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Abstract—Generating collision-free motion in dynamic, partially
observable environments is a fundamental challenge for robotic
manipulators. Classical motion planners can compute globally
optimal trajectories but require full environment knowledge
and are typically too slow for dynamic scenes. Neural motion
policies offer a promising alternative by operating in closed-loop
directly on raw sensory inputs but often struggle to generalize in
complex or dynamic settings. We propose Deep Reactive Policy
(DRP), a visuo-motor neural motion policy designed for reactive
motion generation in diverse dynamic environments, operating
directly on point cloud sensory input. At its core is IMPACT, a
transformer-based neural motion policy pretrained on 10 million
generated expert trajectories across diverse simulation scenarios.
We further improve IMPACT’s static obstacle avoidance through
iterative student-teacher finetuning. We additionally enhance
the policy’s dynamic obstacle avoidance at inference time using
DCP-RMP, a locally reactive goal-proposal module. We evaluate
DRP on challenging tasks featuring cluttered scenes, dynamic
moving obstacles, and goal obstructions. DRP achieves strong
generalization, outperforming prior classical and neural methods

in success rate across both simulated and real-world settings.

Video results available at deep-reactive-policy.github.io.
I. INTRODUCTION

To operate effectively in dynamic, partially observable
environments such as homes and kitchens, robots must generate
motion that is both reactive and collision-free. This demands
a policy that can adapt in real time to environmental changes,
using raw sensory inputs like point clouds. Traditional motion
planning pipelines struggle in such settings due to their reliance
on static world models or long planning horizons.

Classical global planners, including search-based methods
like A* [1] and sampling-based approaches like PRM [2] and
RRT [3], offer asymptotic optimality but typically assume
full knowledge of the environment. These methods generate
open-loop trajectories that are not easily adaptable to new or
evolving scenes, limiting their utility in real-world applications
with dynamic obstacles. Even modern trajectory optimization
methods, such as cuRobo [4], rely on precise collision checking
and plan from scratch for each new problem, making real-time
use difficult.

Reactive controllers such as Riemannian Motion Policies
(RMP) [5] and Geometric Fabrics [6] address this limitation

by generating actions in real time based on local observations.

However, they often lack global context and are susceptible
to getting stuck in local minima, especially in cluttered
environments or when the goal is occluded.

Learning-based motion policies offer a promising alternative
by leveraging large-scale datasets to learn end-to-end mappings

Fig. 1: We present Deep Reactive Policy (DRP), a point cloud
conditioned motion policy capable of performing reactive, collision-
free goal reaching in diverse complex and dynamic environments.

from observations to actions. Hybrid approaches combine
neural modules with classical planners to improve efficiency
and generalization. More recent methods such as MnNets [7]
and MrnFormer [8] attempt to learn full motion policies directly
from data, showing strong in-distribution performance but
struggling to generalize to unseen environments or dynamic
settings. Other efforts like NeuralMP [9] introduce test-time
optimization to correct for policy errors, but this sacrifices the
real-time adaptability necessary in fast-changing environments.

In this work, we present Deep Reactive Policy (DRP), a
visuo-motor policy that generates collision-free motion directly
from point cloud observations. DRP is built on IMPACT (Imi-
tating Motion Planning with Action-Chunking Transformer),
a transformer-based policy trained on 10 million trajectories
generated by cuRobo in diverse simulation environments. To
enhance its static obstacle avoidance, we apply a student-teacher
distillation process. We further improve reactivity by integrating
a locally reactive goal proposal module, DCP-RMP, allowing
the policy to adapt in real time to moving or unseen obstacles.

Together, these components enable DRP to generalize beyond
the training distribution and handle real-world challenges,
including goal occlusions, dynamic obstacles, and scene
changes—without access to ground-truth maps or future states.

II. METHOD

We present Deep Reactive Policy (DRP), a neural visuo-
motor policy that enables collision-free goal reaching in diverse,
dynamic real-world environments. An overview of the full
system architecture is shown in Figure 2.

