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Abstract001

Current stance detection research typically re-002
lies on predicting stance based on given targets003
and text. However, in real-world social me-004
dia scenarios, targets are neither predefined nor005
static but rather complex and dynamic. To ad-006
dress this challenge, we propose a novel task:007
zero-shot stance detection in the wild with dy-008
namic target generation and multi-target adapta-009
tion, which aims to automatically identify mul-010
tiple target-stance pairs from text without prior011
target knowledge. We construct a Chinese so-012
cial media stance detection dataset and design013
multi-dimensional evaluation metrics. We ex-014
plore both integrated and two-stage fine-tuning015
strategies for large language models (LLMs)016
and evaluate various baseline models. Ex-017
perimental results demonstrate that fine-tuned018
LLMs achieve superior performance on this019
task: the integrated fine-tuned Qwen2.5-7B at-020
tains the highest comprehensive target recogni-021
tion score of 66.99%, while the two-stage fine-022
tuned DeepSeek-R1-Distill-Qwen-7B achieves023
a stance detection F1 score of 79.26%. The024
dataset and models are publicly available025
at: https://anonymous.4open.science/r/026
DGTA-stance-detection-7299.027

1 Introduction028

Stance detection aims to identify an author’s attitu-029

dinal tendency towards a specific target (AlDayel030

and Magdy, 2021; Mohammad et al., 2016), includ-031

ing support, against, or neutral (Li and Caragea,032

2019; Küçük and Can, 2020). Most existing re-033

search has focused on known targets and achieved034

significant progress (Siddiqua et al., 2019; AlDayel035

and Magdy, 2021).036

However, in open social media environments,037

due to topic diversity and the relatedness of dis-038

cussion objects (Alturayeif et al., 2022), phenom-039

ena of unclear targets and multiple coexisting tar-040

gets frequently emerge, resulting in single texts po-041

tentially containing multiple stance targets where042

Text:
With 13,120 units sold, xiaomi SU7 has surpassed the
Tesla Model 3. Featuring exceptional exterior design
and generous performance specifications, the SU7 has
gained tremendous popularity both domestically and
internationally - truly a remarkable achievement for
Xiaomi!

DGTA-Output:
(Target: xiaomi SU7 , Stance: Support)
(Target: Tesla Model 3, Stance: Neutral)

3

Figure 1: Real-world example from the Chinese plat-
form Weibo.The task involves automatically identifying
two distinct targets and inferring corresponding stance
labels by modeling the semantic relationship between
the text and each target.

stance labels are often associated with complex re- 043

lationships between targets. Figure 1 provides a 044

real examples from the Chinese platform Weibo. 045

Although there have been studies on target adap- 046

tation, such as an unsupervised stance detection 047

framework combining expert mixing, domain ad- 048

versarial training, and target label embeddings to 049

achieve cross-domain prediction for unseen targets 050

(Hardalov et al., 2022), and the Target-Stance Ex- 051

traction (TSE) task which only addresses single 052

targets by jointly modeling target identification and 053

stance detection (Li et al., 2023), these approaches 054

rely on target candidate labels or only support sin- 055

gle target identification, making them difficult to 056

adapt to multi-target and unknown target real-world 057

application scenarios (Putra et al., 2022; Sobhani 058

et al., 2017). 059

To address these challenges, we propose a more 060

open-ended task: Zero-Shot Stance Detection in 061

the Wild with Dynamic Target Generation and 062

Multi-Target Adaptation (DGTA), which aims to 063

adaptively identify diverse targets and determine 064

stances from input text without relying on pre- 065

defined targets, thereby more effectively accom- 066
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modating complex and dynamic real-world ap-067

