
Under review as submission to TMLR

Information-Guided Diffusion Sampling for Dataset Distilla-
tion

Anonymous authors
Paper under double-blind review

Abstract

Dataset distillation aims to create a compact dataset that retains essential information
while maintaining model performance. Diffusion models (DMs) have shown promise for
this task but struggle in low images-per-class (IPC) settings, where generated samples lack
diversity. In this paper, we address this issue from an information-theoretic perspective
by identifying two key types of information that a distilled dataset must preserve: (i)
prototype information I(X; Y ), which captures label-relevant features; and (ii) contextual
information H(X|Y ), which preserves intra-class variability. Here, (X, Y ) represents the pair
of random variables corresponding to the input data and its ground truth label, respectively.
Observing that the required contextual information scales with IPC, we propose maximizing
I(X; Y ) + βH(X|Y ) during the DM sampling process, where β is IPC-dependent. Since
directly computing I(X; Y ) and H(X|Y ) is intractable, we develop variational estimations to
tightly lower-bound these quantities via a data-driven approach. Our approach, information-
guided diffusion sampling (IGDS), seamlessly integrates with diffusion models and improves
dataset distillation across all IPC settings. Experiments on Tiny ImageNet and ImageNet
subsets show that IGDS significantly outperforms existing methods, particularly in low-IPC
regimes. The code is available at https://anonymous.4open.science/r/IGDS-4C0F.

1 Introduction

The success of high-performance deep neural networks (DNNs) is largely attributed to large-scale, highly
informative datasets (LeCun et al., 2015). However, the size of these datasets poses a substantial burden on
storage and computational resources during model training (Deng et al., 2009; Salamah et al., 2024; Kaplan
et al., 2020). To mitigate the cost of training DNNs, dataset distillation (Wang et al., 2018; Sachdeva &
McAuley, 2023) has been extensively studied in recent years as a potential solution to compress datasets,
thereby reducing both storage requirements and computational costs. In this approach, a smaller dataset
whose compactness is typically measured by images-per-class (IPC) is constructed as a substitute for the
original dataset, while still enabling the trained model to achieve decent generalization performance on
unseen test data points.

To construct such a compact dataset, the distillation process typically involves an iterative optimization of
pixel values and auxiliary model weights to align either with the model’s weight trajectory (Zhao et al., 2021;
Cazenavette et al., 2022b) or feature statistics (Wang et al., 2022; Deng et al., 2024; Sajedi et al., 2023).
However, this approach has two major drawbacks: (i) High computational cost—most existing methods
require jointly optimizing auxiliary model parameters and distilled samples at the pixel level through an
iterative process, resulting in significant computational overhead. (ii) Poor generalization across different
model architectures—the performance of models trained on the distilled dataset is highly dependent on the
architecture of the auxiliary DNN. When the target model’s architecture differs from that of the auxiliary
DNN, significant performance degradation is often observed.

To overcome these drawbacks, recent studies have proposed generative distillation (Zhao & Bilen, 2022;
Cazenavette et al., 2023), which leverages a generative model to synthesize a new, compact dataset. In this
approach, a generative model is trained on the target dataset and then used to sample distilled data (Zhao &

1

https://anonymous.4open.science/r/IGDS-4C0F


Under review as submission to TMLR

Bilen, 2022; Li et al., 2024). Consequently, the resulting distilled dataset is both model-architecture-agnostic
and more efficiently generated. Among generative models, diffusion models (DMs) have emerged as a strong
choice for dataset distillation, demonstrating state-of-the-art performance in this setting (Gu et al., 2024a; Su
et al., 2024b; Chen et al., 2025; Li et al., 2025). Nonetheless, DM-based dataset distillation suffers from poor
performance in low-IPC scenarios, where the number of IPCs is small. In these cases, the accuracy is nearly
as low as training on a randomly chosen subset. A primary reason is that, under low-IPC conditions, the
model’s generated samples reflect only part of the true data distribution, leading to a distilled dataset with
limited diversity and substantial information loss. This shortfall grows more severe as the IPC decreases.

To address this limitation and enable the generation of informative samples, we first seek to quantify the
essential information that must be preserved. To this end, we adopt an information-theoretic perspective
(Shannon, 1948; Cover & Thomas, 2006; Yang et al., 2024). Specifically, we quantify the relevant information
using the Shannon entropy H(·) (Shannon, 1948) on the random variable (RV) X, which represents the input
dataset. We then expand H(X) as: H(X) = I(X; Y )+H(X|Y ), where Y is an RV denoting the ground-truth
(GT) label1. Through this decomposition, the total information in H(X) naturally splits into: (i) prototype
information I(X; Y ), reflecting how much information X provides about its GT label; and (ii) contextual
information H(X|Y ), capturing the remaining information in X once its GT label is given.

A successful dataset distillation should preserve both the prototype and contextual information of the target
dataset. However, we observe that the required amount of contextual information depends on the IPC: a
higher (resp. lower) IPC necessitates more (resp. less) contextual information. Building on this insight, we
propose to maximize I(X; Y ) + βH(X|Y ) during the DM sampling process, where β is selected according to
the IPC. Since directly computing I(X; Y ) and H(X|Y ) is intractable, we develop variational estimations
to tightly lower-bound these quantities via a data-driven approach. Specifically, we train a DNN using a
novel training algorithm that provides tight lower bounds on both I(X; Y ) and H(X|Y ). We refer to this
DNN as a variational estimator (VE). Once the VE is trained, it is frozen and used in the DM sampling
process, guiding the generation of distilled data that maximally preserves both prototype and contextual
information.

Our work introduces a novel dataset distillation approach, Information-Guided Diffusion Sampling (IGDS),
which leverages information-theoretic principles to enhance the effectiveness of diffusion models in low IPC
settings. The key contributions of this paper are as follows:

•We introduce a principled framework based on Shannon entropy decomposition, identifying prototype infor-
mation I(X; Y ) and contextual information H(X|Y ) as crucial components for effective dataset distillation.
Our approach dynamically balances these terms to optimize the informativeness of the distilled dataset.

• Since directly computing prototype information I(X; Y ) and contextual information H(X|Y ) is intractable,
we develop a data-driven VE using deep neural networks to obtain tight lower bounds on these quantities.
This estimator is seamlessly integrated into the diffusion sampling process.

•We propose IGDS, a novel diffusion-based dataset distillation method that maximizes I(X; Y ) + βH(X|Y )
during the sampling process. The weight β is IPC-dependent, allowing for adaptive control over prototype
and contextual information retention.

• Extensive experiments on Tiny ImageNet (Le & Yang, 2015) and subsets of ImageNet (Deng et al., 2009)
demonstrate that IGDS achieves superior performance compared to existing methods, particularly in low-IPC
scenarios, where prior diffusion-based approaches suffer from poor diversity and high information loss.

2 Related Works

Dataset distillation has received widespread attention since it was proposed, and a substantial amount of
research has contributed to its rapid development (Li et al., 2022b; Yu et al., 2023). The proposed methods
can be classified into non-generative and generative approaches.

1We use “ground truth” and “prototype” interchangeably in this paper.
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2.1 Non-generative Dataset Distillation

This approach initializes the distilled dataset and optimizes the images during the distillation process using
specific algorithms such as matching-based and kernel-based methods (Nguyen et al., 2021a). Matching-
based methods ensure the ability to distill by matching parameters, features, or distributions between the
original and distilled datasets. For instance, methods like DC (Zhao & Bilen, 2021) and IDC (Kim et al.,
2022a) match the gradient obtained by training both on original and synthetic data. While approaches like
MTT (Cazenavette et al., 2022a) and ATT (Liu et al., 2024) achieve parameter matching by minimizing the
loss over the training trajectory on original and synthetic data. Kernel-based methods take ridge regression
as the optimization objective and employ neural tangent kernel to generate distilled datasets (Nguyen et al.,
2021b).

