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Abstract

Self-supervised learning (SSL) has emerged as a powerful paradigm for learn-
ing representations without labeled data. Most SSL approaches rely on strong,
well-established, handcrafted data augmentations to generate diverse views for
representation learning. However, designing such augmentations requires domain-
specific knowledge and implicitly imposes representational invariances on the
model, which can limit generalization. In this work, we propose an unsupervised
representation learning method that replaces augmentations by generating views
using orthonormal bases and overcomplete frames. We show that embeddings
learned from orthonormal and overcomplete spaces reside on distinct manifolds,
shaped by the geometric biases introduced by representing samples in different
spaces. By jointly leveraging the complementary geometry of these distinct mani-
folds, our approach achieves superior performance without artificially increasing
data diversity through strong augmentations. We demonstrate the effectiveness of
our method on nine datasets across five temporal sequence tasks, where signal-
specific characteristics make data augmentations particularly challenging. Without
relying on augmentation-induced diversity, our method achieves performance
gains of up to 15-20% over existing self-supervised approaches. Source code:
https://github.com/eth-siplab/Learning-with-FrameProjections

1 Introduction

Sample efficient unsupervised representation learning is a critical open challenge in deep learning.
While recent self-supervised techniques have shown strong performance in several tasks, they typically
rely on handcrafted, aggressive data augmentations that expose the model to different versions of
input samples in each training epoch to increase data diversity [1-H4]. Moreover, these techniques
only perform well when augmentations are carefully optimized for the downstream task; otherwise,
model performance drops significantly [1}5]. Even when the downstream task is known, designing
effective augmentations can be challenging for data types lacking a well-defined structure, i.e., text,
tabular, signals [6H9], as the overly strong augmentations can cause model collapse [10].

Simply increasing sample diversity through random augmentations does not guarantee improved
performance in representation learning. Augmentations are only effective if the augmented views of
a sample have sufficient representational similarity with views of other intra-class samples [[11} [12]].
Without adequate representational similarity, the model struggles to generalize across classes, leading
to degraded performance on downstream tasks where intra-class variability is not fully captured
through augmentations [[13H15]]. Since achieving representational similarity in high-dimensional
spaces is challenging [16], a key limitation of augmentation-based self-supervised learning lies in
its reliance on handcrafted transformations. These transformations can distort critical class-level
structure, leading to severe performance degradation in complex or heterogeneous data regimes.
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Another important limitation of augmentation-based SSL is the inductive bias and feature suppres-
sion introduced by both the augmentation process and the optimization objective [17,|18]. When
trained with strong augmentations, models tend to focus on a subset of predictive features, typically
those aligned with the enforced invariances, while suppressing other features that may be critical
for downstream performance [19]. This often leads to reliance on a subset of features, harming
generalization [[17,20]. Moreover, the inductive bias introduced by augmentations acts as a double-
edged sword: promoting invariance to certain transformations may benefit some tasks but harm
others [21,22]. For instance, rotation-based augmentations are commonly used in activity recognition
from inertial measurement units to promote robustness across sensor placements [23]]. However, they
can obscure orientation-dependent features needed to distinguish between fine-grained activities such
as standing and sitting, where subtle differences in sensor orientations are important. These effects
are more problematic in signals where the semantic relevance of augmentations varies across tasks.

In this work, we introduce a novel SSL method that generates views by projecting data onto an
orthonormal base and an overcomplete frame, and then performs instance discrimination across these
spaces. We demonstrate that the learned representations from instance discrimination lie on distinct
manifolds, each shaped by the inherent geometric biases of its corresponding projections. Building
on this observation, we propose to learn mapping functions that transform the original data’s space
into alternative latent representations. This mapping enables us to obtain multiple representations
using a single encoder augmented with mapping functions to use collections of manifolds.

Our method leverages the inductive bias introduced by projecting data into an orthonormal basis and
an overcomplete frame to learn representations. We summarize our contributions as follows:

* We propose a novel self-supervised learning method that projects data into an orthonormal
basis and an overcomplete frame to perform instance discrimination across these fixed
transformations without increasing the data diversity using handcrafted augmentations.

* We empirically and theoretically show that embeddings from these transformations lie on
distinct manifolds shaped by domain-specific geometric biases. We then jointly leverage
these complementary structures to improve performance on downstream tasks.