At the core of DRP is IMPACT, a transformer-based policy
that generates joint position targets conditioned on a joint-
space goal and live point-cloud input. IMPACT is trained in
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Fig. 2: Deep Reactive Policy (DRP) is a visuo-motor neural
motion policy designed for dynamic, real-world environments.
First, the locally reactive DCP-RMP module adjusts joint
goals to handle fast-moving dynamic obstacles in the local
scene. Then, IMPACT, a transformer-based closed-loop motion
planning policy, takes as input the scene point cloud, the
modified joint goal, and the current robot joint position to
output action sequences for real-time execution on the robot.

two phases. First, it undergoes pretraining via behavior cloning
on a large offline dataset with over 10M trajectories generated
by cuRobo [4], a SOTA optimization-based motion planner.
While the pretrained policy demonstrates strong global planning
potential, it often incurs minor collisions, as the kinematic
expert trajectories neglect robot dynamics.

Subsequently, we enhance IMPACT’s static obstacle avoid-
ance using student-teacher finetuning. The teacher combines
the pretrained IMPACT policy with Geometric Fabrics [0], a
state-based closed-loop controller that excels at local obstacle
avoidance while respecting robot dynamics. Since Geometric
Fabrics relies on privileged obstacle information, we distill
its behavior into a fine-tuned IMPACT policy that operates
directly on point-cloud inputs.

To further boost reactive performance to dynamic obsta-
cles during deployment, DRP utilizes a locally-reactive goal
proposal module, DCP-RMP, that supplies real-time obstacle
avoidance targets to the fine-tuned IMPACT policy.

A. Large-Scale Motion Pretraining

To enable supervised pretraining of a motion policy that can
learn general collision-free behavior, we generate diverse and
complex training scenes paired with expert trajectory solutions.
While we largely follow the data generation pipeline introduced
in [9], we replace AIT* [10] with cuRobo as the expert motion
planner. Due to its GPU acceleration, cuRobo allows us to
scale data generation to 10 million expert trajectories.

We also introduce challenging scenarios where the goal
itself is obstructed by the environment and thus physically
unreachable. In these cases, we modify the expert trajectory to
stop the robot as close as possible to the goal without colliding
with the blocking obstacle. This scenario is critical to include,
as in dynamic settings, obstacles like humans may temporarily
block the target, and the robot must learn to avoid collisions
even when the goal cannot be immediately reached.

We then train a transformer-based neural motion policy,
IMPACT (Imitating Motion Planning with Action-Chunking
Transformer), on this data. IMPACT outputs joint position
targets, conditioned on the obstacle point cloud P, € RY¥s*3,
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Fig. 3: The IMPACT policy is combined with a locally reactive
Geometric Fabrics controller to enable improved obstacle
avoidance. This combined teacher policy is then distilled into
a point-cloud conditioned student policy.

robot point cloud P. € R¥**3 current joint configuration

gc € R7, and goal joint configuration ¢,, € R.

During training, point cloud inputs are generated by uni-
formly sampling points from ground-truth mesh surfaces
in simulation. During real-world deployment, scene point
clouds are captured using calibrated depth cameras. We also
replace points near the robot in the captured point cloud with
points sampled from its mesh model, using the current joint
configuration to ensure an accurate representation of its state.

To reduce computational complexity and enable real-time
inference, we use set abstraction from PointNet++ [11] to
downsample the point clouds and generate a smaller set of
latent tokens. Specifically, the scene and robot point clouds
are converted into tokens z, € RXs*H and 2, ¢ RE-*H,
where Ky < N, and K, < N,. The current and target joint
angles are encoded using MLPs to produce z., zmg € R,
respectively. Each input is paired with a learnable embedding:
€55 Er,s ey Cmg € R¥, which are added to the corresponding
tokens to form the encoder input.

The decoder processes S learnable action tokens A € RS*H
using the encoder output as memory. The decoder outputs a
sequence of S delta joint actions [q1,q,...,qs] € R*7,
which are supervised using a Mean Squared Error (MSE) loss
against the ground-truth actions [q1, go, .. ., gs]:
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These delta actions are then converted into absolute joint
targets and sent to the robot’s low-level controller for real-

time execution.

