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Abstract

Imitation learning methods seek to learn from an expert either through behavioral
cloning (BC) of the policy or inverse reinforcement learning (IRL) of the reward.
Such methods enable agents to learn complex tasks from humans that are difficult
to capture with hand-designed reward functions. Choosing BC or IRL for imitation
depends on the quality and state-action coverage of the demonstrations, as well as
additional access to the Markov decision process. Hybrid strategies that combine
BC and IRL are not common, as initial policy optimization against inaccurate
rewards diminishes the benefit of pretraining the policy with BC. This work derives
an imitation method that captures the strengths of both BC and IRL. In the entropy-
regularized (‘soft’) reinforcement learning setting, we show that the behaviour-
cloned policy can be used as both a shaped reward and a critic hypothesis space by
inverting the regularized policy update. This coherency facilities fine-tuning cloned
policies using the reward estimate and additional interactions with the environment.
This approach conveniently achieves imitation learning through initial behaviour
cloning, followed by refinement via RL with online or offline data sources. The
simplicity of the approach enables graceful scaling to high-dimensional and vision-
based tasks, with stable learning and minimal hyperparameter tuning, in contrast to
adversarial approaches.
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Figure 1: By using regression rather than classification, our approach infers a shaped reward from
expert data for this contextual bandit problem, whereas classifiers require additional non-expert data
and may struggle to resolve the difference between expert ( ) and non-expert ( ) samples.

1 Introduction

Imitation learning (IL) methods [1] provide algorithms for learning skills from expert demonstrations
in domains such as robotics [2], either through direct mimicry (behavioral cloning, BC [3]) or inferring
the latent reward (inverse reinforcement learning, IRL [4–6]) assuming a Markov decision process
(MDP) [7, 8]. While BC is straightforward to implement, it is susceptible to covariate shift during
evaluation [9]. IRL overcomes this problem, but tackles the harder problem of jointly learning a
reward and policy from interactions. So far, these two approaches to imitation have been largely
separated [10], as optimizing the policy with an evolving reward estimate counteracts the benefit of
pre-training the policy [11]. The benefit of combining the two approaches is sample-efficient learning,
which would allow any BC policy to be further improved using additional experience.
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Contribution. Our IL method naturally combines BC and IRL by using the perspectives of entropy-
regularized reinforcement learning (RL) [12–18] and gradient-based IRL [19, 20]. Our approach uses
a BC policy to define an estimate of a shaped reward for which it is optimal, that can then be used to
finetune the policy with additional knowledge, such as online interactions, offline data or a dynamics
model. Using the cloned policy to specify the reward avoids the need for careful regularization and
hyperparameter tuning associated with adversarial imitation learning [11, 21], and we estimate a
shaped variant of the true reward, rather than design a heuristic proxy, e.g. [22, 23]. In summary,

1. We use entropy-regularized RL to obtain a reward for which a behavioural-cloned policy is
optimal, which we use to improve the policy and overcome the covariate shift problem.

2. We introduce approximate stationary stochastic process policies to implement this approach
for continuous control by constructing specialized neural network architectures.

3. We show strong performance on online and offline imitation for high-dimensional and
image-based continuous control tasks.

2 Background & related work

A Markov decision process is a tuple ⟨S,A,P, r, γ, µ0⟩, where S is the state space, A is the
action space, P : S ×A×S→R+ is the transition model, r : S ×A→R is the reward function,
γ is the discount factor, and µ0 is the initial state distribution s0 ∼ µ0(·). When evaluating a
policy π ∈Π, we use the occupancy measure ρπ(s,a) ≜ π(a | s)µπ(s), µπ(s) ≜

∑∞
t=0 γtµπ

t (s)
where µπ

t+1(s
′) =

∫
P(s′ | s,a)π(a | s)µπ

t (s) ds da. This measure is used to compute infinite-
horizon discounted expectations, Es,a∼ρπ [f(s,a)] = Est+1∼P(·|st,at),at∼π(·|st)[

∑∞
t=0 γ

tf(st,at)].
Densities dπ(s,a) = (1 − γ) ρπ(s,a) and νπ(s) = (1 − γ)µπ(s) are normalized measures.
When the reward is unknown, imitation can be performed from a dataset D of transitions (s,a, s′)
as demonstrations, obtained from the discounted occupancy measure of the expert policy π∗ =
argmaxπ Es,a∼ρπ [r(s,a)]. The policy could be inferred directly, or by inferring a reward and policy
jointly, referred to as behavioral cloning and inverse reinforcement learning respectively.

Behavioral cloning. The simplest approach to imitation is to directly mimic the behaviour using
regression [3], minπ∈Π l(π,D) + λΨ(π), with some loss function l, hypothesis space Π and regular-
izer Ψ. This method is effective with sufficient data coverage and an appropriate hypothesis space, but
suffers from compounding errors and cannot improve unless querying the expert [9]. The MIMIC-EXP
algorithm of Rajaraman et al. [24] motivates BC as the optimal no-interaction policy when fitting the
demonstration distribution while having a uniform policy outside of the data distribution.

Inverse reinforcement learning. Rather than just inferring the policy, IRL infers the reward and
policy jointly, and relies on access to the underlying MDP [25, 5]. IRL iteratively finds a reward for
which the expert policy is optimal compared to the set of possible policies, while also finding the
policy that maximizes this reward function. Using additional data beyond the demonstrations, such
as environment interactions, the learned policy seeks to match or even improve upon the expert [6].
To avoid repeatedly solving the inner RL problem, one can consider the game-theoretic approach
[26], where the optimization problem is a two-player zero-sum game where the policy and reward
converge to the saddle point minimizing the ‘apprenticeship error’ minπ∈Π maxr∈R ED[r]−Eρπ

[r].
This approach is attractive as it learns the policy and reward concurrently [27]. Moreover, in
practice, saddle point optimization can suffer from difficult optimization when scaling to high
dimensions and exhibit instabilities and hyperparameter sensitivity [11]. Compared to BC, IRL
methods theoretically scale to longer task horizons by overcoming compounding errors through
environment interactions [28].

Maximum entropy inverse reinforcement learning & soft policy iteration. IRL is an under-
specified problem [25], in particular in regions outside of the demonstration distribution. An effective
way to address this is causal entropy regularization [29], by applying the principle of maximum
entropy [30] to IRL (ME-IRL). Moreover, the entropy-regularized formulation has an elegant closed-
form solution [29]. The approach can be expressed as an equivalent constrained minimum relative
entropy problem for policy q(a | s) against a uniform prior p(a | s) = UA(a) using the Kullback-
Leibler (KL) divergence and a constraint matching expected features ϕ, with Lagrangian

minq,w
∫
S νq(s)DKL[q(a | s) || p(a | s)] ds+w⊤(Es,a∼D[ϕ(st,at)]−Es,a∼ρq [ϕ(s,a)]). (1)

2



The constraint term can be interpreted apprenticeship error, where w⊤ϕ(s,a) = rw(s,a). Solving
Equation 1 using dynamic programming yields the ‘soft’ Bellman equation [29],

Q(s,a) = rw(s,a) + γ Es′∼P(·|s,a) [V(s′)] , V(s) = log

∫
A
exp(Q(s,a)) p(a | s) da. (2)

Using Jensen’s inequality and importance sampling, this target is typically replaced with a lower-
bound [31], which has the same optimum and samples from the optimized policy rather than the
initial policy like many practical deep RL algorithms [16]:

Q(s,a) = rw(s,a)+ γ Ea′∼q(·|s′), s′∼P(·|s,a) [Q(s′,a′)− (log q(a′ | s′)− log p(a′ | s′))] . (3)

The policy update blends the exponentiated advantage function ‘pseudo-likelihood’ with the prior, as
a form of regularized Boltzmann policy [16] that resembles a Bayes posterior [32],

q(a | s) ∝ exp(Q(s,a)− V(s)) p(a | s). (4)

These regularized updates can also be used for RL, where the problem is posed as a KL-regularized
RL objective, maxq Es,a∼ρq [Q(s,a)] − αDKL[q(a | s) || p(a | s)], where a temperature term α
controls the strength of the regularization. This regularized policy update is known as soft- [13, 16]
or posterior policy iteration [33, 34] (SPI, PPI), as it resembles a Bayesian update. In the function
approximation setting, the update is performed in a variational fashion by minimizing the reverse KL
divergence between the parametric policy qθ and the critic-derived update at sampled states s [16],

θ∗ = argminθ Es∼B[DKL[qθ(a | sn) || exp(α−1Q(s,a)− V(s)) p(a | s)]],
= argmaxθ Jπ(θ), Jπ(θ) = Ea∼qθ(·|s), s∼B [Q(s,a)− α (log qθ(· | s)− log p(· | s))] . (5)

The above objective Jπ can be maximized using reparameterized gradients and minibatches from
replay buffer B [16]. A complete derivation of SPI and ME-IRL is provided in Appendix K.1.

Gradient-based inverse reinforcement learning. An alternative IRL strategy is a gradient-based
approach (GIRL), that avoids saddle-point optimization by learning a reward function such that the
BC policy’s policy gradient is zero [19], which satisfies first-order optimality. However, this approach
does not offer a remedy for the ill-posed nature of IRL. Moreover, the Hessian is required for the
sufficient condition of optimality [35], which is undesirable for policies with many parameters.

Related work. Prior state-of-the-art methods have combined the game-theoretic IRL objective
[26] with entropy-regularized RL. These methods can be as viewed as minimizing a divergence
between the expert and policy, and include GAIL [36], AIRL [37], f -MAX [38], DAC [39], ValueDICE
[40], IQLearn [41] and proximal point imitation learning (PPIL, [42]). These methods differ through
their choice of on-policy policy gradient (GAIL) or off-policy actor-critic (DAC, IQLearn, PPIL),
and also how the minimax optimization is implemented, e.g. using a classifier (GAIL, DAC, AIRL),
implicit reward functions (ValueDICE, IQLearn) or Lagrangian dual objective (PPIL). Alternative
approaches to entropy-regularized IL use the Wasserstein metric (PWIL) [43], labelling of sparse
proxy rewards (SQIL) [22], feature matching [29, 44–46], maximum likelihood [47] and matching
state marginals [48] to specify the reward. Prior works at the intersection of IRL and BC include policy
matching [49], policy-based GAIL classifiers [50], annealing between a BC and GAIL policy [51] and
discriminator-weighted BC [52]. Our approach is inspired by gradient-based IRL [19, 35, 20], which
avoids the game-theoretic objective and instead estimates the reward by analysing the policy update
steps with respect to the BC policy. An entropy-regularized GIRL setting was investigated in the
context of learning from policy updates [53]. For further discussion on related work, see Appendix A.

3 Coherent imitation learning

For efficient and effective imitation learning, it is desirable to combine the simplicity of behavioral
cloning with the structure of the MDP, as this would provide a means to initialize and then refine
the imitating policy through evaluations on the environment. In this section, we propose such a
method using a GIRL-inspired connection between BC and IRL in the entropy-regularized RL setting.
By inverting the entropy-regularized policy update in Equation 4, we derive a reward for which the
behavioural-cloning policy is optimal, a quality we refer to as coherence.
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Inverting soft policy iteration and reward shaping. The α-regularized closed-form policy based
on Equation 4 can be inverted to provide expressions for the critic and reward (Theorem 1).
Theorem 1. (KL-regularized policy improvement inversion). Let p and qα be the prior and pseudo-
posterior policy given by posterior policy iteration (Equation 4). The critic can be expressed as

Q(s,a) = α log
qα(a | s)
p(a | s) + Vα(s), Vα(s) = α log

∫
A
exp

(
1

α
Q(s,a)

)
p(a|s) da. (6)

Substituting into the KL-regularized Bellman equation lower-bound from Equation 2,

r(s,a) = α log
qα(a | s)
p(a | s) + Vα(s)− γ Es′∼P(·|s,a) [Vα(s

′)] . (7)

The Vα(s) term is the ‘soft’ value function. We assume qα(a | s)= 0 whenever p(a | s)= 0.