* We demonstrate that our method achieves up to 15-20% performance gains over existing
methods on nine datasets across five temporal sequence tasks while using fixed transforma-
tions across datasets unlike existing approaches that rely on task-specific augmentations.

2 Method

2.1 Notations

We use lowercase letters (e.g., ) to denote scalar quantities, and bold lowercase letters (e.g., X) to
represent vectors, such as time series, while bold uppercase letters (e.g., X) are used for matrices.
The parametric function is represented as fy(.) where 6 is the parameter. The discrete Fourier
transformation is denoted as F(.), yielding a complex variable as F, (k) € C*, where k is the
frequency. The detailed calculations for each operation are given in the Appendix [A]

2.2 Setup

We follow the common SSL setup. Given an unlabeled dataset D = {(x;)}£ ; where each x; is a
real-valued sequence of length L with C channels, the goal is to train a learner fy that maps inputs to
representations h; = fy(x;). To evaluate the learned representations, we train a linear classifier on
top of the frozen encoder using a labeled set D; = {(x;,y;)}%, with M < K andy, € {1,...,N}.

2.3 Orthonormal Bases and Overcomplete Frames

Analyzing signals in different domains is useful for detecting desired patterns, as each domain is

tailored to capture specific aspects of the data [24} 25]]. Our method employs the Fourier, 7, (k), and

the Gabor wavelet transform, Wy (a, b), to construct, respectively, an orthonormal basis (using a tight

frame) and an overcomplete frame. Equation [I]defines their corresponding discrete transformations.
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where 1 is the Gabor frame. We use these two transformations as they are complementary. Specifi-
cally, the Fourier transform provides a global overview of the signal’s frequency content, while the
Gabor wavelet enables localized frequency analysis by zooming on specific time intervals [26].

2.4 Instance Discrimination

Data representations in the Fourier and Gabor wavelet domains are inherently unique, i.e., distinct
samples yield distinct transforms. Consequently, the instance discrimination task between the views in
different domains is well-defined. Moreover, since these transformations are isometric, the resulting
views are not only unique for each sample but also preserve the underlying geometry. These properties
offer significant advantages over existing SSL methods relying on strong augmentations, which may
distort samples, causing different classes to appear similar or losing task-relevant information [27].

We use the normalized temperature-scaled cross-entropy (NT-Xent) loss [[1, 28] 29]], based on cosine
similarity, with separate encoders and projection heads for each domain. For example, the Fourier
branch takes the transformed input F and produces an embedding via z* = gz (f#(Fy)), as shown
in Figure[I] The instance discrimination loss calculated across three domains is defined in Equation 2]
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, whered #d', and d,d € {t, F,W},
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were t is the time domain. We compute the final loss as the unweighted sum of all pairwise terms
between the time, Fourier, and wavelet domains over a batch of N samples, as shown in Equation

N
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2.4.1 Invariances

Strong augmentations in instance discrimination can cause encoders to become overly reliant on a
subset of features or invariant to some transformations that discard task-relevant information [17, 30]].
Since the designed augmentations implicitly assume a particular set of representational invariances
(e.g., invariance to rotation), and can perform poorly when a downstream task violates this assumption
(e.g., distinguishing sitting vs standing) []]. Proposition [2.1shows that our method avoids this issue.

Proposition 2.1. Let f; denote an optimal encoder under NT-Xent for domain d € {t, F,W}. If for
some unintended transformation W, the encoder is invariant, i.e., f5(Wx) = f3(x), then for any
anchor sample x the NT-Xent loss across domains is lower bounded by the number of negatives.

d) _(d'
o(z0,20) = log(K +1) >0,
where K > 1 is the number of negatives that become near-positives due to the invariance.