2.2 Generative Dataset Distillation

This method distills the knowledge of the original dataset into the generative model, which is then used to
obtain distilled datasets in the subsequent sampling phase (Zhao & Bilen, 2022; Cazenavette et al., 2023).
In each distillation process, traditional methods optimize one dataset of a specific size, as defined by the
IPC. Generative methods, however, can generate any number of datasets of any size (Gu et al., 2024b; Su
et al., 2024a;b). This flexibility makes dataset distillation free from the constraints of IPC, thus saving a
significant amount of time when distillation needs to be executed more than once, which is common in various
downstream tasks of dataset distillation, such as continue learning (Yang et al., 2023a), privacy preservation
(Li et al., 2020; 2022a), and neural architecture search (Ding et al., 2024).

Among generative approaches, both our proposed IGDS and the recent influence-guided diffusion (IGD)
method (Chen et al., 2025) utilize diffusion models, but differ substantially in motivation and methodology.
IGD is training-free and guides sampling based on influence functions that quantify downstream model
impact. In contrast, IGDS adopts an information-theoretic perspective, maximizing mutual and conditional
entropy through variational estimators. This enables IGDS to better preserve diversity under low-IPC
constraints, whereas IGD is more effective in high-IPC regimes.

2.3 Diffusion Model

Having a certain degree of creativity, generative models have experienced rapid advancement in recent years.
Generative approaches like GANs and VAEs have achieved broad application in various industries. Among
them, diffusion models like Imagen (Saharia et al., 2023) and Stable Diffusion (Rombach et al., 2022) have
gained significant attention. They acquire the ability to recover an image from random noise by learning how
to predict noise from noisy images, which understates their recognized performance stability and distillation
versatility. Specific to the field of computer vision, they have been proven effective in a wide range of
scenarios (Yang et al., 2023b). For instance, LDM (Rombach et al., 2022) enables the diffusion process
in the latent space to save computational resources. DDeP (Brempong et al., 2022) utilizes text-to-image
diffusion models to obtain promising results on semantic segmentation. Palette (Saharia et al., 2022) tackles
several image generation tasks with conditional diffusion models, and FDM (Harvey et al., 2022) allows for
sampling specific video frames from other video subsets. Our method aims to explore the potential of the
diffusion model in dataset distillation.

3 Notation

For a positive integer C, let [C] ≜ {1, . . . , C}. Denote by P [i] the i-th element of the vector P . For two
vectors U and V , denote by ⟨U, V ⟩ their inner product. For two matrices M ∈ Rm×n and N ∈ Rn×k, denote
by M@N their matrix product. We use |C| to denote the cardinality of a set C. The entropy of C-dimensional
probability vector P is defined as H(P ) =

∑C
c=1−P [c] log P [c]. Also, the cross entropy of two C-dimensional

probability vectors P1 and P2 is defined as H(P1, P2) =
∑C

c=1−P1[c] log P2[c], and their Kullback–Leibler
(KL) divergence is defined as KL(P1||P2) =

∑C
c=1 P1[c] log P1[c]

P2[c] . For a random variable X, denote by PX

its probability distribution, and by EX [·] the expected value w.r.t. X. For two random variables X and Y ,

3



Under review as submission to TMLR

𝑌 𝑋 ෠𝑋 ෠𝑌
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Encoder 𝑓𝜽(⋅) Classifier 𝑔𝝍(⋅)

Figure 1: Multi-class classification can be modeled as a Markov chain. Sample X is sampled from the class
Y , according to the PX|Y (·|y). The encoder then maps the X to the feature representation X̂, which is
further mapped by the classifier to an output probability vector Ŷ .

denote by P(X,Y ) their joint distribution. The mutual information between two random variables X and Y
is written as I(X; Y ), and the conditional mutual information of X and Y given a third random variable
Z is I(X; Y |Z). Consider a dataset D of size n with C classes, D = {(xi, yi)}n

i=1, where each xi ∈ Rd and
yi ∈ [C]. For any class y, we define Dy = {(xj , yj) ∈ D|yj = y} the subset of D containing all samples with
label y. Lastly, the softmax operation is denoted by σ(·).

4 Methodology

As discussed in section 1, the performance of DM-based dataset distillation degrades significantly when the
IPC is small. In such low-IPC conditions, the DM tends to produce samples that represent only a portion of
the true data distribution, omitting many essential modes. As a result, the distilled dataset exhibits limited
diversity and loses substantial information about the underlying classes. Empirically, this often manifests in
accuracies that are comparable to training on a mere random subset of the original dataset. The challenge
intensifies with decreasing IPC, since fewer examples per class mean the generative process has even less
guidance for reproducing the full range of relevant features. In practice, these shortcomings severely limit the
applicability of DM-based distillation for real-world tasks where one cannot afford to collect a large number
of samples for each class.

To tackle this limitation, it is crucial to identify the core information that must be retained in the distilled
dataset. To this end, we adopt an information-theoretic perspective to rigorously quantify and preserve this
information. Specifically, we measure the total information in the input dataset, represented as a random
variable X, using the Shannon entropy H(X). Noting that a significant part of the value of a dataset lies in
its ability to determine labels, we decompose H(X) as follows

H(X) = I(X; Y )︸ ︷︷ ︸
prototype information

+ H(X|Y )︸ ︷︷ ︸
contextual information

, (1)

where Y is a random variable denoting the GT label. This decomposition distinctly separates prototype
information I(X; Y ), which quantifies how much X reveals about its label, from contextual information
H(X|Y ), which captures the variability and richness of the data given its label. In other words, prototype
information ensures that the distilled dataset remains discriminative for classification tasks, whereas con-
textual information guards against the collapse into a narrow subset of features, thus maintaining diversity
and nuance (in section 5.4, we visualize the semantic meaning of prototype and contextual information). By
explicitly accounting for both these components, we can better capture the data’s essential characteristics,
even in low-IPC regimes. A successful dataset distillation scheme must retain both prototype information,
ensuring that each class is accurately characterized, and contextual information, preserving the variety and
richness of the underlying data distribution. However, our observations indicate that the requisite amount
of contextual information scales with the IPC: higher IPC scenarios allow, and indeed necessitate, more
contextual detail, whereas lower IPC settings benefit more from a tighter focus on prototype information
(please see section 5.2 for additional details).

Guided by this insight, we aim to balance these two information types by maximizing the objective

I(X; Y ) + β H(X|Y ), (2)

where the scalar β > 0 is chosen to reflect the IPC: a larger β for high-IPC settings increases the emphasis
on contextual richness, while a smaller β in low-IPC scenarios prioritizes critical prototype information.

4



Under review as submission to TMLR

Computing I(X; Y ) and H(X|Y ) is challenging, and to the best of our knowledge, no previous work has
accomplished this. To overcome this difficulty, we introduce a novel method in section 4.1 that provides
variational estimates for these quantities. Subsequently, in section 4.2, we leverage these estimates to guide
the sampling process of diffusion models.

Algorithm 1 Pseudo-code for Training the fθ(·)
1: Input: fθ, fm: initialized encoder and momentum encoder,

queue: dictionary as a queue of K keys, m: momentum, aug:
random augmentation method, τ : temperature and λ > 0.

2: fθ.params = fm.params
3: for x ∈ D do
4: xq, xk = aug(x), aug(x)
5: q, k = fθ(xq), fm(xk).detach()
6: Hq, Hk = softmax(q), softmax(k)
7: Q = (Hq + Hk)/2
8: lpos, lneg = ⟨q, k⟩, q@kT

9: logits = cat([lpos, lneg], dim=1)
10: labels = zeros(N)
11: loss = CE (logits / τ , labels) - λKL(Hq||QY )
12: loss.backward()
13: update(fθ.params)
14: fm.params = m × fm.params + (1-m) × fθ.params
15: enqueue(queue, k)
16: dequeue(queue)
17: end for
18: Output: fθ =0

The proofs for all propositions presented
in this paper are deferred to appendix B.