plication scenarios. To support research on this068

task, we construct the first high-quality Chinese069

stance detection dataset covering multi-domain so-070

cial media posts, comprising 70,931 annotated sam-071

ples. We design multi-dimensional evaluation met-072

rics for target identification and stance determi-073

nation, where target identification assessment in-074

cludes BERTScore (Zhang et al.), BLEU (Papineni075

et al., 2002), ROUGE-L (Lin, 2004), Recall and a076

comprehensive score, while stance determination077

only evaluates samples whose target identification078

metrics reach a threshold. At the methodological079

level, we propose two strategies for fine-tuning080

large language models (LLMs): an integrated ap-081

proach generating multiple target-stance label pairs082

and a two-stage method separately generating mul-083

tiple targets and stance labels. We also implement084

various baseline models, including fine-tuned pre-085

trained models and differently prompted LLMs.086

Experimental results demonstrate that in the DGTA087

task, fine-tuned LLMs significantly outperform pre-088

trained and prompted models, with integrated and089

two-stage fine-tuning strategies each showing dis-090

tinct advantages.091

Our main contributions are summarized as fol-092

lows:093

• We propose a new task of Zero-Shot Stance094

Detection in the Wild with Dynamic Tar-095

get Generation and Multi-Target Adaptation096

(DGTA), construct the first high-quality Chi-097

nese multi-domain social media stance detec-098

tion dataset, and design unified and compre-099

hensive evaluation metrics.100

• We explore two strategies for fine-tuning101

LLMs, based on integrated and two-stage102

frameworks, providing a powerful baseline.103

• We conduct baseline experiments including104

fine-tuned pre-trained models and various105

prompted LLMs, with detailed comparative106

analysis.107

2 Related Work108

2.1 Traditional Stance Detection109

Traditional stance detection methods have evolved110

from manual feature engineering to contextualized111

pre-trained models (Glandt et al., 2021). Zarrella112

and Marsh (2016) integrates grammatical and syn-113

tactic information into RNNs and learns vector rep-114

resentations of input text, effectively enhancing115

stance detection performance on Twitter texts. Du 116

et al. (2017) introduces attention mechanisms into 117

LSTM, proposing a target-specific enhanced atten- 118

tion model. WS-BERT substantially improves per- 119

formance in target-specific (He et al., 2022), cross- 120

target, and zero/few-shot scenarios by integrating 121

Wikipedia knowledge to enrich target representa- 122

tions. The GDA-CL model generates high-quality 123

synthetic samples in embedding space through gen- 124

erative adversarial networks (GAN) and hybrid con- 125

trastive learning (Li and Yuan, 2022), using GPT-2 126

as the generator, RoBERTa as the discriminator, 127

and BERT as the classifier within the GAN frame- 128

work (Goodfellow et al., 2014), supplemented with 129

a multilayer perceptron for contrastive learning, 130

significantly improving zero-shot stance detection 131

performance on unseen targets. Stance Reasoner 132

aims to leverage explicit reasoning about back- 133

ground knowledge to guide models in inferring tar- 134

get stances (Taranukhin et al., 2024). LKI-BART 135

introduces LLM knowledge to establish connec- 136

tions between text and unseen targets, achieving op- 137

timal performance on VAST and P-Stance datasets 138

(Zhang et al., 2024; Allaway and McKeown, 2020; 139

Li et al., 2021). However, these studies all rely 140

on predefined targets, cannot adapt to real-world 141

scenarios where targets are implicit or unknown, 142

and fail to address the problem of dynamic target 143

generation. 144

2.2 Target-Adaptive Stance Detection 145

Recent studies have begun to focus on target- 146

adaptive stance detection. TATA leverages con- 147

trastive learning to extract topic-agnostic and topic- 148

aware embeddings from unlabeled news texts and 149

applies them to downstream stance detection tasks 150

(Hanley and Durumeric, 2023). TAPD enhances 151

cross-target few-shot stance detection through 152

target-aware prompt adaptation and multi-prompt 153

distillation techniques (Wang and Pan, 2024; Wen 154

and Hauptmann, 2023), mapping stance labels to 155

continuous vectors. For cross-target domain adap- 156

tation, the target-aware domain adaptation method 157

extracts key shared features through feature dis- 158

entanglement and automatically identifies target 159

relationships (Deng et al., 2022). Stanceformer in- 160

troduces target-aware attention mechanisms (Garg 161

and Caragea, 2024). OpenStance defines the open- 162

domain zero-shot stance detection task (Xu et al., 163

2022), addressing stance detection without domain 164

restrictions or specific topic focus. Wu et al. (2022) 165

proposes a novel multi-source adaptive target detec- 166
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tion method for Target-Related Knowledge Preser-167

vation. For the new task of cross-lingual cross-168

target stance detection, a dual-teacher knowledge169

distillation framework CCSD is designed (Zhang170

et al., 2023), utilizing cross-lingual and cross-target171

teachers to guide student model learning from172

source languages. Although these works have sig-173

nificantly advanced target-adaptive stance detec-174

tion, they still rely on predefined target lists or175

domain-specific data and only address single-target176

adaptation, limiting model adaptability for stance177

detection in real scenarios with undefined, multiple178

targets requiring dynamic generation and adapta-179

tion.180

3 Dynamic Target Generation and181

Multi-Target Adaptation for Stance182

Detection183

To address the challenges of both dynamic targets184

and complex stances in real-world scenarios, we185

propose a new task of stance detection with dy-186

namic target generation and multi-target adapta-187

tion. This task requires models to automatically188

identify (multiple) stance targets in text without189

predefined targets or domains, determine corre-190

sponding stances, and ultimately output pairs of191

targets and stances. We successively introduce the192

task definition, dataset construction and analysis,193

and LLM fine-tuning strategies.194

3.1 Task Definition195

The task of dynamic target generation and multi-196

target adaptation for stance detection (DGTA) is197

defined as follows: given input text posted by social198

media users, without any predefined targets, topics,199

or domains, the model is required to output all pairs200

of targets and their corresponding stances present201

in the text. Targets include both static entities (e.g.,202

persons, organizations, institutions) and dynamic203

entities (e.g., actions, events, states), and their num-204

ber may vary from single to multiple. The stance205

labels are categorized into three classes: support,206

against, and neutral. Figure 2 (a) illustrates a sam-207

ple post where the model identifies a single target208

along with its associated stance, resulting in one209

target-stance pair as output; Figure 2 (b) presents210

a more complex scenario involving three distinct211

targets, each paired with a corresponding stance,212

yielding three target-stance pairs.213

（b）Multi-target example

（a）Single-target example

Text:
Zheng Qinwen, you are truly my idol!