For the proof see Appendix K.2. Jacq et al. [53] and Cao et al. [54] derived a similar inversion, but
for a maximum entropy policy iteration between two policies, rather than PPI between the prior and
posterior. These expressions for the reward and critic are useful as they can be viewed as a valid form
of shaping (Lemma 1) [54, 53], where α(log q(a | s)− log p(a | s)) is a shaped ‘coherent’ reward.
Lemma 1. (Reward shaping, Ng et al. [55]). For a reward function r : S × A → R with optimal
policy π ∈Π, for a bounded state-based potential function Ψ : S → R, a reward function r̃ shaped
by the potential function satisfying r(s,a) = r̃(s,a) + Ψ(s)− γ Es′∼P(·|s,a)[Ψ(s′)] has a shaped
critic Q̃ satisfying Q(s,a) = Q̃(s,a) + Ψ(s) and the same optimal policy as the original reward.

Definition 1. The shaped ‘coherent’ reward and critic
are derived from the log policy ratio by combining
Lemma 1 and Theorem 1, with value function Vα(s)
as the potential Ψ(s). When policy qα(a|s) models
the data D while matching its prior p otherwise, their
density ratio should exhibit the following shaping

r̃(s,a)=α log
qα(a | s)
p(a | s)


≥ 0 if s,a ∈ D,

< 0 if s ∈ D,a /∈ D,

= 0 if s /∈ D,∀a ∈ A.

In continuous setting, this shaping should be approx-
imately captured by the policy, as shown by Figure 2.

s

a

−0.3

0.0

0.3

0.6

0.9

Figure 2: The coherent reward from
Figure 1, made using a stationary Gaus-
sian process policy, extended out-of-
distribution. The reward approximates
the shaping described in Definition 1.

Coherent soft imitation learning (CSIL, Algorithm 1) uses the BC policy to initialize the coherent
reward, and uses this reward to further improve the policy with additional interactions outside of D.
However, for the coherent reward to match Definition 1, the policy q(a | s) needs to match the policy
prior p(a | s) outside of the data distribution. To achieve this, it use useful to recognise the policy
q(a|s) as a ‘pseudo-posterior’ of prior p(a|s), and incorporate this Bayesian view into the BC step.

Imitation learning with pseudo-posteriors. The ‘pseudo-posteriors’ formalism [34, 56–59] is a
generalized way of viewing the policy derived for ME-IRL and KL-regularized RL in Equation 4.
Definition 2. Pseudo-posteriors are solutions to KL-constrained or minimum divergence problems
with an additional scalar objective or vector-valued constraint term and Lagrange multipliers λ,

maxq Ex∼q(·)[f(x)]− λ (DKL[q(x) || p(x)]− ϵ) → qλ(x) ∝ exp(λ−1 f(x)) p(x).

minq DKL[q(x) || p(x)]− λ⊤(Ex∼q(·)[f(x)]− f∗) → qλ(x) ∝ exp(λ⊤f(x)) p(x).

The exp(λ⊤f(x)) term is an unnormalized ‘pseudo-likelihood’, as it facilities Bayesian inference to
solve a regularized optimization problem specified by f .

Optimizing the policy distribution, the top objective captures KL-regularized RL, where f is a measure
of the return and the regularization is implemented as a constraint with bound ϵ or soft penalty with
constant λ. The bottom objective is the form seen in ME-IRL (Equation 1), where f is the feature
space that define the reward model. Contrasting these pseudo-posterior policies against BC with
Gaussian processes, e.g. [60, 61], we can compare the Bayesian likelihood used for regression with the
critic-based pseudo-likelihood obtained from imitation learning. The pseudo-likelihoods in entropy-
regularized IL methods produce an effective imitating policy by incorporating the MDP and trajectory
distribution because f captures the cumulative reward , compared to just the action prediction error
typically captured by BC regression likelihoods. This point is expanded in Appendix B.
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Algorithm 1: Coherent soft imitation learning (CSIL)
Data: Expert demonstrations D, initial temperature α, refinement temperature, β,
parametric policy class qθ(a | s), prior policy p(a | s), regression regularizer Ψ, iterations N
Result: qθN

(a | s), matching or improving the initial policy qθ1
(a | s)

Train initial policy from demonstrations, θ1 = argmaxθ Es,a∼D[log qθ(a | s)−Ψ(θ)];
Define fixed shaped coherent reward, r̃θ1

(s,a) = α(log qθ1
(a | s)− log p(a | s));

Choose reference policy π(a | s) to be p(a | s) or qθ1
(a | s) and initialize the shaped critic,

Q̃1(s,a) = r̃θ1
(s,a) + γ (Q̃1(s

′,a′)−α (log qθ1
(a′ | s′)− log π(a′ | s′)), s,a, s′,a′ ∼ D;

for n = 2 → N do // finetune policy with reinforcement learning

Compute Q̃n and qθn
using soft policy iteration (Section 2), e.g. SAC, with temperature β.

end

Behaviour cloning with pseudo-posteriors. Viewing the policy q(a | s) as a pseudo-posterior has
three main implications when designing the policy and prior, and performing behaviour cloning:

1. We perform conditional density estimation to maximize the posterior predictive likelihood,
rather than using a data likelihood, which would require assuming additive noise [62, 32].

2. We require a hypothesis space p(a | s,w), e.g. a tabular policy or function approximator,
that is used to define both the prior and posterior through weights w.

3. We need a fixed weight prior p(w) that results in a predictive distribution that matches the
desired policy prior p(a | s) =

∫
p(a | s,w)p(w) dw ∀s ∈ S.

These desiderata are straightforward to achieve for maximum entropy priors in the tabular setting,
where count-based conditional density estimation is combined with the prior, e.g. p(a | s) = UA(a).
Unfortunately, point 3. is challenging in the continuous setting when using function approximation,
as shown in Figure 3. However, we can adopt ideas from Gaussian process theory to approximate
such policies, which is discussed further in Section 4. The learning objective combines maximizing
the likelihood of the demonstrations w.r.t. the predictive distribution, as well as KL regularization
against the prior weight distribution, performing regularized heteroscedastic regression [63],

maxθ Ea,s∼D[log qθ(a | s)]−λDKL[qθ(w) || p(w)], qθ(a | s) =
∫
p(a | s,w) qθ(w) dw. (8)

This objective has been used to fit parametric Gaussian processes, with a similar motivation [64].

We now describe how this BC approach and the coherent reward are used for imitation learning
(Algorithm 1) when combined with soft policy iteration algorithms, such as SAC.

On a high level, Algorithm 1 can be summarized by the following steps,

1. Perform regularized BC on the demonstrations with a parametric stochastic policy qθ(a | s).
2. Define the coherent reward, rθ(s,a)=α(log qθ(a | s)− log p(a | s)), with temperature α.
3. With temperature β < α, perform SPI to improve on the BC policy with the coherent reward.

Using β is required to improve the policy after inverting it with temperature α. This approach is
in contrast to combining BC and prior actor-critic IRL methods, where the process of learning the
reward and critic from scratch can lead to ‘unlearning’ the initial BC policy [11]. While our method
does not seek to learn the true reward function, and instead opts for one shaped by the environment
used to generate demonstrations, in practice this is a reasonable compromise. Rather than perform
true IRL, CSIL is designed to learn policy recovery, as the shaped reward encourages returning to the
demonstration distribution when outside, which is the goal of prior imitation methods e.g. [22, 23].
In the entropy-regularized setting, an IRL method has the drawback of requiring demonstrations
generated from two different environments or discount factors to accurately infer the true reward [54],
which is often not readily available in practice, e.g. when teaching a single robot a task. Moreover,
additional MLPs could be used to estimate the true (unshaped) reward from data [65, 53] if desired.
We also provide a divergence minimization perspective of CSIL in Section J of the Appendix. Finally,
as we are simply using a shaped estimate of the true reward with entropy-regularized RL, CSIL inherits
the theoretical properties of these regularized algorithms [16, 66].

Partial expert coverage, minimax optimization and regularized regression. The reward shaping
theory from Lemma 1 shows that an advantage function can be used as a shaped reward function
when the state potential is a value function. By inverting the soft policy update, the log policy ratio
acts as a form of its advantage function. However, in practice we do not have access to the complete
advantage function, but rather an estimate, due to finite samples and partial state coverage. If the
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Figure 3: For the coherent reward to be effective, the stochastic policy should return to the prior
distribution outside of the data distribution (left). The typical heteroscedastic parametric policies have
undefined out-of-distribution behaviour and typically collapse to the action limits due to the network
extrapolation and tanh transformation (middle). By approximating stationary Gaussian processes, we
can design policies that exhibit the desired behavior with minimal network modifications (right).

expert demonstrations provide only partial coverage of the state-action space, then the role of an
inverse reinforcement learning algorithm is to learn using additional knowledge of the MDP, e.g.
online samples, a dynamics model or an offline dataset, to improve the reward estimate. However,
since the log policy ratio is obtained purely from demonstration data, how can it be a useful shaped
reward estimate? We show that the use of entropy regularization in the initial behavioral cloning step
can play an equivalent role to the saddle-point optimization in game-theoretic IRL (Theorem 2).

Theorem 2. (Coherent inverse reinforcement learning as KL-regularized behavioral cloning). A KL-
regularized game-theoretic IRL objective, with policy qθ(a | s) and coherent reward parameterization
rθ(s,a) = α(log qθ(a | s)−log p(a | s)) where α ≥ 0, is lower bounded by a scaled KL-regularized
behavioral cloning objective and a constant term when the optimal policy, posterior and prior share
a hypothesis space p(a | s,w) and finite parameters w,

Es,a∼D [rθ(s,a)]− Ea∼qθ(·|s), s∼µqθ
(·) [rθ(s,a)− β(log qθ(a | s)− log p(a | s))] ≥

α (Es,a∼D [log qθ(a | s)]− λDKL[qθ(w) || p(w)] + Es,a∼D [log p(a | s)]).

where λ = (α − β)/α and Es,a∼D [log p(a | s)] is constant. The regression objective bounds the
IRL objective for a worst case on-policy state distribution µq(s), which motivates its scaling through
β. If D has sufficient coverage, no RL finetuning or KL regularization is required, so β = α. If D
does not have sufficient coverage, then let β < α so λ > 0 to regularize the BC fit and finetune the
policy with RL accordingly with additional soft policy iteration steps.

The proof is provided in Appendix K.3. In the tabular setting, it is straightforward for the cloned policy
to retain the prior behaviour outside of the expert’s data distribution. However, in the continuous
setting where function approximation is typically adopted, this behaviour is harder to capture.

4 Continuous control policies as stationary processes

Maximum entropy methods used in reinforcement learning can be recast as a minimum relative
entropy problem against a regularizing prior policy with a uniform action distribution, i.e. a prior
policy p(a | s) = UA(a) ∀ s ∈ S. where UA is the uniform distribution over A. Achieving such a
policy in the tabular setting is straightforward, as the policy can be updated independently for each
state. However, for continuous states, such a policy construction is far more difficult due to function
approximation capturing correlations between states. To achieve the desired behaviour, we can use
stationary process theory (Definition 3) to construct an appropriate function space (Figure 3).

