
Detection and Defense of Unlearnable Examples

Yifan Zhu1,3, Lijia Yu2,3, Xiao-Shan Gao1,3 *

1Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
2Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

3University of Chinese Academy of Sciences, Beijing 101408, China
zhuyifan@amss.ac.cn, yulijia@ios.ac.cn, xgao@mmrc.iss.ac.cn

Abstract

Privacy preserving has become increasingly critical with the
emergence of social media. Unlearnable examples have been
proposed to avoid leaking personal information on the Inter-
net by degrading the generalization abilities of deep learning
models. However, our study reveals that unlearnable exam-
ples are easily detectable. We provide theoretical results on
linear separability of certain unlearnable poisoned dataset and
simple network-based detection methods that can identify all
existing unlearnable examples, as demonstrated by extensive
experiments. Detectability of unlearnable examples with sim-
ple networks motivates us to design a novel defense method.
We propose using stronger data augmentations coupled with
adversarial noises generated by simple networks, to degrade
the detectability and thus provide effective defense against
unlearnable examples with a lower cost. Adversarial training
with large budgets is a widely-used defense method on un-
learnable examples. We establish quantitative criteria between
the poison and adversarial budgets, which determine the ex-
istence of robust unlearnable examples or the failure of the
adversarial defense.

Introduction
Deep neural networks (DNNs) have become the most pow-
erful machine learning method, driving significant advances
across numerous fields. However, the security of deep learn-
ing remains a major concern. One of the most serious security
threats is data poisoning, where an attacker can manipulate
the training data intentionally to cause deep models to mal-
function. For example, by injecting triggers during the train-
ing phase, backdoor attacks (Chen et al. 2017; Gu et al. 2019)
will cause malfunctions or enable attackers to achieve spe-
cific objectives when triggers are activated. Another type of
data poisoning attack is availability attacks (Biggio, Nelson,
and Laskov 2012; Koh and Liang 2017; Lu, Kamath, and Yu
2022), aiming to reduce the generalization capability of deep
learning models by modifying the features and labels of the
training data. Recently, unlearnable data poisoning attacks
(Huang et al. 2020a; Wang, Wang, and Wang 2021) were
proposed, which can modify features of all training data with
a small poison budget to generate unlearnable examples.
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Privacy preserving has become increasingly eye-catching
in recent years, especially in face recognition (Shan et al.
2020; Cherepanova et al. 2020; Hu et al. 2022). Unlearnable
examples were designed initially for the “let poisons be kind”
(Huang et al. 2020a; Wang, Wang, and Wang 2021) approach
to privacy preservation, allowing individuals to slightly mod-
ify their personal data to make them unlearnable without
losing the semantics.

While unlearnable examples have been shown to be highly
effective at deceiving victims into thinking that their deep
learning models have been trained successfully by achieving
high validation accuracy, this paper demonstrates that un-
learnable examples can be detected with relative ease. Specif-
ically, we propose two effective methods to detect whether
a given dataset has been poisoned by unlearnable data poi-
soning attacks. It was experimental observed in (Yu et al.
2021) that unlearnable poisons are linearly separable. In this
paper, we further prove that for certain random or region
class-wise poisons, the poisoned datasets rather than poisons
are also linearly separable if the dimension of data is suffi-
ciently large. Based on these theoretical findings, we propose
the Simple Networks Detection algorithm, which leverages
linear models or simple two-layer networks to detect poi-
soned data. Additionally, we have experimentally observed
that poisons are immune to large bias shifts. Based on this
observation, we propose another detection algorithm called
Bias-shifting Noise Test, which introduces a large bias to each
training data, to destroy their original features while retain-
ing the injected poison features. The resulting difference can
be used to detect the existence of poisons. Our experiments
on CIFAR-10, CIFAR-100, and TinyImageNet demonstrate
that all the major unlearnable examples can be effectively
detected by both algorithms.

Furthermore, the detectability of unlearnable examples
has inspired us to develop a defense strategy that focuses on
degrading them. We achieve this through the use of data aug-
mentations and adversarial noises that make these examples
undetectable by simple networks. By using stronger data aug-
mentations and a two-layer neural network (NN) to generate
stronger noises, we demonstrate that it becomes much more
difficult to generate unlearnable examples. Experiments have
shown that our defense method is highly effective against un-
learnable examples, which can even outperform adversarial
training regimes and state-of-the-art defense methods.
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Adversarial training with large defense budgets is a well-
known defense method against unlearnable examples (Tao
et al. 2021). We establish theoretical criteria for the relation-
ship between the poison budget and the adversarial defense
budget. Specifically, we prove that if the poison budget ex-
ceeds four times the size of the adversarial defense budget,
or if the gap between the two budgets exceeds a certain con-
stant, then robust unlearnable examples can be created to
make adversarial training set linearly separable. These theo-
retical results guarantee the existence of robust unlearnable
examples, while also providing a lower bound on the adver-
sarial defense budget required for adversarial training to be
effective. We also prove that to make the dataset linearly
separable, the poison budget must be larger than a certain
constant, under some mild assumptions. Our experimental
results confirm the validity of the theoretical results, showing
that as the adversarial budget increases, unlearnable examples
become learnable again, because the linear features injected
by attackers are destroyed through adversarial training.

