3.84kg 60.02h
RBF SVM 72.50 59.11kg 923.63h

C.2 Performance results

In 8 out of 10 tasks, FT obtained the better performing model (mean of 2.844-8.66%). For those two
tasks in which FE outperformed the difference was 0.45% and 5.69%. In overfitting Vacc —Tacc),
FT shows a slightly higher drop in test performance (mean drop of 3.6%, for FE’s 1.92%).

The best pretraining dataset was IN, for 9 out of 10 targets in FE, and 8 out of 10 in FT. This aligns
with similarity between pretraining model and target task. Regarding hyperparameters, the best FT
setting consistently entails freezing the 75% first layers, even for those target tasks with the most
training samples. In FE, the best setting ranges between extracting the activations of the first 50%,
75% and 100% of layers, although differences in performance are small.

“https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1

Table 5: Best hyperparametric configurations after model selection. Src stands for source model
(ImageNet or Places2). Layers means extracted layers for FE, and frozen layers for FT. LR stands
for learning rate. WD stands for weight decay. Mom. stands for momentum.

Feature extraction Fine-tuning
Dataset Src Layers Dataset Src Layers LR WD Mom.

Caltech 101 IN 50% Caltech 101 IN 75% 1073 107* 0.75

CUB200 IN 50% CUB200 IN 75% 1072 107* 0.75
DTD IN 75% DTD IN 75% 1073 10~* 09
Food-101 IN 75% Food-101 IN 75% 1072 107* 0.75
Knots6 IN 25% Knots6 IN 7% 1072 10=3% 0.75
MAMe IN 100% MAMe P2 50% 1072 10~* 0.75

MIT ISR P2 75% MIT ISR P2 75% 107% 107* 0.9
O. Flower IN 100% O. Flower IN 75% 1072 10~* 0.9
O.-IIIT-Pet IN 75% O.-IIT-Pet IN 75% 1073 107* 09

Stanford Dogs IN 50% Stanford Dogs IN 75% 1072 10=* 0.75

Table 6: Balanced accuracies in % for the FT and FE hyperparameter searches.

Caltech 101
CUB200
DTD
Food-101
Knots6
MAMe
MIT ISR
O. Flower
O.-III'T-Pet
S. Dogs
MEAN

FT Vacc 89.50 59.95 66.60 58.32 96.67 76.21 77.16 83.92 92.97 73.25 77.46
Tscc 88.70 60.62 67.66 62.30 70.56 73.33 76.58 80.23 88.28 70.34 73.86
FE Vaicc 89.01 48.45 65.74 52.28 93.33 74.48 77.61 89.61 91.35 64.25 74.65
Tacc 89.57 47.95 69.84 58.73 75.43 77.85 76.83 87.48 81.24 62.40 72.73

C.3 Variance of scale in model selection

In Section 5 we explore the role of training set size using the best hyperparameter configuration
found in Table B. However, we cannot assure such configuration remains the best while using a
different number of training samples. To verify to which extent the best configuration holds, without
recomputing the full hyperparametric search between 6 and 15 times (with footprint reaching tons
of COy), we repeat the selection process for two subsets of the Caltech 101 task, using only 5 and
10 samples per class — instead of the original 20.

Table 7: Best hyperparametric configurations after model selection with train split subsets of Caltech
101. IC stands for instances per class. The best pretraining source was always IN. Drop expresses
the difference in V¢ of the selected configuration in the original search (20 samples/class) when
trained with smaller train subsets w.r.t. the best hyperparameter configuration selected for that subset.
Src stands for source model (ImageNet or Places 2). Lay. stands for extracted layers for FE, and
frozen layers for FT. LR, WD and Mom. stand for learning rate, weight decay and momentum.

Feature extraction Fine-tuning
IC Llay. Vaee Drop IC Lay, LR WD Mom. Vace Drop

5 75% 8112 007 5 75% 1072 1073 0.9 76.24 17.92
10 50% 85.84 000 10 75% 1072 10~* 0.9 83.96 6.34
20 50% 89.01 - 20 75% 1073 107* 0.75 89.50 -

For FE, all hyperparameters had the same behaviour in training with both 5 and 10 samples per
class, than in the original search. With only one exception: extracting 50% of layers instead of 75%
provided a marginal gain of 0.07% in accuracy for the 5 samples case.

For FT, some hyperparameters are invariant to the change in training set size, such as the best pre-
training source and amount of frozen layers (where 50% and 75% remain better than 25%). The
optimiser hyperparameters, however, depend on the amount of data available. When less than 20
samples are available, the best LR changes (from 10~3) to the largest one (10~2), and when using

5 samples per class, the previously best performing WD (10~%) has a drop in validation accuracy
around 20% (w.r.t. 1073); possibly due to the maximum epochs imposed for model selection ex-
periments. These results indicate FT is more brittle to changes in dataset size, requiring additional
hyperparametric exploration when that happens. In this regard, the analysis of Section 5, may be
using a sub-optimal setting, and slightly underestimating the potential accuracy of FT approaches.

D Few-shot learning computational resources

Both FE and FT generally scale linearly with the amount of instances per class. However, the latter
has a larger overhead and its cost scales up to 7 times faster than the former. Figure B shows how
both methods scale for each of the targets.

Caltech 101 CUB200 DTD Food-101

0
123 5 7 IV}AOME 15 70

0 1510 20 %gofls% 50

Bford Hower>® 19

_ 0.08 1.2
£35 — FT. 007 — FT. 11— FT.
v30 — FE. 0.06 — FE. 1.0 — FE.
£ 25 0.05 0.9
550 0.04 0.8
= 1'5 0.03 g-é
o
D+ 0.02 .
X 0.5 / 0.5
. oo I~ "o 0000
wl1.0 0.0 0.4
12 751 1 2 151 7 12 7.1 1 1 12 7 1
0 5075100 50 oo - 510 6960%%—”?‘9&%0 6 3 5StanfordoDogs 5 18 3 5 0
20 — FT — FT.
018 —— FE. 8.0 - F.E.
E1s 6.0
cl2
21.0 4.0
208
£05 2.0 /
Wo2 K———7 0.0
1 10 20 30 40 50 7583 11020304050 75 90
Samples per class Samples per class

Figure 3: FT and FE time until convergence (h) in 4 datasets, with respect to instances per class.
Mean (line) and minimum/maximum (area) times are given, computed across random subsets. Time
from the first image loading to the final validation and test accuracy reporting.

10

	Introduction
	Related work
	Methodology
	Hyperparameter search comparison
	Few-shot learning
	Discussion and future work
	Acknowledgement
	Target tasks
	Carbon footprint computation
	Hyperparameter search comparison
	Hyperparamter variables
	Performance results
	Variance of scale in model selection

	Few-shot learning computational resources