Definition 3. (Stationary process, Cox and Miller [67]). A process f : X → Y is stationary if its
joint distribution in y ∈ Y , p(y1, . . . ,yn), is constant w.r.t. x1, . . . ,xn ∈ X and all n ∈ N>0.

To approximate a stationary policy using function approximation, Gaussian process (GP) theory
provides a means; using features in a Gaussian linear model that defines a stationary process [62]. To
approximate such feature spaces using neural networks, this can be achieved through a relatively wide
final layer with a periodic activation function (fper), which can be shown to satisfy the stationarity
property [68]. Refer to Appendix C for technical details. To reconcile this approach with prior work
such as SAC, we use the predictive distribution of our Gaussian process in lieu of a network directly
predicting Gaussian moments. The policy is defined as a = tanh(z(s)), where z(s) = Wϕ(s).
The weights are factorized row-wise W = [w1, . . . ,wda

]⊤, wi = N (µi,Σi) to define a GP with
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independent actions. Using change-of-variables like SAC [16], the policy is expressed per-action as

q(ai | s) = N
(
zi;µ

⊤
i ϕ(s), ϕ(s)

⊤Σi ϕ(s)
)
·
∣∣∣∣det

(
dai
dzi

) ∣∣∣∣−1

, ϕ(s) = fper(W̃ϕmlp(s)).

W̃ are weights drawn from a distribution, e.g. a Gaussian, that also characterizes the stochastic
process and ϕmlp is an arbitrary MLP. We refer to this heteroskedastic stationary model as HETSTAT.

Function approximation necessitates several additional practical implementation details of CSIL.

Approximating and regularizing the critic. Theorem 1 and Lemma 1 show that the log policy
ratio is also a shaped critic. However, we found this was not effective in the function approximation
setting. The critic is instead approximated using as a feedforward network and pre-trained after the
policy using SARSA [8] and the squared Bellman error. For coherency, a useful inductive bias is
to minimize the critic Jacobian w.r.t. the expert actions to approximate first-order optimality, i.e.
minϕ Es,a∼D[∇aQϕ(s,a)], as an auxiliary critic loss. For further discussion see Section H in the
Appendix. Pretraining and regularization are ablated in Figures 44 and 46 in the Appendix.

Using the cloned policy as prior. While a uniform prior is used in the CSIL reward throughout,
in practice we found that finetuning the cloned policy with this prior in the soft Bellman equation
(Equation 3) lead to divergent policies. Replacing the maximum entropy regularization with KL
regularization against the cloned policy, i.e. DKL[qθ(a | s) || qθ1(a | s)], mitigated divergent behaviour.
This regularization still retains a maximum entropy effect if the BC policy behaves like a stationary
process. This approach matches prior work on KL-regularized RL from demonstrations, e.g. [69, 61].

‘Faithful’ heteroscedastic regression loss. To fit a parametric pseudo-posterior to the expert
dataset, we use the predictive distribution for conditional density estimation [64] using heteroscedastic
regression [63]. A practical issue with heteroscedastic regression with function approximators is the
incorrect modelling of data as noise [70]. This can be overcome with a ‘faithful’ loss function and
modelling construction [71], which achieves the desired minimization of the squared error in the
mean and fits the predictive variance to model the residual errors. For more details see Appendix D.

Refining the coherent reward. The HETSTAT network we use is still an approximation of a
stationary process, as shown in Figure 3,. To ensure spurious reward values from approximation
errors are not exploited during learning, it can be beneficial to refine, in a minimax fashion, the
coherent reward with the additional data seen during learning. This minimax refinement both reduces
the stationary approximation errors of the policy, while also improving the reward from the game-
theoretic IRL perspective. For further details and intuition see Appendix E and G. This feature is
ablated in Figure 45 in the Appendix.

Algorithm 1 with these additions can be found summarized in Algorithm 2 in Appendix I. An
extensive ablation study of these additions is in Appendix N.

5 Experimental results

We evaluate CSIL against baseline methods on tabular and continuous state-action environments.
The baselines are popular entropy-regularized imitation learning methods discussed in Section 2.
Moreover, ablation studies are provided in Appendix N for the experiments in Section 5.2 and 5.3

MDP Variant Expert BC Classifier ME-IRL GAIL IQLearn PPIL CSIL

Dense Nominal 0.266 0.200 0.249 0.251 0.253 0.244 0.229 0.257
Windy 0.123 0.086 0.103 0.111 0.105 0.104 0.104 0.107

Sparse Nominal 1.237 1.237 1.237 1.131 1.237 1.237 1.237 1.237
Windy 0.052 0.002 0.044 0.036 0.043 0.002 0.002 0.044

Table 1: Inverse optimal control, combining SPI and known dynamics, in tabular MDPs. The ‘dense’
MDP has a uniform initial state distribution and four goal states. The ‘sparse’ MDP has one initial
state, one goal state and one forbidden state. The agents are trained on the nominal MDP. The ‘windy’
MDP has a random disturbance across all states to evaluate the robustness of the policy. CSIL performs
well across all settings despite being the simpler algorithm relative to the IRL baselines.
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Figure 4: Normalized performance of CSIL against baselines for online imitation learning for
continuous control. Uncertainty intervals depict quartiles over 10 seeds. To assess convergence across
seeds, performance is chosen using the highest 25th percentile of the episode return during learning.

5.1 Tabular inverse optimal control

To examine the performance of CSIL without approximations, we consider inverse optimal control in
two tabular environments. One (‘dense’) has a uniform initial distribution across the state space and
several goal states, while the other (‘sparse’) has one initial state, one goal state and one forbidden
state with a large negative reward. Table 1 and Appendix M.1 show the results for the nominal and
a ‘windy’ environment, which has a fixed dynamics disturbance to test the policy robustness. The
results show that CSIL is effective across all settings, especially the sparse environment where many
baselines produce policies that are brittle to disturbances and therefore covariate shift. Moreover,
CSIL produces value functions similar to GAIL (Figures 23 and 27) while being a simpler algorithm.

5.2 Continuous control from agent demonstrations

A common benchmark of deep imitation learning is learning MuJoCo [72] Gym [73] and Adroit [74]
tasks from agent demonstrations. We evaluate not only online learning, but also offline learning, where
a fixed dataset is used in lieu of environment interactions [75]. Acme [76] was used to implement
CSIL and baselines, and expert data was obtained using rlds [77] from existing sources [11, 74, 75].
Returns are normalized with respect to reported expert and random performance [11] (Table 2).

Online imitation learning. In this setting we used DAC (actor-critic GAIL), IQLearn, PPIL, SQIL and
PWIL as entropy-regularized imitation learning baselines. We evaluate on the common benchmark of
locomotion-based Gym tasks, using the SAC expert data generated by Orsini et al. [11]. In this setting,
Figures 4 and 28 show CSIL closely matches the best baseline performance across environments and
dataset sizes. We also evaluate on the Adroit environments, which involve manipulation tasks with
a complex 27-dimensional robot hand [74]. In this setting, Figures 5 and 29 show that saddle-point
methods struggle, due to the instability of the optimization in high dimensions without careful
regularization and hyperparameter selection [11]. In contrast, CSIL is very effective, matching or
surpasses BC, highlighting the benefit of coherency for both policy initialization and improvement. In
the Appendix, Figure 29 includes SAC from demonstrations (SACfD) [78, 74] as an oracle baseline
with access to the true reward. CSIL exhibits greater sample efficiency than SACfD, presumably due
to the BC initialization and the shaped reward, and often matches final performance. Figures 38, 39
and 40 in the Appendix show an ablation of IQLearn and PPIL with BC pretraining. We observe a
fast unlearning of the BC policy due to the randomly initialized rewards, which was also observed by
Orsini et al. [11], so any performance improvement at initialization is negliable or temporary.
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Figure 5: Normalized performance of CSIL against baselines for online imitation learning for Adroit
tasks. Uncertainty intervals depict quartiles over 10 seeds. To assess convergence across seeds,
performance is chosen using the highest filtered 25th percentile of the return during learning.
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Figure 6: Normalized performance of CSIL against baselines for offline imitation learning for Gym
tasks. Uncertainty intervals depict quartiles over 10 seeds. To assess convergence across seeds,
performance is chosen using the highest filtered 25th percentile of the episode return during learning.

Offline imitation learning. Another challenging setting for deep RL is offline learning, where
the online interactions are replaced with a static ‘supplementary’ dataset. Note that prior works
have used ‘offline’ learning to describe the setting where only the demonstrations are learned from
[40, 79, 41, 42], like in BC, such that the IL method becomes a form of regularized BC [80]. Standard
offline learning is challenging primarily because the critic approximation can favour unseen state-
actions, motivating appropriate regularization (e.g. [81]). We use the full-replay datasets from
the d4rl benchmark [75] of the Gym locomotion tasks for the offline dataset, so the offline and
demonstration data is not the same. We also evaluate SMODICE [82] and DemoDICE [83], two offline
imitation learning methods, which use state-based value functions, weighted BC policy updates and a
discriminator-based reward. Moreover, we use the original implementations, rather than re-implement
them in acme. As a result, the expert demonstrations are drawn from a different distribution, but are
normalized appropriately. For further details on SMODICE and DemoDICE, see Appendix A and L.

Figures 6 and 30 demonstrate that offline learning is significantly harder than online learning, with
no method solving the tasks with few demonstrations. This can be attributed to the lack of overlap
between the offline and demonstration data manifesting as a sparse reward signal. However, with more
demonstrations, CSIL is able to achieve reasonable performance. This is in part due to the strength
of the initial BC policy, but CSIL can still demonstrate policy improvement in some cases (Figure
40). Figure 30 includes CQL [81] as an oracle baseline, which has access to the true reward function.
For some environments CSIL outperforms CQL with enough demonstrations. The DemoDICE and
SMODICE baselines are both strong, especially for few demonstrations. However, performance does
not increase so much with more demonstrations. Since CSIL could also be implemented with a state-
based value function and a weighed BC policy update, there is possible further work in determining
which components matter most for offline imitation learning.

5.3 Continuous control from human demonstrations from states and images

As a more realistic evaluation, we consider learning robot manipulation tasks such as picking (Lift),
pick-and-place (PickPlaceCan) and insertion (NutAssemblySquare) from random initializations
and mixed-quality human demonstrations using the robomimic datasets [84], which also include
image observations. The investigation of Mandlekar et al. [84] considered offline RL and various
forms of BC with extensive model selection. Instead, we investigate the applicability of imitation
learning, using online learning with CSIL as an alternative to BC model selection. One aspect of these
tasks is that they have a sparse reward based on success, which can be used to define an absorbing
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Figure 7: Average success rate over 50 evaluations for online imitation learning for robomimic tasks.
Uncertainty intervals depict quartiles over 10 seeds. To assess convergence across seeds, performance
is chosen using the highest 25th percentile of the averaged success during learning.
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Figure 8: Average success rate over 50 evaluations for image-based online imitation learning for
robomimic tasks. Uncertainty intervals depict quartiles over 5 seeds. Baseline results obtained from
Mandlekar et al. [84]. BC (CSIL) denotes the performance of CSIL’s initial policy for comparison.

state. As observed in prior work [39], in practice there is a synergy between absorbing states and
the sign of the reward, where positive rewards encourage survival and negative rewards encourage
minimum-time strategies. We found that CSIL was initially ill-suited to these goal-oriented tasks as
the rewards are typically positive. In the same way that the AIRL reward can be designed for a given
sign [11], we can design negative CSIL rewards by recognising that the log policy ratio can have its
upper-bound subtracted (for further details, see Appendix F). These tasks are also more difficult due
to the variance in the task initialization, requiring much larger function approximators than in Section
5.2. Moreover, success rate is measured over 50 random initialization.