B. Iterative Student-Teacher Finetuning

Pretraining IMPACT on our dataset provides a strong
globally-aware motion policy, already outperforming prior
SOTA neural methods (see Section III-A). However, since the
expert trajectories generated offline from cuRobo are purely
kinematic, they fail to capture robot dynamics and controller
behavior, resulting in frequent collisions at deployment.

To enhance the policy’s ability to understand robot dynamics
and further improve static obstacle avoidance, we improve



IMPACT via iterative student-teacher finetuning. Since many of
the pretrained policy’s failure cases stem from minor collisions
with local obstacles, we can remedy these mistakes by passing
IMPACT’s joint position outputs into Geometric Fabrics [6], a
SOTA controller that excels at local obstacle avoidance.

Geometric Fabrics uses ground-truth obstacle models to
follow joint targets while avoiding nearby obstacles and
respecting dynamic constraints like joint jerk and acceleration
limits. Since it relies on privileged information, we apply
student-teacher distillation in simulation to refine our point-
cloud-based IMPACT policy [12].

We initialize the student policy 7, with the pretrained
IMPACT policy from Section II-A. The teacher policy also
starts with the pretrained IMPACT policy 7, which outputs
an action chunk of joint position targets. We take the first
action in this chunk, g, as an intermediate goal and pass
it to Geometric Fabrics 7y, which refines it into improved
targets g = m¢(obs, q). These refined targets then supervise
updates to the student policy 7. To ensure scalability, the
entire process runs in parallel using IsaacGym [13]. Since
Geometric Fabrics requires signed distance fields (SDFs) for
obstacle avoidance, we precompute them offline in batch
for static scenes. Notably, we avoid using cuRobo as the
expert during finetuning, as it would require planning at every
simulation step across all vectorized environments—rendering
it computationally impractical.

During distillation, we keep 7, frozen within the teacher
policy to maintain stable objectives. After 10000 gradient steps,
the fine-tuned student replaces mp,, and the process repeats.
This iterative procedure progressively improves local obstacle
avoidance while preserving strong global planning capabilities.
The full process is illustrated in Figure 3. This iterative student-
teacher finetuning improves the success rate over the pretrained
model by 45%, as shown in Table I.

C. Riemannian Motion Policy with Dynamic Closest Point

While IMPACT’s closed-loop nature allows it to implicitly
handle dynamic environments—making decisions at every
timestep—its performance degrades in particularly challenging
scenarios, such as when an object moves rapidly toward the
robot. This limitation arises because dynamic interactions are
absent from both the pretraining dataset and the student-teacher
finetuning phase, as generating expert trajectories for non-static
scenes would require re-planning after every action, which is
computationally infeasible for both cuRobo and our vectorized
Geometric Fabrics implementation.

To explicitly enhance IMPACT’s dynamic obstacle avoidance
during inference, we introduce a Riemannian Motion Policy
(RMP) layer. This non-learning based component uses local
obstacle information to enable highly reactive local obstacle
avoidance. Specifically, RMP acts as a goal-proposal module,
modifying the original joint-space goal q, into a new goal qy,4
that prioritizes avoidance when dynamic obstacles approach.
This adjusted goal is then passed to IMPACT. Notably, because
IMPACT is already trained with global scene awareness,
focusing RMP solely on local dynamic obstacles does not

DRPBench MnNets Dataset

SE SAO FDO GB DGB

With privileged information:

AIT* [10] 40.50 0 0 0 0 89.22
cuRobo [4] 82.97 59.00 39.50 0 3.00 99.78
cuRobo-Vox [4] 50.53 58.67 40.50 0 2.50 -
RMP [5] 32.97 46.0 49.50 71.08 50.50 41.90
MmnNets [7] 2.50 0.33 0 0 0 65.18
MrFormer [8] 0.19 0 0 0 0 30.02
NeuralMP [9] 50.59 33.16 19.00 0 0.25 -
IMPACT (no finetune) 58.25 47.33 13.50 46.50 0 66.27
IMPACT 84.60 86.00 32.00 66.67 0.25 83.71
DRP (Ours) 84.60 86.00 75.50 66.67 65.25 83.71

