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Abstract

Bayesian deep learning and conformal prediction are two methods that have been used to
convey uncertainty and increase safety in machine learning systems. We focus on combining
Bayesian deep learning with split conformal prediction and how this combination effects
out-of-distribution coverage; particularly in the case of multiclass image classification. We
suggest that if the model is generally underconfident on the calibration set, then the resultant
conformal sets may exhibit worse out-of-distribution coverage compared to simple predictive
credible sets. Conversely, if the model is overconfident on the calibration set, the use of
conformal prediction may improve out-of-distribution coverage. We evaluate prediction
sets as a result of combining split conformal methods and neural networks trained with (i)
stochastic gradient descent, (ii) deep ensembles, and (iii) mean-field variational inference. Our
results suggest that combining Bayesian deep learning models with split conformal prediction
can, in some cases, cause unintended consequences such as reducing out-of-distribution
coverage.

1 Introduction

Bayesian deep learning and conformal prediction are two paradigms that have been used to represent
uncertainty and increase trust in machine learning systems. Bayesian deep learning attempts to endow
deep learning models with the ability to represent predictive uncertainty. These models often provide
more calibrated outputs on both in-distribution and out-of-distribution data by approximating epistemic
and aleatoric uncertainty. Conformal prediction is a method that takes (possibly uncalibrated) predicted
probabilities and produces prediction sets that follow attractive guarantees; namely marginal coverage for
exchangeable data (Vovk et al., 2005). On out-of-distribution data, however, this guarantee no longer holds
unless knowledge of the distribution shift is known a priori (Tibshirani et al., 2019; Barber et al., 2023). It
is natural then to consider combining conformal prediction with Bayesian deep learning models to try and
enjoy in-distribution guarantees and better calibration on out-of-distribution data. In fact, combination of
the two methods has been used to correct for misspecifications in the Bayesian modeling process (Dewolf
et al., 2023; Stanton et al., 2023), thereby improving coverage and thus trust in the broader machine learning
system. However, we suggest that application of both methods in certain scenarios may be counterproductive
and worsen performance on out-of-distribution examples (see Figure 1). To investigate this suggestion we
evaluate the combination of Bayesian deep learning models and split conformal prediction methods on image
classification tasks, where some of the test inputs are out-of-distribution. Our primary contributions are as
follows:

(i) Offer an explanation of how the under- or over-confidence of a model can predict when conformal
prediction may worsen or improve out-of distribution coverage.

(ii) Evidence to support the explanation in (i) in the form of two empirical evaluations focusing on the
out-of-distribution coverage of Bayesian deep learning combined with split conformal prediction.

(iii) Practical recommendations for those using Bayesian deep learning and conformal prediction to
increase the safety of their machine learning systems.
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Figure 1: A conceptual illustration of how conformal prediction can help or harm out-of-distribution coverage
for an error tolerance of 0.25. On the left is a conceptual illustration of how conformal prediction can make
the overall machine learning system less confident after conformalizing a model that is overly confident on the
calibration set. As a consequence, it gains coverage on out-of-distribution examples. The right conceptualizes
the opposite direction and illustrates how conformal prediction can reduce coverage on out-of-distribution
examples.

2 Preliminaries

2.1 Related Work

The analysis of combining more traditional Bayesian models with conformal prediction has been studied
in Wasserman (2011) and Hoff (2021). Combining full (not split) Bayesian deep learning with conformal
regression has been studied in the context of efficient computation of conformal Bayesian sets and Bayesian
optimization (Fong and Holmes, 2021; Stanton et al., 2023). Both of these works consider settings with non-
exchangeable data but assume a priori knowledge on the type of distribution shift. Theoretical foundations
of using conformal prediction with non-exchangeable data can admit very powerful guarantees but have
thus far assumed a priori knowledge about the distribution shift (Tibshirani et al., 2019; Angelopoulos
et al., 2022; Fannjiang et al., 2022; Barber et al., 2023). Additionally, other powerful conformal algorithms
have been posed to deal with out-of-distribution examples but require an additional model to detect those
out-of-distribution examples (Angelopoulos et al., 2021). Dewolf et al. (2023) evaluate conformal prediction
combined with Bayesian deep learning models but for regression tasks and with relatively low-dimensional
inputs (no greater than 280 features). Additionally, Kompa et al. (2021) look at the coverage of prediction
sets from various Bayesian deep learning methods and mention conformal prediction but do not include
conformal prediction in their empirical analysis. We are not aware of a study examining the interaction
between conformal prediction and Bayesian deep learning methods as it relates to the coverage of unknown,
out-of-distribution examples for a task that deep learning models have excelled—image classification. We not
only evaluate the combination of Bayesian deep learning and conformal prediction on image classification but
also provide an intuitive explanation as to why, in certain scenarios, conformal prediction can actually harm
out-of-distribution coverage we would otherwise see with non-conformal predictive sets.