Figures 7 and 36 show the performance of CSIL and baselines, where up to 200 demonstrations
are required to sufficiently solve the tasks. CSIL achieves effective performance and reasonable
demonstration sample efficiency across all environments, while baselines such as DAC struggle to
solve the harder tasks. Moreover, Figure 36 shows CSIL is again converges faster than SACfD.

Figure 8 shows the performance on CSIL when scaled up to image-based observations, where the
convolutional layers are frozen after the BC stage. CSIL was able to solve the simpler tasks in this
setting, matching the model selection strategy of Mandlekar et al. [84], demonstrating its scalability.
Figure 37 shows offline state-based results with sub-optimal (‘mixed human’) demonstrations as
offline data. While some improvement could be made on simpler tasks, on the whole it appears much
harder to learn from offline human data. This supports previous observations that human interactions
are sufficiently different from agent interactions to adversely affect learning algorithms [11, 84].

6 Discussion

We have shown that ‘coherency’ is an effective approach to IL, by combining BC with IRL-based
finetuning and using a shaped reward for which the BC policy is optimal. We have demonstrated the
effectiveness of CSIL empirically across a range of settings, in particular for high-dimensional tasks
and offline learning, due to CSIL’s initialization of the policy and reward, and relative simplicity.

In Figure 35 of the Appendix, we investigate why baselines IQLearn and PPIL, both similar to CSIL,
struggle in the high-dimensional and offline settings. Firstly, the sensitivity of the saddle-point
optimization can be observed in the stability of the expert reward and critic values during learning.
Secondly, we observe that the policy optimization does not effectively minimize the BC objective by
fitting the expert actions, which suggest the algorithms are lacking the quality of ‘coherence’ that
CSIL has and not converging to the BC solution.

A current practical limitation of CSIL is understanding when the initial BC policy is viable as a
coherent reward. Our empirical results show that CSIL can solve complex control tasks using only
one demonstration, where its BC policy is ineffective. However, if a demonstration-rich BC policy
cannot solve the task (e.g. image-based NutAssemblySquare), CSIL also appears to be unable to
solve the task. This suggests there is scope to improve the BC to make performance more consistent
across more complex environments.

An avenue for future work is to investigate the performance of CSIL with richer policy classes beyond
MLPs, such as recurrent architectures and multi-modal action distributions, to assess the implications
of the richer coherent reward and better model sub-optimal human demonstrations.
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A Extended related work

This section discusses more of the relevant prior works and in more detail.

Generative adversarial imitation learning (GAIL) [36] combines the game-theoretic IRL objective
with causal entropy regularization and convex regularization of the reward. This primal optimization
problem can be transformed into a dual objective, which has the interpretation of minimizing a diver-
gence between the expert and imitator’s stationary distributions, where the divergence corresponds
to the choice of convex reward regularization. Choosing regularization that reduced the reward
to a classification problem corresponds to the Jensen-Shannon (JS) divergence. While GAIL used
on-policy RL, DAC [39] used off-policy actor critic methods (e.g. SAC) in an adhoc fashion for greater
sample efficiency. ORIL [85] adopts a classification-based reward in the offline setting. Kostrikov
et al. [39] also note that the GAIL classifier can be used in different forms to produce rewards with
different forms. AIRL [65] highlight that the GAIL reward is shaped by the dynamics if the MDP
following the shaping theory of Ng and Russell [5], and use additional approximators that disentangle
the shaping terms. NAIL [79] replaces the minimax nature of adversarial learning with a more stable
max-max approach using expectation maximization-like optimization on a lower-bound of the KL
divergence between policies. Its reward function is defined, as with AIRL, as the log density ratio
of the stationary distributions of the expert and policy, regularized by the causal entropy. NAIL and
CSIL therefore have similar reward structures, however while CSIL’s reward can be obtained from BC
and prior design, NAIL requires iterative density ratio estimation during learning. Ghasemipour et al.
[38] investigate the performance of AIRL with different f -divergences, and corresponding reward
regularization, beyond JS such as the forward and reverse KL divergence. Ghasemipour et al. [38]
discuss the connection between the log density ratio and AIRL, GAIL and their proposed methods.
Ghasemipour et al. [38] also connect BC to IRL, but from the divergence perspective rather than the
likelihood perspective, as the conditional KL divergence between policies can be used for BC.

A separate line of study uses the convex duality in a slightly different fashion for ‘discounted distribu-
tion correction estimation’ (DICE) methods. ValueDICE uses the Donsker-Varadhan representation
to transform the KL minimization problem into an alternative form, and a change of variables to
represent the log ratio of the stationary distributions as with an implicit representation using the
Bellman operator. However, this alternative form is still a saddle-point problem like GAIL. The final
objective is more amenable to off-policy optimization. DemoDICE [83] considers the offline setting
and incorporates KL-regularization into the DICE framework which simplifies optimization. Due to
the offline setting, the reward is obtained using a pretrained classifier. Policy improvement reduces
to weighted BC, like in many KL-regularized RL methods [86, 15]. SmoDICE [82] is closely related
to DemoDICE, but focuses on matching the state distribution and therefore does not rely on expert
actions, so the discriminator-based reward is depends only on the state.

Inverse soft Q-learning (IQLearn) [41] combined the game-theoretic IRL objective, entropy-
regularized actor-critic (SAC), convex reward regularization and implicit rewards to perform IRL using
only the critic by maximizing the expert’s implicit reward. While Garg et al. [41] claim their method
is non-adversarial, it is still derived from the game-theoretic objective, and for continuous control
the IQLearn implementation requires shaping the implicit reward using online samples, like GAIL.
Moreover, the implementation replaces the minimization of the initial value with the value evaluated
for the expert samples. For SAC, in which the value function is computed by evaluating the critic
with the policy, this amounts to shaping the critic to have a local maxima around the expert samples.
We found this implementation detail to be crucial to reproduce the results for few demonstrations.

Proximal point imitation learning (PPIL) [42] combines the game-theoretic and linear programming
forms of IRL, along with entropy-regularized actor-critic RL, to derive an effective method with
convergence guarantees. Its construction yields a single objective (the dual) for optimizing the reward
and critic jointly in a more stable fashion, rather than alternating updates like in DAC, but unlike
IQLearn it has an explicit reward model. For continuous control, its implementation builds on SAC
and IQLearn, including the aforementioned tricks, but with two key differences: an explicit reward
function and minimization of the ‘logistic’, rather than squared, Bellman error [18].

In the context of these works, CSIL has two key distinctions. One is the reward hypothesis space in the
from of the log policy ratio, which is derived from KL-regularized RL, as opposed to a classifier-based
reward or critic-as-classifier implicit reward. Secondly, the consequence of this coherent reward
is that it can be pretrained using BC and the BC policy can be used as reference policy. While BC
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pretraining could be incorporate into prior methods in an adhoc fashion, their optimization objectives
to do not guarantee that coherency is maintained. This is demonstrated in Figure 35, where IQLearn
and PPIL combined with BC pretraining and KL regularization do not converge like CSIL.

Concurrent work, least-squares inverse Q-learning (LS-IQ) [87], addresses the undocumented regular-
ization of IQLearn by minimizing a mixture divergence which yields to desired regularization terms
and better treatment of absorbing states. The treatment moves away from entropy-regularized RL
view and instead opts for explicit regularization critics instead.

Szot et al. [88], in concurrent work, use the bi-level optimization view of IRL to optimize the
maximum entropy reward through an upper-level behavioral cloning loss using ‘meta’ gradients. This
approach achieves coherency through the top-level loss while also regularizing the learned reward.
However, this approach is restricted to on-policy RL algorithms that directly use the reward rather
than actor-critics methods that use a Q function, so it is less sample efficient.

Brantley et al. [23] propose disagreement-regularized imitation learning, which trains an ensemble of
policies via BC and uses their predictive variance to define a proxy reward. This work shares the same
motivation as CSIL, coherency and policy recovery. Moreover, the use of ensembles is similar to
CSIL’s stationary policies, as both models are inspired by Bayesian modelling and exhibit meaningful
uncertainty quantification. Unlike CSIL, the method is not motivated by reward shaping and the
reward is obtained by thresholding the predictive variance to ±1, rather than assume a the likelihood
values are meaningful.

Taranovic et al. [89] derive an AIRL formalation from the KL divergence between expert and policy
that results in a reward consisting of log policy ratios. However, they use a classifer to estimate these
quantities and also ignore some of the policy terms in the implementation.

Swamy et al. [90] use the BC policy for replay estimation Rajaraman et al. [24] and a membership
classifier to augment the expert dataset used in IRL.

‘Noisy’ BC [91] is tangentially related to CSIL, as it uses the BC loglikelihood as a proxy reward to
finetune the BC policy using policy gradient updates.

Soft Q-imitation learning (SQIL) [22] uses binary rewards for the demonstration and interaction
transitions, bypassing the complexity of standard IRL. The benefit of this approach comes from the
critic learning policy recovery strategies from the credit assignment. This approach has no theoretical
guarantees, and the simplistic nature of the reward does not encourage stable convergence in practice.

Barde et al. [50] proposed adversarial soft advantage fitting (ASAF), an adversarial approach that
constructs the classifier using two policies over trajectories or transitions. This approach is attractive
as the classification step performs the policy update, so no policy evaluation step is required. While
this approach has clear connections to regularized behavioral cloning, its uncertain how it can perform
policy recovery without any credit assignment. Moreover, this method has no convergence guarantees.

CSIL adopts a Bayesian-style approach to its initial BC policy by specifying a prior policy, but uses
the predictive distribution rather than a likelihood to fit the demonstration data. This is in contrast to
Bayesian IRL [92], where the prior is place over the reward function as a means of reasoning about its
ambiguity. As the reward is an unobserved abstract quantity, the exponentiated critic is adopted as a
pseudo-likelihood and approximate inference is required to estimate the posterior reward. This use of
a pseudo-likelihood means that Bayesian IRL and ME-IRL are not so different in practice, especially
when using point estimates of the posterior [93].
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B Likelihoods and priors in imitation learning

The pseudo-posterior perspective in this work was inspired by van Campenhout and Cover [56], who
identify that effective likelihoods arise from relevant functions that describe a distribution. With this
in mind, we believe it is useful to see IRL as extending BC from a myopic, state-independent likelihood
to one that encodes the causal, state-dependent nature of the problem as done ME-IRL, essentially
incorporating the structure of the MDP into the regression problem [49]. This perspective has two
key consequences. One is the importance of the prior, which provides important regularization. For
example, Ziniu et al. [80] have previously showed that the ValueDICE does not necessarily outperform
BC as previously reported, but rather matches BC with appropriate regularization. Moreover, the
MIMIC-EXP formulation of BC of Rajaraman et al. [24] proposes a stationary-like BC policy,

π(a | s) =
{
pD(a | s) if s ∈ D, where pD denotes conditional density estimation of D,
UA(a) otherwise.