We summarize our main contributions as follows:
• We propose two effective methods to detect whether a

dataset has been poisoned by unlearnable data poison-
ing attacks, based on theoretical results and experimental
observations.

• We demonstrate that stronger data augmentations with
adversarial noises generated by a simple network can
destroy the detectability, as well as achieve good defense
performance.

• We establish certified upper bounds of the poison bud-
get relative to the adversarial defense budget required to
generate robust unlearnable examples.

Related Work
Data Poisoning. Data poisoning is a type of attack that can
cause deep learning models to malfunction by modifying the
training dataset. Targeted data poisoning attacks (Shafahi et al.
2018; Zhu et al. 2019; Huang et al. 2020b; Schwarzschild
et al. 2021) aimed to misclassify specific targets. Availability
attacks (Biggio, Nelson, and Laskov 2012; Muñoz-González
et al. 2017) attempted to reduce test performance of models
by poisoning a small portion of the training data. Unlearnable
attacks (Huang et al. 2020a) were a special type of availabil-
ity attack where the attacker poisons all training data using
a small poison budget, resulting in significantly drop in test
accuracy to almost random guessing (Feng, Cai, and Zhou
2019; Huang et al. 2020a; Fowl et al. 2021; Sandoval-Segura
et al. 2022b). Robust unlearnable attacks (Fu et al. 2021)
attempted to maintain the poisoning effects under adversarial
training regimes. Another type of data poisoning was back-
door attacks (Chen et al. 2017; Gu et al. 2019; Barni, Kallas,
and Tondi 2019; Turner, Tsipras, and Madry 2019), which
induced triggers into trained models to cause malfunctions.

Attack Detection. In recent years, several methods have
been proposed to detect safety attacks of DNNs. Detection of
adversarial attacks has been explored in (Metzen et al. 2016;
Grosse et al. 2017; Abusnaina et al. 2021) for victims to
determine whether a given data is an adversarial example or

not. Detection algorithms were provided to identify triggers
and recover them under backdoor attacks (Chen et al. 2018,
2019; Dong et al. 2021). Guo, Li, and Liu (2021) detected
backdoor attacked model using adversarial extreme value
analysis. Subedar et al. (2019) used probabilistic models and
Raghavan, Mazzuchi, and Sarkani (2022) conducted model
verification to detect data poisoning attacks. Our detection
methods are the first to focus on unlearnable examples to the
best of our knowledge.

Poison Defense. Several defense methods for data poison-
ing have emerged in recent years. In (Ma, Zhu, and Hsu 2019),
a defense method using differential privacy was proposed.
In (Chen et al. 2021), adversarial generative networks were
used to detect and discriminate poisoned data. Liu, Yang,
and Mirzasoleiman (2022) used friendly noise to improve
defense against data poisoning. Wang, Mianjy, and Arora
(2021) analyzed the robustness of stochastic gradient descent
in data poisoning attacks. People also used adversarial train-
ing to defend unlearnable data poisoning attacks (Tao et al.
2021). Certified defense guarantees on data poisoning and
backdoor attacks were also provided in (Steinhardt, Koh, and
Liang 2017; Levine and Feizi 2020; Weber et al. 2020; Wang,
Levine, and Feizi 2022). Recently, defense methods have
been provided on unlearnable examples (Qin et al. 2023; Liu,
Zhao, and Larson 2023).

Notations and Definitions of Unlearnable
Examples

Notations. Denote the training dataset as Dtr =
{(xi, yi)}Ni=1 ⊂ Id × [C], where d,N,C are positive inte-
gers, and I = [0, 1] is the data value range, [C] = {1, . . . , C}
is the set of labels. Let Dpo

tr = {(xi + ϵ(xi), yi)}Ni=1 be the
poisoned training dataset of Dtr, where ϵ(xi) is the poison
elaborately generated by the poison attacker. In this paper,
we assume that ϵ(xi) is a small perturbation that satisfies
||ϵ(xi)||∞ ≤ η, where η ∈ R>0 is called the poison budget.
A well-learned network F has good generalization perfor-
mance on the test set Dte, that is, it has a high test accuracy
denoted as Acc(F , Dte).