TABLE I: Quantitative results on DRPBench and MwNets Dataset.
DRP outperforms all classical and learning-based baselines across
diverse settings, particularly excelling in dynamic and goal-blocking
tasks. While optimization methods like cuRobo succeed in static
scenes, they struggle under dynamic conditions. DRP’s combination
of architectural improvements, fine-tuning, and reactive control (via
DCP-RMP) enables robust generalization and superior performance,
especially in scenarios requiring fast adaptation.

compromise the global goal-reaching performance.

However, RMP traditionally requires ground-truth obstacle
models and poses to generate joint targets for reactive avoid-
ance, limiting its real-world deployability. To overcome this,
we propose Dynamic Closest Point RMP (DCP-RMP)—an
RMP variant that operates directly on point cloud inputs. At a
high level, DCP-RMP identifies the closest point in the point
cloud belonging to a dynamic obstacle and generates repulsive
motion to steer the robot away.

Specifically, we implement DCP-RMP by first extracting the
dynamic obstacle point cloud using a KDTree, which efficiently
performs nearest-neighbor queries between the current and
previous frame point clouds to identify moving points. We then
compute the minimal displacement x, between the robot and
nearby dynamic obstacles and derive a repulsive acceleration
to increase this separation. Finally, we adjust the original joint
goal qq by virtually applying this repulsive signal, yielding the
modified goal q,,, that prioritizes dynamic obstacle avoidance.

While the modified joint goal may sometimes intersect with
static obstacles, IMPACT has been trained on scenarios where
the goal configuration is in collision with the scene and learns
to stop safely in front of obstacles instead.

III. EXPERIMENT SETUP AND RESULTS

To comprehensively evaluate DRP’s reactivity and robustness,
we design DRPBench, a set of challenging benchmark tasks
in both simulation and the real world. These tasks target
three critical real-world challenges for robot motion generation:
navigating cluttered static environments, reacting swiftly to
dynamic obstacles, and handling temporarily obstructed goals
with caution and precision.

We report quantitative results and address the following key
questions: (1) How does DRP perform compared to SOTA
classical and learning-based motion planners? (2) What are the
individual contributions of DRP’s architectural design, student-
teacher fine-tuning, and DCP-RMP integration? (3) Can DRP
generalize effectively to real-world environments, especially
those exhibiting significant domain shift from training?
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Fig. 4: DRPBench introduces five challenging evaluation
scenarios in simulation and real. In addition to complex Static
Environments (SE), we propose Suddenly Appearing Obstacle
(SAO) where obstacles appear suddenly ahead of the robot,
Floating Dynamic Obstacles (FDQO) where obstacles move
randomly throughout the environment, Goal Blocking (GB)
where the goal is obstructed and the robot must approach
as closely as possible without colliding, and Dynamic Goal
Blocking (DGB) where the robot encounters a moving obstacle
after getting to the goal.

A. Simulation Experiments and Results

For the simulation experiments, DRPBench comprises over
4000 diverse problem instances, with examples shown in
Figure 4. In addition to DRPBench, we also test on the MmNets
benchmark [7] in a zero-shot manner without additional training.
We use success rate as the primary metric, where a trial is
successful if the robot reaches the end-effector goal pose within
position and orientation thresholds without collisions.

Classical methods fail in dynamic and goal-blocking
scenes. Sampling-based planners such as AIT* completely
fail in dynamic environments, achieving 0% success on all
such tasks despite extended planning horizons. Optimization-
based approaches like cuRobo and RMP perform significantly
better in static settings—e.g., 82.97% and 32.97% on Static
Environment (SE), respectively—but degrade in harder sce-
narios. cuRobo drops to 3.00% on Dynamic Goal Blocking
(DGB), where the goal is temporarily obstructed. In contrast,
RMP achieves 50.50% on DGB, motivating its integration
into DRP as a reactive control module. Still, DRP surpasses
RMP significantly on tasks except for Goal Blocking (GB),
underscoring the benefit of combining learning with reactive
control.

