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Abstract
Answer Sentence Selection (AS2) is a core001
component for building an accurate Question002
Answering pipeline. AS2 models rank a set of003
candidate sentences based on how likely they004
answer a given question. The state of the art in005
AS2 exploits pre-trained transformers by trans-006
ferring them on large annotated datasets, while007
using local contextual information around the008
candidate sentence. In this paper, we propose009
three pre-training objectives designed to mimic010
the downstream fine-tuning task of contextual011
AS2. This allows for specializing LMs when012
fine-tuning for contextual AS2. Our experi-013
ments on three public and two large-scale in-014
dustrial datasets show that our pre-training ap-015
proaches (applied to RoBERTa and ELECTRA)016
can improve baseline contextual AS2 accuracy017
by up to 8% on some datasets.018

1 Introduction019

Answer Sentence Selection (AS2) is a fundamen-020

tal task in QA, which consists of re-ranking a set021

of answer sentence candidates according to how022

correctly they answer a given question. From a023

practical standpoint, AS2-based QA systems can024

operate under much lower latency constraints than025

corresponding Machine Reading (MR) based QA026

systems. This is because AS2 systems process sev-027

eral sentences/documents in parallel, while MR028

systems parse the entire document/passage in a029

sliding window fashion before finding the answer030

span (Garg and Moschitti, 2021).031

Modern AS2 systems (Garg et al., 2020; Laskar032

et al., 2020) use transformers to cross-encode ques-033

tion and answer candidates together. Recently, Lau-034

riola and Moschitti (2021) proved that performing035

answer ranking using only the candidate sentence036

is sub-optimal, for e.g., the answer sentence may037

contain unresolved coreference with entities, or the038

sentence may lack specific context for answering039

the question. Several works (Ghosh et al., 2016;040

Tan et al., 2018; Han et al., 2021) have explored041

performing AS2 using context around answer can- 042

didates (for example, adjacent sentences) towards 043

improving performance. Local contextual infor- 044

mation, i.e., the previous and next sentences of 045

the answer candidates, can help coreference disam- 046

biguation, and provide additional knowledge to the 047

model. This helps to rank the best answer at the top, 048

with minimal increase in compute requirements. 049

Previous research works (Lauriola and Moschitti, 050

2021; Han et al., 2021) have directly used exist- 051

ing pre-trained transformer encoders for contex- 052

tual AS2, by fine-tuning them on an input com- 053

prising of multiple sentences with different roles, 054

i.e., the question, answer candidate, and context 055

(previous and following sentences around the can- 056

didate). This structured input creates practical chal- 057

lenges during fine-tuning, as standard pre-training 058

approaches do not align well with the downstream 059

contextual AS2 task, e.g., the language model 060

does not know the role of each of these multi- 061

ple sentences in the input. In other words, the 062

extended sentence-level embeddings have to be 063

learnt directly during fine-tuning, causing under- 064

performance empirically. This effect is amplified 065

when the downstream data for fine-tuning is small, 066

indicating models struggling to exploit the context. 067

In this paper, we tackle the aforementioned is- 068

sues by designing three pre-training objectives that 069

structurally align with the final contextual AS2 task, 070

and can help improve the performance of language 071

models when fine-tuned for AS2. Our pre-training 072

objectives exploit information in the structure of 073

paragraphs and documents to pre-train the context 074

slots in the transformer text input. We evaluate our 075

strategies on two popular pre-trained transform- 076

ers over five datasets. The results show that our 077

approaches using structural pre-training can effec- 078

tively adapt transformers to process contextualized 079

input, improving accuracy by up to 8% when com- 080

pared to the baselines on some datasets. We plan 081

to release our code and pre-trained models. 082
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2 Related Work083