4.1 Variational
Estimates for I(X; Y ) and H(X|Y )

We employ an auxiliary DNN composed
of an encoder fθ(·) and a classifier gψ(·)
to help us finding variational estimates
for both I(X; Y ) and H(X|Y ). The en-
coder transforms the input X into a fea-
ture representation X̂, and the classifier
maps X̂ to a probability vector Ŷ . In this
setup, the random variables {Y, X, X̂, Ŷ }
form a Markov chain in the order shown
in fig. 1 (see Yang et al. (2025) for more
details). Now, in section 4.1.1 and sec-
tion 4.1.2, we show how this auxiliary
DNN can be leveraged to derive varia-
tional estimates for I(X; Y ) and H(X|Y ),
respectively. Then, in section 4.1.3, we
train both fθ(·) and gψ(·) to give us the
estimates.

4.1.1 Variational Estimates for I(X; Y )

Equipped with fθ(·) and classifier gψ(·), in this section we propose a method to find a variational estimation
for I(X; Y ). We start by decomposing I(X; Y ) as follows:

I(X; Y ) = I(X̂; Y ) + I(Y ; X|X̂). (3)

The first term on the right-hand side of eq. (3), namely I(X̂; Y ), is difficult to compute directly. To overcome
this difficulty, we introduce the following Proposition:
Proposition 1. Consider a linear classifier gψ : {X̂ → Ŷ |Ŷ = ψX̂}, parameterized by ψ ∈ Rn×m with
m ≥ n. If ψ has full column rank, then

I(X̂; Y ) = I(Ŷ ; Y ). (4)

Now, we can write

I(Ŷ ; Y ) = H(Y )−H(Y |Ŷ ) (5)
≥ H(Y )−H(Y |Ŷ , Y ) (6)
= H(Y ) + EY log PY |Ŷ , (7)

where the inequality in eq. (6) becomes equality if PY |Ŷ = PY , i.e., the classifier is Bayes-optimal. Now, the
quantities in eq. (7) can be easily computed; specifically, H(Y ) is simply the entropy of the ground truth
distribution, which is constant for a given dataset., and EY log PY |Ŷ is the average of cross-entropy of the
output, In practice, we use one-hot probabilities to estimate the Bayes probabilities (Ye et al., 2024).
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The second term on the right-hand side of eq. (3), namely I(Y ; X|X̂), is difficult to compute directly. In
what follows, we propose to minimize this term so that I(X̂; Y ) forms a tight lower bound on I(X; Y ). To
motivate this, we first present proposition 2.
Proposition 2. For an encoder fθ(·) parametrized by θ

min
θ

I(Y ; X|X̂) ≡ max
θ

I(X; X̂). (8)

Algorithm 2 Pseudo-code of IGDS
1: Input: The number of iterations N , y, noise levels {σ̃}, pre-

trained encoder f(·) and classifier g(·), η > 0, β > 0, τ > 0,
IPC n, target label y.

2: xN ∼ N (0, I)
3: for t = N − 1, N − 2, . . . , 0 do
4: ŝ← sθ(xt, t)
5: x̃0 ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

6: z ∼ N (0, I).
7: x′

t−1 ←
√

αt(1−ᾱt−1)
1−ᾱt

xt +
√

ᾱt−1βt

1−ᾱt
x̃0 + σ̃tz.

8: x̂t−1 = f(x′
t−1)

9: Hx̂t−1 = SoftMax(xt−1/τ)
10: Qt−1 = 1

n

∑
Hx̂t−1

11: ŷt−1 = g(x̂t−1)
12: LIGDS = E log Pŷ|y + H(ŷ) + βKL(Hx̂t−1 ||Qt−1)
13: xt−1 ← x′

t−1 + η∇xt
LIGDS .

14: end for
15: Output: x0 =0

As per proposition 2, we shall train fθ(·)
and gψ(·) to maximize I(X; X̂). The de-
tails of this training process are provided
in section 4.1.3. In this manner, we find a
variational estimation for I(X; Y ) which
we denote by I(X; Y ). Particularly,

I(X; Y ) = H(Ŷ ) + EY log PŶ |Y . (9)

4.1.2 Variational
Estimates for H(X|Y )

The term H(X|Y ) can be expanded as

H(X|Y ) = I(X; X̂|Y ) + H(X|X̂, Y ).
(10)

To compute I(X; X̂|Y ), we introduce the
following Proposition.
Proposition 3. Assume that the feature
representation X̂ has zero mean (He et al., 2015; Hinton et al., 2015). Then, I(X; X̂|Y ) = I(X; σ(X̂)|Y ).

Despite I(X; X̂|Y ), the term I(X; σ(X̂)|Y ) can indeed be calculated analytically using the same approach
as used in (Yang et al., 2025; Ye et al., 2024):

I(X; σ(X̂)|Y ) =
∑

y∈[C]

PY (y) I(X; σ(X̂)|y) (11)

=
∑

y∈[C]

PY (y) EX|Y KL(σ(X̂)||Qy) (12)

= EX,Y KL(σ(X̂)||QY ), (13)

where Qy can be computed as 1
|Dy|

∑
x∈Dy

σ(X̂) (Yang et al., 2025).

In addition, the term H(X|X̂, Y ) is not easy to compute, so we introduce the following proposition to
minimize it such that I(X; X̂|Y ) becomes a tight lower bound for H(X|Y ).
Proposition 4. For an encoder fθ(·) parametrized by θ

min
θ

H(X|X̂, Y ) ≡ max
θ

I(X; X̂). (14)

As such, we have found a variational estimation for H(X|Y ) which we denote by H(X|Y ). Particularly,

H(X|Y ) = EX,Y KL(σ(X̂)||QY ). (15)
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4.1.3 Training Variational Estimator

According to proposition 2 and proposition 4, obtaining tight lower bounds for I(X; Y ) and H(X|Y ), denoted
as I(X; Y ) and H(X|Y ) respectively, requires training fθ(·) and gψ(·) to maximize I(X; X̂). We refer to
this DNN, which consists of the concatenation of fθ(·) and gψ(·), as the variational estimator (VE) since
it provides tight estimations I(X; Y ) and H(X|Y ). The training procedure for the VE is described in this
subsection. To establish the theoretical foundation for this approach, we first introduce the following theorem.
Theorem 1. Consider the mapping X̂ = fθ(X), where fθ(·) is an encoder parametrized by θ. Then,

max
θ

I(X; X̂) ≡ min
θ

[
H(Ỹ |X̂)− I(X; X̂|Ỹ )

]
, (16)

where Ỹ is an auxiliary random variable denoting the task type.

Proof. Using the chain rule, the mutual information
I(X; Ỹ , X̂) can be expanded in two different ways:

I(X; Ỹ , X̂) = I(X; Ỹ |X̂) + I(X; X̂) (17a)
I(X; Ỹ , X̂) = I(X; X̂|Ỹ ) + I(X; Ỹ ). (17b)

By setting the right hand side of eq. (17a) and eq. (17b) equal to each other, we obtain

I(X; X̂) = I(X; Ỹ )− I(X; Ỹ |X̂) + I(X; X̂|Ỹ ) (18)
= I(X; X̂; Ỹ ) + I(X; X̂|Ỹ ) (19)
= I(X̂; Ỹ ) + I(X; X̂|Ỹ ) (20)
= H(Ỹ )−H(Ỹ |X̂) + I(X; X̂|Ỹ ), (21)

where eq. (19) follows from the definition of interaction information, and eq. (20) holds because Ỹ → X → X̂
forms a Markov chain.