Proof. At the NT-Xent optimum, positive pairs align perfectly [31}[32]],
fa(T(x) = fi(x), Vd,

for the domain transformations 7 € {t, F, W}. If f is also invariant to W, then at least K’ > 1
negatives satisfy z;, = f;(Wx;) with (f}(x), 2;) =~ 1. Even if all other negatives are dissimilar, the
denominator of NT-Xent contains at least K + 1 large terms, yielding

e1/7'
{(x) > —log ————— =1log(K +1).
() 2 —log gy a7 = los(K +1)
Thus the loss admits a nontrivial lower bound in the presence of unintended invariance. O

Proposition states that, unlike augmentation-based contrastive learning setups which may en-
courage spurious invariances [8},130], our method ensures that such invariances cannot minimize the
overall optimization objective. The detailed derivation of the proposition is provided in Appendix [A]
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Figure 1: Overview of our method. (a) Original data and its transformed versions. The Fourier
transformation is given in polar coordinates where we feed to the model magnitude and angle of
each harmonic separately. (b) Representations h from each encoder lie on distinct manifolds M,
with latent mappers ®% ¢ translating across domain-specific spaces. (c) Embeddings z from each
projection, with non-linear mappers used during pre-training to improve predictability across spaces.

2.5 Collections of Manifolds

Transforming data into well-known bases or overcomplete frames has clear benefits for pattern
recognition, but doing this at inference time is costly due to the extra encoders and transformations.
When a transformation operates in the same space as convolutional filters, prior works showed that
applying transformations to the filters instead of the input reduces inference cost while still producing
diverse representations (e.g., rotating filters instead of rotating the image and reprocessing it [33]).

However, our method transforms data into the complex space where applying equivalent transfor-
mations to neural networks is not straightforward. We therefore propose lightweight latent space
mappers P that transform the original representations into other spaces to leverage their geometry in

downstream tasks. Specifically, we train two mappers, <I>§1_>d : Mgf) — M;ld), where d € {F, W},
to approximate the representations produced by the corresponding domain-specific encoders.

Our approach focuses on learning pairwise relationships, such as relative angles between samples
across manifolds, rather than mapping individual points between latent spaces. Therefore, unlike prior
methods based on affine latent-space mappings [34], we use non-linear mappers. This is motivated
by Proposition[2.2] which shows that in high dimensions, representations of the same sample across
spaces can become orthogonal, while pairwise angle variation can span the full range. This suggests
that preserving pairwise geometry is more challenging than aligning individual points.

Proposition 2.2 (Angle Concentration vs. Pairwise Spread). Ler R ") ~ Unif (S9=1), where

h) = fr(F(x)). Although individual samples across latent spaces tend toward orthogonality, the
pairwise angular difference A;; between distinct samples can span the full range up to .

arccos (R, A7) = g, while arccos((hgt),hg»t)» — arccos((h\", h(f)>) =A; <7 4

Proof.
dim(R{" N =d—2>1 = 30 A (AT W) = cose, Yo e l0,a], (5)
Therefore, |A;;| = |9§;7) — 92(;:)‘ <. O

Figure [2] illustrates Proposition [2.2] by showing the angle densities between the same (i = j,
arccos (<h(t)7 ' )>)) and different samples (i # j, |A;;|) across domains. We also provide support-
ing details in Appendix [C| and the full proof in Appendix[A] The key point of Proposition[2.2]is that
preserving near-orthogonality for many pairs does not guarantee a global isometry between latent
spaces. Because higher-order relations (e.g., triplet geometry and curvature) can change, the spaces
can differ globally despite pairwise near-orthogonality.

In our method, we aim to take advantage of these different geometries, shaped by inductive bias of
data and architectures, to improve the performance in the downstream tasks. Therefore, we employ
two mapper functions (@ffd) to capture the geometry of latent spaces for other domains.



To improve predictability across latent
spaces and reduce estimation error while
preserving distinct geometries, we em-
ploy lightweight mappers over the em-
beddings, &4 : MY —» MDD, de
{F, W}, and optimize them jointly us-
ing the loss defined in Equation [f]

The overall pre-training loss for encoders
is the sum of L, and Lip, with no addi-
tional weighting. After pre-training, we 0853

freeze the encoders and train the latent 04025
space mappers using the same Ly,p loss. o ) ] o
During inference, we only use the main Figure 2: Radial histograms illustrating angle distributions.
encoder f, and the latent space mappers (a) Top: Angle density of arccos ((h'"), h*))); Bottom:
(I)z’f?d’ excluding all projectors g(-), aux- Angle density of A;;. (b) Same illustration from the Gabor
iliary encoders (fr, fyy), and mappers wavelet hOY) 1n both cases, representations of the same
on projected embeddings ®L7¢. We pro- samples across domains approach orthogonality, while
vide pseudocode implementation of our  pairwise angle differences remain widely distributed.
method in Appendix B
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3 Experiments