Answer Sentence Selection: TANDA (Garg et al.,084

2020) established the SOTA for AS2 using a large085

dataset (ASNQ) for transfer learning. Other ap-086

proaches for AS2 include: separate encoders for087

question and answers (Bonadiman and Moschitti,088

2020), and compare-aggregate and clustering to im-089

prove answer relevance ranking (Yoon et al., 2019).090

Contextual AS2: Ghosh et al. (2016) use LSTMs091

for answers and topics, improving accuracy for next092

sentence selection. Tan et al. (2018) use GRUs to093

model answers and local context, improving per-094

formance on two AS2 datasets. Lauriola and Mos-095

chitti (2021) propose a transformer encoder that096

uses context to better disambiguate between answer097

candidates. Han et al. (2021) use unsupervised sim-098

ilarity matching techniques to extract relevant con-099

text for answer candidates from documents. Refer100

to Appendix B for a discussion on different forms101

of contextual information for AS2.102

Pre-training Objectives: Pre-training sentence-103

level objectives such as NSP (Devlin et al., 2019)104

and SOP (Lan et al., 2020) have been widely ex-105

plored for transformers to improve accuracy for106

downstream classification tasks. However, the ma-107

jority of these objectives are agnostic of the final108

tasks. End task-aware pre-training has been studied109

for summarization (Rothe et al., 2021), dialogue110

(Li et al., 2020), passage retrieval (Gao and Callan,111

2021), MR (Ram et al., 2021) and multi-task learn-112

ing (Dery et al., 2021). Lee et al. (2019), Chang113

et al. (2020a) and Sachan et al. (2021) use the In-114

verse Cloze task to improve retrieval performance115

for bi-encoders, by exploiting paragraph structure116

via self-supervised objectives. For AS2, recently117

Di Liello et al. (2022a) proposed paragraph-aware118

pre-training for joint classification of multiple can-119

didates. Di Liello et al. (2022b) propose a sentence-120

level pre-training paradigm for AS2 by exploiting121

document and paragraph structure. However, these122

works do not consider the structure of the down-123

stream task (specifically contextual AS2). To the124

best of our knowledge, ours is the first work to125

study transformer pre-training strategies for AS2126

augmented with context using cross-encoders.127

3 Contextual AS2128

AS2: Given a question q and a set of answer can-129

didates S = {s1, . . . , sn}, the goal is to find the130

best sk that answers q. This is typically done by131

learning a binary classifier C of answer correct-132

ness by independently feeding the pairs (q, si), i ∈133

{1, . . ., n} as input to C, and making C predict 134

whether si correctly answers q or not. At inference 135

time, we find the best answer for q by selecting 136

the answer candidate sk which scores the highest 137

probability of correctness k = argmaxiC(q, si). 138

Contextual AS2: Contextual models for AS2 ex- 139

ploit additional context to improve the final accu- 140

racy. This has been shown to be effective (Lauri- 141

ola and Moschitti, 2021) in terms of overcoming 142

coreference disambiguation and lack of enough 143

information to rank the best answer at the top. Dif- 144

ferent from the above case, contextual AS2 models 145

receive as input a tuple (q, si, ci) where ci is the 146

additional context. ci is usually the sentences im- 147

mediately before and after the answer candidate. 148

4 Context-aware Pre-training Objectives 149

We design a transformer pre-training task that 150

aligns well with fine-tuning contextual AS2 mod- 151

els, both structurally and semantically. We exploit 152

the division of large corpora in documents and the 153

subdivision of documents in paragraphs as a source 154

of supervision. We provide triplets of text spans 155

(a, b, c) as model inputs when pre-training, which 156

emulates the structure of (q, si, ci) for contextual 157

AS2 models, where a, b and c play the analogous 158

role of the question, the candidate sentence (that 159

needs to be classified), and the context (which helps 160

in predicting (a, b) correctness), respectively. For- 161

mally, given a document D from the pre-training 162

corpus, the task is to infer if a and b are two sen- 163

tences extracted from the same paragraph P ∈ D. 164

The semantics learned by connecting sentences 165

in the same paragraph transfer well downstream, as 166

the model can re-use previously learned relations 167

between entities and concepts, and apply them be- 168

tween question and answer candidates. Relations 169

in one sentence may be used to formulate questions 170

that can be answered in the other sentence, which 171

is most likely to happen for sentences in the same 172

paragraph. We expand this discussion with some 173

examples in Appendix A. We term this task: “Sen- 174

tences in Same Paragraph (SSP)” and design three 175

ways of choosing the appropriate contextual infor- 176

mation c. We present details on how we sample 177

spans a, b and c from the pre-training documents. 178

Static Document-level Context (SDC) Here, we 179

choose the context c to be the first paragraph P0 180

of D = {P0, .., Pn} from which b is extracted. 181

This is based on the intuition that the first para- 182

graph acts as a summary of a document’s content 183

(Chang et al., 2020a): this strong context can help 184
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the model at identifying if b is extracted from the185