Stationary policies have been seldom considered in entropy-regularized RL but is a major component
of this work. The second consequence is the open-question of how to define effective likelihoods for
imitation learning. ME-IRL and other prior works uses feature matching which, while an appropriate
constraint, raises the additional question of which features are needed. The use of a classifier in
AIRL has proved highly effective, but not always straightforward to implement in practice without
regularization and hyperparameter tuning. Much of IQLearn’s empirical success for continuous tasks
arises from the shaping of the critic-as-likelihood through the expert and on-policy regularization
terms.

This work addresses the likelihood design problem through the idea of coherence and the inversion
analysis in Theorem 1, which informs the function-approximated critic regularization described in
Section 4. An open question is how these design choices could be further improved, as the ablation
study in Figure 46 shows that the benefit of the critic regularization is not universal.

C Parametric stationary processes

The effectiveness of CSIL is down to its stationary policy design. This section briefly summarizes the
definition of stationary processes and how they can be approximated with MLPs following the work
of Meronen et al. [68].

While typically discussed for temporal stochastic processes whose input is time, stationary processes
(Definition 3) are those whose statistics do not vary with their input. In machine learning, these
processes are useful as they allow us to design priors that are consistent per input but capture
correlations (e.g. smoothness) across inputs, which can be used for regularization in regression
and classification [62]. In the continuous setting, stationarity can be defined for linear models, i.e.
y = w⊤ϕ(x), w ∼ N (µ,Σ), through their kernel function K(x,x′) = ϕ(x)⊤ϕ(x′), the feature
inner product. For stationary kernels, the kernel depends only on a relative shift r ∈ Rd between
inputs, i.e. K(r) = ϕ(x)⊤ϕ(x + r). By combining the kernel with the weight prior of the linear
model, we can define the covariance function, e.g. C(r) = ϕ(x)⊤ Σϕ(x+ r). Boschner’s theorem
[94] states that the covariance function of a stationary process can be represented as the Fourier
transform of a positive finite measure. If the measure has a density, it is know as the spectral density
S(ω), and it is a Fourier dual of the covariance function if the necessary conditions apply, known as
the Wiener-Khinchin theorem [95],

C(r) = 1

(2π)d

∫
Rd

S(ω) exp(iω⊤r) dr, S(ω) =

∫
Rd

C(r) exp(−iω⊤r) dω. (9)

To use this theory to design stationary function approximators, we can use the Wiener-Khintchin
theorem to design function approximators that produce Monte Carlo approximation of stationary
kernels. Firstly, we consider only the last layer of the MLP, such that it can be viewed as a linear model.
Secondly, Meronen et al. [68] describe several periodic activation functions that produce products of
the form exp(iω⊤r), such that the inner product of the whole feature space performs a Monte Carlo
approximation of the integral. We implemented sinusoidal, triangular and periodic ReLU activations
(see Figure 3 of Meronen et al. [68]) as a policy architecture hyperparameter. Thirdly, the input
into the stationary kernel approximation should be small (e.g. < 20), as the stationary behaviour
is dictated by r, and this distance becomes less meaningful in higher dimensions. This means the
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Figure 9: We repeat the regression problem from Figure 3 to highlight the effect of ‘faithful’
heteroscedastic regression. The NLLH objective has a tendency to model ‘signal’ as noise, which
is most clearly seen in the heteroscedastic MLP. For both models, the faithful heteroscedastic loss
reduces the mean prediction error significantly without affecting uncertainty quantification.

MLP feature space that feeds into the last layer should be small or have a ‘bottleneck’ architecture to
compress the internal representation. Finally, we require a density to represent the spectral density,
which also defines the nature of the stationary process. We use a Gaussian, but other distributions
such as a Student-t or Cauchy could be used if ‘rougher’ processes are desired. In summary, the last
layer activations take the form fp(Wϕ(x)), where fp is the periodic activation function of choice,
W are weights sampled from the distribution of choice and ϕ(x) is an arbitrary (bottlenecked) MLP
feature space of choice.

Related work combining stationary kernel approximations with MLPs have constrained the feature
space with a residual architecture and spectral normalization to bound the upper and lower Lipschitz
constant [96], to prevent these features overfitting. We found we did not need this to achieve
approximate stationarity (e.g. Figure 3), which avoided the need for environment-dependent policy
architectures and the risk of underfitting.

A crucial practical detail is that the sampled weights W should be trained and not kept constant, as the
theory suggests. In practice, we did not observe the statistics of these weights changing significantly
during training, while training this weight layer reduced underfitting enough for significantly more
effective BC performance.

D Faithful heteroscedastic regression

This section summarizes the approach of Stirn et al. [71]. The faithful objective combines the
mean squared error (MSE) and negative loglikelihood NLLH loss with a careful construction of the
heteroscedastic model. The loss is

L(D,θ) = Es,a∼D
[
(a− µθ(s))

2 − log q̃(a | s)
]
, q̃(a | s) = N (sg(µθ(s)),Σθ(s)), (10)

where sg(·) denotes the stop gradient operator. Moreover, for the models ‘shared torso’ (e.g. features),
the gradient is stopped between the torso and the predictive variance, so that the features are only
trained to satisfy the MSE objective. Figure 9 illustrates the impact of the alternative loss function
and model adjustments. Note that the faithful objective is not strictly necessary for BC or CSIL, and
is mitigating a potential issue seen in practice. The issue of modelling ‘signal’ as noise when using
heteroscedastic function approximators is poorly understood, and depends on model architecture,
initialization and the dataset considered. While motivated by 1D toy examples, it was observed during
development that the faithful objective is beneficial for CSIL’s downstream performance.
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E Reward refinement and function-space relative entropy estimation

In the function approximation setting, we refine the reward model with additional non-expert samples.
Motivated by Theorem 2, we maximize the objective using samples from the replay buffers

Jr(θ) = Es,a∼D

[
α log

qθ(a | s)
p(a | s)

]
− Es,a∼ρπ

[
α log

qθ(a | s)
p(a | s)

]
. (11)

If the behaviour policy π is qθ(a | s), we can view the second term as a Monte Carlo estimation of
the relative KL divergence between q and p. This estimator can suffer greatly from bias, as the KL
should always be non-negative. To counteract this, we construct an unbiased, positively-constrained
estimator following Schulman [97], using Ex∼q(·)[R(x)−1] =

∫
p(x) dx = 1 and log(x) ≤ x− 1,

DKL[q(x) || p(x)] = Ex∼q(·)[logR(x)] = Ex∼q(·)[R(x)−1 − 1 + logR(x)],

This estimator results in replacing the second term of Equation 11 with

Es,a∼ρπ
[rθ(s,a)] → Es,a∼ρπ

[rθ(s,a)− α+ α exp(−rθ(s,a)/α)] .

This objective is maximized concurrently with policy evaluation, using samples from the replay buffer.
This reward refinement is similar to behavioral cloning via function-space variational inference (e.g.
[98, 99]), enforcing the prior using the prior predictive distribution rather than the prior weight,
distribution.

In practice, the samples are taken from a replay buffer of online and offline data, so the action samples
are actually taken from a different distribution to qθ. However, we still found the adjust objective
effective for reward regularization. Without it, the saddle-point refinement was less stable. Appendix
G illustrates this refinement in a simple setting. Figure 45 ablates this component, where its effect is
most beneficial when there fewer demonstrations.

F Bounding the coherent reward

The coherent reward α(log q(a | s)− log p(a | s)) can be upper bounded if p(a | s) > 0 whenever
q(a | s) > 0. The bound is policy dependent. We make use of the bound in the continuous
setting where we use a tanh-transformed Gaussian policy. We add a small bias term σ2

min to the
predictive variance in order to define the Gaussian likelihood upper bound. Inconveniently, the tanh
change of variables term in the loglikelihood −∑da

i=1 log(1 − tanh2(u)) [16] has no upper bound
in theory, as the ‘latent’ action u ∈ [−∞,∞], but in the Acme implementation this loglikelihood
is bounded for numerical stability due to the inverse tanh operation. For action dimension da
and uniform prior across action range [−1, 1]da and α = d−1

a , the upper bound is r(s,a) ≤
1
da
(−0.5da log 2πσ

2
min + c + da log 2) = −0.5 log πσ2

min/2 + c̃, where c, c̃ depends on the tanh
clipping term.

G Visualizing reward refinement

To provide intuition on Theorem 2 and connect it to reward refinement (Appendix E) we build on the
regression example from Figure 3 by viewing it as a continuous contextual bandit problem, i.e. a
single-state MDP with no dynamics. Outside of the demonstration state distribution, we desire that the
reward is uniformly zero, as we have no data to inform action preference. Figure 10 shows the result of
applying CSIL and reward refinement to this MDP, where the state distribution is uniform. The ‘desired’
BC fit exhibits a coherent reward with the desired qualities, and the HETSTAT policy approximates this
desired policy. The heteroskedastic MLP exhibits undesirable out-of-distribution (OOD) behaviour,
where arbitrary regions have strongly positive or negative reward. Reward refinement improves
the coherent reward of the heteroscedastic MLP to be more uniform OOD, which in turn makes the
regression fit look more like a stationary policy. This result reinforces Theorem 2, which shows that
KL-regularized BC corresponds to a game-theoretic IRL objective lower bound.
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Figure 10: We extend the regression problem from Figure 3 to highlight the effect of reward refinement
detailed in Section E from the BC and IRL perspective. Refining the coherent reward with a minimax
objective results in a BC policy that appears more stationary, as seen in the heteroscedatic MLP. The
stationary heteroscedastic policy is also refined, but to a lesser degree, as its stationary quality is still
an approximation. The colourmap is shared between contour plots, and rewards are clipped at -10 to
improve the visual colour range. Regression uncertainty is one standard deviation.

H Critic regularization

For the function approximation setting, CSIL requires an auxiliary loss term during learning to
incorporate coherency. The full critic optimization problem is minϕ JQ(ϕ) for objective

JQ(ϕ) = Es,a∼B[(Qϕ(s,a)−Q∗(s,a))2] + Es,a∼D[|∇aQϕ(s,a)|2], (12)

where Q∗ denotes the target Q values and B denotes the replay buffer, that combines demonstrations
D and additional samples. The motivation is to shape the critic such that the demonstration actions
are first-order optimal by minimizing the squared Frobenius norm of the action Jacobian.