3.1 Datasets

We conducted experiments on nine datasets across five tasks, including heart rate (HR) estimation
from photoplethysmography (PPG), step counting and activity recognition using inertial measure-
ments (IMUs), cardiovascular disease classification from electrocardiogram (ECG) and sleep stage
classification from electroencephalography (EEG). We provide brief descriptions of each dataset
below. Additional details, including pre-training and fine-tuning settings are available in Appendix [E]

Heart rate 'We used the IEEE Signal Processing Cup in 2015 (IEEE SPC) [35]], and DaL.ia [36]]
for PPG-based heart rate prediction from wrist. We used the leave-one-session-out (LOSO) cross-
validation, which evaluates models on subjects/sessions that were not used for training.

Activity recognition We used HHAR [37]], and USC [38] for activity recognition from inertial mea-
surement units from smartphones or wearable devices. We evaluated the cross-person generalization
performance of the models, that is, the model was evaluated on previously unseen subjects.

Cardiovascular disease (CVD) classification We conducted experiments on China Physiological
Signal Challenge (CPSC2018) [39] and Chapman University, Shaoxing People’s Hospital (Chapman)
datasets [40]. We selected the same four specific leads as in [41]] while treating each dataset as a
single domain with a small portion of the remaining dataset used for fine-tuning. We split the dataset
for fine-tuning and testing based on patients (each patient’s recordings appear in only one set).

Step counting We used the Clemson dataset [42], which released for pedometer evaluation. We
conducted experiments using wrist IMUs where labels are available through videos.

Sleep stage classification We used the Sleep-EDF dataset, from PhysioBank [43]], which includes
197 whole-night PSG sleep recordings, where we used a single EEG channel (i.e., Fpz-Cz) with a
sampling rate of 100 Hz, following the same setup as in [44] while using only 10% for fine-tuning.

3.2 Baselines

Fundamentals We compare our method to core SSL approaches in the linear evaluation setting [/1]].
These include SimCLR [1l], BYOL [2], VICReg [3], and Barlow Twins [45]. We also include
CLIP [46], since data transformations in our method can be interpreted as different data domains.



Temporal sequences We also compare our method with SSL techniques for temporal data, in-
cluding TS-TCC [44], TF-C [47], simMTM [48]], and TS2Vec [49]. These methods are designed
specifically for temporal sequences; for instance, TF-C uses a Fourier encoder during both training
and inference, while TS-TCC employs task-specific augmentations with transformer architectures.

3.3 Implementation

We employed ResNet [50] with eight blocks [51], as the backbone for the encoder, with the projector
consisting of two fully connected layers. For latent space mapping, we use a lightweight 1D
convolutional that downsamples and reconstructs the input with transposed convolutions, preserving
dimensions while enabling non-linear transformations with fewer than 1k parameters. Similarly, we
use two convolutional encoders for the Fourier- and wavelet-transformed inputs. To ensure a fair
comparison, baselines use 384-dimensional encoders as output, while ours uses 128 per encoder.

We train models with a batch size of 1024 for 256 epochs and decay the learning rate using the cosine
decay schedule. After pre-training, we train a single linear layer classifier on features extracted from
the frozen pre-trained network. The models were optimized using Adam [52] with a learning rate of
0.003, while the linear layer was fine-tuned with a learning rate of 0.03. Reported results are mean
and standard deviation values across three independent runs with different seeds. For each dataset,
we set the Fourier transform length equal to the signal length while excluding negative frequencies.
For the wavelet transform, we use 48 logarithmically spaced scales ranging from 1 to 128 for all
datasets. More details about the implementation and architectures are given in Appendix [E.3]

4 Results

We report the performance of our method against baselines across nine datasets spanning five tasks in
Tables[T]to[3] Overall, our approach achieves up to 20—30% improvements in some tasks, with an
average gain of 10—15% across all datasets compared to both general SSL and sequence-specific
techniques. Moreover, unlike prior approaches that employ different augmentations, our method uses
the same transformation across tasks without increasing the diversity of the training set.

Our main results show that our method outperforms previous techniques by a significant margin in
several datasets. To further investigate, we explore whether prior methods can close this gap with
comparable modifications. Specifically, we ask the following questions.