Figure 2: (a) H(X|Y ) of selected subsets Vs. model validation
accuracy for different IPC settings; the subset associated with the
highest model accuracy is marked with a red dot. (b) H(X|Y ) of
the best subset compared across different IPC settings.

As per theorem 1, to maximize I(X; X̂)
one can instead maximize the three
terms: H(Ỹ ), −H(Ỹ |X̂), and I(X; X̂|Ỹ ).
In the following, we discuss how to max-
imize these three terms.

• H(Ỹ ) depends only on the statistics
of the random variable Ỹ . In addition,
since it is an auxiliary random variable,
it can be defined such that H(Ỹ ) is max-
imized. The following Proposition estab-
lishes a condition under which H(Ỹ ) is
maximized.
Proposition 5. Given a dataset D, the
entropy H(Ỹ ) is maximized when each in-
dividual sample x ∈ D is associated with
a unique ỹ, and the probability distribu-
tion of PỸ = 1

|D| , ∀ỹ.

As per proposition 5, H(Ỹ ) is maximized
when the task is formulated as an in-
stance discrimination task.

• To maximize −H(Ỹ |X̂), we first note
that H(Ỹ |X̂) = −

∑
P (x̂, y) log P (y|x̂).
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Table 1: Comparing model’s performance in terms of accuracy on ImageWoof validation set. All results are
evaluated under the resolution 256× 256. We use bold number and asterisk (∗) to denote the best and the
second best results, respectively.

IPC
(Ratio) Test Model Random K-Center Herding DiT DM IDC-1 GLaD MiniMax RDED Ours

1 ConvNet-6 14.2±0.9 15.6±1.0 - 12.7±0.6 21.1±0.5
∗ - - 15.2±0.6 18.5±0.9 23.1±0.8

(0.08%) ResNetAP-10 17.8±2.4 18.3±0.6 - 18.0±1.3 - - - 18.9±2.4
∗ - 23.6±0.9

ResNet-18 13.5±0.4 12.5±0.8 - 15.3±0.7 - - - 14.6±0.6 20.8±1.2
∗ 22.8±0.8

10 ConvNet-6 24.3±1.1 19.4±0.9 26.7±0.5 34.2±1.1 26.9±1.2 33.3±1.1 33.8±0.9 37.0±1.0 40.6±2.0
∗ 41.9±1.5

(0.4%) ResNetAP-10 29.4±0.8 22.1±0.1 32.0±0.3 34.7±0.5 30.3±1.2 39.1±0.5 32.9±0.9 39.2±1.3
∗ - 43.5±0.3

ResNet-18 27.7±0.9 21.1±0.4 30.2±1.2 34.7±0.4 33.4±0.7 37.3±0.2 31.7±0.8 37.6±0.9 38.5±2.1
∗ 40.7±0.5

20 ConvNet-6 29.1±0.7 21.5±0.8 29.5±0.3 36.1±0.8 29.9±1.0 35.5±0.8 - 37.6±0.2
∗ - 45.7±0.6

(1.6%) ResNetAP-10 32.7±0.4 25.1±0.7 34.9±0.1 41.1±0.8 35.2±0.6 43.3±0.3 - 45.8±0.5
∗ - 55.1±0.6

ResNet-18 29.7±0.5 23.6±0.3 32.2±0.6 40.5±0.5 29.8±1.7 38.6±0.2 - 42.5±0.6
∗ - 49.9±0.7

50 ConvNet-6 41.3±0.6 36.5±1.0 40.3±0.7 46.5±0.8 44.4±1.0 43.9±1.2 - 53.9±0.6 61.5±0.3
∗ 65.3±1.4

(3.8%) ResNetAP-10 47.2±1.3 40.6±0.4 49.1±0.7 49.3±0.2 47.1±1.1 48.3±1.0 - 56.3±1.0
∗ - 70.2±0.8

ResNet-18 47.9±1.8 39.6±1.0 48.3±1.2 50.1±0.5 46.2±0.6 48.3±0.8 - 57.1±0.6 68.5±0.7
∗ 71.3±0.2

100 ConvNet-6 52.2±0.4 45.1±0.5 54.4±1.1 53.4±0.3 55.0±1.3 53.2±0.9 - 61.1±0.7
∗ - 67.2±0.2

(7.7%) ResNetAP-10 59.4±1.0 54.8±0.2 61.7±0.9 58.3±0.8 56.4±0.8 56.1±0.9 - 64.5±0.2
∗ - 76.7±0.3

ResNet-18 61.5±1.3 50.4±0.4 59.3±0.7 58.9±1.3 60.2±1.0 58.3±1.2 - 65.7±0.4
∗ - 77.3±0.7

Since we formulate the problem as an in-
stant discrimination task, and following (Gálvez et al., 2023; Oord et al., 2018), we approximate the condi-
tional probability P (y|x̂) as

P (ỹi|x̂j) ≈ exp(⟨x̂i, x̂j⟩/τ)∑
k exp(⟨x̂i, x̂k⟩/τ) , (22)

where τ is a predetermined hyperparameter, usually referred to as the temperature (He et al., 2020). Then,

H(Ỹ |X̂) ≤ H(Ỹ |X̂, Ŷ |X) = −E log
[

exp(⟨x̂i, x̂i⟩/τ)∑
k exp(⟨x̂i, x̂k⟩/τ)

]
, (23)

where the expectation is take over PỸ |X̂ . The conditional entropy can be minimized by minimizing eq. (23).

• I(X; X̂|Ỹ ) can be maximized by iteratively maximizing eq. (13) and updating the Qy = 1
|Dy|

∑
x∈Dy

σ(X̂).

Remark 1. We acknowledge the similarity between VE and information bottleneck theory (Tishby et al.,
2000; Saxe et al., 2018). In appendix C, we elaborate on this connection and derive the objective function
using an alternative approach.

4.2 Information-Guided Diffusion Sampling

Based on the discussion above, to maximize I(X; X̂) for an encoder fθ(·), one can train it to maximize the
following objective function:

JVE = −EX̂,Y log
[

exp(⟨x̂i, x̂i⟩/τ)∑
k exp(⟨x̂i, x̂k⟩/τ)

]
+ λ EX̂,Y KL(σ(X̂)||QY ), (24)

where λ is a hyperparameter that balances the effects of two terms in the objective function. We note that
VE reduces to MOCO (He et al., 2020) when λ = 0.

By maximizing JVE, we can effectively train fθ(·). The pseudo-code for this training procedure is provided
in algorithm 1.

Once fθ(·) is trained, we proceed to the next step. We freeze the parameters of fθ(·) and train the classifier
gψ(·) using the standard cross-entropy (CE) loss. Once fθ(·) and gψ(·) are trained, they are fixed and used
during the sampling process of diffusion model as discussed in the next subsection.
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Table 2: Comparing model’s performance in terms of accuracy on ImageNette validation set. All results are
evaluated under the resolution 256× 256. We use bold number and asterisk (∗) to denote the best and the
second best results, respectively.