same paragraph as a. We call this static document-186

level context since the contextual information c is187

constant for any b extracted from the same docu-188

ment D. Specifically, the positive examples are189

created by sampling a and b from a single ran-190

dom paragraph Pi ∈ D, i > 0. For the previously191

chosen a, we create hard negatives by randomly192

sampling a sentence b from different paragraphs193

Pj ∈ D, j ̸= i ∧ j > 0. We set c = P0 for this194

negative example as well since b still belongs to195

D. We create easy negatives for a chosen a by196

sampling b from a random paragraph P ′
i in another197

document D′ ̸= D. In this case, c is chosen as the198

first paragraph P ′
0 of D′ since the context in the199

downstream AS2 task is associated with the answer200

candidate, and not with the question.201

Dynamic Paragraph-level Context (DPC) We202

dynamically select the context c to be the para-203

graph from which the sentence b is extracted. We204

create positive examples by sampling a and b from205

a single random paragraph Pi ∈ D, and we set206

the context as the remaining sentences in Pi, i.e.,207

c = Pi \ {a, b}. Note that leaving a and b in Pi208

would make the task trivial. For the previously cho-209

sen a, we create hard negatives by sampling b from210

another random paragraph Pj ∈ D, j ̸= i, and set-211

ting c = Pj \ {b}. We create easy negatives for a212

chosen a by sampling b from a random P ′
i in an-213

other document D′ ̸= D, and setting c = P ′
i \ {b}.214

Dynamic Sentence-level Local Context (DSLC)215

We choose c to be the local context around the sen-216

tence b, i.e, the concatenation of the previous and217

next sentence around b in P ∈ D. To deal with218

corner cases, we require at least one of the previ-219

ous or next sentences of b to exist (e.g., the next220

sentence may not exist if b is the last sentence of221

the paragraph P ). We term this DSLC as the con-222

textual information c is specified at sentence-level223

and changes correspondingly to every sentence b224

extracted from D. We create positive pairs similar225

to SDC and DPC by sampling a and b from the226

same paragraph Pi ∈ D, with c being the local227

context around b in Pi (and a /∈ c). We automati-228

cally discard paragraphs that are not long enough229

to ensure the creation of a positive example. We230

generate hard negatives by sampling b from another231

Pj ∈ D, j ̸= i, while for easy negatives, we sam-232

ple b from a P ′
i ∈ D′, D′ ̸= D (in both cases c is233

set as the local context around b).234

5 Datasets 235

Pre-Training To perform a fair comparison and 236

avoid any improvement stemming from additional 237

pre-training data, we use the same corpora as 238

RoBERTa (Liu et al., 2019). This includes the 239

English Wikipedia, the BookCorpus (Zhu et al., 240

2015), OpenWebText (Gokaslan and Cohen, 2019) 241

and CC-News. See Appendix C.1 for more details. 242

We transform the datasets to implement the pre- 243

training objectives that we described in Section 4. 244

Contextual AS2 We evaluate our pre-trained 245

models on three public and two industrial datasets 246

for contextual AS2. For all datasets, we use the 247

standard “clean” setting, by having at least one pos- 248

itive and one negative candidate per question in the 249

dev. and test sets. We measure performance using 250

Precision-at-1 (P@1) and Mean Average Precision 251

(MAP). Datasets statistics and details are presented 252

in Appendix C.2. 253
• ASNQ is a large scale AS2 dataset (Garg et al., 254

2020) derived from NQ (Kwiatkowski et al., 2019). 255

The questions are user queries from Google search, 256

and answers are extracted from Wikipedia. 257

• WikiQA is a small dataset (Yang et al., 2015) 258

for AS2 with questions extracted from Bing search 259

engine and answer candidates retrieved from the 260

first paragraph of Wikipedia articles. 261

• NewsAS2 is a large AS2 dataset created from 262

NewsQA (Trischler et al., 2017), a MR dataset, fol- 263

lowing the procedure of Garg et al. for ASNQ. The 264

dataset contains ∼70K human generated questions 265

with answers extracted from CNN/Daily Mail. 266

• IQAD is a large scale industrial dataset contain- 267

ing de-identified questions asked by users to a pop- 268

ular commercial virtual assistant. IQAD contains 269

∼220k questions where answers are retrieved from 270

a large web index (∼1B web pages) using Elas- 271

ticsearch. We use two different evaluation bench- 272

marks for IQAD: (i) IQAD Bench 1, which con- 273

tains 2.2k questions with ∼15 answer candidates 274

annotated for correctness by crowd workers and (ii) 275

IQAD Bench 2, which contains 2k questions with 276

∼15 answer candidates annotated with explicit fact 277

verification guidelines for correctness by crowd 278

workers. (Our manual analysis indicates a higher 279

annotation quality for QA pairs in Bench 2 than 280

Bench 1). Results on IQAD are presented relative 281

to a baseline due to the data being internal. 282

6 Experiments 283

Continuous Pre-Training We use RoBERTa- 284

Base and ELECTRA-Base public checkpoints (pre- 285
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Model Context
ASNQ WikiQA NewsAS2 IQAD Bench 1 IQAD Bench 2

MAP P@1 MAP P@1 MAP P@1 MAP P@1 MAP P@1

ELECTRA-Base ✗ 69.3 (0.0) 65.0 (0.2) 85.7 (0.9) 78.5 (1.6) 81.3 (0.2) 75.6 (0.2) Baseline Baseline
ELECTRA-Base ♣ ✓ 72.3 (0.6) 68.1 (0.8) 83.1 (1.3) 73.8 (2.1) 82.0 (0.4) 76.0 (0.5) -0.6% -1.0% -0.4% -0.9%