1. Our model includes lightweight mappers with additional backbones. We ask if prior methods
can match our performance by increasing backbone capacity, that is, by brute-force scaling.

2. Our model employs instance discrimination task with more than one view. Thus, we also ask if
existing techniques with multiple positive views can match our performance.

To answer the first question, we increased the backbone capacity of previous fundamental techniques,
especially SimCLR, BYOL and Barlow Twins as they represent unique approaches, by 2x compared
to our method by adding additional residual blocks to the backbone. Results are given in Figure 3]
We omit the error bars for figures where the standard deviations were negligible relative to the means.

Table 1: Performance comparison of our method with other methods in for HR estimation

Method IEEE SPC12 1IEEE SPC22 DaLiA

MAE | RMSE | pT MAE | RMSE | pT MAE | RMSE | pT
Supervised
FCN 15.13+0.50 21.63+0.48 52.09+5.43 16.57+0.91 26.20+0.60 55.984+0.78 12.45+0.12 18.35+0.24  56.98+0.78
ResNet 7.08+0.20 13.60+0.38  79.60+1.10  9.90+1.47 16.67+£1.60 67.584+2.98 5.50+0.05 10.84+0.03  82.10+0.06
Self-Supervised
SimCLR 12.4240.05 20.96+030 73.62+0.52 16.414+022 22.62+0.39 52.16+1.12 16.88+0.19 22.64+0.22 56.374+0.21
BYOL 18.71+£0.93  25.01£1.50 69.824+4.36 19.4440.57 26.66+0.90 46.74+5.02 15.59+0.38 21.04+0.36 57.11+0.06
VICReg 13.17+£0.82  20.38+1.27 73.65+0.02 16.78+0.47 23.10+0.75 54.10+1.26 15.704+0.15 21.83+0.18  55.32+0.62
Barlow Twins 13.22+0.34  20.424+0.88 67.51+2.01 22.08+0.85 29.35+0.56 35.65+3.40 11.874+0.57 19.20+£0.29 62.20+0.40
CLIP 10.31+0.35 17.10+£0.30 76.00+£1.35 16.73+£1.08 26.39+0.44 41.59+2.80 13.20+0.18 20.88+0.22 50.42+1.49
TS-TCC 11.56+0.41 18.04+0.66 78.38+1.41 16.52+034 24.86+059 44.93+3.40 10.234+0.01 18.19+0.04 62.77+0.04
SimMTM 13.204£0.11  18.274£0.22  73.78+1.10  17.03+0.63  25.18+£0.98 51.33+2.62 13.61+0.05 20.12+£0.07 55.47+0.09
TF-C 12.1040.15  20.124+0.37 66.01+1.14  14.124+0.36 22.86+0.44 52.74+1.40 16.15+0.43 23.47+0.13 50.1241.45
TS2Vec 9.80+0.49  16.64+0.55 75.30+1.10 24.57+030 24.83+0.16 50.40+2.31 12.654+0.32 20.04+0.33  58.17+0.53
Ours 8.84+0.50 14.37+0.95 82.67+1.30 14.06+1.09 21.48+2.01 54.88+1.89 9.13+0.20 16.92+0.56  63.72+0.06




Table 2: Performance comparison of our method with other techniques for Activity and Step