Output:
(Target: Zheng Qinwen, Stance: Favor)

Text:
Tesla’s price-cutting strategy is certainly
appealing, but I still have more confidence in
BYD’s range performance. As for NIO, its
market positioning feels somewhat awkward.

Output:
(Target: Tesla, Stance: Favor)
(Target: BYD, Stance: Favor)
(Target: NIO, Stance: Against)

Figure 2: Examples of the new stance detection task

3.2 Chinese Social Media Personas Stance 214

Dataset 215

3.2.1 Data Collection and Preprocessing 216

We select 240 users from diverse domains on the 217

Weibo platform and collect their posts within the 218

same time period. The reasons are as follows: 219

(1) As a representative Chinese social media plat- 220

form, Weibo features diverse users and topics, of- 221

fering broad representativeness and applicability 222

to various stance detection scenarios; (2) Select- 223

ing 240 users across entertainment, finance, law, 224

education, and other domains helps evaluate the 225

method’s generalization capability in handling tar- 226

get and stance analysis in complex contexts. From 227

the posts published by these 240 users, we collect 228

a total of 125,176 textual entries. Due to the in- 229

formal nature of user-generated content, we apply 230

regular expressions and Unicode encoding tech- 231

niques to remove non-standard text elements such 232

as emojis, URLs, usernames, and special symbols, 233

which often introduce noise and reduce stance clas- 234

sification accuracy. During this process, all col- 235

lected posts undergo strict anonymization, with 236

user IDs anonymized. No user identity information 237

is used in any of the experiments reported here. 238

This anonymized ID information supports future 239

research focusing on user-centric stance detection. 240

Finally, after preprocessing, 107,310 posts are re- 241

tained for subsequent annotation. 242

3.2.2 Data Annotation and Validation 243

To ensure the standardization and reliability of 244

dataset annotation, we construct an annotation 245

workflow based on the combination of collabora- 246

tive annotation by multiple LLMs, score-based cor- 247
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Figure 3: Workflow of dataset construction with collaboration between multiple LLMs and human verification