2.2 Calibration

Modeling decisions factor into the calibration of the resultant predicted probabilities. Consider a vector of
predicted probabilities produced by our model for input x,

p̂(x) = (p̂1(x), ..., p̂K(x)) ,

K∑
k=1

p̂i(x) = 1 ∀x ∈ X
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where X is the sample space for x and K is the number of possible labels y can assume (i.e. the labels that
can be assigned to x). For a model to be well-calibrated (Zadrozny and Elkan, 2002; Vasilev and D’yakonov,
2023) the following must hold,

P(y = i|p̂i(x) = p) = p, ∀i ∈ Y , ∀p ∈ [0, 1],

where the probability is taken over the joint data distribution p(x, y) and Y is the sample space for labels
y. This says that on average over p(x, y), the predicted probability assigned to each class (not just the one
assigned highest probability) represents the true probability of that class being the true label. If a model is
well-calibrated, then we should be able to create prediction sets that achieve marginal coverage for an error
tolerance α by creating a predictive credible set which we later abbreviate as cred. To do so, for each model
output p̂(x), we order the probabilities therein from greatest to least and continue adding the corresponding
labels until the cumulative probability mass just exceeds 1 − α.

2.3 Bayesian Deep Learning

One important reason for miscalibration is the abstention of representing epistemic uncertainty (Wilson and
Izmailov, 2020). In order to create more calibrated predicted probabilities for neural networks, a popular
approach is Bayesian deep learning, where a major goal is to faithfully represent parameter uncertainty (a
type of epistemic uncertainty). Parameter uncertainty1 arises due to many different configurations of the
model weights that can explain the training data, which happens especially in deep learning where we have
highly expressive models (Wilson, 2020). Hence, Bayesian deep learning is an attractive approach to helping
achieve calibration in practice, even on out-of-distribution examples. However, in order for the Bayesian
approach to perform well a few important assumptions are required:

• Our observation model relating weights w and inputs x to labels y, p(y|x, w), is well-specified. This
means that our observation model has the ability to produce the true data generating function.

• Our prior over weights p(w) is well-specified. This means that when it is paired with the observation
model, we induce a distribution over functions p(f) that places sufficient probability on the true data
generating function (MacKay, 2003).

• We often need to approximate the posterior distribution of the weights with respect to the training
dataset, p(w|D), for many interesting observation models, including neural networks.

In this study we use a class of observation models (convolutional neural networks) and priors (zero-mean
Gaussians) that have been shown to produce good inductive biases for image classification tasks (Wilson and
Izmailov, 2020; Izmailov et al., 2021); and focus on varying the method of approximating the posterior over
parameters.

2.4 Conformal Prediction

We restrict our attention to a subset of conformal prediction methods: split (or inductive) conformal prediction
(Vovk, 2012). Split conformal prediction requires an extra held-out calibration set (which we denote Dcal) to
be used during a “calibration step”. Importantly, split conformal prediction assumes exchangeability of the
calibration and test set data. By allowing our final output to be a prediction set Y ⊆ (1, ..., K), conformal
prediction guarantees the true class y to be included on average with probability (confidence) 1 − α:

Pr(y ∈ Y) ≥ 1 − α, (3)

where α is a user-chosen error tolerance and Pr reads “probability that”. This guarantee is marginal in the
sense that it is guaranteed on average with respect to the data distribution p(x, y) as well as the distribution
over possible calibration sets we could have selected. Not only does split conformal prediction guarantee

1Parameter is a loaded term, and context is needed to precisely understand what it means. In this case, we mean the weights
of the neural network; not the parameters that may govern the distribution over such weights.
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the inequality in (3) but also upper bounds the coverage given that the scores si have a continuous joint
distribution. In particular, let ncal be the number of data pairs in the calibration set, then

Pr(y ∈ Y) ≤ 1 − α + 1
ncal + 1 , (4)

which is proved in Lei et al. (2018). Split conformal prediction methods work by first defining a score function
that measures the disagreement between output probabilities p̂(x) of a model and a label y. We denote a
general score function as s(x, y), but it should be noted that the outputted scores depend on the underlying
fitted model through the p̂(x) it produces. The conformal method computes the scores on the held-out
calibration set and then takes the

[(1 − α)(1 + 1
|Dcal|

)]-quantile

of those scores which we denote τ . Then, during test time, prediction sets are constructed by computing
the score for each possible yi, and including yi into the prediction set if its score is less than or equal to τ .
Informally, if the candidate label yi produces a score that conforms to what we have seen on the calibration
set, it is included.