HHAR usc Clemson
Method

Acc T W-F1 1 FlL 1 Acc 1 W-FI 1 F1 1 MAPE | MAE | RMSE |
Supervised
FCN 91.80+0.65 91.86+0.65 91.07+0.72 48.87+0.74 46.02+0.95 45.33+0.82 5.02+0.26 2.86+0.15 4.05+0.13
ResNet 92.97+121  93.01+1.19 92.27+1.19 52.17+1.22 49.38+0.84 48.01+1.22 6.55+2.37 3.78+1.44 5.04+1.43
Self-Supervised
SimCLR 52.404+0.20 51.544+0.30 50.794+0.20 29.16+0.69 29.02+0.67 28.99+0.79 8.70+0.22  4.36+0.13 6.30+0.24
BYOL 49.64+2.48 48.63+2.75 48.02+2.59 28.40+1.23 28.23+1.42 28.23+0.96 9.35+0.19  4.72+0.12 6.79+0.24
VICReg 43.82+1.17 42.86+0.84 42.16+0.76 23.75+£1.00 23.16+1.03 22.92+1.21 10.87+£0.61 5.47+0.35 7.78+0.14
Barlow Twins 52.47+0.84 51.73+0.87 51.19+0.87 27.244+0.19 26.844+0.20 26.25+0.77 9.89+0.35 4.95+0.15  7.03+0.21
CLIP 48.66+0.50 47.32+0.54 47.87+0.51 25.55+0.63 25.78+125 25.17+£0.75 8.52+046  4.26+0.23 6.73+0.63
TS-TCC 85.51£0.46 85.33+0.59 84.8440.64 33.61+072 33.11+1.09 33.91+0.79 5.61+0.15  2.70+0.06 4.69-+0.38
SimMTM 41.77+£0.60 40.80+0.77 40.14+0.68 22.34+0.28 25.68+0.41 29.72+1.78 8.77+£0.18  4.61+£0.32 6.90+0.18
TF-C 40.12+0.47  40.20+0.49 38.74+0.49 30.78+0.39 28.16+0.23 30.82+1.41 12.47+0.72 6.31+£0.37 7.93+0.30
TS2Vec 86.13+0.12  84.30+0.27 83.98+0.29 35.40+0.96 32.17+1.26 35.47+1.42 5.92+0.93 3.01+£0.28 5.02+0.42
Ours 89.36+0.66 89.37+0.69 88.59+0.61 52.21+1.09 48.64+1.52 48.22+1.11 5.16+044  2.50+£0.13  4.65+0.45

Table 3: Performance comparison of our method with other techniques for CVD and Sleep

Method

Chapman CPSC

Sleep

Acc T AUC 1 F1 1 Acc T

AUC 1 F1 1 Acc T W-FI1 1 Kappa T

Supervised

FCN 84.63+2.13  95.40+0.57 82.414+2.40 63.64+1.12  91.304+0.02 60.43+1.04 71.98+0.86 63.33+0.84 62.01£1.30
ResNet 93.16£0.41  98.59+0.05 92.024+042 7521£1.73 95.024+0.03 71.70+1.90 76.944+0.97 67.52+1.95 69.14+0.61

Self-Supervised

SimCLR 75284057 93.55+£0.25 74.04+050 50.10£041 87.20+£0.07 50.10+024 72454232 58.93£1.59 59.47+3.20
BYOL 76.08£040 93.54:£0.18 74.804045 51904030 87.05£022 50.89+038 70.77£027 58.23+£0.55 55.90+1.20
VICReg 70.10£1.90 89.35+0.93 67.84+1.79 46214129 84.70+0.50 42.51+096 68.72+1.03 57.24:£1.04 57.13+1.42
Barlow Twins ~ 72.43£145 91.1740.60 70424153 48.67+0.51 85.78+0.19 44574053 70.10+0.62 57.72+0.81 57.8840.82
CLIP 82984096 95.15+£042 81.00£1.03 50.01£0.89 86.40£0.32 47.9940.89 73.16£081 62.06:-091 63.754+1.23
TS-TCC 73504055 90.65+0.07 71.10+057 51594122 86.3240.16 50.27+132 62.80+1.13 52.43+1.05 48.98+1.68
SimMTM 84294129 95.87+0.18 83314125 51704023 87.08+£0.21 50.62+0.55 74.69+184 63.53+1.21 65.31+2.76
TE-C 85.844039 96.1040.10 84.71£040 47.86:£0.69 86274005 45421066 64.50£1.80 56.774221 5261241
TS2Vec 78.87+1.03 90.23+024 81324047 48.734085 85494037 46.57+£1.10 65.71+£1.06 55.32+1.77 56.81£1.90
Ours 87.21£0.80 96.50+£0.21 85.30+098 52.10£090 87.11+040 51.26+1.18 77.30£1.04 68.05+£0.86 69.16+1.32

As shown in the results, simply increasing
model size does not close the performance
gap. In fact, larger models often exhibit sta-
ble or decreased performance, particularly
in heterogeneous low-data regimes, likely
due to overfitting even with strong augmen-
tations. In contrast, our method consistently
outperforms them across all tasks, achieving
10-15% higher performance with approxi-
mately half the number of parameters.