Architectural design and training diversity enables
generalization. Learning-based models trained on narrow
datasets—such as M7 Nets and MmFormer—fail to generalize
to out-of-distribution scenes, achieving only 0-2.5% on the
DRPBench tasks. NeuralMP performs better, but it relies on
test-time optimization (TTO)—a process that adapts trajecto-
ries post-hoc during deployment which only helps in Static
Environment (SE) and struggles in reactive contexts. However,
even without finetuning, IMPACT outperforms other learning-
based methods due to its more expressive, scalable architecture
and training on a more diverse dataset—without relying on
post-hoc techniques.

Fine-tuning surpasses data generation method. DRP is

FDO DGB
Has DCP-RMP? X v X v

cuRobo [4]
NeuralMP [9]
IMPACT

SE  SAO FDO GB DGB

cuRobo-Vox 60.00 3.33 0 0 0
NeuralMP [9] 30.00 6.67 O 0 0
IMPACT 90.00 100.00 0 9286 0
DRP (Ours) 90.00 100.00 70.00 92.86 93.33

39.50 51.50 3.00 54.50
19.00 34.00 0.25 20.75
32.00 75.50 0.25 65.25

TABLE II: DCP-RMP is method- TABLE III: Success Rate (%)
agnostic. on Real-world tasks.

pretrained using trajectories from a classical planner (cuRobo),
but it significantly exceeds this source’s performance. This is
because we filter for successfully planned trajectories during
data generation and we apply a student-teacher fine-tuning
stage that distills and refines action generation beyond the
original data. The result is a policy that not only inherits useful
behaviors but generalizes more effectively across complex
settings. IMPACT also performs well in static and dynamic
environments that require fine local control. It achieves 86.00%
on Suddenly Appearing Obstacle (SAO) and 66.67% on Goal
Blocking (GB), where precise maneuvers near occluded or
blocked targets are critical. These results validate the strength
of closed-loop visuo-motor imitation in spatially constrained
environments.

DCP-RMP boosts dynamic performance. DRP’s integra-
tion of DCP-RMP adds fast local responsiveness, yielding
strong results in fully dynamic tasks: 75.50% on FDO and
65.25% on DGB. In contrast, using IMPACT alone drops to
32.00% and 0.25% on the same tasks, while cuRobo reaches
only 39.50% and 3.00%. These gains highlight the necessity of
combining high-level learning with reactive modules to handle
dynamic obstacles and shifting goals in real time. We further
evaluate the impact of the DCP-RMP module by adding it to
various baseline methods. As shown in Table II, DCP-RMP
improves performance across all dynamic tasks, regardless of
the underlying method.

B. Real-World Experiment Results

Our real-world benchmark mirrors the five simulation tasks,
but introduces out-of-distribution, semantically-meaningful
obstacles like a slanted shelf and tall drawer, as shown in
Figure 1. For example, in one dynamic goal blocking (DGB)
task, the robot must wait in front of a drawer, avoid a human
operator, and reach in once it opens. The benchmark includes
over 50 real-world instances, with two to four calibrated Intel
RealSense D455 RGB-D cameras capturing the scene.

As seen in Table III, DRP significantly outperforms classical
and learning-based baselines in real-world settings. On tasks
like Static Environment (SE) and Static Appearing Obstruction
(SAO), both DRP and IMPACT achieve near-perfect success
rates, far exceeding cuRobo-Vox and NeuralMP, which degrade
severely under noisy perception. On the more challenging Goal
Blocking (GB) task, both DRP and IMPACT reach 92.86%,
while cuRobo and NeuralMP fail completely. The biggest
difference appears on Floating Dynamic Obstacle (FDO) and
Dynamic Goal Blocking (DGB) where IMPACT fails to solve,
highlighting the value of DCP-RMP for reactive behavior. Even
though being trained entirely in simulation, DRP adapts well
to real-world settings.
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