3 Evaluation & Method Details

3.1 When Might Conformal Prediction Harm Out-of-Distribution Coverage?

While conformal prediction guarantees marginal coverage when the calibration data and test data are
exchangeable, it loses its guarantees when encountering out-of-distribution data at test time2. Bayesian
deep learning, on the other hand, has no such guarantees but has been shown to improve calibration (and
thus coverage) on out-of-distribution inputs; a symptom of trying to quantify epistemic uncertainty. A
natural desire, then, is to combine conformal prediction with Bayesian deep learning models in order to enjoy
in-distribution guarantees while reaping the benefits of out-of-distribution calibration.

However, we suggest that blindly combining these methods can, in some cases, result in unintended conse-
quences that hurt the coverage on out-of-distribution examples. The reasoning goes as follows: conformal
prediction does whatever it needs to do to guarantee the desired coverage on in-distribution data; meaning it
provides a lower bound (3) and an upper-bound (4). This means that if the model is generally overconfident
on the calibration dataset (as is often the case with stochastic gradient descent methods; see Figure 2b),
then conformal prediction creates a threshold τ that ultimately makes the prediction sets larger than they
would otherwise be without conformal prediction. In this case, conformal prediction makes the overall
machine learning system less confident, and it will actually assist when encountering out-of-distribution data.
Conversely, if we have a model that is generally underconfident on the calibration dataset (as is often the
case with mean-field variational inference; see Figure 2b), conformal prediction creates a threshold τ that
makes the prediction sets smaller than they would otherwise be to bound the desired coverage tightly on
in-distribution data. However, this could hinder coverage on out-of-distribution data by making the overall
machine learning system more confident than it should be. Both cases are demonstrated in Figure 1. We
next describe the particular methods used in our evaluation and how we measure the performance of their
respective combinations.

3.2 Bayesian Deep Learning Methods

Consider a probabilistic conditional model p(y, w|x) = p(y|x, w)p(w) where w are the weights, p(w) is a
prior distribution, and p(y|x, w) is the probability of y given our weights w and fixed inputs x. Denote the
training dataset as D. Then the posterior predictive distribution can be written as

p(y|x, D) =
∫

p(y|x, w)p(w|D). (5)

2This is true, unless, as mentioned before, knowledge is known a priori about the out-of-distribution data (Tibshirani et al.,
2019; Barber et al., 2023)
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We implement three methods for approximating (5), which is sometimes referred to as the Bayesian model
average (Wilson and Izmailov, 2020).

Stochastic Gradient Descent (SGD) typically involves finding the maximum a posteriori (MAP) estimate
for w. In the context of (1), this means we approximate p(w|D) ≈ ŵMAP where

ŵMAP = argmax
w

log p(w|D)

= argmax
w

(log p(D|w) + log p(w) + constant)

Neural networks trained via stochastic gradient descent have been found to often be uncalibrated by being
overly confident in its predictions (see Figure 4), especially on out-of-distribution examples (Guo et al., 2017).

Deep ensembles (ENS) works by combining the outputs of multiple neural networks with different
initializations (Lakshminarayanan et al., 2017). The idea is that the variation in their respective outputs can
represent epistemic uncertainty. In this case, we implicitly approximate the posterior and simply average the
hypotheses generated by each model in the ensemble:

p(y|x, D) ≈ 1
J

J∑
j=1

p(y|x, ŵMAPj
)

where ŵMAPj is the stochastic gradient solution for model j in the ensemble of J models.

Mean-field Variational Inference (MFV) seeks to approximate the posterior with a variational distribution
(Blei et al., 2017):

p(w|D) ≈ q(w|θ̂) (i)=
m∏

i=1
q(wi|θ̂i) (6)

where (i) comes from the mean-field assumption, and q is usually a simple distribution (e.g. a Gaussian). To
make the approximation in (6), we maximize with respect to θ a function equivalent to the KL divergence
between p(w|D) and q(w|θ) up to a constant. It is usually termed the evidence lower bound (ELBO). We
can write the objective as

θ̂ = argmax
θ

ELBO(θ, D)

= argmax
θ

 Eq(w|θ)[log p(D|w)]︸ ︷︷ ︸
Expected log likelihood of data

+ KL[q(w|θ) || p(w)]︸ ︷︷ ︸
KL between variational and prior

 . (7)

The objective (7) is a tradeoff between two terms. The expected log likelihood of the data prefers q(·) place
its mass on the maximum likelihood estimate while the KL divergence term prefers q(·) stay close to the prior
(Blei et al., 2017). Bayesian neural networks for classification have been shown to be generally underconfident
by overestimating aleatoric uncertainty (Kapoor et al., 2022). Indeed, we find this is the case for both our
experiments (see Figure 4).

3.3 Conformal Prediction Methods

We implement two common split conformal prediction methods.

Threshold prediction sets (thr) uses the following score function (Sadinle et al., 2019):

s(x, y) = 1 − p̂y(x).