Unlearnable examples. A poisoned dataset Dpo
tr is called

unlearnable (Huang et al. 2020a), if training a network F
on Dpo

tr results in very low test accuracy Acc(F , Dte), but
achieves sufficiently high (poisoned) validation accuracy
Acc(F , Dpo

val) on poisoned validation dataset. If the victim
receives an unlearnable poisoned dataset, they may split it
into a training set and a validation set. Since the (poisoned)
validation accuracy is good enough, the victim may assume
that their model is performing well. However, because the
victim has no access to the (clean) test set Dte, their model
will actually perform poorly on Dte. As a result, the victim
will be deceived by the poisoned generator.

There are two basic types of unlearnable poisoning attacks:
sample-wise and class-wise, where sample-wise means that
each sample is independently poisoned with a specific pertur-
bation and class-wise means that samples with the same label
are poisoned with the same perturbation. Some examples of
poisoned data and their corresponding perturbations can be
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found in Appendix C.
The main unlearnable attack methods include: Random(C),

Region-n (Sandoval-Segura et al. 2022a), Err-min (Huang
et al. 2020a), Err-max (Fu et al. 2021), NTGA (Yuan and Wu
2021), AR (Sandoval-Segura et al. 2022b), RobustEM (Fu
et al. 2021), CP (He, Zha, and Katabi 2022), TUE (Ren et al.
2022), etc.

Detection of Unlearnable Examples
Although unlearnable examples can achieve their goal of
deceiving victims by having good validation accuracy and
poor test accuracy in normal training processes (Huang et al.
2020a), we will demonstrate in this section that unlearn-
able examples can actually be easily detected. We will also
provide effective detection algorithms to detect unlearnable
examples using simple networks.

Theoretical Analyses of Unlearnable Examples
Firstly, we present theoretical results that certain unlearnable
examples are linearly separable, which can be used to identify
the presence of poisons. In (Yu et al. 2021), they empirically
discover the linear separability of unlearnable poison noises.
It is worth noting that our approach differs from previous
work (Yu et al. 2021), in that we not only empirically find
but also prove that unlearnable poisoned dataset, rather than
noises, are linearly separable.

Theorem 1. Let D = {(xi, yi)}Ni=1 ⊂ Id × [C]. For the
class-wise poison {vi}Ci=1 ⊂ Rd satisfying that ∀i ∈ [C]
and j ∈ [d], (vi)j is i.i.d. and obeys distribution ∆(ϵ), where
∆(ϵ) = 2ϵ · Bernoulli

(
1
2

)
− ϵ, that is, (vi)j equals ±ϵ with

1
2 probability respectively. Then with probability at least

1−NC
(
2e−

dϵ2

18 + e−
d
32

)
, the class-wise poisoned dataset

Dpo = {xi + vyi
, yi}Ni=1 is linearly separable.

Theorem 2. For the Region-k poison {vi}Ci=1 ⊂ Rd satis-
fies that ∀i ∈ [C], (vi)j is equal whenever j is in the same
region; (vi)j is i.i.d. and obeys distribution ∆(ϵ), when-
ever j in different regions. Then with probability at least
1 −NC

(
2e−

kϵ2

18 + e−
k
32

)
, the Region-k poisoned dataset

Dpo = {xi + vyi
, yi}Ni=1 is linearly separable.

The proofs of Theorems 1 and 2 are deferred to Appendices
A.1 and A.2, respectively.
Remark 3. By Theorem 1, when d or ϵ are sufficiently large,
certain Random(C) poisoned dataset is linearly separable.
Similarly, by Theorem 2,when k is sufficiently large, certain
Region-k poisoned dataset is linearly separable.

Magnitude of poison budget to achieving linear separa-
bility. We add the Random(C) poison vi ∈ {+ϵ,−ϵ}d
to CIFAR-10 with ϵ = 8/255, and use the linear network
F(x) = [v1, · · · ,vC ]

Tx for classification. Experimental re-
sults show that 49, 963 of 50, 000 poisoned training samples
can be correctly classified by F . This finding indicates that
ϵ = 8/255 is large enough to achieve linear separability for
CIFAR-10 dataset. Table 8 also shows that Region-16 and

Err-min(S) poisons with budget ϵ = 8/255 is enough to make
poisoned dataset linearly separable.

Sample-wise poisons. Theorems 1 and 2 describe prop-
erties of class-wise poisons, and sample-wise poisons have
similar properties as well. In Appendix F, we provide experi-
ments to demonstrate the similarity between sample-wise and
class-wise poisons by measuring the cosine similarity and
commutative KL divergence. Additionally, from Appendix
D.2, we can observe that both the sample-wise and class-wise
error-minimum poisoned dataset have similar training curves.