Model ResNetAP-10 ResNet-18
IPC Random DiT DM MiniMax Ours RDED SRe2L Ours

1 26.7±1.0 27.3±0.9 - 30.5±0.8
∗ 39.6±1.3 35.8±1.0

∗ 19.1±1.1 35.9±0.7
10 54.3±1.6 59.1±0.7 60.8±0.6 62.0±0.2

∗ 68.3±0.2 61.4±0.4
∗ 29.4±3.0 64.3±0.6

20 63.5±0.5 64.8±1.2 66.5±1.1 66.8±0.4
∗ 72.4±0.7 - - 70.9±0.3

50 76.1±1.1 73.3±0.9 76.2±0.4 76.6±0.2
∗ 81.0±0.5 80.4±0.5

∗ 40.9±0.3 81.2±0.4

To recap, our primary objective was to maximize the function I(X; Y ) + β H(X|Y ) (see eq. (2)) during the
sampling process of the diffusion model. To achieve this, we derived variational estimates for I(X; Y ) (eq. (9))
and H(X|Y ) (eq. (15)) by leveraging the training of a variational estimator (VE). Using these estimates, the
objective function in eq. (2) is reformulated as:

LIGDS = E log PY |Ŷ + βI(X̂; σ(X̂)|Y ). (25)

The objective function LIGDS can be maximized during the sampling process of any diffusion model. As an
example, algorithm 2 illustrates how our method can be integrated with the denoising diffusion probabilistic
model (DDPM) (Ho et al., 2020). We refer to the resulting DM-based sampling method as information-guided
diffusion sampling (IGDS).

5 Experiments

5.1 Experimental Setup

• Implementation Details of IGDS. We adopt the pre-trained DDPM model (Dhariwal & Nichol, 2021)
and use the pre-trained MoCo model (He et al., 2020) as the encoder. To smooth gradients, we follow (Ma
et al., 2024) and replace the ReLU activation function with SoftPlus (Dugas et al., 2000) using β = 3. A
linear classifier is then trained on top of the frozen encoder. During the DM sampling, we set the temperature
to τ = 0.07 and run the diffusion process for 250 steps in all experiments. Following (Sun et al., 2024), we
enhance sample information by merging four images from the same class into a single composite image.
We report the evaluation protocol in appendix F, and also appendix G provides sample images from the
distilled datasets generated by IGDS. All experiments are conducted on a single NVIDIA V100 GPU. Full
implementation details, including code and configurations, are available in our GitHub repository.

Table 3: Comparing model’s performance in terms of accuracy
on Tiny ImageNet validation set. All results are evaluated under
the resolution 64× 64. We use bold number and asterisk (∗) to
denote the best and the second best results, respectively.

Model ConvNet-4

IPC Random IDM
(Zhao et al., 2023)

RDED
(Sun et al., 2024) Ours

1 6.7±0.4 10.1±0.2 12.0±0.1 11.9±0.3
∗

10 17.6±0.3 21.9±0.3 39.6±0.1
∗ 40.7±0.3

50 22.4±0.2 27.7±0.3 47.6±0.2
∗ 50.3±0.2

Model ResNet-18

IPC Random SRe2L
(Yin et al., 2023)

RDED
(Sun et al., 2024) Ours

1 2.2±0.4 2.6±0.1 9.7±0.4
∗ 9.8±0.4

10 14.6±0.2 16.1±0.2 41.9±0.2 41.2±0.1
∗

50 35.6±0.3 41.1±0.4 58.2±0.1
∗ 60.1±0.5

• Datasets. To evaluate the effective-
ness of the proposed method, we conduct
experiments mainly on several bench-
mark datasets. We select ImageNet-
1K (Deng et al., 2009) and three well-
known subsets of ImageNet: ImageNette,
ImageWoof, and Tiny ImageNet (Le &
Yang, 2015) . ImageNet is a large-
scale visual recognition dataset contain-
ing approximately 1.2 million training
images and 50,000 validation images. Im-
ageNette, a subset of ImageNet, provides
a smaller and more manageable dataset
for testing deep learning models, while
ImageWoof focuses on 10 dog breeds, of-
fering a fine-grained classification task.
Both ImageNette and ImageWoof use a

9
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(a) (b) (c) (d) (e)

Figure 3: Illustration of prototype and contextual information. (i) Top: English Springer; (ii) Bottom:
Parachute. The first two columns show synthetic images with low contextual information, while the last
three columns display natural images from the same classes.

spatial resolution of 224× 224. Tiny ImageNet, on the other hand, is a small, balanced subset of ImageNet,
with its training set consisting of 200 classes—each class containing 500 samples resized to a spatial resolution
of 64× 64.

• Network Architectures. Following previous work (Cazenavette et al., 2022b; Cui et al., 2023; Guo
et al., 2024), we use ConvNet-4 (LeCun et al., 1998) for the Tiny ImageNet dataset and ConvNet-6 for the
ImageWoof dataset. Additionally, we employ ResNetAP-10, a variant of ResNet-10 where all pooling layers
are replaced with average pooling, and ResNet-18 for all experiments.

5.2 How to select β in eq. (25)

As discussed in section 4, the parameter β in eq. (25) should be selected based on the IPC. To illustrate
this, we generate multiple subsets of Tiny ImageNet with varying H(X|Y ) and IPC values. To control
H(X|Y ), we apply a weighted sampling method, which is detailed in the Supplementary Materials. We then
train ConvNet-4 on these subsets and report the classification accuracies. Finally, we plot the relationship
between H(X|Y ) and model validation accuracy across different IPC settings in fig. 2. As observed, higher
IPC settings require greater contextual detail, while lower IPC settings benefit from a stronger emphasis on
prototype information.

5.3 Comparison with State-of-the-art Methods

We first report the experimental results for ImageWoof in table 1. As seen, at a low IPC setting (IPC-1), the
performance of all generative-based dataset distillation methods, except IDGS, is close to that of a randomly
selected subset. However, as the IPC increases, the performance gap between the baseline methods and the
random selection also increases. Nevertheless, none of the baseline methods outperforms IDGS.

We also present the experimental results for ImageNette and Tiny ImageNet in table 2 and table 3, respec-
tively. The results follow a similar trend to those on the ImageWoof dataset.

We defer the ImageNet-1K, Cifar-10 and cross-architecture results to the appendix.

5.4 Semantic Meaning of Prototype and Contextual Information

To better understand the semantic meaning of prototype and contextual information, we visualize samples
generated by IGDS with β = 0, where only prototype information is maximized during the DM sampling
process. These synthetic images are shown in the first two columns of fig. 3 (columns (a) and (b)). For
direct contrast, three natural images randomly selected from the same class are displayed in the last three
columns (columns (c) to (e)). As observed, the synthetic images with low contextual information feature
plain backgrounds and minimal context, whereas the natural images exhibit richer contextual details.

10
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(a) (b) (c)

Figure 4: Generated images of two classes: English Springer (first row) and Tench (second row), with varying
β values. Columns (a), (b), and (c) correspond to β = {0, 0.1, 0.5}, respectively.

6 Cross-architecture performance

Table 4: Cross-architecture performance

Method ResNet-101 MobileNet-V2 EfficientNet-B0 SwinT
Minimax-IGD 53.4 39.7 48.5 44.8
Minimax-ours 53.6 39.9 48.3 45.9

To evaluate the robustness of our distilled datasets across diverse model families, we follow the IGD protocol
and measure performance when training four different architectures on the same distilled coresets. table 4
summarizes the test accuracies achieved by Minimax-IGD and our method under the IPC-10 setting.

7 CIFAR-10 Results

We evaluated the performance of our approach and baseline methods on the CIFAR-10 dataset using a
ResNet-18, as shown in the Tab. 5. As observed, our method achieves comparable or superior performance
to previous state-of-the-art methods on this low-resolution dataset.

Table 5: Performance comparison over ResNet-18 on CIFAR-10

IPC Test Model SRe2L RDED DIT-IGD Ours
10 ResNet-18 29.3 37.1 35.8 37.0
50 ResNet-18 45.0 62.1 63.5 64.9

7.1 Ablation Study on β in IGDS

In this section, we study the impact of β on IGDS, the performance of the distilled dataset under different
IPC settings, and its effect on the generated images. To this end, we first examine how β influences the
semantic meaning of generated images, as shown in fig. 4. Specifically, we generate 24 synthetic images
for the classes English Springer and Tench, displayed in the first and second rows of fig. 4, respectively.
Columns (a), (b), and (c) correspond to β = {0, 0.1, 0.5}. When β = 0, the generated images contain
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minimal contextual information. For example, the English Springer images primarily depict the dog itself,
while the Tench images consistently depict a person holding the fish. As β increases, more contextual
elements are incorporated into the generated images, leading to a greater diversity in semantic meaning.
This effect is particularly noticeable in the English Springer images, where the background becomes richer
compared to those generated with β = 0. A similar trend can be observed in the Tench images, where
additional contextual details emerge as β increases. More images generated by IGDS with different β values
are presented in appendix G.