rection, and human verification, with the complete248

process illustrated in Figure 3.249

Specifically, we select three mainstream LLMs250

(GLM4-9B, Qwen2.5-7B, and Llama3-8B) to in-251

dependently perform the cascaded tasks of target252

identification and stance determination. For the an-253

notation results from these three models, we estab-254

lish a cross-validation mechanism: in the two-stage255

target-stance annotation, if at least two models pro-256

duce identical target entity recognition results for257

the same text and reach consensus on stance judg-258

ment for that target, the sample is adopted as a259

valid annotation; if substantial disagreement exists260

at either stage, the sample is considered invalid and261

removed from the dataset. After completing the262

first round of cross-validation, we utilize prompt263

instructions to guide the DeepSeek-V3 model in264

conducting a secondary scoring evaluation of valid265

annotated samples, with low-scoring samples be-266

ing modified and marked for review. Subsequently,267

eight professional annotators verify all automati-268

cally annotated samples. During the data clean-269

ing phase, we eliminate low-quality texts contain-270

ing logical contradictions, semantic ambiguities, or271

lacking clear target references. This process ulti-272

mately results in a high-quality annotated dataset273

with strict cross-validation constraints.274

3.2.3 Dataset Statistics and Analysis275

After the above processing steps, the final dataset276

comprises 70,931 textual entries, covering both277

single-target and multi-target scenarios. The de-278

tailed statistics of target quantity and stance distri-279

bution are provided in Appendix A Table 5. Table 6280

in Appendix A shows the quantitative ranking of281

the top 10 most frequently discussed targets.282

3.3 Evaluation Criteria 283

Due to the diversity and uncertainty in both expres- 284

sion and quantity of dynamically generated targets 285

in this task, traditional evaluation metrics fail to 286

adequately reflect model performance. To compre- 287

hensively assess model performance in this task, 288

we design more targeted and comprehensive evalu- 289

ation criteria. 290

3.3.1 Target Identification Evaluation Criteria 291

For the open-ended characteristics of the tar- 292

get identification phase, we propose a multi- 293

dimensional evaluation approach that integrates 294

semantic similarity, surface form matching, and 295

quantity alignment to construct a comprehensive 296

target identification score (C-Score). This metric 297

comprises BERTScore, BLEU, ROUGE-L, and the 298

Recall of target quantity. 299

C-Score = (α× BERTScore 300

+ β × BLEU + γ × ROUGE-L)× Recall (1) 301

Where α, β, and γ control the weighting propor- 302

tions of the three metrics. Considering the semantic 303

and structural differences between predicted targets 304

and reference targets, we first align the metrics. Ex- 305

periments show that setting α = 0.6, β = 0.2, and 306

γ = 0.2 emphasizes semantic consistency while 307

balancing lexical and structural matching. 308

3.3.2 Stance Detection Evaluation Criteria 309

Considering that stance classification evaluation 310

is only meaningful when based on accurate tar- 311

get identification, we first establish a threshold- 312

driven mechanism for determining target correct- 313

ness: through experimental analysis, we set thresh- 314

olds of 0.7, 0.2, 0.4, 0.8, and 0.3 for BERTScore, 315
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Instruction:
You are an expert in target identification and stance detection. Based on
the given Weibo comment, identify the main targets being discussed
(such as people, events, or actions), and determine the stance toward
each target (Support / Against / Neutral). If the comment contains
multiple targets, evaluate the stance for each one separately.
Output format:(Target: [Target1]; [Target2], Stance: [Stance1];
[Stance2])

Input:
That shot by Fan Zhendong was truly amazing—his backhand is so
powerful! The team members all stood up to applaud and cheer for him!

Output:
(Target: Fan Zhendong, Stance: Support)