Detection of Unlearnable Examples by Simple
Networks
Theorems 1 and 2 imply that a poisoned dataset can be
learned by a linear network. However, the clean dataset such
as CIFAR-10, CIFAR-100, and TinyImageNet cannot be eas-
ily fitted by a linear model. We evaluate the linear separability
rate for these datasets as shown below.
Definition 4 (Linear Separability Rate). Let dataset S ⊂
Id × [C] and Flinear denote the set of all linear models f :
Rd → RC . The linear separability rate of S is defined as
βS = sup

f∈Flinear

Acc(f, S).

Remark 5. The linear separability rates of CIFAR-10, CIFAR-
100, and TinyImageNet are at least 46.53%, 31.71%, 49.38%,
respectively, by training them with a linear network.

This difference between a clean dataset and a poisoned one
can be exploited to detect the presence of unlearnable exam-
ples, which motivates Algorithm 1, named Simple Networks
Detection.

Detection under data augmentations. It is worth noting
that, in practice, people often train networks with some data
augmentation methods. For example, for CIFAR-10, random
crop and random horizontal flip are commonly used data
augmentation methods. However, experimental observations
have shown that the linear separability of poisoned datasets
may easily be broken by data augmentations. Therefore, in
cases where linear separability does not hold, utilizing a two-
layer network emerges as the next most suitable criterion.
Furthermore, we cannot further relax the simple networks
to three-layer NN. This is because the training accuracy on
clean data becomes excessively high, making it challenging
to distinguish clean dataset from poisoned ones.

Algorithm 1: Simple Networks Detection

Input: A dataset D might be poisoned. A linear network or
a two-layer NN (hidden width equals the data dimension)
F . A detection bound B (say 0.7).

Output: Poison function I(D).
I(D) = 1 if D is recognized as the poisoned dataset;
I(D) = 0 if D is recognized as the clean dataset.

Do:
Initialize parameters of the network F .
Train the network F on dataset D with loss function
Lce(F(x), y).
If Acc(F , D) ≤ B: I(D) = 0; else I(D) = 1.
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Poison Random(C) Region-16 Err-min(S) NTGA AR

Dclean 10.46 15.27 10.02 10.10 13.63
Dpoi 100.0 100.0 99.99 99.98 99.98
D0.5

poi-shift 99.84 99.64 100.0 95.26 99.82
D−0.5

poi-shift 100.0 99.98 97.85 90.82 90.96

Table 1: Validation accuracy (%) on different dataset:
Dclean = {(xi, yi)} is the clean validation set, Dpoi =

{(xi+ϵ(xi), yi)}, Db
poi-shift = {(xi+ϵ(xi)+be, yi)}, where

b is the bias-shifting noise level and e is the all-ones vector.

Detection of Unlearnable Examples by Bias-Shifting
Noise
In this section, we find that unlearnable examples are almost
immune to large bias-shifting noise. Inspired by this unusual
behavior of unlearnable examples, we can detect poisons by
training the model with bias-shifting noises.

Resistance of poisoned dataset to bias-shifting noise. Ta-
ble 11 in Appendix D.3 shows that injected unlearnable poi-
sons are strong features that dominate the poisoned data, and
the poisoned dataset is highly robust to bias-shifting noise. In
unlearnable examples setting, the injected poisons are very
small, restricting to less than 8/255 under the l∞ norm. How-
ever, even when subjected to bias-shifting noise of dozens
of times larger like ±0.5, the victim model can still achieve
100% (validation) accuracy.

Table 1 shows the accuracy on poisoned (validation)
dataset and dataset with large bias-shifting noise. When large
bias-shifting noises are added to the poisoned dataset, the
validation accuracy of it does not degrade significantly. But
when training on the clean dataset, it will drop significantly
because the original features are destroyed by large bias-
shifting noise. This observation motivates us to introduce
Algorithm 2, which is called Bias-shifting Noise Test.

Choice of bias-shifting noise. If data are lying in the range
[a, b], it is recommended to choose b−a

2 e or − b−a
2 e as the

bias-shifting noise ϵb. As images always lie in [0, 1], for
simplicity we choose ϵb = ±0.5e in this paper, more results

Algorithm 2: Bias-shifting Noise Test

Input: A dataset D might be poisoned. A DNN F (say
ResNet18). A detection bound B (say 0.7). A bias-shifting
noise ϵb.