IQLearn and PPIL adopt similar, but less explicit, regularization. Equation 10 of Garg et al. [41] is

maxϕ Es,a∼B

[
f
(
Qϕ(s,a)− γ Es′∼P(·|s,a)[Vπ

ϕ(s
′)]
)]

− (1− γ)Es∼µ0 [Vπ
ϕ(s)],

where Vπ
ϕ(s) = Q(s,a′), a′ ∼ π(· | s) and f is the concave function defining the implicit reward

regularization. In the implementation [100], the ‘v0’ objective variant replaces the initial distribution
µ0 with the demonstration state distribution. This trick is deployed to improve regularization without
affecting optimality (Section 5.3, Kostrikov et al. [40]). If the policy is matching the expert actions
with its mode, then this term is shaping a local maximum by minimizing the critic at action samples

a

Q

Jacobian regularization

sample regularization

a

∂
Q
/
∂
a

Figure 11: Illustrating the two forms of critic regularization on a toy 1D problem for critic Q(a)
with regression target . Jacobian regularization minimizing the squared gradient, and corresponds
to CSIL. Sample regularization minimizes sampled nearby actions, and corresponds to IQLearn and
PPIL. Both approaches shape the critic to have zero gradient around the target action, denoted by the
dotted lines. A standard two layer MLP with 256 units and ELU actions is used for approximation.
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Algorithm 2: Off-policy coherent soft imitation learning with function approximation
Data: Expert demonstrations D, initial temperature α, refinement temperature, β,
parametric policy class qθ(a | s), prior policy p(a | s), regression regularizer Ψ, total steps T
Result: qθN

(a | s), matching or improving the initial policy qθ1(a | s)
// Pretrain coherent reward and critic

Train initial policy from demonstrations, θ1 = argmaxθ Es,a∼D[log qθ(a | s)−Ψ(θ)];
Define fixed shaped coherent reward, r̃θ1

(s,a) = α(log qθ1
(a | s)− log p(a | s));

Pretrain critic with SARSA on D using r̃θ1
.

for t = 1 → T do // finetune policy with reinforcement learning

Interact with environment st+1 = Env(st,at), at ∼ qθt(· | st), store in replay buffer B;
Optimize reward and critic using JQ(ϕ) and Jr(θ) (Equations 12, 11) on minibatch from B;
Update policy optimizing Jπ(θ) (Equation 13) on minibatch from B;

end

around the expert. However, if the policy is not accurately matching the expert actions, the effect
of this term is harder to reason about. In Figure 11, we illustrate these two forms from critic
regularization on a toy example, demonstrating that both can produce local maximums in the critic.

I Practical algorithm with function approximation

For deep imitation learning, CSIL adopts SAC for the SPI step in Algorithm 1, summarized in
Algorithm 2. The critic objective for both pre-training and policy evaluation is the squared Bellman
error. The policy objective maxθ Jπ(θ) samples both the demonstrations and replay buffer,

Jπ(θ) = Ea∼qθ(·|s), s∼B∪D [Q(s,a)− β(log qθ(· | s)− log qθ1
(· | s))] . (13)

The policy and demonstration data are combined equally. We did not experiment with tuning this
ratio. Compared to SAC, we found we did not to train multiple critics, but we did need target networks
for the critics to stabilize learning. The critic and reward objectives were also evaluated on the policy
and expert data each update. Moreover, like IQLearn and PPIL, we kept β constant and did not use an
adaptive strategy.

J A divergence minimization perspective

Many imitation learning algorithms, such as GAIL and IQLearn, are derived from minimizing a
divergence between the agent’s state-action distribution and the expert’s. While CSIL is derived
through policy inversion, it also has a divergence minimization perspective, albeit two minimization
steps rather than one.

The first step involves recognising that maximum likelihood BC fit minimizes the forward KL
divergence between the demonstration distribution pD(s,a) = pD(a | s) pD(s) and the policy

θ1 = argminθ Es∼pD(·)[DKL[pD(a | s) || qθ(a | s)]] = argmaxθ Es,a∼D[log qθ(a | s)].
The use of the forward KL means that the unknown log likelihood of the data distribution is not
required, and the policy can be trained using supervised learning and without environment interaction.

The second step involves rearranging the KL-regularized RL objective into two KL divergences,

θ∗ = argmaxθ Ea∼qθ(·|s), s∼µπθ
(·)

[
α log

qθ1 (a|s)
p(a|s) − β log qθ(a|s)

p(a|s)

]
,

= argminqθ Es∼µqθ
(·)[αDKL[qθ(a | s) || qθ1

(a | s)]− (1− β/α)DKL[qθ(a | s) || p(a | s)]].

Note that since β ≤ α, then (1− β/α) ≥ 0. The left hand term minimizes the reverse KL between
the agent and the expert, using the BC policy as proxy. This is beneficial because the reverse
conditional KL requires evaluating policy qθ on the environment. Moreover, the reverse KL requires
log-likelihoods of the target distribution, which is why the BC policy is used as a proxy of the
demonstration distribution. The right hand term incorporates the coherent reward, and encourages the
policy to stay in states where the policy differs from the prior. As qθ should be close to the BC policy
due to the left hand term, the coherent reward shaping from Definition 1 should hold.

In this formulation of the objective, its also clear to see that if β = α, no RL finetuning will occur and
qθ will simply mimic the BC policy qθ1 due to the left hand term.
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K Theoretical results

This section provides derivations and proofs for the theoretical results in the main text.

K.1 Relative entropy regularization for reinforcement learning

This section re-derives KL-regularized RL and ME-IRL in a shared notation for the reader’s reference.

Reinforcement learning. We consider the discounted, infinite-horizon setting with a hard KL
constraint on the policy update with bound ϵ,

maxq Est+1∼P(·|s,a),a∼q(·|s), s0∼µ0(·)[
∑

t γ
tr(st,at)] s.t. Es∼νq(·)[DKL[q(a | s) || p(a | s)]] ≤ ϵ.

This constrained objective is transcribed into the following Lagrangian objective following Van Hoof
et al. [14], using the discounted stationary joint distribution d(s,a) = q(a | s) ν(s) = (1−γ)ρ(s,a),

L(d, λ1, λ2, λ3) = (1− γ)−1

∫
S×A

d(s,a) r(s,a) ds da+ λ1

(
1−

∫
S×A

d(s,a) ds da
)

+

∫
S
λ2(s

′)

(∫
S×A

γ P(s′ | s,a) d(s,a) ds da+ (1− γ)µ0(s
′)−

∫
A
d(s′,a′) da′

)
ds′

+ λ3

(
ϵ−

∫
S
ν(s)

∫
A
q(a | s) log q(a | s)

p(a | s) da ds
)
,

where λ2 is a function for an infinite-dimensional constraint. Solving for ∂L(q, λ1, λ2, λ3)/∂d = 0,

q(a | s) ∝ exp(α−1(r(s,a) + γ Es′∼P(·|s,a)[V(s′)]︸ ︷︷ ︸
Q(s,a)

−V(s))) p(a | s),

with α = (1− γ)λ3 and λ2(s) = (1− γ)V(s), where V can be interpreted as the soft value function,

V(s) = α log

∫
A
exp

(
1

α
Q(s,a)

)
p(a | s) da as

∫
A
q(a | s) da = 1.

To obtain the more convenient lower bound of the soft Bellman equation, we combine importance
sampling and Jensen’s inequality to the soft Bellman equation

V(s) = α log

∫
A
exp

(
1

α
Q(s,a)

)
p(a | s)
q(a | s) q(a | s) da,

≥ Ea∼q(·|s)

[
Q(s,a)− α log

q(a | s)
p(a | s)

]
.

This derivation is for the ‘hard’ KL constraint. In many implementations, including ours, the constraint
is ‘softened’ where λ3 and therefore α is a fixed hyperparameter.

Inverse reinforcement learning. As mentioned in Section 2 and Definition 2, ME-IRL is closely
related to KL-regularize RL, but with the objective and a constraint reversed,

minq Es∼νq(·)[DKL[q(a | s) || p(a | s)]] s.t. Es,a∼ρq
[ϕ(s,a)] = Es,a∼D[ϕ(s,a)].

The constrained optimization is therefore transcribed into a similar Lagrangian,

L(d, λ1, λ2,λ3) =

∫
S
ν(s)

∫
q(a | s) log q(a | s)

p(a | s) da ds+ λ1

(
1−

∫
S×A

d(s,a) ds da
)

+

∫
S
λ2(s

′)

(∫
S×A

γ P(s′ | s,a) d(s,a) ds da+ (1− γ)µ0(s
′)−

∫
A
d(s′,a′) da′

)
ds′

+ λ⊤
3

(
(1− γ)−1

∫
S×A

d(s,a)ϕ(s,a) ds da− Es,a∼D[ϕ(st,at)]

)
.

The consequence of this change is that the likelihood temperature is now implicit in the reward model
r(s,a) = (1 − γ)−1λ⊤

3 ϕ(s,a) due to the Lagrange multiplier weights, and this reward model is
used in the soft Bellman equation in place of the true reward. The reward model is jointly optimized
to minimize the apprenticeship error by matching the feature expectation.
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K.2 Proof for Theorem 1

Theorem 1. (KL-regularized policy improvement inversion). Let p and qα be the prior and pseudo-
posterior policy given by posterior policy iteration (Equation 4). The critic can be expressed as

Q(s,a) = α log
qα(a | s)
p(a | s) + Vα(s), Vα(s) = α log

∫
A
exp

(
1

α
Q(s,a)

)
p(a|s) da. (6)

Substituting into the KL-regularized Bellman equation lower-bound from Equation 2,

r(s,a) = α log
qα(a | s)
p(a | s) + Vα(s)− γ Es′∼P(·|s,a) [Vα(s

′)] . (7)

The Vα(s) term is the ‘soft’ value function. We assume qα(a | s)= 0 whenever p(a | s)= 0.

Proof. Equation 6 is derived by rearranging the posterior policy update in Equation 4. Equation 7
in derived by substituting the critic expression from Equation 6 into the KL-regularized Bellman
equation (Equation 3),

α log
qα(a | s)
p(a | s) + Vα(s)︸ ︷︷ ︸

Q(s,a)

=

r(s,a) + γ Es′∼P(·|s,a),a′∼qα(·|s′)

��������
α log

qα(a
′ | s′)

p(a′ | s′) + Vα(s
′)︸ ︷︷ ︸

Q(s′,a′)

−
��������
α log

qα(a
′ | s′)

p(a′ | s′)

 .

K.3 Proof for Theorem 2

Theorem 2 relies on the data processing inequality (Lemma 3) to connect the function-space KL seen
in CSIL with the weight-space KL used in regularized BC.
Assumption 1. (Realizability) The optimal policy can be expressed by the parametric policy qθ(a|s).
Lemma 2. (Coherent policy optimality). The optimal policy for a KL-regularized RL problem with
coherent reward r̃(s,a) = α(log q(a | s)− log p(a | s)) and temperature α is q(a | s).
Proof. This result arises from the origin of the coherent reward from policy inversion and re-
ward shaping (Theorem 1, Lemma 1). Moreover, considering the entropy-augmented reward
rα, π(s,a) = r(s,a)− α(log π(a | s)− log p(a | s), when r is the coherent reward r̃ and π = q,
r̃α, q(s,a) = 0 ∀s ∈ S, a ∈ A so q(a | s) is a solution to a soft policy iteration.

Lemma 3. (Data processing inequality, Wu [101], Theorem 4.1). For two stochastic processes param-
eterized with finite random variables w ∼ p(·), w∈W and shared hypothesis spaces p(y | x,w),
the conditional f -divergence in function space at points X ∈ XL, L ∈ Z+. is upper bounded by the
f -divergence in parameter space,

Df [q(w) || p(w)] = Df [q(Y ,w | X) || p(Y ,w | X)] ≥ Df [q(Y | X) || p(Y | X)].

Theorem 2. (Coherent inverse reinforcement learning as KL-regularized behavioral cloning). A KL-
regularized game-theoretic IRL objective, with policy qθ(a | s) and coherent reward parameterization
rθ(s,a) = α(log qθ(a | s)−log p(a | s)) where α ≥ 0, is lower bounded by a scaled KL-regularized
behavioral cloning objective and a constant term when the optimal policy, posterior and prior share
a hypothesis space p(a | s,w) and finite parameters w,

Es,a∼D [rθ(s,a)]− Ea∼qθ(·|s), s∼µqθ
(·) [rθ(s,a)− β(log qθ(a | s)− log p(a | s))] ≥

α (Es,a∼D [log qθ(a | s)]− λDKL[qθ(w) || p(w)] + Es,a∼D [log p(a | s)]).
where λ = (α − β)/α and Es,a∼D [log p(a | s)] is constant. The regression objective bounds the
IRL objective for a worst case on-policy state distribution µq(s), which motivates its scaling through
β. If D has sufficient coverage, no RL finetuning or KL regularization is required, so β = α. If D
does not have sufficient coverage, then let β < α so λ > 0 to regularize the BC fit and finetune the
policy with RL accordingly with additional soft policy iteration steps.
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Proof. We begin with the KL-regularized game-theoretic IRL objective (c.f. Equation 1 [16]),

J (r, π, β) = Es,a∼D [r(s,a)]− Es,a∼ρπ

[
r(s,a)− β log

π(a | s)
p(a | s)

]
.