Figure 4: Prompt template and example for the inte-
grated fine-tuning strategy

BLEU, ROUGE-L, Recall, and the comprehen-316

sive score, respectively. Samples exceeding these317

thresholds are deemed to have correct target identi-318

fication. On this foundation, we employ the classic319

metrics of Precision, Recall, and F1 score.320

3.4 Fine-tuning Large Language Models321

We fine-tune LLMs to provide powerful baselines322

for this task. We propose two fine-tuning strate-323

gies—integrated and two-stage, and use each strat-324

egy to construct instruction fine-tuning data. All325

fine-tuning is conducted using LoRA (Hu et al.,326

2022). The integrated fine-tuning strategy adopts327

an end-to-end approach, modeling the "target iden-328

tification + stance detection" task as an instruction-329

driven sequence generation process. Model input330

consists of task instructions in natural language331

concatenated with the original text (as shown in Fig-332

ure 4), explicitly prompting the task intent, guiding333

the model to simultaneously complete target extrac-334

tion and stance classification, ultimately outputting335

(multiple) target-stance pairs, achieving task coor-336

dination.337

The two-stage fine-tuning strategy decouples tar-338

get identification and stance determination into two339

independent subtasks, each undergoing separate in-340

struction fine-tuning. In the first stage, the model341

receives input text with task instructions (as shown342

in Appendix B Figure 5), focusing exclusively on343

extracting potential targets from the text. In the344

second stage, the identified targets and original text345

serve as input (as shown in Appendix B Figure 5),346

accompanied by stance determination instructions,347

guiding the model to classify stance for specific tar-348

gets. Through independent fine-tuning, models can349

focus on a single task. It is worth noting that we350

use different models for our two-stage fine-tuning351

approach, rather than the same model.352

4 Experiments and Analysis 353

4.1 Experimental Setup 354

4.1.1 Dataset 355

We divide our constructed dataset into training, val- 356

idation, and test sets in an 8:1:1 ratio for fine-tuning 357

and baseline evaluation experiments. Considering 358

the high computational resources required for eval- 359

uating the full dataset, we adopt a random sampling 360

strategy, extracting 1,000 samples from the test set 361

as a subsequent model testing subset. 362

4.1.2 Comparison Models 363

We compare three categories of models: fine-tuned 364

pre-trained models, instruction-prompted LLMs, 365

and instruction-tuned LLMs. For the fine-tuned 366

pre-trained models, we employ fine-tuned mT5 for 367

target identification and fine-tuned BERT for stance 368

detection (Xue et al., 2021; Devlin et al., 2019). 369

For the instruction-prompted LLMs, we experi- 370

ment with current mainstream models including 371

DeepSeek-V3 (Liu et al., 2024), GLM4-9B (GLM 372

et al., 2024), GPT-4o (Hurst et al., 2024), and 373

Llama3-8B (Grattafiori et al., 2024) using instruc- 374

tion prompting. For the instruction-tuned LLMs, 375

we fine-tune Qwen2.5-7B-Instruct and DeepSeek- 376

R1-Distill-Qwen-7B using an integrated approach 377

(Qwen et al., 2024; Guo et al., 2025), and also inde- 378

pendently fine-tune Qwen2.5-7B-Instruct for target 379

identification and DeepSeek-R1-Distill-Qwen-7B 380

for stance detection in a two-stage process. 381

4.2 Experimental Results and Analysis 382

The experimental results are shown in Table 1, and 383

we can find that: 384

• Fine-tuned LLMs significantly outperform 385

both fine-tuned pre-trained models and 386

instruction-prompted LLMs on the DGTA 387

task. Both integrated and two-stage fine- 388

tuned LLMs achieve comprehensive scores 389

exceeding 66% in target identification, with 390

Qwen2.5-7B demonstrating optimal perfor- 391

mance (66.99%). In target identification tasks, 392

both fine-tuned and pre-trained models ex- 393

hibit BERTScore metrics above 84%, indi- 394

cating that fine-tuning enhances target seman- 395

tic comprehension capabilities. For stance 396

detection, fine-tuned DeepSeek-R1 models 397

achieve F1 scores (79.26% and 75.37%) that 398

surpass Llama3-8B by over 20 percentage 399
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Model
Target Identification Stance Detection

BERT BLEU ROUGE Recall C-Score P R F1
mT5‡ 84.29 28.82 65.71 86.59 60.16 - - -
Bert§ - - - - - 67.89 67.11 67.51

Qwen2.5-7B 82.47 28.26 63.69 91.16 61.87 64.22 67.54 65.05
DeepSeek-V3 76.87 25.65 50.38 92.05 56.45 69.25 72.60 70.64

GLM4-9B 77.98 24.16 51.99 94.14 58.38 68.50 69.20 66.90
GPT-4o 73.72 21.51 43.99 94.34 54.09 74.22 74.75 74.45

Llama3-8B 77.69 27.94 56.98 85.90 54.63 58.45 65.03 59.52
Qwen2.5-7B† 85.09 31.12 67.14 94.16 66.58 65.31 65.33 64.16

DeepSeek-R1-Qwen† 84.94 30.96 66.99 94.62 66.76 87.46 77.08 79.26
Qwen2.5-7B‡ 84.69 31.64 66.17 95.19 66.99 - - -

DeepSeek-R1-Qwen§ - - - - - 83.25 74.52 75.37

Table 1: Overall experimental results on the DGTA task (Unit: %, best results are in bold. † indicates integrated
fine-tuning; ‡ indicates the target identification stage in two-stage fine-tuning; § indicates the stance determination
stage in two-stage fine-tuning. DeepSeek-R1-Distill-Qwen-7B is abbreviated as DeepSeek-R1-Qwen. BERTScore
is abbreviated as BERT, and ROUGE-L is abbreviated as ROUGE.)

points, demonstrating that fine-tuning substan-400

tially improves stance reasoning abilities in401

complex semantic contexts.402

• Integrated and two-stage strategies each have403

advantages in target identification and stance404

detection subtasks. For target identification,405

phased fine-tuning enables greater focus, with406

Qwen2.5-7B achieving the optimal score of407

66.99%. For stance detection, integrated fine-408

tuning exhibits superior performance, with409

DeepSeek-R1-Distill-Qwen-7B outperform-410

ing two-stage models across all evaluation411

metrics, likely due to its ability to simulta-412

neously model inter-target relationships and413

stance associations.414

• Models with reasoning capabilities gen-415

erally perform better than those with-416

out. Between the two integrated fine-tuned417

models—Qwen2.5-7B and DeepSeek-R1-418

Distill-Qwen-7B—the latter underwent rea-419

soning distillation. Comparison reveals that420

the reasoning-capable DeepSeek-R1 model421

achieves a comprehensive score of 66.76%422

in target identification and an F1 score of423

79.26% in stance detection, outperforming424

the Qwen2.5-7B model overall. This indi-425

cates that reasoning capabilities contribute to426

more precise target identification and stance427

determination in complex scenarios.428

4.3 Dynamic Target Difference Analysis 429

4.3.1 Target-Oriented Difference Analysis 430

Target BERT BLEU ROUGE Recall C-Score

Single 82.04 28.79 61.55 99.36 67.28
Dual 82.47 29.47 62.72 93.59 63.76
Triple 80.52 27.89 58.01 80.43 53.02
Multi 79.29 26.80 55.34 67.67 45.42

Table 2: Overall experimental results categorized by
the number of targets (Unit: %. Values are the average
results across all models)

We conduct a comprehensive comparison of all 431

models based on target quantity(Table 2 ), catego- 432

rizing samples into single-target, dual-target, triple- 433

target, and multi-target (more than three targets). 434

Dual-target samples perform optimally on se- 435

mantic evaluation metrics. These samples achieve 436

the highest scores across three semantic-related 437

metrics: BERTScore (82.47%), BLEU (29.47%), 438

and Rouge-L (62.72%). This superior performance 439

can be attributed to two primary factors: First, dual- 440

target texts typically involve comparative, parallel, 441

or opposing relationships, which strengthen target 442

boundaries and semantic contrasts, making targets 443

more distinguishable for the model. Second, com- 444

pared to single-target texts with limited information 445

density (such as reference ambiguity in "That per- 446

son looks familiar, didn’t expect them to be a fan 447

too") and texts with three or more targets that suf- 448
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fer from excessive semantic density and referential449