Output: poison function I(D).
Do:

Randomly split D into training and validation sets Dtr and
Dva.
Let the bias-shifting training set be Drb

tr = {(x +
ϵb, y) ∥ (x, y) ∈ Dtr}.
Initialize parameters of the network F .
Train the network F on the bias-shifting training set Drb

tr
with loss function Lce(F(x), y).
if Acc(F , Dva) ≤ B: I(D) = 0; else I(D) = 1.

on different choices of ϵb are provided in Appendix G.2. Such
noise can effectively destroy the original features, without
affecting the injected noise features, as shown in Table 1 for
dataset D±0.5

poi−shift.

Defense of Unlearnable Examples by Breaking
Detectability

In Detection Section, we have proven that certain unlearnable
examples can be separated by linear networks and all of
the existing unlearnable examples can be easily fitted by
simple networks like two-layer neual networks even under
the usual data augmentations regime. Therefore, we believe
that properties that can be fitted by simple networks are the
reason why unlearnable examples work, which can also be
used for detection.

On the basis of this, once the dataset is detected to be
unlearnable, one potential solution is to defend it by destroy-
ing its detectability. Adversarial training is a well-known
approach for defending against unlearnable examples (Tao
et al. 2021), but it is expensive. We can achieve similar goals
at a lower cost by breaking the detectability of unlearnable
examples.

Adding hard-to-learn adversarial noise of simple net-
works degrades detectability. To destroy the detectability
of simple networks, we may add adversarial noise ϵ to each
xi, which is hard-to-learn for a simple two-layer NN Fsimple.
Adversarial noises ϵ(xi) are generated by PGD attack (Madry
et al. 2018) on the robustly learned network F robust

simple, where
F robust

simple is obtained by adversarial training:

arg min
F robust

simple

∑
(xi,yi)∈D

max
||δ||≤η

Loss(F robust
simple(xi + δ(xi)), yi).

The generateed adversarial noise will make it difficult for
poisoned dataset to be fitted by simple networks, which can
destroy the detectability of unlearnable examples, and the
small budget η will not affect the original features.

Stronger data augmentations destroy detectability. As
discussed in Detection Section, we have proven that certain
class-wise unlearnable examples are linearly separable, but
linear model detection under standard data augmentations
will fail. This inspires us to use a relaxed version of the model,
such as a two-layer NN, for effective detection. Therefore,
when detecting unlearnable examples by simple networks,
data augmentation methods may degrade detectability.

Poisons CIFAR-10 CIFAR-100

Clean data 27.41 10.67
Region-16 35.20 16.57
Err-min(S) 27.28 11.25
RobustEM 27.27 11.51

Table 2: The detection (training) accuracy (%) of Algorithm 1
under two-layer NN for poisoned CIFAR-10 and CIFAR-100
with stronger data augmentation used in contrastive learning.
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Algorithm 3: Stronger Data Augmentations with Adversarial
Noises (SDA+AN)

Input: Unlearnably poisoned dataset D = {(xi, yi)}Ni=1.
Two-layer NN Fsimple. Data augmentation method A. A
DNN F (Say ResNet18).

Output: Trained network F .
Do:

Initialize parameters of the networks Fsimple and F .
Adversarially train the network Fsimple on dataset D.
Generate adversarial noise on adversarially-trained net-

work F∗
simple with ϵ(xi) = arg max

||ϵ||p≤η
Lce(F∗

simple(xi +

ϵ), yi).
Train classification network F with data augmentation

A: min
F

N∑
i=1

Lce(A((xi + ϵ(xi)), yi)).

Inspired by the role of data augmentations in detection,
we introduce stronger data augmentation used in contrastive
learning (He et al. 2020; Chen et al. 2020) which contains
random resized crop, random horizontal flip, color jitter and
a random grayscale. We conducted experiments on Table 2 to
demonstrate the detection performance under stronger data
augmentations. Results show that two-layer NN is hardly
to detect whether a dataset is poisoned under stronger data
augmentations. Therefore, we conclude that stronger data
augmentations can make it easier to break the detectability
of unlearnable examples.

Based on the above discussions, we propose a fast algo-
rithm which can break detectability of poisoned dataset to
defend against unlearnable examples. The experimental re-
sults on Algorithm 3 will be provided in Table 5.

Criteria of the Poison and Defense Budgets
Under Adversarial Training

Adversarial training is a widely-used defense method against
unlearnable examples (Tao et al. 2021). However, there is
a trade-off between accuracy and robustness in adversarial
training: choosing a huge budget to resist unlearnable exam-
ples will affect accuracy. Nevertheless, (Wang, Wang, and
Wang 2021; Fu et al. 2021) show experimentally that adver-
sarial training with small budget may fail to defend some
unlearnable attacks, called robust unlearnable examples.