That is, the score for an input x with true label y is one minus the probability mass the model assigns to the
true label y. This procedure only takes into account the probability mass assigned to the correct label.

Adaptive prediction sets (aps) uses the following score function (Romano et al., 2020):

s(x, y) = p̂1(x) + · · · + Up̂y(x),
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(a) CIFAR10 accuracy plot. The accuracy plot shows,
for each corruption intensity, the average accuracy over
all corrupted datasets at that intensity.
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(b) CIFAR10 reliability plot. The reliability plot is a
result of evaluating on a calibration set which is taken
from the original CIFAR10 test set.

Figure 2: The accuracy and reliability plots for the CIFAR10 experiment.

where p̂1(x) ≥ · · · ≥ p̂y(x) and U is a uniform random variable in [0, 1] to break ties. That is, we order the
probabilities in p̂(x) from greatest to least and continue adding the probabilities, stopping after we reach the
probability associated with the correct label y.

3.4 Evaluation Measures

A prediction set is any subset of possible labels. We would like a collection of prediction sets to have certain
minimal properties. We would first like the collection to be marginally covered: given a user-specified error
tolerance α, the average probability that the true class y is contained in the given prediction sets is 1 − α.
We would also like each prediction set in the collection to be small: the prediction sets should contain as few
labels as possible without losing coverage. Hence, we evaluate on the basis of the marginal coverage and
average size of a collection of prediction sets emitted by applying split conformal prediction to Bayesian deep
learning model outputs.

4 Experiments

Our first experiments loosely follows the setup of Izmailov et al. (2021) and Ovadia et al. (2019). We train an
AlexNet inspired model on CIFAR10 by means of stochastic gradient descent, deep ensembles, and mean-field
variational inference (Krizhevsky et al., 2009; 2012). We then take 1000 examples (without replacement)
from the CIFAR10 test set for a calibration set. We use this calibration set to determine thresholds τ that
we use for conformal methods thr and aps, respectively. We then evaluate the marginal coverage and average
size of the predictive credible sets (cred), thr sets, and aps sets that were produced for every single corrupted
CIFAR10 dataset (Hendrycks and Dietterich, 2019) at every intensity3.

4.1 CIFAR10-Corrupted

We first look at the reliability diagram of the three models on the calibration set in Figure 2b. According
to this plot, stochastic gradient descent is generally overconfident and mean-field variational inference is
generally underconfident. We thus suspect that conformal prediction set methods may help stochastic gradient
descent in terms of out-of-distribution coverage, while harm mean-field variational inference in terms of
out-of-distribution coverage. The average marginal coverage and average set size across datasets at each

3We take out those semantically similar images from the corrupted test set that we used for the calibration set to ensure no
data leakage.
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(a) An error tolerance of 0.05 (i.e. 0.95 desired coverage)
which is denoted by the dashed horizontal red line.
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(b) An error tolerance of 0.01 (i.e. 0.99 desired coverage)
which is denoted by the dashed horizontal red line.

Figure 3: CIFAR10: Average marginal coverage and average set size across datasets at each corruption
intensity from CIFAR10-Corrupted for error tolerances 0.05 and 0.01. For each figure, each column is for
a particular method used to train the neural network – stochastic gradient descent, deep ensembles, and
mean-field variational inference.

intensity is shown in Figure 3 for error tolerances 0.05 and 0.01. The average accuracies of each deep learning
method are shown in Figure 2a.

Some general remarks are:

• Mean-field variational inference combined with simple predictive credible sets achieve better coverage
than its combination with conformal methods. Moreover, it maintains coverage the best out of any
other combination of methods for both error tolerances at the expense of slightly larger set sizes.

• The addition of conformal methods with stochastic gradient descent drastically improves its coverage
on both in- and out-of-distribution examples.

• The addition of conformal methods with deep ensembles improves its coverage on both in- and
out-of-distribution examples at the 0.01 error tolerance but only improves coverage slightly at the
0.05 error tolerance.

• The performance of the combination of methods varies at different error tolerances. For example, at
the 0.01 error tolerance both the combination of stochastic gradient descent and conformal methods
as well as deep ensembles with the conformal methods outperforms the combination of mean-field
variational inference with the conformal methods. However, at the 0.05 error tolerance this is not
the case.

Other conclusions can be made that are more tailored to a specific use case. For example, if one is looking
for average marginal coverage ≥ 0.96 across all corrupted CIFAR10 datasets, then deep ensembles combined
with aps at the 0.01 error tolerance gives us the best (smallest) sized sets for that coverage. This is an
especially useful evaluation strategy when it comes to standards that machine learning models must abide by
when deployed in high-stakes settings, and emphasizes the importance that the error tolerance we choose
does not represent our true desires if we believe out-of-distribution data will be encountered. It is also
important to note that while stochastic gradient descent and deep ensembles appear to be more robust to the
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(a) MedMNIST accuracy plot. It is evaluated for
the in-distribution organCmnist dataset and the out-
of-distribution organSmnist dataset.
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(b) MedMNIST reliability plot. The reliability plot is
a result of evaluating on a calibration set which is taken
from the organCmnist test set.