(Ours) ELECTRA-Base + SSP (SDC) ✓ 74.7 (0.5) 69.6 (0.3) 88.7 (0.1) 82.9 (0.2) 82.7 (0.2) 77.0 (0.4) +1.2% +0.6% +0.9% +1.4%
(Ours) ELECTRA-Base + SSP (DPC) ✓ 74.4 (0.2) 70.5 (0.2) 88.0 (0.6) 81.3 (0.6) 82.7 (0.5) 77.3 (0.7) +0.4% -0.6% +0.4% +0.1%
(Ours) ELECTRA-Base + SSP (DSLC) ✓ 74.3 (0.3) 70.0 (0.8) 87.0 (0.9) 79.7 (1.4) 82.8 (0.4) 77.3 (0.5) +1.0% +0.6% +0.2% 0.0%
(Ours) ELECTRA-Base + SSP (All) ✓ 73.8 (0.4) 68.8 (0.4) 87.5 (0.5) 81.5 (0.7) 82.7 (0.2) 77.2 (0.3) +0.1% -0.4% +0.1% -0.1%

RoBERTa-Base ✗ 68.2 (0.5) 63.5 (0.5) 85.1 (1.9) 77.2 (3.1) 81.7 (0.1) 76.2 (0.2) +0.6% +0.1% +0.7% +1.3%
RoBERTa-Base ♣ ✓ 71.6 (0.6) 67.6 (0.6) 84.4 (1.5) 77.0 (2.1) 82.4 (0.2) 76.6 (0.7) +0.4% 0.0% +1.1% +1.7%

(Ours) RoBERTa-Base + SSP (SDC) ✓ 73.1 (0.5) 68.7 (0.8) 87.8 (0.6) 81.8 (0.9) 82.8 (0.1) 76.9 (0.2) +1.7% +3.0% +1.0% +1.7%
(Ours) RoBERTa-Base + SSP (DPC) ✓ 73.2 (0.4) 69.2 (0.5) 89.9 (0.2) 85.2 (0.4) 82.3 (0.1) 76.0 (0.1) +0.4% +1.2% +1.2% +2.7%
(Ours) RoBERTa-Base + SSP (DSLC) ✓ 72.9 (0.4) 69.0 (0.3) 87.8 (0.9) 81.6 (1.3) 82.6 (0.2) 77.0 (0.2) +0.6% +1.5% +1.0% +1.4%
(Ours) RoBERTa-Base + SSP (All) ✓ 72.9 (0.6) 68.2 (0.8) 88.2 (0.9) 82.4 (1.7) 83.0 (0.2) 77.3 (0.5) +1.2% +2.4% +1.4% +2.2%

Table 1: Results (std. dev. in parenthesis) on AS2. Models with ♣ are from (Lauriola and Moschitti, 2021). ✓
and ✗ denote whether local contextual information was used in fine-tuning. SDC, DPC and DSLC indicate the
pre-training variants of the SSP task that we propose. Best results are in bold while we underline statistically
significant improvements over the two contextual baselines (♣) using a Student t-test with 95% of confidence level.