On the theoretical aspect, (Tao et al. 2021) proved that
unlearnable attacks will fail when the adversarial budget is
greater than or equal to the poison budget. In this section,
we will prove three theoretical results on criteria between
the poison budget and the adversarial defense budget, and in
particular give a certified upper bound on the poison budget
for the existence of robust unlearnable examples. First, we
give a definition of the adversarial training set, which is the
largest set that adversarial training can be used for training.
Definition 6 (Adversarial Training Set). Let S be a (clean)
training set. Bp(S, ϵ) is called the adversarial training set of
S with a small budget ϵ, which is defined as follow:

Bp(S, ϵ) = {(x+ δ, y) ∥ (x, y) ∈ S, ∥δ∥p ≤ ϵ} .

In (Kalimeris et al. 2019), it was observed that during the
initial training epochs, the model learns a function that is
highly correlated with the linear features of the data. We
also conduct a simple experiment presented at Remark I.2 in
Appendix I.1 to show that the linear separability of dataset
will result in the victim model performing like the linear
model. The following two theorems inform us that when the
poison budget exceeds a certain threshold compared to the
adversarial budget, the adversarial training set will become
linearly separable, in other words, adversarial training will
malfunction.
Theorem 7. Let S = {(xi, yi)}Ni=1 ⊂ Id × [C] be a (clean)

training set and ϵ ∈ R>0 satisfies e−
dϵ2

8 + e−
d
50 ≤ 1

2NC .
Then there exists a class-wise poisoned training set Spo with
poison budget at most 4ϵ, such that adversarial training set
B∞(Spo, ϵ) is linearly separable.

Theorem 8. Let S = {(xi, yi)}Ni=1 ⊂ Id × [C] be a (clean)
training set. If there exists a linearly separable poisoned set
of S with poison budget ϵ, then for any η > 0, there exists a
poisoned training set Spo of S with budget η + ϵ, such that
the adversarial training set B∞(Spo, η) is linearly separable

by F . In particular, ϵ = Ω(
√

logNC
d ) satisfies the above

condition.

The proofs of Theorems 7 and 8 are deferred to Appendices
A.3 and A.4, respectively.

As the clean dataset has low accuracy on linear model
shown in Remark 5, by Theorems 7 and 8, for dataset
S = {(xi, yi)}Ni=1 ⊂ Id × [C], if the poison budget is more
than four times of the adversarial defense budget, or the poi-
son budget is more than a certain number ϵ of the adversarial
defense budget η, robust unlearnable attacks on S are avail-
able. In other words, adversarial training may fail to defend
unlearnable examples of S. This conclusion provides insights
into the minimum budget required for adversarial training to
effectively defend unlearnable examples.

The above discussions also explain the results shown in
Table 6 that poisoned CIFAR-10 with poison budget 8/255
cannot be defended by adversarial training with defense bud-
get 2/255. Furthermore, linear separability is achieved for
poisoned CIFAR-10 when the gap between the poison budget
and the defense budget reaches 8/255 as shown in our former
theoretical analyses. Therefore, together with Theorem 8, our
discussions explain why adversarial training with 8/255 bud-
get cannot defend poisons with 16/255 budget, as reported
in (Wang, Wang, and Wang 2021), although it is only twice
as large.

We have established a lower bound for the adversarial
budget that can resist unlearnable examples. Furthermore,
under some mild assumptions, Theorem 9 provides a lower
bound for the poison budget to make the poisoned dataset
linearly separable, whose proof is provided in Appendix A.5.
Theorem 9. Let the linear model F(x) = Wx + b,
L(F(x), y) =

∑
j ̸=y max(0,Wjx−Wyx+1) be the hinge

loss. Assume that the dataset S = {(xi, yi)}Ni=1 is not lin-
early separable and loss is not less than a constant µ1, while
Spo = {(xi+ϵi, yi)}Ni=1 is linearly separable under (1,∞)-
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Poison
CIFAR-10 CIFAR-100 TinyImageNet

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2
Linear 2-NN −0.5 0.5 Linear 2-NN −0.5 0.5 Linear 2-NN −0.5 0.5

Clean data 46.53 57.33 49.08 42.12 31.71 26.52 42.15 29.02 49.38 7.24 30.63 20.28
Random(C) 100.0 99.13 100.0 99.84 99.86 84.19 99.98 97.62 100.0 97.82 100.0 86.02
Region-16 99.87 99.98 99.98 99.64 98.39 88.72 100.0 98.76 99.54 97.82 99.72 89.02
Err-min(S) 99.99 99.77 97.85 100.0 99.37 83.94 100.0 100.0 99.93 97.21 99.99 99.27
Err-min(C) 100.0 99.66 100.0 100.0 99.96 84.78 100.0 100.0 100.0 98.29 100.0 100.0
Err-max 82.48 97.52 99.96 99.20 37.41 83.34 97.56 76.02 63.89 97.32 98.85 85.22
RobustEM 78.49 99.41 99.10 99.40 40.25 89.94 97.84 76.00 73.44 98.75 94.36 68.59