Figure 4: The accuracy and reliability plots for the MedMNIST experiment.

corruptions in terms of accuracy (see Figure 2a), this does not immediately translate to better coverage on
out-of-distribution examples (see Figure 3.

4.2 MedMNIST

Our second experiment provides a more realistic safety-critical scenario: 11-class classification of radiology
scans. We train a ResNet18 model on the organCmnist dataset of MedMNIST with the same three modeling
methods (He et al., 2016; Yang et al., 2023). Conformal calibration is done using the first 500 examples
from the test set of organCmnist. We then evaluate the coverage and size on the remaining examples from
the test set of organCmnist for all three prediction set methods. The organSmnist dataset has the same
classes but is the result of different views of the subject of interest in the radiology scan. Thus, it is from a
different distribution, and so we also evaluate the coverage and size on the test set of organSmnist to see
how the combination of conformal methods and Bayesian deep learning affects out-of-distribution coverage.
As before, we first note the reliability diagram of each model on the calibration set shown in Figure 4b.
Similar to the CIFAR10 experiment, stochastic gradient descent is generally overconfident and mean-field
variational inference is generally underconfident while deep ensembles is neither. Therefore, we again suspect
that conformal methods may help stochastic gradient descent in terms of out-of-distribution coverage, while
harm mean-field variation inference in terms of out-of-distribution coverage. The average marginal coverage
and average set size for each dataset is shown in Figure 5a for the 0.05 error tolerance and Figure 5b for the
0.01 error tolerance. The accuracies of the deep learning methods are shown in Figure 4a. The in-distribution
dataset is organCmnist and the out-of-distribution dataset is organSmnist. The main conclusions are similar
to the previous experiment:

• Mean-field variational inference combined with simple predictive intervals performs the best amongst
all other combinations of methods in terms of maintaining the desired coverage; even compared to
mean-field variational inference combined with conformal methods.

• Conformal prediction significantly helps stochastic gradient descent in terms of out-of-distribution
coverage.

• Conformal prediction helps deep ensembles in terms of out-of-distribution coverage, but not nearly
as significantly as it did with stochastic gradient descent.

• The error tolerance selected impacts the performance of each combination of methods.
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(a) Error tolerance of 0.05 (i.e. 0.95 desired coverage)
which is denoted by the dashed horizontal red line.
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(b) Error tolerance of 0.01 (i.e. 0.99 desired coverage)
which is denoted by the dashed horizontal red line.

Figure 5: MedMNIST: Average marginal coverage and average set size for the in-distribution organCmnist
dataset (denoted in on the plot) and for the out-of-distribution organSmnist dataset (denoted out on the
plot.)

This experiment provides further evidence for our explanation of how the under- or over-confidence of a model
can predict when conformal prediction may worsen or improve out-of-distribution coverage, and importantly
does so in a realistic safety-critical scenario. While conformal prediction may harm out-of-distribution
coverage for mean-field variational inference (due to its underconfidence on the calibration set), it instead
helps the over-confident stochastic gradient descent. Additionally, we see that the severity by which conformal
prediction affects out-of-distribution coverage depends on the error tolerance we select.

5 Discussion

Limitations and Future Work: We recognize that we evaluated and compared only a few of the many
conformal and Bayesian methods. Furthermore, although the results presented here add an important
dimension to the practical considerations of combining conformal and Bayesian deep learning methods, there
are many other questions that remain to be answered (e.g. adaptivity gains from using Bayesian deep learning
with conformal prediction). We developed experiments that provide evidence for the explanation offered in
Section 3.1 (see also Figure 1) which consequently demonstrated that certain modeling and data scenarios
can seriously impact the benefit of conformal prediction. Future work may include developing diagnostics
or practical checks that suggest one is in a particular scenario in which the utility of conformal prediction
can be predicted. Future work might also include further evaluations with additional measures such as
size-stratified coverage (Angelopoulos et al., 2020), and further mathematical analysis. Such analysis might
provide additional insights into when and how to combine certain conformal prediction and Bayesian deep
learning methods.