IPC=10

IPC=20

IPC=50

IPC=1

Figure 5: The model’s accuracy on the distilled dataset Vs. β.
As observed, lower IPC settings favor smaller β values, whereas
higher IPC settings require an increased β value accordingly.

The optimal value of β should be empir-
ically determined for different IPC set-
tings. To illustrate this, fig. 5 shows the
test accuracy of the model as a function
of β under varying IPC values. As ob-
served, higher IPC settings benefit from
a larger β, aligning with the findings dis-
cussed in section 5.2.

8 Conclusions
and Future Works

In this work, we addressed the limita-
tions of diffusion model-based dataset
distillation in low-IPC settings through
an information-theoretic approach. We
identified prototype information I(X; Y )
and contextual information H(X|Y ) as
essential components and proposed max-
imizing I(X; Y ) + βH(X|Y ) during sam-
pling, with β adapted to IPC. To han-
dle intractability, we introduced vari-
ational estimations using a deep neu-
ral network. Our proposed method,
information-guided diffusion sampling
(IGDS), seamlessly integrated with diffu-
sion models and achieved state-of-the-art
performance on Tiny ImageNet and ImageNet subsets, particularly in low-IPC regimes.

Despite the theoretical contributions and promising results of the proposed information-guided diffusion
sampling (IGDS) method, this work has several limitations. First, like previous studies, we use a pretrained
diffusion model as the prior distribution for natural images. While this approach is intuitive, its optimality
for dataset distillation remains unverified. In addition, it restricts applicability by requiring a pretrained
diffusion model for the target dataset. Second, during the IGDS process, gradients must be backpropagated
through both the classifier and encoder to guide the diffusion process, increasing computational costs. We
report the runtime analysis in appendix D. Addressing these limitations is a direction for future work.

12



Under review as submission to TMLR

References
Emmanuel Brempong, Simon Kornblith, Ting Chen, Niki Parmar, Matthias Minderer, and Mohammad.

Norouzi. Denoising pretraining for semantic segmentation. In Proc. CVPR, pp. 4175–4186, 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset distil-
lation by matching training trajectories. In Proc. CVPR, pp. 10718–10727, 2022a.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset distil-
lation by matching training trajectories. In Proc. CVPR, pp. 4750–4759, 2022b.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Generalizing
dataset distillation via deep generative prior. In Proc. CVPR, pp. 3739–3748, 2023.

Mingyang Chen, Jiawei Du, Bo Huang, Yi Wang, Xiaobo Zhang, and Wei Wang. Influence-guided diffusion
for dataset distillation. In Proc. ICLR, 2025. URL https://openreview.net/forum?id=0whx8MhysK.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecommunications
and Signal Processing). Wiley-Interscience, USA, 2006. ISBN 0471241954.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k with
constant memory. In Proc. ICML, pp. 6565–6590, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proc. CVPR, pp. 248–255, 2009.

Wenxiao Deng, Wenbin Li, Tianyu Ding, Lei Wang, Hongguang Zhang, Kuihua Huang, Jing Huo, and
Yang Gao. Exploiting inter-sample and inter-feature relations in dataset distillation. In Proc. CVPR, pp.
17057–17066, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Proc. NeurIPS,
pp. 8780–8794, 2021.

Mucong Ding, Yuancheng Xu, Tahseen Rabbani, Xiaoyu Liu, Brian Gravelle, Teresa Ranadive, Tai-Ching
Tuan, and Furong Huang. Calibrated dataset condensation for faster hyperparameter search. arXiv
preprint arXiv:2405.17535, pp. 1–37, 2024.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating second-
order functional knowledge for better option pricing. In Proc. NeurIPS, 2000.

Borja Rodrıguez Gálvez, Arno Blaas, Pau Rodríguez, Adam Golinski, Xavier Suau, Jason Ramapuram,
Dan Busbridge, and Luca Zappella. The role of entropy and reconstruction in multi-view self-supervised
learning. In Proc. ICML, pp. 29143–29160, 2023.

Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, and Yiran
Chen. Efficient dataset distillation via minimax diffusion. In Proc. CVPR, pp. 15793–15803, 2024a.

Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, and Yiran
Chen. Efficient dataset distillation via minimax diffusion. In Proc. CVPR, pp. 15793–15803, 2024b.

Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless dataset
distillation via difficulty-aligned trajectory matching. In Proc. ICLR, 2024.

R. V. L. Hartley. Transmission of information. The Bell System Technical Journal, 7(3):535–563, 1928. doi:
10.1002/j.1538-7305.1928.tb01236.x.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank. Wood. Flexible diffusion
modeling of long videos. arXiv preprint arXiv:2205.11495, pp. 1–23, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proc. ICCV, pp. 1026–1034, 2015.

13

https://openreview.net/forum?id=0whx8MhysK


Under review as submission to TMLR

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proc. CVPR, pp. 9729–9738, 2020.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531, 2015. URL https://api.semanticscholar.org/CorpusID:7200347.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proc. NeurIPS, pp.
6840–6851, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha,
and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization. In Proc. ICML,
pp. 11102–11118, 2022a.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha,
and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization. In Proc. ICML,
pp. 11102–11118, 2022b.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Soft-label anonymous gastric x-ray image
distillation. In Proc. ICIP, pp. 305–309, 2020.

Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Compressed gastric image generation based on
soft-label dataset distillation for medical data sharing. Computer Methods and Programs in Biomedicine,
227:107189, 2022a.

Guang Li, Bo Zhao, and Tongzhou Wang. Awesome dataset distillation. https://github.com/Guang000/
Awesome-Dataset-Distillation, 2022b.

Longzhen Li, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, and Miki Haseyama. Generative dataset
distillation: Balancing global structure and local details. In Proc. CVPR Workshop, pp. 7664–7671, 2024.

Mingzhuo Li, Guang Li, Jiafeng Mao, Takahiro Ogawa, and Miki Haseyama. Diversity-driven generative
dataset distillation based on diffusion model with self-adaptive memory. In Proc. ICIP, 2025.

Dai Liu, Jindong Gu, Hu Cao, Carsten Trinitis, and Martin Schulz. Dataset distillation by automatic training
trajectories. In Proc. ECCV, pp. 334–351, 2024.

Jiajun Ma, Tianyang Hu, Wenjia Wang, and Jiacheng Sun. Elucidating the design space of classifier-guided
diffusion generation. In Proc. ICLR, 2024. URL https://openreview.net/forum?id=9DXXMXnIGm.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-regression. In
Proc. ICLR, 2021a.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. In Proc. NeurIPS, pp. 5186–5198, 2021b.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proc. CVPR, pp. 10684–10695, 2022.

14

https://api.semanticscholar.org/CorpusID:7200347
https://github.com/Guang000/Awesome-Dataset-Distillation
https://github.com/Guang000/Awesome-Dataset-Distillation
https://openreview.net/forum?id=9DXXMXnIGm


Under review as submission to TMLR

Noveen Sachdeva and Julian McAuley. Data distillation: A survey. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=lmXMXP74TO. Survey Certi-
fication.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and
Mohammad. Norouzi. Palette: Image-to-image diffusion models. In Proc. ACM SIGGRAPH, pp. 1–10,
2022.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4713–4726, 2023.

Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z Liu, Yuri A Lawryshyn, and Konstantinos N Platan-
iotis. Datadam: Efficient dataset distillation with attention matching. In Proc. ICCV, pp. 17097–17107,
2023.

Ahmed H. Salamah, Kaixiang Zheng, Linfeng Ye, and En-Hui Yang. Jpeg compliant compression for dnn
vision. IEEE Journal on Selected Areas in Information Theory, 5:520–533, 2024.

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan Daniel
Tracey, and David Daniel Cox. On the information bottleneck theory of deep learning. In Proc. ICLR,
2018. URL https://openreview.net/forum?id=ry_WPG-A-.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):
379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Duo Su, Junjie Hou, Weizhi Gao, Yingjie Tian, and Bowen Tang. D4M: Dataset distillation via disentangled
diffusion model. In Proc. CVPR, pp. 5809–5818, 2024a.

Duo Su, Junjie Hou, Guang Li, Ren Togo, Rui Song, Takahiro Ogawa, and Miki Haseyama. Generative
dataset distillation based on diffusion model. In Proc. ECCV Workshop, pp. 1–12, 2024b.

Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An efficient
dataset distillation paradigm. In Proc. CVPR, pp. 9390–9399, 2024.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv preprint
physics/0004057, 2000.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen, Xinchao
Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. In Proc. CVPR, pp. 12196–
12205, 2022.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

En-Hui Yang, Shayan Mohajer Hamidi, Linfeng Ye, Renhao Tan, and Beverly Yang. Conditional mutual
information constrained deep learning: Framework and preliminary results. In Proc. ISIT, pp. 569–574,
2024.

En-Hui Yang, Shayan Mohajer Hamidi, Linfeng Ye, Renhao Tan, and Beverly Yang. Conditional mutual
information constrained deep learning for classification. IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–13, 2025.

Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and Guibing Guo. An efficient dataset condensation
plugin and its application to continual learning. In Proc. NeurIPS, pp. 67625–67642, 2023a.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui,
and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Surveys, 56(4):1–39, 2023b.

15

https://openreview.net/forum?id=lmXMXP74TO
https://openreview.net/forum?id=ry_WPG-A-


Under review as submission to TMLR

Linfeng Ye, Shayan Mohajer Hamidi, Renhao Tan, and En-Hui YANG. Bayes conditional distribution
estimation for knowledge distillation based on conditional mutual information. In Proc. ICLR, 2024. URL
https://openreview.net/forum?id=yV6wwEbtkR.

Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at ima-
genet scale from a new perspective. In Proc. NeurIPS, 2023. URL https://openreview.net/forum?id=
5Fgdk3hZpb.

Ruonan Yu, Songhua Liu, and Xinchao Wang. A comprehensive survey to dataset distillation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 46(1):150–170, 2023.

Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proc. ICCV, pp. 6022–6031,
2019.

Bo Zhao and Hakan Bilen. Dataset condensation with gradient matching. In Proc. ICLR, pp. 1–20, 2021.

Bo Zhao and Hakan Bilen. Synthesizing informative training samples with gan. In Proc. NeurIPS Workshop,
pp. 1–13, 2022.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In Proc.
ICLR, 2021. URL https://openreview.net/forum?id=mSAKhLYLSsl.

Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset con-
densation. In Proc. CVPR, pp. 7856–7865, 2023.

16

https://openreview.net/forum?id=yV6wwEbtkR
https://openreview.net/forum?id=5Fgdk3hZpb
https://openreview.net/forum?id=5Fgdk3hZpb
https://openreview.net/forum?id=mSAKhLYLSsl


Under review as submission to TMLR

Appendix

A Weighed Sampling to Generated Subsets with Different H(X|Y ) values

In this section, we describe how to perform weighted sampling to generate the subset of a dataset with
different H(X|Y ) values. Given a dataset D of size n with C classes, D = {(xi, yi)}n

i=1, where each xi ∈ Rd

and yi ∈ [C], a pretrained encoder f(·) trained using the VE method on D, and a classifier g(·), we first filter
out all misclassified samples to ensure that the remaining samples’ contextual information can be captured
by g(f(·)). In the Shannon sense, the contextual information for each sample within class y is quantified
using the KL divergence KL(σ(x)||Qy), where σ(x) is a probability vector obtained by applying the softmax
function to the feature map x̂, and Qy is estimated as 1

|Dy|
∑

x∈Dy
H. Given a target αH(·|y) value, we

compute the probability P̃X|Y (·|y) of each sample being selected as follows:

P̃X|Y (x|y) =
exp(−(KL(σ(x)||Qy)− αH(·|y))2)∑

x′∈Dy exp(−(KL(σ(x′)||Qy)− αH(·|y))2) , (26)

then, IPC samples are drawn from each class according to the probability P̃X|Y (·|y). We visualize the samples
that map to QY using the pretrained encoder f(·) in Figure 3 to enhance understanding of the semantic
meaning of prototype information and contextual information.

B Proof of Propositions

B.1 Proof of proposition 1

Proof. We first prove that for any injective function f ,

I(X; Y ) = I(f(X); Y ), (27)

To do so, we begin by expanding the mutual information I(·; ·), and introducing the variable Z = f(X):

I(X; Y )− I(f(X); Y ) = H(Y |f(X))−H(Y |X) (28)
= H(X|f(X)). (29)

Since f is injective, for any output z = f(X), there exists a unique x such that f(x) = z. Therefore,

P (X = x|f(X) = z) =
{

1 if z = f(x),
0 otherwise.

(30)

The conditional entropy is then given by:

H(X|f(X)) = Ef(X)[H(X|f(X) = z)] (31)
= Ef(X)0 (32)
= 0. (33)

Thus if f is injective, we conclude that I(Y, f(X)) = I(Y, X).

Next, we show that for a matrix θ ∈ Rm,n, m ≥ n, if θ has full column rank, then the linear mapping
{X̂ → Ŷ , where Ŷ = θX̂}, is injective.

A function is injective if:

θx1 = θx2 ⇒ x1 = x2, (34)

Rearranging, introducing v = x1 − x2 we get: θv = 0. For injectivity, we must show that the only solution
to θv = 0 is v = 0.
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The set of all solutions to θv = 0 is the null space of θ, denoted as:

Null(θ) = {v ∈ Rn|θv = 0}. (35)

If the linear mapping is injective, the only vector in the null space must be the zero vector, Null(θ) = {0},
which means θ has full column rank.

We verify that the classifier’s matrix after training has full column rank.

B.2 Proof of proposition 2

minθ I(Y ; X|X̂) ≡ maxθ I(X; X̂)

Proof.

I(Y ; X|X̂) =I(Y ; X|X̂) (36)
=H(X|X̂)−H(X|Y, X̂) (37)
=H(X)−H(X|Y )+

H(X|X̂)−H(X) (38)
=I(X; Y )− I(X; X̂), (39)

where I(X; Y ) is a constant, which only depends on the nature of the sampling process, how the dataset is
collected and constructed.

B.3 Proof of proposition 3

Assume that the feature representation X̂ has zero mean. Then, I(X; X̂|Y ) = I(X; σ(X̂)|Y ).