confusion, dual-target texts maintain an optimal450

balance between length and semantic content, facil-451

itating better model comprehension and extraction.452

Single-target samples significantly outperform453

others in recall at 99.36%. This is because such454

texts revolve around a single discussion object or455

topic, allowing the model to focus and achieve456

comprehensive coverage. However, their slightly457

lower performance on semantic relevance metrics458

suggests that models may overfit to explicit infor-459

mation while still having limited capability in pro-460

cessing implicit or ambiguous expressions.461

Increasing target quantity leads to overall per-462

formance degradation. As the number of targets463

increases, all metrics show a declining trend, with464

multi-target samples scoring lowest at 45.42% over-465

all. Analysis reveals several contributing factors:466

elevated semantic complexity, blurred boundaries467

due to cross-referenced and nested target expres-468

sions, and the tendency of models to generalize469

multiple targets as one, negatively affecting recall470

and overall performance.471

4.3.2 Model-Oriented Difference Analysis472

From a model perspective, we conduct a systematic473

analysis of Qwen2.5-7B and its four variants on474

target identification tasks in real-world scenarios,475

categorized by target quantity (Table 7 in Appendix476

D).477

Overall model performance degrades as target478

quantity increases, reflecting the impact of task479

complexity. All models show declining trends480

across five metrics, particularly CoT-Qwen2.5-7B,481

whose C-Score drops from 70.81% to 47.14%,482

highlighting the challenges current models face483

when handling texts with multiple semantic targets.484

CoT enhancement excels in single-target tasks485

but degrades significantly in multi-target settings.486

The CoT-augmented model achieves the highest487

score (70.81%) in single-target tasks, demonstrat-488

ing strong reasoning capabilities in simple con-489

texts. However, its performance drops sharply in490

multi-target scenarios to 47.14%, suggesting that491

reasoning chains become unstable when balancing492

multiple semantic focal points in complex contexts.493

DeepSeek-R1-Distill-Qwen-7B demonstrates494

greater robustness in complex tasks. This model495

shows the strongest resilience in triple-target and496

multi-target scenarios, achieving scores of 60.69%497

and 55.09%, respectively. This indicates better gen-498

eralization when processing semantically complex499

texts, likely due to the model’s exposure to richer 500

multi-target alignment corpora during distillation 501

and fine-tuning. 502

4.4 Impact of Chain-of-Thought on Prompted 503

LLMs 504

We investigate whether introducing chain-of- 505

thought (CoT) improves LLM performance on the 506

DGTA task. The results are presented in Table 3. 507

After introducing CoT, all LLMs show signifi- 508

cant improvements in both target identification and 509

stance determination. GLM4-9B’s target identifi- 510

cation score increases by 7 percentage points, indi- 511

cating that step-by-step reasoning more effectively 512

guides the model to capture key targets. Qwen2.5- 513

7B’s stance detection score improves by 4 percent- 514

age points, as the reasoning chain encourages the 515

model to analyze systematically, reducing inferen- 516

tial leaps and incorrect judgments, thereby signifi- 517

cantly enhancing stance classification performance. 518

4.5 Target Significance Difference Analysis 519

Considering different topic backgrounds and ex- 520

pression styles, targets in texts exhibit varying de- 521

grees of salience. We employ DeepSeek-V3 to 522

classify annotated targets in the extracted test set 523

as either "explicit" or "implicit", where the former 524

refers to directly mentioned specific entities and 525

the latter to abstract concepts requiring semantic 526

understanding. 527

Based on experimental results, we select the 528

high-performing integrated fine-tuned models 529

DeepSeek-R1-Distill-Qwen-7B and Qwen2.5-7B 530

for statistical analysis of target salience. Table 4 531

analysis reveals. 532

In target identification tasks, models perform sig- 533

nificantly better when processing explicit targets 534

compared to implicit ones. For instance, Qwen2.5- 535

7B scores notably higher across multiple metrics, 536

indicating that explicit targets have clearer seman- 537

tic boundaries, facilitating extraction and matching. 538

In target identification tasks, implicit targets 539

demonstrate more prominent performance in terms 540

of recall. DeepSeek-R1 achieves a recall rate of 541

96.63% for implicit targets. Due to the abstract 542

nature of implicit targets, models tend to generate 543

multiple related expressions for coverage, enhanc- 544

ing recall but potentially reducing precision. 545

In stance detection tasks, explicit targets simi- 546

larly demonstrate superior detection performance. 547

Explicit targets help models more accurately grasp 548

user attitudes, improving F1 scores, while implicit 549
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Model
Target Identification Stance Detection

BERT BLEU ROUGE Recall C-Score P R F1
Qwen2.5-7B 82.47 28.26 63.69 91.16 61.87 64.22 67.54 65.05
DeepSeek-V3 76.87 25.65 50.38 92.05 56.45 69.25 72.60 70.64