Conclusion: We demonstrated important scenarios in which conformal prediction can cause unintended
consequences that affect the overall safety of a machine learning system. Evidence also suggests that we should
choose an error tolerance α that takes into account the extent to which we will encounter out-of-distribution
data. In some cases it is not realistic to think that the tolerance we select will be honored. We hope that this
study also motivates the need for better evaluation strategies for Bayesian deep learning models. Echoing
some of the arguments made in Kompa et al. (2021), frequentist coverage of both in-distribution and out-of-

9



Under review as submission to TMLR

distribution examples for Bayesian deep learning models provides a nuanced and practical representation of
both the calibration of the models and the benefits of using conformal prediction in realistic settings. These
are all of immediate practical importance for a wide range of application areas, particularly in those where
unsafe mistakes can incur a large cost. If strong guarantees of coverage are desired, then one may consider
Bayesian deep learning, conformal prediction, or both, in an effort to provide those guarantees. Knowledge of
the scope of application, an assessment to identify breaking important assumptions (e.g. out-of-distribution
data), and expected use may help decide the methods that should be applied. Being aware of these results
and using the conclusions will better equip engineers in creating safer machine learning systems.
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APPENDIX

A TRAINING DETAILS

For both experiments we train stochastic gradient descent and mean-field variational inference for 5 different
seeds. Deep ensembles is the result of combining 5 stochastic gradient descent model states from the different
5 seeds. We measure the validation accuracy every 10 epochs. For evaluation we then select the model
state that attains the best validation accuracy. If the best validation accuracy is shared between multiple
checkpoints, we use the model state from the earliest checkpoint amongst those that are tied.

A.1 CIFAR10

Dataset: The CIFAR10 dataset contains 60,000 32 × 32 × 3 RGB images in 10 classes, where each class
contains 6,000 images each. There are 50,000 training images (5,000 images per class) and 10,000 test images
(1,000 images per class). We take 5% of the original training dataset (0.05 × 50, 000 = 2, 500) examples
as a validation set, and leave the remaining 95% (50, 000 − 2, 500 = 47, 500) examples for training. For
preprocessing, we normalize the images with mean (0.49, 0.48, 0.44) and standard deviation (0.2, 0.2, 0.2) for
each of the 3 channels. This is taken from the code repository of (Izmailov et al., 2021). We performed no
data augmentation.

Base Model: We use an AlexNet inspired convolutional neural network as a base model, which is taken
from the code repository of (Izmailov et al., 2021).

Training Hyperparameters: The following tables illustrate the training hyperparameters for stochastic
gradient descent and mean-field variational inference. Our deep ensembles method consists of using k = 5
stochastic gradient descent model states corresponding to 5 different independent parameter initializations.

Name Value
seeds {1, . . . , 5}

batch size 80
epochs 100

weight decay 5.0
temperature 1.0

learning rate schedule cosine
checkpoint frequency 10

Table 1: Shared Training Hyperparameters

Name Value
initial step size 8e-7

optimizer sgd
momentum decay 0.9

Table 2: SGD Specific Training Hyperparameters

Name Value
initial step size 4e-4

optimizer Adam
initial σ 0.01

# samples 1

Table 3: MFV Specific Training Hyperparameters. The initial σ is the initial value of the standard deviation
of the per-parameter Gaussians for mean-field variational inference.
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A.2 MedMNIST

Dataset: MedMNIST contains many standardized datasets of biomedical images (Yang et al., 2023). We
train on one of these datasets: organCmnist. This dataset is part of a larger cohort of three datasets which
are based on the 3D CT images from the Liver Tumor Segmentation Benchmark (Bilic et al., 2023). The
larger cohort is {organAmnist, organCmnist, organSmnist }, where A,C, and S are short for Axial, Coronal,
and Sagittal. These describe different views of the CT scan (see Figure 6). We use the pre-specified training
and validation sets provided by MedMNIST. These contain 13,000 training examples and 2,392 validation
examples. Each image is grayscale. For preprocessing, we normalize the images with mean 0.49 and standard
deviation 0.2 for the single channel. We performed no data augmentation.

Figure 6: An illustration describing the axial, coronal, and sagittal views. https://anatomytool.org/
content/lecturio-drawing-sagittal-coronal-and-transverse-plane-english-labels

Base Model: We use a ResNet18 neural network as a base model (He et al., 2016), which is a built-in
model in the Haiku library (Hennigan et al., 2020).

Training Hyperparameters: The following tables illustrate the training hyperparameters for stochastic
gradient descent and mean-field variational inference. Our deep ensembles method consists of using k = 5
stochastic gradient descent model states corresponding to 5 different independent parameter initializations.

Name Value
seeds {1, . . . , 5}

batch size 80
epochs 100

weight decay 10.0
temperature 1.0

learning rate schedule cosine
checkpoint frequency 10

Table 4: Shared Training Hyperparameters

Name Value
initial step size 6e-6

optimizer sgd
momentum decay 0.9

Table 5: SGD Specific Training Hyperparameters
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Name Value
initial step size 1e-4

optimizer Adam
initial σ 0.01

# samples 1

Table 6: MFV Specific Training Hyperparameters. The initial σ is the initial value of the standard deviation
of the per-parameter Gaussians for mean-field variational inference.