Substituting the coherent reward from Theorem 1, the objective becomes

J (θ, π, β) = Es,a∼D

[
α log

qθ(a | s)
p(a | s)

]
− Es,a∼ρπ

[
α log

qθ(a | s)
p(a | s) − β log

π(a | s)
p(a | s)

]
.

Due to the realizablity assumption (Assumption 1), the optimal policy πθ∗ can be obtained through
maximum likelihood estimation θ∗ = argmaxθ Es,a∼D[log qθ(s,a)]. With this assumption, the
left hand term performs performs maximum likelihood estimation of the optimal policy. Therefore,
combined with the coherent reward which is derived from policy inversion, we replace the inner
policy optimization of π with the maximum likelihood solution of qθ , resulting in a simpler objective
J̃ in terms of only θ, which matches the objective J exactly when β = α and π = qθ (Lemma 2).
We consider J̃ with a small perturbation δα ≥ 0 to facilitate to policy improvement,

J̃ (θ) = J (θ, qθ, α− δα) = Es,a∼D

[
α log

qθ(a | s)
p(a | s)

]
− Ea∼qθ(·|s), s∼µqθ

[
δα log

qθ(a | s)
p(a | s)

]
,

The right-hand term contains a conditional KL divergence, which we can replace with an upper-bound
using the data processing inequality from Lemma 3 and the weight-space KL. This weight-space
KL is constant w.r.t. the state distribution expectation, and we introduce the scale factor λ = δα/α.
The resulting lower-bound objective is proportional to the regularized behavioural cloning objective
proposed in Equation 8,

J̃ (θ) ≥ α(Es,a∼D [log qθ(a | s)]− λDKL[qθ(w) || p(w)] + C), C = Es,a∼D[− log p(a | s)].

The intuition from Theorem 2 is that the KL regularization during BC achieves reward shaping similar
to the IRL saddle-point solution when using the coherent reward. The lower bound’s ‘tightness’
depends on the data processing inequality. The weight-space KL is ‘global’ regularization, rather
than state-dependent. Therefore, rather than providing a tight lower bound, this result is more
to demonstrate that KL-regularized BC provides effective reward shaping from the game-theoretic
perspective. We visualize this phenomena in Appendix G to reinforce the result.

26



Task Random return Expert return

HalfCheetah-v2 -282 8770
Hopper-v2 18 2798
Walker2d-v2 1.6 4118
Ant-v2 -59 5637
Humanoid-v2 123 9115

door-expert-v0 -56 2882
hammer-expert-v0 -274 12794

Table 2: Expert and random policy returns used to normalize the performance for Gym and Adroit
tasks. Taken from Orsini et al. [11].

L Implementation and experimental details

The tabular experiments are implemented in jax automatic differentiation and linear algebra li-
brary [102]. The continuous state-action experiments are implemented in acme, using jax. One
feature of acme is distributed training, where we use 4 concurrent actors to speed up the wall clock
time of learning. IQLearn and PPIL were re-implemented based on the open-source implementations
as reference [100, 103]. CSIL, IQLearn and PPIL shared a combined implementation as ‘soft’ imitation
learning algorithms due to their common structure and to facilitate ablation studies. Baselines DAC,
SQIL, PWIL, SACfD and CQL are implemented in acme. We used a stochastic actor for learning and a
deterministic actor (i.e. evaluating the mean action) for evaluation.

The DemoDICE and SMODICE offline imitation leaning baselines were implemented using the original
implementations [104, 105]. This meant that the expert demonstrations were obtained from d4rl
rather than Orsini et al. [11], but the returns were normalized to the d4rl returns for consistency.
We note that there is a non-negligible discrepancy between the d4rl and Orsini et al. [11] return
values for the MuJoCo tasks, but in the imitation setting, comparing normalized values should be a
meaningful metric.

Due to the common use of SAC as the base RL algorithm, most implementation shared common
standard hyperparameters. The policy and critic networks were two layers of 256 units with ELU
activations. Learning rates were 3e-4, the batch size was 256 and the target network smoothing
coefficient was 0.005. One difference to standard RL implementations is the use of layernorm in
the critic, which is adopted in some algorithm implementations in acme and was found to improve
performance. For the inverse temperature α, for most methods we used the adaptive strategy based on
a lower bound on the policies entropy. IQLearn and PPIL both have a fixed temperature strategy that
we tuned in the range [1.0, 0.3, 0.1, 0.03, 0.01]. CSIL also has a fixed temperature strategy, but applied
to the KL penalty. In practice they are very similar, so we swept the same range. We also investigated
a hard KL bound and adaptive temperature strategy, but there was no performance improvement to
warrant the extra complexity. CSIL’s HETSTAT policies had an additional bottleneck layer of 12 units
and a final layer of 256 units with stationary activations. For the Gym tasks, triangular activations
were used. For robomimic tasks, periodic ReLU activations were used. IQLearn, PPIL and CSIL all

Experiment Algorithm
DAC PWIL SQIL IQLearn PPIL CSIL

Online Gym H(π) H(π) H(π) 0.01 0.01 0.01
Offline Gym H(π) H(π) H(π) 0.03 0.03 0.1
Online Humanoid-v2 H(π) H(π) H(π) 0.01 0.01 0.01
Online Adroit H(π) H(π) H(π) 0.03 0.03 0.1
Online robomimic H(π) - - 0.1 - 0.1
Offline robomimic - - - - - 1.0
Image-based robomimic - - - - - 0.3

Table 3: Entropy regularization used across methods and environments. Values refer to a fixed
temperature while H(π) refers to the adaptive temperature scheme which ensures the policy entropy
is at least equal to −da, where da is the dimension of the action space.
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Experiment Pretraining hyperparameters
n (π) λ (π) n (Q) λ (Q)

Online and offline Gym 25000 1e-3 5000 1e-3
Online Humanoid-v2 500 1e-3 5000 1e-3
Online Adroit 25000 1e-4 5000 1e-3
Online and offline robomimic 50000 1e-4 2000 1e-3
Image-based robomimic 25000 1e-4 2000 1e-3

Table 4: CSIL’s pretraining hyperparameters for the policy (π) and critic (Q), listing the learning rate
(λ) and number of iterations (n).

have single critics rather than dual critics, while the other baselines had dual critics to match the
standard SAC implementation. We tried dual critics to stabilize IQLearn and PPIL, but this did not help.
CSIL’s reward finetuning learning rate was 1e-3. As the reward model was only being finetuned with
non-expert samples, we did not find this hyperparameter to be very sensitive. For robomimic, larger
models were required with two layers of 1024 units. The HETSTAT policies increased accordingly
with a 1024 unit final layer and 48 units for the bottleneck layer.

For DAC, we used the hyperparameters and regularizers recommended by Orsini et al. [11], including
spectral normalization for the single hidden layer discriminator with 64 units. IQLearn has a smaller
actor learning rate of 3e-5 and the open-source implementation has the option of different value
function regularizers per task [100]. We used ‘v0’ regularization for all environments, which
minimizes the averaged value function at the expert samples. In the original IQLearn experiments,
this regularizer is tuned per environment [100]. PPIL shares the same smaller actor learning rate of
3e-5 and the open-source implementation also uses 20 critic updates for every actor update, which we
maintained. The implementation of PPIL borrows the same value function regularization as IQLearn,
so we used ‘v0’ regularization for all environments [103]. For SACfD, we swept the demo-to-replay
ratio across [0.1, 0.01]. For adroit the ratio was 0.01 and for robomimic it was 0.1.

The major implementation details of CSIL are discussed in Sections 4, C, D and E. The pretraining
hyperparameters are listed in Table 4. While the critic is not too important for performance (Figure
44), appropriate policy pretraining is crucial. In lieu of training a regularization hyperparameter, we
instead opted for early stopping. As a result, there is a trade-off between BC accuracy and policy
entropy. In the online setting, if the policy is trained too long, then the entropy is reduced too far and
there is not enough exploration for RL. As a result, the policy pretraining hyperparameters need tuning
when action dimension and datasets size change significantly to ensure the BC fit is sufficient for
downstream performance. For robomimic, we used negative CSIL rewards that were scaled by 0.5 to
ensure they lie around [−1, 0]. For vision-based robomimic, the CNN torso was a impala-style [106]
Acme ResNetTorso down to a LayerNorm MLP with 48 output units, ELU activations, orthogonal
weight initialization and final tanh activation. Mandlekar et al. [84] used a larger ResNet18. As
in Mandlekar et al. [84], image augmentation was achieved with random crops from 84 down to
76. Pixel values were normalized to [-0.5, 0.5]. For memory reasons, the batch size was reduced to
128. The implementations of IQLearn, PPIL and CSIL combined equally-sized mini-batches from the
expert and non-expert replay buffers for learning the reward, critic and policy. We did not investigate
tuning this ratio.

Regarding computational resources, the main experiments were run using acme which implements
distributed learning. As a result, our ‘learner‘ (policy evaluation and improvement) run on a single
TPU v2. We ran four four actors to interact in to environment. Depending on the algorithm, there
were also one or more evaluators. For vision-based tasks, we used A100 GPUs for the vision-based
policies.
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M Experimental results

This section includes additional experimental results from Section 5. Videos of the simulation studies
are available at www.sites.google.com/view/coherentsoftimitationlearning.

M.1 Inverse optimal control

This section shows the converged value function, stationary distribution and ‘windy’ stationary
distribution for the tabular setting results from Table 1. ‘Oracle classifier’ constructs an offline
classifier-based reward separating the states and actions with- and without demonstration data, in
the spirit of methods such as SQIL and ORIL [85]. No optimization was conducted on the windy
environment, just evaluation to assess the policy robustness to disturbance. We use the viridis
colourmap, so yellow regions have a larger value than blue regions.

Value function Nominal stationary distribution Windy stationary distribution

Figure 12: Expert on the dense MDP.

Nominal stationary distribution Windy stationary distribution

Figure 13: BC on the dense MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 14: Oracle classifier on the dense MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 15: GAIL on the dense MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 16: IQLearn on the dense MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 17: PPIL on the dense MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 18: ME-IRL on the dense MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 19: CSIL on the dense MDP.
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Value function Nominal stationary distribution Windy stationary distribution

Figure 20: Expert on the sparse MDP.

Nominal stationary distribution Windy stationary distribution

Figure 21: BC on the sparse MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 22: Oracle classifier on the sparse
MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 23: GAIL on the sparse MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 24: IQLearn on the sparse MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 25: PPIL on the sparse MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 26: ME-IRL on the sparse MDP.