training from scratch would have required large286

amounts of computational resources), and perform287

continuous pre-training using our objectives for288

∼10% of the compute used by the original models.289

Complete details are given in Appendix E. We ex-290

periment with each of our pre-training objectives291

independently, as well as combining all of them.292

Fine-Tuning We fine-tune each continuously pre-293

trained model on all the AS2 datasets. As baselines,294

we consider (i) standard pairwise-finetuned AS2295

models, using only the question and the answer296

candidate, and (ii) contextual fine-tuned AS2 mod-297

els from (Lauriola and Moschitti, 2021), which use298

the question, answer candidate and local context.299

Results Table 1 summarizes the results of our300

experiments averaged across 5 runs. On ASNQ,301

our pre-trained models get 3.8 - 5.5% improve-302

ment in P@1 over the baseline using only the303

question and answer. Our models also outper-304

form the stronger contextual AS2 baselines (1.6%305

with RoBERTa and 2.4% with ELECTRA), indi-306

cating that our task-aware pre-training can help im-307

prove the downstream fine-tuning performance. On308

NewsAS2, we observe a similar trend, where all our309

models (except one) outperform both the standard310

and contextual baselines. On WikiQA, a smaller311

dataset, the contextual baseline underperforms the312

non-contextual baseline, highlighting that with few313

samples the model struggles to adapt and reason314

over three text spans. Our pre-training approaches315

provide the maximum performance improvement316

on WikiQA (up to 8 - 9.1% improvement over the317

non-contextual and contextual baselines).318

On IQAD, we observe that the contextual base-319

line performs on par or lower than the non-320

contextual baseline, indicating that off-the-shelf321

transformers cannot effectively exploit the context322

available for this dataset. The answer candidates 323

and context for IQAD are extracted from millions 324

of web documents. Thus, learning from the con- 325

text in IQAD is a harder task than learning from it 326

on ASNQ, where the context belongs to a single 327

Wikipedia document. Our pre-trained models help 328

to process the diverse and possibly noisy context 329

of IQAD, and produce a significant improvement 330

in P@1 over the contextual baseline. 331

The DPC and DSLC approaches align well (of- 332

ten having overlapping or identical contexts for 333

the same (a, b) input): this explains their compa- 334

rable performance across all datasets. In SDC, the 335

context c can potentially be very different from 336

(a, b), and this may help in exploiting information 337

from multiple documents/domains as in case of 338

IQAD. For these reasons, we believe DPC and 339

DSLC should be used when answer candidates are 340

extracted from the same document, while SDC 341

works best with candidates collected across multi- 342

ple documents. We present an extended discussion 343

of our results in Appendix G. Also, we observe 344

that combining all the objectives together does not 345

always outperform the individual objectives, which 346

is probably due to the misalignment between the 347

different approaches for sampling context in our 348

pre-training strategies. 349

7 Conclusions 350

In this paper, we have proposed three pre-training 351

strategies for transformers, which (i) are aware of 352

the downstream task of contextual AS2, and (ii) use 353

the document and paragraph structure information 354

to define effective objectives. Our experiments 355

on three public and two industrial datasets using 356

two transformer models show that our pre-training 357

strategies can provide significant improvement over 358

the contextual AS2 models. 359
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Appendix550