GLM4-9B 77.98 24.16 51.99 94.14 58.38 68.50 69.20 66.90
CoT-Qwen2.5-7B 84.97 31.02 67.77 94.23 66.70 69.07 70.84 69.25
CoT-DeepSeek-V3 82.92 32.33 62.62 94.18 64.75 73.68 71.42 71.06

CoT-GLM4-9B 85.56 31.46 68.38 92.03 65.63 69.38 69.22 67.91

Table 3: Experimental results with chain-of-thought incorporated in the prompt (Unit: %)

Target Model
Target Identification Stance Detection

BERT BLEU ROUGE Recall C-Score P R F1
Explicit

(80.51%)
DeepSeek-R1-Qwen† 87.57 35.06 73.14 94.15 70.17 69.40 72.95 70.88

Qwen2.5-7B† 87.79 35.25 73.39 93.85 70.24 65.34 65.54 64.09
Implicit

(19.48%)
DeepSeek-R1-Qwen† 73.35 12.88 39.93 96.63 52.34 63.21 64.50 63.54

Qwen2.5-7B† 73.22 12.93 39.56 95.51 51.62 65.15 63.29 63.90

Table 4: Performance comparison on explicit and implicit targets. (Unit: %. Explicit targets cover 80.51% of the
data, while implicit targets cover 19.48%.)

targets increase judgment difficulty due to semantic550

ambiguity. Models equipped with reasoning capa-551

bilities can further enhance performance in these552

scenarios.553

4.6 Case Analysis554

We randomly sample cases from the integrated fine-555

tuned model DeepSeek-R1-Distill-Qwen-7B’s pre-556

diction results for case analysis (Figure 6 in Ap-557

pendix D).558

Target identification performs well overall, but559

semantic fragmentation and stance judgment biases560

remain. In case (a), "the issue of Syrian women561

wearing black robes" is decomposed into "Syria",562

"women wearing black robes" and "Middle East"563

resulting in a loss of semantic integrity. Simul-564

taneously, the model fails to identify the implicit565

critical attitude in "women wearing black robes"566

incorrectly judging it as neutral, reflecting its in-567

sufficient ability to reason about irony or implicit568

semantics.569

Inconsistent target granularity and insufficient570

understanding of sarcastic expressions are ob-571

served. In case (b), although the model can ex-572

tract multiple targets, it exhibits problems with573

mixed usage of different expressions for the same574

object, such as "Baidu’s AI LLM" and "Wenxin575

Yiyan" both referring to "Baidu". Additionally, the576

stance judgment toward "Apple" as neutral fails577

to identify the metaphorical expression "a lady578

from a good family marrying a cowherd" reflecting579

the model’s difficulty in recognizing stance under 580

non-straightforward expressions like sarcasm and 581

metaphor. 582

The model demonstrates optimal performance in 583

scenarios with clearly defined targets and explicitly 584

expressed stances. Case (c) revolves around the 585

single target "Black Myth: Wukong" with direct 586

textual expressions and distinct emotions, such as 587

"stunning" and "holding back for so long" clearly 588

conveying a positive stance. The model accurately 589

identifies the target and correctly judges the stance, 590

indicating high predictability in such samples. 591

5 Conclusion 592

Addressing the complexity and diversity of user 593

stance expressions in real social contexts, we pro- 594

pose a new task: Zero-Shot Stance Detection in the 595

Wild with Dynamic Target Generation and Multi- 596

Target Adaptation. We construct a high-quality 597

Chinese stance detection dataset covering multiple 598

social scenarios. To accommodate the new charac- 599

teristics of this task, we design an evaluation metric 600

system that considers both target identification and 601

stance determination. We propose two approaches 602

for fine-tuning LLMs and compare them with pre- 603

trained models and LLMs under various prompting 604

methods. The experimental results clearly demon- 605

strate that fine-tuned LLMs exhibit significant ad- 606

vantages in target extraction accuracy, stance clas- 607

sification robustness, and reasoning capability in 608

complex linguistic contexts. 609

8



Limitations610

We construct a dataset based on 240 users, each611

with approximately 300-400 expressions. Our cur-612

rent modeling approach does not incorporate user613

IDs and treats each stance expression as an inde-614

pendent sample, ignoring potential stance correla-615

tions between users. However, users with similar616

viewpoints often demonstrate consistent attitudes617

when facing the same targets, particularly evident618

in groups with shared interests. In future work, we619

will further utilize user ID information to develop620

user relationship-based stance modeling methods621

to capture stance consistency between users.622
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A Dataset Statistics and Analysis831

Target Number
Stance Distribution

Support Against Neutral

Single 27,148 12,554 5,232 9,362
Dual 25,312 25,122 10,223 15,279
Multi 18,471 35,245 14,880 27,222