Value function Nominal stationary distribution Windy stationary distribution

Figure 27: CSIL on the sparse MDP.
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M.2 Continuous control from agent demonstrations

Step-wise results. Figure 28, 29 and 30 show step-wise performance curves, as opposed to the
demonstration-wise results in the main paper. For online experiments, steps refers to the actor and
learner, while for offline experiments steps corresponds to the learner.
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Figure 28: Normalized performance of CSIL again baselines for online imitation learning on MuJoCo
Gym tasks. Uncertainty intervals depict quartiles over 10 seeds. CSIL exhibits stable convergence with
both sample and demonstration efficiency. BC here is applied to the demonstration dataset. n refers
to demonstration trajectories.
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Figure 29: Normalized performance of CSIL against baselines for online imitation learning for Adroit
tasks. Uncertainty intervals depict quartiles over 10 seeds. CSIL exhibits stable convergence with
both sample and demonstration efficiency. Many baselines cannot achieve stable convergence due to
the high-dimensional action space. SACfd is an oracle baseline that combines the demonstrations
with the true (shaped) reward. n refers to demonstration trajectories.
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Figure 30: Normalized performance of CSIL against baselines for offline imitation learning for Gym
tasks . Uncertainty intervals depict quartiles over 10 seeds. While all methods struggle in this setting
compared to online learning, CSIL manages convergence with enough demonstrations. CQL is an
oracle baseline using the true rewards. The BC baseline is trained to the whole offline dataset, not just
demonstrations. n refers to demonstration trajectories.
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Figure 31: Normalized performance of CSIL against baselines for online imitation learning for
Humanoid-v2. Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration
trajectories.

Humanoid-v2 results. We evaluated CSIL and baselines on the high-dimensional Humanoid-v2
locomotion task in Figure 31. We found that CSIL struggled to solve this task due to difficulty for BC
to perform well at this task, even when using all 200 of the available demonstrations in the dataset.

One aspect of Humanoid-v2 to note is that a return of around 5000 (around 0.5 normalized) cor-
responds to the survival / standing bonus, rather than actual locomotion (around 9000). While the
positive nature of the coherent reward enabled learning the stabilize, this was not consistent across
seeds. We also found it difficult to reproduce baseline results due to IQLearn’s instability, which we
also reproduced on the author’s implementation [100].

In theory, BC should be able to approximate the original optimal agent’s policy with sufficient
demonstrations. We believe the solution may be additional BC regularization, as the environment has
a 376 dimensional state space.
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Performance improvement of coherent imitation learning A desired quality of CSIL is its ability
to match or exceed its initial BC policy. Figures 32, 33 and 34 show the performance of CSIL relative
to its initial BC policy. Empirical, CSIL indeed matches or exceeds the initial BC policy across
environments.
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Figure 32: Normalized performance of CSIL for online Gym tasks against its BC initialization.
Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration trajectories.
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Figure 33: Normalized performance of CSIL for online Adroit tasks against its BC initialization.
Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration trajectories.
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Figure 34: Normalized performance of CSIL for offline Gym tasks against its BC initialization.
Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration trajectories.
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Divergence in minimax soft imitation learning To investigate the performance issues in IQLearn
and PPIL relative to CSIL, we monitor a few key diagnostics during training for online door-v0 and
offline Ant-v2 in Figure 35. One key observation is the drift in the BC accuracy. We attribute this to
the instability in the reward or critic due to the saddle-point optimization.
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Figure 35: We investigate the weakness of IQLearn and PPIL for offline learning (Ant-v2) and
high-dimensional action spaces (door-v0). Compared to CSIL, IQLearn and PPIL have less stable
and effective Q values, in particular for the expert demonstrations, which results in the policy not
inaccurately predicting the demonstration actions (expert mse).
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M.3 Continuous control from human demonstrations

Figure 36 shows performance on the online setting w.r.t. learning steps and Figure 37 shows the
offline performance w.r.t. learning steps. For online learning, CSIL consistently more sample efficient
than the oracle baseline SACfD, presumably due to BC pretraining and CSIL’s shaped reward w.r.t.
robomimic’s sparse reward on success. CSIL was also able to surpass Mandlekar et al. [84]’s success
rate on NutAssemblySquare. For offline learning from suboptimal human demonstrations, it appears
to be a much harder setting for CSIL to improve on the initial BC policy, especially for harder tasks.
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Figure 36: Average success rate over 50 evaluations for online imitation learning for robomimic tasks.
Uncertainty intervals depict quartiles over 10 seeds. The BC policy is trained on the demonstration
data. n refers to demonstration trajectories.
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Figure 37: Average success rate over 50 evaluations for offline imitation learning for robomimic
tasks. Uncertainty intervals depict quartiles over 10 seeds. This experiment shows that learning from
suboptimal offline demonstrations is much harder than on-policy data. It is also harder to use the KL
regularization to ensure improvement over the initial policy. n refers to demonstration trajectories.
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N Ablation studies

This section includes ablation studies for the CSIL algorithm and baselines.

N.1 Baselines with behavioral cloning pretraining

To assess the importance of BC pretraining, we evaluate the performance of IQLearn and PPIL with
BC pretraining in Figure 38. While difficult to see across all experiments, there is a small drop in
performance at the beginning of training as the policy ‘unlearns’ as the critic and reward are randomly
initialized since there is no notion of coherency.
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Figure 38: Normalized performance of IQLearn and PPIL for online Gym tasks with BC pretraining.
Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration trajectories.

N.2 Baselines with behavioral cloning pretraining and KL regularization

To bring IQLearn and PPIL closer to CSIL, we implement the baselines with BC pretraining and KL
regularization, but with SAC-style policies rather than HETSTAT. We evaluate on the harder tasks,
online Adroit and offline Gym, to see if these features contribute sufficient stability to solve the task.
Both Figure 39 and Figure 40 show increase in initial performance, it is not enough to completely
stabilize the algorithms.
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Figure 39: Normalized performance of IQLearn and PPIL for online Adroit tasks with BC pretraining.
Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration trajectories.
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Figure 40: Normalized performance of IQLearn and PPIL for offline Gym tasks with BC pretraining.
Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration trajectories.
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N.3 Baselines with heteroscedastic stationary policies

To investigate the impact of HETSTAT policies alone, we evaluated PPIL and IQLearn with HETSTAT
policies on the online Gym tasks in Figure 41. There is not a significant discrepancy between MLP and
HETSTAT policies.
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Figure 41: Normalized performance of IQLearn and PPIL for online Gym tasks with HETSTAT policies.
Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration trajectories.

N.4 Baselines with pretrained heteroscedastic stationary policies as priors

To bring IQLearn and PPIL closer to CSIL, we implement the baselines with BC pretraining, HETSTAT
policies and KL regularization with stationary policies. We evaluate on the harder tasks, online
Adroit and offline Gym, to see if these features contribute sufficient stability to solve the task. Both
Figure 42 and Figure 43 show an increase in performance, especially with increasing number of
demonstrations, but it is ultimately not enough to completely stabilize the algorithms to the degree
seen in CSIL.
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Figure 42: Normalized performance of IQLearn and PPIL for online Adroit tasks with pretrained
HETSTAT policies and KL-regularization. Uncertainty intervals depict quartiles over 10 seeds. n
refers to demonstration trajectories.
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Figure 43: Normalized performance of IQLearn and PPIL for offline Gym tasks with pretrained
HETSTAT policies and KL-regularization. Uncertainty intervals depict quartiles over 10 seeds. n
refers to demonstration trajectories.
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N.5 Importance of critic pretraining

To ablate the importance of critic pretraining, Figure 44 shows the performance difference on online
Gym tasks. Critic pretraining provides only a minor performance improvement.
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Figure 44: Normalized performance of CSIL for online Gym tasks a critic pretraining ablation.
Uncertainty intervals depict quartiles over 10 seeds. n refers to demonstration trajectories.
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N.6 Importance of reward finetuning

To ablate the importance of reward finetuning, Figure 45. shows the performance difference on
online Gym tasks. Reward finetuning is crucial in the setting of few demonstration trajectories, as the
imitation reward is sparse and therefore csil is more susceptible to approximation errors in stationarity.
It is also important for reducing performance variance and ensuring stable convergence.
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Figure 45: Normalized performance of CSIL for online Gym tasks with a reward finetuning ablation.
Uncertainty intervals depict quartiles over 10 seeds. Refinement is most important in the low
demonstration setting where the initial BC policy and coherent reward is less defined, and therefore
the initial policy is poor and the coherent reward is more susceptible to exploitation of the stationary
approximation errors. n refers to demonstration trajectories.
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N.7 Importance of critic regularization

To ablate the importance of critic Jacobian regularization, Figure 46. shows the performance
difference on online Gym tasks. The regularization has several benefits. One is faster convergence, as
it encodes the coherency inductive bias into the critic. A second is stability, as it encodes first-order
optimality w.r.t. the expert demonstrations, mitigating errors in policy evaluation. The inductive bias
also appears to reduce performance variance. One observation is that the performance of Ant-v2
improves without the regularization. This difference could be because the regularization encourages
imitation rather than apprenticeship-style learning where the agent improves on the expert.
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Figure 46: Normalized performance of CSIL for online MuJoCo Gym without regularizing the critic
Jacobian. Uncertainty intervals depict quartiles over 10 seeds. The benefit of this regularization is
somewhat environment dependent, but clearly regularizes learning to the demonstrations effectively
in many cases. Performance reduction is likely due to underfiftting during policy evaluation due to
the regularization. n refers to demonstration trajectories.

N.8 Stationary and non-stationary policies

One important ablation for CSIL is evaluating the performance with standard MLP policies like those
used by the baselines. We found that this setting was not numerically stable enough to complete an
ablation experiment. Due to the spurious behaviour (e.g. as shown in Figure 3), the loglikelihood
values used in the reward varied significantly in magnitude, destabilizing learning significantly,
leading to policies that could no longer be numerically evaluated. This result means that stationarity
is a critical component of the CSIL implementation.

N.9 Effectiveness of constant rewards

Many imitation rewards typically encode an inductive bias of positivity or negativity, which encourage
survival or ‘minimum time’ strategies respectively [39]. We ablate CSIL with this inductive bias
for survival tasks (Hopper-v2 and Walker-v2) and minimum-time tasks (robomimic). Figure 47
shows that positive-only rewards are sufficient for Hopper-v2 but not for Walker-v2. Figure 48
shows that negative-only rewards is effective for the simpler tasks (Lift) but not the harder tasks
(NutAssemblySquare).
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Figure 47: Online MuJoCo Gym tasks with absorbing states where CSIL is given a constant +1 reward
function. Uncertainty intervals depict quartiles over 10 seeds. While this is sometimes enough to
solve the task (due to the absorbing state), the CSIL reward performs equal or better. n refers to
demonstration trajectories.
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Figure 48: Online robomimic tasks where CSIL is given a constant -1 reward function. Uncertainty
intervals depict quartiles over 10 seeds. While a constant reward is sometimes enough to solve
the task (due to the absorbing state), the CSIL reward performs roughly equal or better, with lower
performance variance. n refers to demonstration trajectories.
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N.10 Importance of behavioural cloning pretraining

Figure 49 shows CSIL without any policy pretraining, so the reward is learned only though the
finetuning objective. CSIL without pretraining does not appear to work for any of the tasks. This
poor performance could be attributed to the lack of hyperparameter tuning, since the reward learning
hyperparameters were chosen assuming a good initialization. It could also due to the maximum
likelihood fitting of the coherent reward, since the refinement does not use the ‘faithful’ objective
(Section D) that improves the regression fit.
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Figure 49: Online MuJoCo gym tasks where CSIL has no BC pretraining. Uncertainty intervals depict
quartiles over 5 seeds. n refers to demonstration trajectories.
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