A Intuition behind SSP Pre-training551

In this Section, we expand on the discussion of why552

the task of predicting whether 2 sentences are ex-553

tracted from same paragraph of a document (SSP)554

can help the downstream task of AS2. We start by555

considering an example of a paragraph extracted556

from Wikipedia composed of three sentences:557

s1: Lovato was brought up in Dallas, Texas; she558

began playing the piano at age seven and guitar at559

ten, when she began dancing and acting classes.560

s2: In 2002, Lovato began her acting career on561

the children’s television series Barney & Friends,562

portraying the role of Angela.563

s3: She appeared on Prison Break in 2006 and on564

Just Jordan the following year.565

Given a question of the type "What are the act-566

ing roles of X", a standard language model can567

easily reason to select answers of the type "X568

acted/played in Y", as this is about matching the569

subject argument of the question with the object570

argument of the answer, for the same predicate act-571

ing/playing. However, the same LM would have572

a harder time selecting answers of the type "X ap-573

peared in Y " because this requires learning the re-574

lation between the entire predicate argument struc-575

ture of acting vs. the one of appearing.576

In contrast, a LM pre-trained using our SSP ap-577

proach can learn these implications, as it reasons578

about these concepts and relations from s3, e.g.,579

"appearing in Prison Break and Just Jordan" (which580

are TV series), are related to concepts and relations581

from s2, e.g., "having an acting career". This is582

learned as our model reasons to connect sentences583

which are in the same paragraphs. During fine-584

tuning, we use the question text in place of one585

of the two sentences but the model can still reuse586

the relations learned between sentences, and apply587

them between question and the answer candidates.588

Speaking in more general terms, some of the589

relations that are in one sentence may be used to590

formulate questions that can be answered in the591

other sentences. This happens with the high prob-592

ability for sentences appearing within the same593

paragraph. This rationale also motivates our choice594

of easy and hard negative examples.595

B Contextual Information for AS2596

In addition to local context around answer candi-597

dates (the previous and successive sentences), other598

contextual signals can also be incorporated to im- 599

prove the relevance ranking of answer candidates. 600

Meta-information like document title, abstract/first- 601

paragraph, domain name, etc. corresponding to 602

the document containing the answer candidates can 603

help answer ranking. These signals differ from the 604

previously mentioned local answer context as they 605

provide “global” contextual information pertaining 606

to the documents for AS2. 607

Lauriola and Moschitti (2021) present an initial 608

exploration of global contextual signals for AS2, 609

along with their experiments on local answer con- 610

text. This is done by computing a Bag of Words 611

(BoW) vector representation over the document 612

from which the answer is extracted, and then con- 613

catenating this with the [CLS] embeddings from 614

the transformer before feeding it to the final clas- 615

sification layer (the global context is not encoded 616

as a transformer input). Empirically, they show 617

that using local answer context outperforms global 618

answer context on some datasets, while achieves 619

comparable performance on others. 620

In this work, our primary objective is to design 621

pre-training techniques that help the transformer 622

encoder reason over an additional input (the con- 623

text) which is related to the answer candidate in 624

some manner to eventually help improve the rela- 625

tive ranking of answer candidates. We don’t put 626

any constraints on what form this context can take, 627

for eg: it can be derived from the same paragraph 628

as the answer candidate, or it can be derived from 629

the first paragraph of the document, etc. Due to 630

global contextual information not being available 631

for all the datasets we consider (documents having 632

missing paragraphs in some cases), we empirically 633

evaluate our approaches using only the local an- 634

swer context. Our Static Document-level Context 635

(SDC) objective, which uses the first paragraph 636

of the document for the context input slot, cap- 637

tures global information pertaining to the document 638

((Chang et al., 2020b) show that the first paragraph 639

acts as a summary of a document’s content). We 640

hypothesize that this will improve downstream per- 641

formance using other global contextual signals in 642

addition to local answer context. 643

C Datasets 644

C.1 Pre-training 645

RoBERTa was trained over English Wikipedia, the 646

BookCorpus (Zhu et al., 2015), STORIES (Trinh 647

and Le, 2018), OpenWebText (Gokaslan and Co- 648
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hen, 2019) and CC-News. However, STORIES is649

no longer publicly available, and thus we ignore it.650

We preprocess Wikipedia, the BookCorpus, CC-651

News and OpenWebText by filtering away: (i) sen-652

tences having a length smaller than 20 characters,653

(ii) paragraphs shorter than 60 characters and (iii)654

documents shorter than 200 characters. We split655

paragraphs in sequences of sentences using the656

NLTK tokenizer (Loper and Bird, 2002) and we657

create the datasets for continuous pre-training fol-658

lowing the definitions in Section 4.659

For each objective, we sample randomly up to 2660

hard negatives and additional easier negatives until661

the total number is 4. Instead of reasoning in terms662

of sentences, we designed our objectives to cre-663

ate a and b as small spans composed of 1 or more664

contiguous sentences. For a, we keep the length665

equal to 1 sentence because it emulates the ques-666

tion, which usually is just a single sentence. For b,667

we randomly sample the length between 1 and 3.668

The length of the context c cannot be decided a pri-669

ori because it depends on the specific pre-training670

objective and the length of the paragraph.671

All the resulting continuous pre-training datasets672

are about 300GB in size (uncompressed) and con-673

tain around 350M training examples each.674

C.2 Fine-Tuning675

The statistics on the number of unique questions676

and question-answer pairs for each fine-tuning677

dataset are provided in Table 2. While ASNQ678

has a huge number of negatives for each question679

(more than 300 on average), the other datasets have680

a smaller number of answer candidates per ques-681

tion. All datasets are converted to the “clean” set-682

ting, which means questions without at least a posi-683

tive and a negative answer candidates are removed,684

which is a standard practice in AS2.685

NewsAS2 was created by splitting each docu-686

ment in NewsQA into individual sentences with687

the NLTK tokenizer (Loper and Bird, 2002). Then,688

for each sentence, we assigned a positive label if689

it contained at least one of the annotated answers690

for that document, a negative label otherwise. This691

lead to a dataset with 1.69% positives sentences per692

query in the training set, 1.66% in the dev set and693

1.68% in the test set. We will release this NewsAS2694

dataset along with code and models from our paper.695

Dataset Train Dev Test

#Q #QA #Q #QA #Q #QA

ASNQ 57242 20377568 1336 463914 1336 466148

WikiQA 2118 20360 122 1126 237 2341

IQAD 221334 3894129 2434 43369 2252 38587
2088 33498

NewsAS2 71561 1840533 2102 51844 2083 51472

Table 2: Number or unique questions and question-
answer pairs in the fine-tuning datasets. IQAD Bench 1
and Bench 2 sizes are mentioned in the Test set column
corresponding to IQAD.