Proof. The softmax function for an input vector x ∈ RN is define as

softmax(x)[i] = ex[i]∑
j∈[N ] ex[j] . (40)

Following the proof of proposition 1 in appendix B.1, we aim to show that the softmax function is injective
if its domain is in the subspace with zero mean. Assume two vectors x; y ∈ RN , such that∑

i∈[N ]

xi = 0,
∑

i∈[N ]

yi = 0, (41)

ex[i]∑
j∈[N ] ex[j] = ey[i]∑

j∈[N ] ey[j] . (42)

Rewriting eq. (42),

ex[i]
∑

j∈[N ]

ey[j] = ey[i]
∑

j∈[N ]

ex[j], ∀i ∈ [N ]. (43)

We define the ratio of
∑

j∈[N ] ex[j] and
∑

j∈[N ] ey[j] as:

18
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Θ =
∑

j∈[N ] ex[j]∑
j∈[N ] ey[j] . (44)

Substitute the eq. (44) into eq. (43) and take logarithm on both sides:

xi = log Θ + yi. (45)

Since both x and y have zero mean, we have:

∑
i∈[N ]

xi =
∑

i∈[N ]

log Θ + yi = 0, (46)

N log Θ = 0, Θ = 1. (47)

Thus xi = yi, ∀i ∈ [N ].

B.4 Proof of proposition 4

For a encoder f parametrized by θ.

minθ H(X|X̂, Y ) ≡ maxθ I(X; X̂)

Proof.

I(X; X̂) = H(X)−H(X|X̂) (48)
= H(X)−H(X|X̂, Y ) (49)

where H(X) is a constant, which equals the amount of information in the dataset, eq. (49) is due to Y →
X → X̂ forms a Markov chain.

B.5 Proof of proposition 5

Proof. Consider a random variable Y , with N classes. Its entropy is given by

H(Y ) = −
∑

n∈[N ]

Pn log Pn. (50)

Without losing generality, suppose we split the first sample point y1 into two sample points ŷa and ŷb, such
that

P [y1] = P [ŷa] + P [ŷb], (51)
s.t. P [ŷa] > 0; P [ŷb] > 0, (52)

This transformation produces a new random variable Ŷ with N + 1 sample points. The change in entropy
is then

H(Ŷ )−H(Y ) (53)
=− P [ŷb] log P [ŷb]− P [ŷa] log P [ŷa] + P [y1] log P [y1] (54)
=− P [ŷb] log P [ŷb]− P [ŷa] log P [ŷa] + {P [ŷb] + P [ŷa]} log{P [ŷb] + P [ŷa]} (55)
=− P [ŷb]

{
log P [ŷb]− log{P [ŷb] + P [ŷa]}

}
− P [ŷa]

{
log P [ŷa]− log{P [ŷb] + P [ŷa]}

}
(56)

>0. (57)
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Thus H(Ŷ ) > H(Y ), that is, splitting a single sample point into two distinct points increases the entropy of
a random variable. In other words, given a set of samples, the entropy H(Y ) is maximized when each sample
is assigned to a unique class. Conversely, for a fixed number of sample points, the entropy is maximized
when their probabilities are uniformly distributed. Therefore, the entropy H(Y ) is maximized if the problem
is formulated as instance discrimination.

C Further discussion on VE and information bottleneck

In this section, we discuss the relationship between the maximized mutual information method and infor-
mation bottleneck, and provide an alternative approach to derive the objective function for the VE method.

C.1 Relationship Between VE and Information Bottleneck

(a) (b)

Figure 6: Mutual information between X̂ and X for models trained with objectives of (a) information
bottleneck and (b) VE (ours).

We depict the Venn diagram of which show the relationships between the H(X), prototype information
I(X; Y ), contextual information H(X|Y ) and I(X̂; X) by the encoder trained by information bottleneck (a)
and VE (b) in fig. 6.

Information bottleneck aims to minimize the following objective function:

min I(X; X̂)− βI(X̂; Y ), (58)

which can be interoperated as finding a compressed representation X̂ of X that retains as much information
about Y as possible, while minimizing the information retained from X.

While the target of VE differs from the information bottleneck, as it aims to maximize the mutual information
I(X; X̂), as though, the compressed representation X̂ retains as much information about X as possible.

C.2 Alternative Approach to Simplify the Prototype Information

With a slight abuse of notation, in this section, we refer to Ŷ as the label predicted from the feature X̂.
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I(X̂; Y ) = H(Y )−H(Y |X̂) (59)
≥ H(Y )−H(E)− P (E) log(|Y | − 1) (60)

≥ H(Y )−H(E)− log(|Y | − 1)EX

[
1−

|Y |∑
i=1

PY |X(i|x)PŶ |X(i|x)
]

(61)

= H(Y )−H(E)− log(|Y | − 1)EX

[ |Y |∑
i=1

PY |X(i|x)
[
1− PŶ |X(i|x)

]]
(62)

≥ H(Y )−H(E)− log(|Y | − 1)EX

[ |Y |∑
i=1
−PY |X(i|x) log PŶ |X(i|x)

]
(63)

= H(Y )−H(E)− log(|Y | − 1)EX [H(PY |X(i|x), PŶ |X(i|x))], (64)

where eq. (60) follows from (Hartley, 1928), log(|Y | − 1) is a constant, and H(E) approaches zero when no
prediction error occurs.

D Running Time

In this section, we report the running time of the IGDS algorithm and compare its efficiency with the
MiniMax (Gu et al., 2024b). To this end, we sampled 100 images with resolution 256× 256 for ImageWoof
and ImageNette datasets using both methods on the clusters we used; all comparisons are done with one
single NVIDIA V100 GPU. The running time is reported in the table 6.

Table 6: The running time of MiniMax Diffusion and IGDS.

Dataset ImageNette ImageWoof
MiniMax 44 mins 46 mins

IGDS 57 mins 53 mins

Compared to MiniMax diffusion, IGDS slightly increases the time complexity, primarily due to the additional
VE model required in the distillation process.

E Combining with Priors Beyond DDPM

An important advantage of our approach is its flexibility to integrate with a wide range of generative priors
beyond DDPM. To illustrate this capability, we conducted experiments combining our method with the
Minimax-DIT prior, which is recognized as a more advanced prior often leading to stronger performance.
As shown in table 7, when using the Minimax-DIT prior, our method achieves an accuracy of 48.6% on the
ImageWoof dataset under IPC-10. This result demonstrates that our approach not only remains effective
when paired with stronger priors but can also be seamlessly combined with alternative generative models to
further enhance performance.

Table 7: IGD vs. ours when using Minimax-DIT as prior.

IPC 1 10 50 100
Minimax-IGD - 47.2 65.0 71.5
Minimax-Ours 37.6 48.6 65.6 75.3

F Evaluation Protocol

We report the evaluation protocol in this section. Three commonly used network architectures are used for
evaluation:
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• ConvNet-6, a 6-layer convolutional network, is an extension of ConvNet-3, which is commonly used in
previous dataset distillation (DD) works for small-resolution images. To accommodate full-sized 256×256
ImageNet data, we add three additional layers. Each layer contains 128 feature channels, and instance
normalization is applied.

• ResNetAP-10 is a 10-layer ResNet variant in which the standard strided convolution is replaced with
average pooling for downsampling, allowing for smoother feature aggregation.

• ResNet-18 is an 18-layer ResNet modified to use instance normalization (IN) instead of batch normal-
ization. Since IN performs better than batch normalization under our experimental protocol, we adopt it
consistently across all ResNet-18 models.

During the evaluation training, we closely follow the protocols established in (Kim et al., 2022b; Gu et al.,
2024b). Specifically, we use the Adam optimizer with a fixed learning rate of 0.01 across all experiments to
ensure consistency in optimization. The number of training epochs for different IPC settings is detailed in
Table 8. The applied data augmentations are random resize-crop, random horizontal flip, and CutMix (Yun
et al., 2019).

Table 8: Evaluation training epochs across different IPC settings.

IPC 1 10 20 50 100
Epochs 2000 2000 1500 1500 1000

G Samples Generated by IGDS

In this section, we provide additional examples of distilled datasets for ImageNette and ImageWoof with
IPC 10, shown in fig. 7 and fig. 8, respectively.
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Figure 7: Distilled Image Visualization: ImageNette with IPC 10.
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Figure 8: Distilled Image Visualization: ImageWoof with IPC 10.
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