B EVALUATION DETAILS

We first note that we use 30 samples to approximate the posterior predictive density when using mean-field
variational inference. For both experiments, we create prediction sets in the same way. Given an error
tolerance α, for each method (stochastic gradient descent, deep ensembles, and mean-field variational inference)
and each evaluation dataset, we produce predicted probabilities p̂(x) and then create...

Predictive Credible Sets: We order the probabilities p̂i(x) ∈ p̂(x) from greatest to least and continue
adding the corresponding labels until the cumulative probability mass just exceeds 1 − α. We sometimes
abbreviate this method as cred.

Threshold Prediction Sets: Using a calibration set Dcal taken from the in-distribution test set, we
compute scores for each example using the score function (Sadinle et al., 2019):

s(x, y) = 1 − p̂y(x).

Then we take the
[(1 − α)(1 + 1

|Dcal|
)]-quantile

of these scores which we call τ . Then for each input we want to evaluate for, we create prediction sets as

Y(x) := {y ∈ Y | s(x, y) ≤ τ}

where Y is the sample space for labels y. We sometimes abbreviate this method as thr.

Adaptive Prediction Sets: Using a calibration set Dcal taken from the in-distribution test set, we compute
scores for each example using the score function

s(x, y) = p̂1(x) + · · · + Up̂y(x),

where p̂1(x) ≥ · · · ≥ p̂y(x) and U is a uniform random variable in [0, 1] to break ties (Romano et al., 2020).
As in the case of threshold prediction, we take the

[(1 − α)(1 + 1
|Dcal|

)]-quantile

of these scores which we call τ . Then for each input we want to evaluate for, we create prediction sets as

Y(x) := {y ∈ Y | s(x, y) ≤ τ}

where Y is the sample space for labels y. We sometimes abbreviate this method as aps.

Remark on Adaptive Prediction Sets: It is useful to note that for coverage to be tight (i.e. having the
upper bound in equation (4) of the paper), adaptive prediction sets requires distinct conformity scores. To
handle this, an additional standard uniform random variable is used. During the calibration phase, we take
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|Dcal| random samples from the this variable and subtract it from the scores before computing the quantile
τ . And during the prediction phase, we take |Dtest| random samples and subtract it from the scores before
checking if they are less than or equal to τ , where Dtest is the test set. We use the implementation from Stutz
et al. (2021), which allows one to input a random seed to do the above procedure.

B.1 CIFAR10 and CIFAR10-Corrupted

In the CIFAR10 experiment we evaluate the prediction sets on (i) the CIFAR10 test set (Krizhevsky et al.,
2009), and (ii) all CIFAR10-Corrupted test sets (Hendrycks and Dietterich, 2019). The CIFAR10-Corrupted
test sets contain 19 different corruptions, each with intensities ranging from 1 to 5.

Table 7: Different type of corruptions in CIFAR10-
Corrupted.

Corruption Type
1 brightness
2 contrast
3 defocus blur
4 elastic
5 fog
6 frost
7 frosted glass blur
8 gaussian blur
9 gaussian noise
10 impulse noise
11 jpeg compression
12 motion blur
13 pixelate
14 saturate
15 shot noise
16 snow
17 spatter
18 speckle noise
19 zoom blur

Figure 7: An example of the spatter corruption
at intensity level 4. https://www.tensorflow.
org/datasets/catalog/cifar10_corrupted

The 5 × 19 = 95 CIFAR10-Corrupted test sets are all corrupted versions of the original CIFAR10 test set.
Thus, when we take the 1, 000 examples from the original CIFAR10 test set to use as a calibration set
for our conformal methods, we also take the 1, 000 corresponding (semantically similar) examples from all
the CIFAR10-Corrupted test sets. We evaluate the three prediction set methods on the remaining 9, 000
examples from the original CIFAR10 test set, and then all the trimmed CIFAR10-Corrupted test sets (which
each contain 9, 000 examples). We run the procedure of taking a calibration set, finding τ , and computing
prediction sets on all the test sets with three different seeds {1, 2, 3}. Then we take the average accuracy,
marginal coverage, and set size across these three seeds. The accuracy results are presented in the main
paper. The accuracy, marginal coverage, and set size results for each dataset are presented in section F.1. In
the main paper we go further and take the average marginal coverage and average set size across data sets at
each intensity and report those summarized results.
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B.2 MedMNIST: organCmnist And organSmnist

In the MedMNIST experiment we only have two test sets. The organCmnist test set (containing 8,268
examples) and the organSmnist test set (containing 8,829 examples). The C in organCmnist standards
for coronal and the S in organSmnist stands for sagittal (see Figure 6). We take 500 examples from the
organCmnist test set to use as a calibration set for our conformal methods. We then evaluate the three
prediction set methods on the remaining examples from the organCmnist test set as well as on the organSmnist
test set, the latter serving as our out-of-distribution test set. We run the procedure of taking a calibration
set, finding τ , and computing prediction sets on all the test sets with three different seeds {1, 2, 3}. Then we
take the average accuracy, marginal coverage, and set size across these three seeds. The results are presented
in the main paper. The class proportions for all splits of both organCmnist and organSmnist are shown in
Figure 8.
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Figure 8: Class propotions for both the organCmnist datasets and the organSmnist datasets.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