D Frameworks & Infrastructure 696

Our framework is based on (i) HuggingFace Trans- 697

formers (Wolf et al., 2020) for model architecture, 698

(ii) HuggingFace Datasets (Lhoest et al., 2021) 699

for data processing, (iii) PyTorch-Lightning for 700

distributed training (Falcon et al., 2019) and (iv) 701

TorchMetrics for AS2 evaluation metrics (Detlef- 702

sen et al., 2022). 703

We performed our pre-training experiments for 704

every model on 8 NVIDIA A100 GPUs with 40GB 705

of memory each, using fp16 for tensor core accel- 706

eration. 707

E Details of Continuous Pre-Training 708

We experiment with RoBERTa-Base and 709

ELECTRA-Base public checkpoints. RoBERTa- 710

Base contains 124M parameters while ELECTRA- 711

Base contains 33M parameters in the generator 712

and 108M in the discriminator. 713

We do continuous pre-training starting from the 714

aforementioned models for 400K steps with a batch 715

size of 4096 examples and a triangular learning 716

rate with a peak value of 10−4 and 10K steps of 717

warm-up. In order to save resources, we found it 718

beneficial to reduce the maximum sequence length 719

to 128 tokens. In this setting, our models see about 720

210B additional tokens each, which are exactly 721

the 10% of those used in the original RoBERTa 722

pre-training. Moreover, in terms of complexity our 723

objectives are more efficient because the attention 724

computational complexity grows quadratically in 725

the sequence length, which in our case is 4 times 726

smaller. 727

We use cross-entropy as the loss function for 728

all our pre-training and fine-tuning experiments. 729

Specifically, for RoBERTa pre-training we sum 730

the MLM and our proposed binary classification 731

losses with equal weights (1.0). For ELECTRA 732

pre-training, we sum three losses: MLM loss with 733

a weight of 1.0, the Token Detection loss with a 734

weight of 50.0, and our proposed binary classifica- 735
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Model Hyper-parameter ASNQ WikiQA NewsAS2 IQAD

RoBERTa

Batch size 2048 32 256 256
Peak LR 1e-05 5e-06 5e-06 1e-05
Warmup steps 10K 1K 5K 5K
Epochs 6 30 8 10

ELECTRA

Batch size 1024 128 128 256
Peak LR 1e-05 2e-05 1e-05 2e-05
Warmup steps 10K 1K 5K 5K
Epochs 6 30 8 10

Table 3: Hyper-parameters used to fine-tune RoBERTa
and ELECTRA on the AS2 datasets. The best hyper-
parameters has been chosen based on the MAP results
on the validation set.

tion losses with a weight of 1.0.736

During continuous pre-training, we feed the737

text tuples (a, b, c) (as described in Section 4)738

as input to the model in the following format:739

‘[CLS]a[SEP]b[SEP]c[SEP]’. To provide indepen-740

dent sentence/segment ids to each of the inputs a,741

b and c, we initialize the sentence embeddings lay-742

ers of RoBERTa and ELECTRA from scratch, and743

extend them to an input size of 3.744

The pre-training of every model obtained by745

combining ELECTRA and RoBERTa architectures746

with our contextual pre-training objectives took747

around 3.5 days each on the machine configuration748

described in Appendix D. All the dataset prepara-749

tion required 10 hours over 64 CPU cores.750

F Details of Fine-Tuning751

The most common paradigm for AS2 fine-tuning752

is to consider publicly available pre-trained trans-753

former checkpoints (pre-trained on large amounts754

of raw data) and fine-tune them on the AS2 datasets.755

Using our proposed pre-training objectives, we are756

proposing stronger model checkpoints 1 which can757

improve over the standard public checkpoints, and758

can be used as the initialization for downstream759

fine-tuning for contextual AS2.760

To fine-tune our models on the downstream AS2761

datasets, we found it is beneficial to use a very large762

batch size for ASNQ and a smaller one for IQAD,763

NewsAS2 and WikiQA. Moreover, for every exper-764

iment we used a triangular learning rate scheduler765

and we did early stopping on the development set if766

the MAP did not improve for 5 times in a row. We767

fixed the maximum sequence length to 256 tokens768

in every run, and we repeated them 3 times with dif-769

ferent initial random seeds. We did not use weight770

decay but we clipped gradients larger than 1.0 in ab-771

solute value. More specifically, for the learning rate772

we tried all values in {5 ∗ 10−6, 10−5, 2 ∗ 10−5}773

1We plan to release our code and pre-trained model check-
points after the anonymity period.