Total 70,931 72,921 30,335 51,863

Table 5: Dynamic target quantity and stance distribution

Target Number
Stance Distribution

Support Against Neutral
USA 907 112 560 235
Trump 816 262 287 267
Cheng Yi 765 710 1 54
China 726 380 158 188
iPhone 567 150 127 290
Israel 562 105 348 109
Wang Chuqin 414 286 11 117
Russia 413 120 146 147
Sun Yingsha 410 318 10 82
Huawei 350 256 9 85

Table 6: Top 10 targets by discussion frequency
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B Prompt Template and Example for the832

Integrated Fine-tuning Strategy833

Instruction:
You are a target identification expert. Based on the given Weibo
comment, identify the main targets being discussed (such as people,
events, or actions). If the comment involves multiple targets, list them
all.
Output format:Target: [Target1]; [Target2] 

Input:
They say stand-up comedy is the art of offense, but when a female
comedian insults men, it's fine, while a male comedian gets punished
for joking about women. I think we should just call it the art of
offending men. 

Output:
Target: stand-up comedy; gender double standards in comedic
expression 

Instruction:
You are a stance detection expert. Based on the given Weibo comment,
determine the stance (Support / Against / Neutral) toward each of the
provided targets. If multiple targets are given, assess the stance for each
one in order. 
Output format: Stance: [Stance1]; [Stance2]

Input:
They say stand-up comedy is the art of offense, but when a female
comedian insults men, it's fine, while a male comedian gets punished
for joking about women. I think we should just call it the art of
offending men.
Target: stand-up comedy; gender double standards in comedic
expression 

Output:
Stance: Against; Against

Figure 5: Prompt template and example for the two-
stage fine-tuning strategy

C Case Analysis834

Text：
Although Baidu was the first major internet company to go all in on AI, its
achievements in the AI field have become rather mediocre as its experts have
gradually left. In today’s fierce large model competition, I personally feel that
Wenxin Yiyan’s performance is just so-so. If Apple were to use Baidu’s AI LLM, it
would be like a lady from a good family marrying a cowherd. What do you think?
Label：
Target：   Apple; Baidu
Stance：Against; Against
Predict：
Target：Apple; Baidu’s AI LLM; Baidu; Wenxin Yiyan
Stance：Neutral; Against; Against; Against

Text：
#Syrian Prime Minister Agrees to Transfer Power to the Opposition# Syria
is already in such chaos—does whether women wear black robes even
matter for the country or the Middle East? In war-torn regions, just staying
alive is already fortunate. Life and death are beyond one's control, and it's
just a matter of which faction ends up killing you.
Label：
Target：The issue of Syrian women wearing black robes
Stance：Against
Predict：
Target：Syria; women wearing black robes; the Middle East
Stance：Against; Neutral; Neutral

Text：
#Black Myth: Wukong surpasses 4.5 million units sold across all platforms# 
The sales are truly stunning! I honestly didn’t expect it to sell this much at first. I
actually wanted to buy a copy myself, but unfortunately, I can’t afford it. Today,
Black Myth: Wukong is all over the internet. Everyone has been holding back for
so long — finally, Black Wukong is here.
Label：
target：Black Myth: Wukong
stance：Support
Predict：
target：Black Myth: Wukong
stance：Support

a

b

c

Figure 6: Three representative cases

D Model-Oriented Difference Analysis 835

Model Target BERTBLEUROUGERecallC-Score

Qwen

Single 83.29 28.53 64.51 99.77 68.57
Dual 86.86 34.07 71.29 95.15 69.90
Triple 85.38 31.71 67.17 87.58 61.62
Multi 82.84 31.41 64.98 73.46 53.30

Qwen†
Single 83.90 29.14 64.77 99.99 69.11
Dual 86.89 33.46 71.22 94.26 68.98
Triple 85.78 33.03 68.65 85.45 61.45
Multi 83.64 30.11 62.08 75.17 53.58

Qwen‡
Single 83.59 30.21 63.61 99.99 68.91
Dual 87.68 34.06 73.11 94.71 70.28
Triple 83.35 30.38 63.66 85.15 59.59
Multi 83.74 31.36 63.09 83.49 59.48

CoT
-Qwen

Single 84.42 34.93 65.91 99.77 70.81
Dual 82.78 30.89 62.63 94.71 64.75
Triple 80.74 30.95 57.28 86.97 56.76
Multi 78.66 26.37 52.53 73.05 47.14

Deep
-Seek†

Single 84.03 29.32 65.37 99.99 69.35
Dual 86.49 33.17 70.26 94.56 68.72
Triple 85.64 32.46 67.95 85.45 60.69
Multi 82.97 29.25 61.90 78.98 55.09

Table 7: Overall experimental results categorized by
model (Unit: %. Qwen2.5-7B is abbreviated as Qwen,
CoT-Qwen2.5-7B as CoT-Qwen, and DeepSeek-R1-
Distill-Qwen-7B as DeepSeek.Bolded values indicate
the highest C-Score within each target quantity cate-
gory.)
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