Figure 9: An example image from each of the 11 classes in the organCmnist dataset.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

Figure 10: An example image from each of the 11 classes in the organSmnist dataset.
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C SPACE & COMPLEXITY

Space: If n is the number of learnable parameters for stochastic gradient descent, then mean-field variational
inference requires 2n learnable parameters. This is due to treating each weight as a random variable from a
Gaussian distribution, and instead having to fit the two parameters governing that distribution. If k is the
number of models in the ensemble, then deep ensembles requires kn learnable parameters. We use k = 5.

Runtime: All methods have linear time complexity in the number of parameters O(n). However, there
are some details to note: if m is the number of forward passes needed to predict using stochastic gradient
descent, then mean-field variational inference requires pm forward passes where p is the number of samples
to construct a Monte Carlo approximation for the Bayesian model average. During training we have p = 1
and during evaluation we have p = 30. If k is the number of models in the ensemble, then deep ensembles
requires kn forward passes. We use k = 5.

D SOFTWARE PACKAGES

• Python 3, PSF License Agreement (Van Rossum and Drake, 2009).

• Matplotlib, Matplotlib License Agreement (Hunter, 2007).

• Seaborn, BSD License (Waskom, 2021).

• Numpy, BSD License (Harris et al., 2020).

• JAX, Apache 2.0 License (Bradbury et al., 2018).

• Haiku, Apache 2.0 License (Hennigan et al., 2020).

• Tensorflow Datasets, Apache 2.0 License (TFD).

• google-research/bnn_hmc, Apache 2.0 License (Izmailov et al., 2021).

• google-deepmind/conformal_training, Apache 2.0 License (Stutz et al., 2021).

E COMPUTE

We ran our experiments on an Ubuntu 18.04.6 system with a dual core 2.10GHz processor and 754 GiB of
RAM. We also used a single Tesla V100-SXM2 GPU with 32 GiB of RAM.

CIFAR10 Experiment For training, stochastic gradient descent takes ≈ 3.6 minutes per seed and mean-
field variational inference takes ≈ 4.6 minutes per seed. For evaluation, stochastic gradient descent takes
≈ .3 minutes per seed, mean-field variational inference takes ≈ .3 minutes per seed, and deep ensembles takes
≈ .4 minutes per seed. Assuming (i) you train stochastic gradient descent and mean-field variational inference
with 5 different seeds, (ii) you evaluate using 3 seeds: the approximate time to run the CIFAR10 experiment
is

((3.6 + 4.6) × 5︸ ︷︷ ︸
training

) + ((0.3 + 0.3 + 0.4) × 3︸ ︷︷ ︸
evaluation

× 96︸︷︷︸
# datasets

) ≈ 5.48 hours

MedMNIST Experiment For training, stochastic gradient descent takes ≈ 2.6 minutes per seed and
mean-field variational inference takes ≈ 5 minutes per seed. For evaluation, stochastic gradient descent takes
≈ .4 minutes per seed, mean-field variational inference takes ≈ .8 minutes per seed, and deep ensembles
takes ≈ .7 minutes per seed. Assuming (i) you train stochastic gradient descent and mean-field variational
inference with 5 different seeds, (ii) you evaluate using 3 seeds: the approximate time to run the MedMNIST
experiment is

((2.6 + 5) × 5︸ ︷︷ ︸
training

) + ((0.4 + 0.8 + 0.7) × 3︸ ︷︷ ︸
evaluation

× 2︸︷︷︸
# datasets

) ≈ 0.82 hours
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 CIFAR10-Corrupted Per-Dataset Results
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Figure 11: CIFAR10-Corrupted per-dataset results at the 0.05 Error Tolerance.
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Figure 12: CIFAR10-Corrupted per-dataset results at the 0.05 Error Tolerance.
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Figure 13: CIFAR10-Corrupted per-dataset results at the 0.05 Error Tolerance.
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Figure 14: CIFAR10-Corrupted per-dataset results at the 0.05 Error Tolerance.
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Figure 15: CIFAR10-Corrupted per-dataset results at the 0.01 Error Tolerance.
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Figure 16: CIFAR10-Corrupted per-dataset results at the 0.01 Error Tolerance.
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Figure 17: CIFAR10-Corrupted per-dataset results at the 0.01 Error Tolerance.
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Figure 18: CIFAR10-Corrupted per-dataset results at the 0.01 Error Tolerance.
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