for RoBERTa and in {10−5, 2 ∗ 10−5, 5 ∗ 10−5} 774

for ELECTRA. Regarding the batch size, we tried 775

all values in {512, 1024, 2048, 4096} for ASNQ, 776

in {64, 128, 256, 512} for IQAD and NewsAS2 777

and in {16, 32, 64, 128} for WikiQA. More details 778

about final setting are given in Table 3. 779

For the pair-wise models, we format in- 780

puts as ‘[CLS]q[SEP]si[SEP]’, while for con- 781

textual models we build inputs of the form 782

‘[CLS]q[SEP]si[SEP]ci[SEP]’. 783

We do not use extended sentence/segment ids 784

for the non-contextual baselines and retain the 785

original model design: (i) disabled segment ids 786

for RoBERTa and (ii) only using 2 different sen- 787

tence/segment ids for ELECTRA. For the fine- 788

tuning of our continuously pre-trained models as 789

well as the contextual baseline, we use three dif- 790

ferent sentence ids corresponding to q, s and c for 791

both RoBERTa and ELECTRA. 792

Finally, differently from pre-training, in fine- 793

tuning we always provide the previous and the next 794

sentence as context for a given candidate. 795

The contextual fine-tuning of every models on 796

ASNQ required 6 hours per run on the machine 797

configuration described in Appendix D. For the 798

other fine-tuning datasets, we used a single GPU 799

for every experiment, and runs took less than 2 800

hours. 801

G Additional Discussion of Results 802

In this Section, we explain the difference in per- 803

formance we observe from our three pre-training 804

objectives on different AS2 datasets. The AS2 805

datasets we consider for our experiments have sig- 806

nificantly different structures: specifically, ASNQ 807

and NewsAS2 have answer candidates being ex- 808

tracted from a single document (Wikipedia and 809

CNN Daily Mail article respectively), while IQAD 810

has answer candidates being extracted from multi- 811

ple documents. This also results in the context for 812

the former being more homogeneous (context for 813

all candidates for a question is extracted from the 814

same document), while for the latter the context 815

is more heterogeneous (extracted from multiple 816

documents for different answer candidates). 817

Our DPC and DSLC pre-training approaches are 818

well aligned in terms of the context that is used 819

to help the SSP predictions. The former uses the 820

remainder of the paragraph P as context (after re- 821

moving a and b), while the latter uses the sentence 822

previous and next to b in P . We observe empiri- 823
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cally that the contexts for DPC and DSLC often824

overlap partially, and are sometimes even identi-825

cal (considering average length of paragraphs in826

the pre-training corpora is 4 sentences). This ex-827

plains why models pre-trained using both these828

approaches perform comparably in Table 1 (with829

only a very small gap in P@1 performance).830

On IQAD, we observe that the SDC approach831

of providing context for SSP outperforms the DPC832

and DSLC approaches for pre-training. In SDC,833

the context c can potentially be very different from834

a and b (as it corresponds to the first paragraph of835

the document), and this can aid exploiting infor-836

mation and effectively ranking answer candidates837

from multiple documents (possibly from different838

domains) like for IQAD.839

H Qualitative Examples840

In Table 4 we show a comparison of the ranking841

produced by our models and that by the contex-842

tual baselines on some questions selected from the843

ASNQ test set.844

ELECTRA

Q how many games does a team have to win for the world series
A1 Seven games were played, with the Astros victorious after game

seven, played in Los Angeles.
A2 In 1985, the format changed to best-of-seven.
A3 Since then, the 2011, 2014, and 2016 World Series have gone the

full seven games.
A4 The winner of the World Series championship is determined

through a best-of-seven playoff, and the winning team is awarded
the Commissioner’s Trophy.

A5 The Houston Astros won the 2017 World Series in 7 games against
the Los Angeles Dodgers on November 1st, 2017, winning their
first World Series since their creation in 1962.

RoBERTa

Q where are trigger points located in the body
A1 Myofascial pain is associated with muscle tenderness that arises

from trigger points, focal points of tenderness, a few millimeters
in diameter, found at multiple sites in a muscle and the fascia of
muscle tissue.

A2 Myofascial trigger points, also known as trigger points, are de-
scribed as hyperirritable spots in the fascia surrounding skeletal
muscle.

A3 Trigger points form only in muscles.
A4 These in turn can pull on tendons and ligaments associated with

the muscle and can cause pain deep within a joint where there are
no muscles.

A5 They form as a local contraction in a small number of muscle fibers
in a larger muscle or muscle bundle.

Table 4: Some qualitative examples from ASNQ test
set where our ELECTRA and RoBERTa models with
DSLC contextual continuous pre-training were able to
rank the correct candidate in the top position while the
contextual baselines failed. The answer candidates are
shown ranked by the ordering produced by the contex-
tual baselines. Other positive candidates answers are
colored in light green.

I Discussion of Limitations 845

Our proposed pre-training approaches require ac- 846

cess to large GPU resources (pre-training is per- 847

formed on 350M training samples for large lan- 848

guage models containing 100’s of millions of pa- 849

rameters). Additionally, the pre-training takes a 850

long time duration to finish (2-3 days even on 8 851

NVIDIA A100 GPUs), which highlights that this 852

procedure cannot easily be re-done with newer data 853

being made available in an online setting. How- 854

ever the benefit of our approach is that once the 855

pre-training is complete, our released model check- 856

points can be directly fine-tuned (even on smaller 857

target datasets) for the downstream contextual AS2 858

task. For the experiments in this paper, we only con- 859

sider datasets from the English language, however 860

we conjecture that our techniques should work sim- 861

ilarly for languages with limited morphology, like 862

English. Finally, we believe that the three proposed 863

objectives could be better combined in a multi-task 864

training scenario where the model has to jointly 865

predict the task and the label. At the moment, we 866

leave this as a future research direction. 867
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