Table 3: The detection accuracy (%) for unlearnable examples under Algorithms 1 and 2, the accuracy is for the training and
validation set respectively. “Linear” represents linear model and “2-NN” represents two-layer NN. For Algorithm 2, two columns
are for bias-shifting noise ϵb = ±0.5e. If dataset is recognized as a clean set, their accuracy are marked in italic.

norm regularization and loss is not greater than a constant
µ2. If µ1 > µ2, then it holds max

i
∥ϵi∥ ≥ µ1

2µ2(C−1) , where

C is the number of classes.

Theorem 9 indicates that if the poison budget is not larger
than a certain constant, the poisoned training set will not
be linearly separable, which results in a failure of robust
unlearnable attacks. Table 8 demonstrates that the poison
budget 2/255 is not enough to make Region-16 and Err-
min(S) poisoned CIFAR-10 linearly separable. Together with
Theorem 8, our discussions explain why adversarial training
with budget 6/255 is effective in defending against poisons
with budget 8/255 as shown in Table 6.

Experimental Results
In this section, experimental results are provided to verify
the algorithms and the theoretical results of this paper. Ex-
perimental setups are given in Appendix B. Our codes are
available at https://github.com/hala64/udp.

Experimental Results on Poison Detection
Experimental results for Algorithms 1 and 2 are given in
Table 3. The detection bound B is 0.7. For more results on
poison detection, please refer to Appendix G.

Detection performance. Results in Table 3 show that most
of the poisons can be detected by linear models and bias-
shifting noise tests with ϵb = 0.5e, and all of them can be
detected by two-layer NN and bias-shifting noise with ϵb =
−0.5e. Combined with results in Appendix G, even for robust
unlearnable examples, such as RobustEM and Adv Inducing
(Wang, Wang, and Wang 2021), or for poisons designed to
reduce robust generalization power, such as Hypocritical (Tao
et al. 2022), our detection methods still work.

Different poison ratios. Although unlearnable examples
only work when all training data is poisoned, our detection
methods still perform well even only a part of data is poi-
soned. Table 4 presents detection results for different poison
ratios. It is shown that as long as 60% of data are unlearnably
poisoned, it will be detected by the victims.

Ratio 100% 80% 60% 40% 20%

Clean data 49.08 — — — —
Random(C) 100.0 86.24 77.53 65.92 53.07
Region-16 99.98 87.15 78.77 70.53 57.90
Err-min(S) 97.85 85.06 73.66 71.59 70.73
Err-min(C) 100.0 85.38 75.18 62.07 53.44
RobustEM 99.10 86.71 73.06 60.92 51.52

Table 4: Detection accuracy under different poison ratios by
Algorithm 2 with ϵb = −0.5e.

False poisitives and false negatives Our detection methods
are designed to assess entire datasets, rather than individual
data. Therefore, we analyze false positives and false negatives
on different unlearnable datasets under varying detection
bound B. With reference to Tables 3 and 16, we can evaluate
the occurrences of FP and FN across a range of clean and
poisoned datasets. The results are presented in Table 7.

Experimental Results on Poison Defense
We evaluate the defense power of Algorithm 3 with AT-based
methods, UEraser (Qin et al. 2023), and ISS (Liu, Zhao, and
Larson 2023). The results demonstrate that even without ad-
versarial noise, using stronger data augmentation alone can
achieve defense power comparable to adversarial training,
which indicates that breaking detectability is a key to defend-
ing against unlearnable examples.

Our defense method achieves state-of-the-art performance
on most of the existing unlearnable examples, such as Region-
16, Err-min(S), NTGA and TUE poisons, and achieves com-
parable defense power for RobustEM and AR, only performs
a little suboptimally for Err-max poisons, as shown in Table
5 compared to Tables 6 and 23. We also evaluate the poison
method for deceiving adversarial training, called EntF (Wen
et al. 2023), and the results also show the advantage of our
method. Additional experimental results are in Appendix H.

Moreover, since we only conduct adversarial training on
the simple two-layer NN, our method is much more time
efficient than AT-based methods, as shown in Table 13, adver-
sarial noise generated on two-layer NN is more than 3 times
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Method/Poison Region-16 Err-min(S) Err-max RobustEM NTGA AR EntF TUE

No defense 19.86 10.09 7.19 25.30 11.23 17.18 83.10 10.00
AT-based methods 85.78 84.00 84.75 81.06 84.19 85.25 73.61 83.94
Adversarial Noises 56.35 10.72 28.74 25.69 17.96 14.57 48.15 90.07
UEraser 82.66 86.37 47.46 78.39 82.15 87.21 87.40 75.96
ISS 67.11 85.24 84.36 83.84 85.64 85.11 77.02 84.32
SDA(ours) 77.20 75.62 56.96 79.21 78.48 75.81 90.84 73.80
AN+SDA(ours) 93.51 88.01 61.19 79.28 89.00 80.20 88.17 92.76

Table 5: Test accuracy (%) of different defense methods for poisoned CIFAR-10.

Poison 0 1/255 2/255 3/255 4/255 6/255 8/255 12/255 16/255

Region-16 19.86 24.32 29.57 50.09 72.13 77.03 72.65 67.65 62.78
Err-min(S) 10.09 10.01 10.13 18.64 69.92 76.53 72.13 67.23 61.70
RobustEM 25.30 24.92 28.50 33.74 46.01 76.69 72.19 63.16 53.34

Table 6: Test accuracy (%) when conducting adversarial training with budgets i/255, i = 0, . . . , 16 to defend poisoned CIFAR-10
with the poison budget ϵ = 8/255. We do not use any data augmentation here for better verification of our theorems.

Bound/(FP/FN) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bias+0.5 3/0 3/0 1/1 1/1 0/1 0/1 0/2 0/5 0/8
Bias-0.5 3/0 3/1 3/1 2/1 0/1 0/1 0/1 0/1 0/3
Linear 3/0 3/0 3/0 2/1 0/4 0/5 0/6 0/10 0/13
2-NN 2/0 2/0 1/0 1/0 1/0 0/1 0/1 0/2 0/9

Table 7: False positives and false negatives of our detection
methods across different datasets and unlearnable examples.

faster than that generated on ResNet18.

Evaluation of Criteria Between the Poison Budget
and the Defense Budget
Table 6 shows the test accuracy under different adversar-
ial defense budgets. For adversarial training with budget
ϵ ≤ 2/255 and unlearnable poisoning attacks with budget
η = 8/255 ≥ 4ϵ, the test accuracy is less than 30%, which
is much lower than the linear separability rate 46.53% of
CIFAR-10. This verifies Theorem 7 that adversarial training
fails when the defense budget is too small.

Also, with the increase of defense budgets, the defense
power of adversarial training initially increases rapidly, but
then begins to gradually decrease. This is because when the
defense budget increases, the gap between poison and defense
budgets decreases, eventually becoming too small to achieve
linear separability. As shown in Table 6, adversarial training
is effective when the defense budget reaches 6/255, since the
gap 2/255 is not large enough to make the poisoned dataset
linearly separable, which verifies Theorems 8 and 9.

It is worth noting that different from (Tao et al. 2021), ad-
versarial training here is the tool to maintain accuracy rather
than robustness. Therefore, the effective defense budget here
is less than in (Tao et al. 2021). From Table 8, RobustEM
never becomes linearly separable, indicating that achieving
linear separability is a sufficient but not necessary condition

Poison/budget 0 1/255 2/255 4/255 6/255 8/255

Region-16 46.53 67.85 89.06 98.32 99.65 99.87
Err-min(S) 46.53 76.63 93.15 99.87 99.97 99.99
RobustEM 46.53 55.44 61.29 69.03 74.62 78.49

Table 8: Linear separability rate of poisoned CIFAR-10 with
different poison budget η.

for generating unlearnable examples. With a further increase
in the defense budget, the trade-off between accuracy and
robustness emerges (Tsipras et al. 2018), leading to a gradual
drop in test accuracy. For more discussions and experiments
on this topic, please refer to Appendix I.2.

Conclusion
In this paper, we demonstrate that unlearnable examples can
be easily detected. We prove that linear separability always
exists for certain unlearnable poisoned dataset, and propose
effective detection methods. We use stronger data augmenta-
tions with adversarial noises of simple networks to achieve
effective defense for unlearnable examples. Furthermore, we
derive a certified upper bound for the poison budget relative
to the adversarial budget on adversarial training.

Limitations and future work. From Table 6, the results in
Theorem 7 have rooms for improvements. It is desirable to
craft more potent defense methods against Err-max poisons.
Also, it is imperative to create more sophisticated unlearnable
examples that resist existing detection and defense methods.

Supplementary Materials The appendix and full version
of this paper are provided in (Zhu, Yu, and Gao 2023).
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