One observation from this comparison is that
TF-C performs worse than others for some
datasets, despite using two encoders, one
for the time and one for the Fourier domain.
We hypothesize that this performance drop
may stem from the strong augmentations
applied in TF-C framework, which changes
the magnitude of frequency components and
degrade representations for noisy signals.
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Figure 3: Performance of our method on DaLiA (a)
using correlation (p) and on Chapman (b) using F1
score, compared to other self-supervised learning tech-
niques. Barlow Twins is abbreviated as (BWTW), and
backbone sizes are shown in millions of parameters.
The red circle in each plot denotes our method, which
achieves higher performance with fewer parameters.

For the second question, we generated a third view using a task-specific random augmentation and
applied the instance discrimination loss across all views, following the same setup as our method.
Figure[d presents the results, including comparisons with larger backbone for prior techniques.

These results show that adding a third view improves performance for prior methods, but they still
fall short of ours by about 10%. Notably, introducing a third view increases data diversity for these



methods, while in our case, using a third transformation does not. This empirical evidence highlights
the data-hungry nature of prior SSL approaches and the efficiency of our method further.

(@) (b) (c)
Methods Osingle-view @ multi-view  Methods Osingle-view @multi-view  Methods Osingle-view @ multi-view
SimCLR O—— @ SimCLR O—O simCLR SimCLR (2x)
o0—o0 OQ——— @SimCLR (2x) o—o0
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Performance (%) [*) Performance (%) o Performance (%) o

58 60 62 64 52 54 56 58 90 75 80 85

Figure 4: Performance comparison across datasets, (a) DaLiA (p), (b) HHAR (F1), and (¢) Chapman
(F1), when adding a third view for instance discrimination similar to our method. While prior methods
benefit from the additional view, their performance still lags behind our approach by a large margin.

4.1 Ablation Experiments

Our method consists of multiple components, so we conduct many ablation studies to assess the
contribution of each. First, we evaluate the impact of each data transformation by selectively removing
them individually. We exclude the orthonormal basis transformation (w/o OB) and retain only the
overcomplete frame, then exclude the overcomplete frame transformation (w/o OF) and retain only
the orthonormal basis in the method. We present the results across tasks in Tables ] [5] and [6]

Table 4: Ablation on proposed method in PPG datasets for HR estimation

Method _EEESPCI2 IEEE SPC22 DaLiAppc
MAE | RMSE | ot MAE | RMSE | ot MAE | RMSE | e
Ours 8.84:0.50 14374095 82674130 14.06:1.00 21484201  54.88+189  9.13£020 16924056  63.7220.06

w/o OB 1123 (+239)  17.26 (+2.89)  75.99 (-6.68) 15.88 (+1.82) 24.82(+3.34) 53.96 (-0.92) 8.87(:026) 16.13(-0.79)  65.34 (+1.62)
wioOF  9.80 (+0.96)  15.18 (+0.81) 81.19 (-148) 1533 (+1.27) 2429 (+2.81) 53.05(-1.83)  9.60 (+0.47) 17.31 (+0.39) 63.06 (-0.66)

w/o 'b;fd 9.62 (+0.78) 15.46 (+1.09)  80.21 (-2.46)  14.16 (+0.10)  22.46 (+0.98) 56.23 (+2.35) 8.90 (-0.23)  16.27 (-0.65)  64.65 (+0.93)

These results show that the best performance is mostly achieved when both transformations are used
together, though the degree of performance change varies across tasks. One interesting result from our
ablation study is that using only the Gabor wavelet transform sometimes outperforms the combination
with Fourier transformation. Specifically, we observe that the Gabor wavelet is more effective for
tasks involving sudden signal changes (e.g., abnormal heart rhythms, neural activity during sleep),
while the Fourier transform better captures global structures such as periodic patterns in heart rate or
step counting from inertial measurements. This empirical evidence supports our motivation for using
complementary, principled transformations to jointly capture diverse signal characteristics.

Second, we retain both transformations and their NT-Xent loss but exclude the latent space mappers
@ﬁfd during inference, performing linear probing solely on the original latent space h®)_ Results
are reported in the same tables with the first ablation experiment under "w/o @;ﬁd". As the results
indicate, removing the mappers from our method degrades performance compared to the best case.

We conducted additional ablations to evaluate the performance of latent space mappers <I>tffd and to
assess the impact of embedding mappers ®. < on the performance. Results are given in Appendix@

4.2 Discussion of results

Do we need data augmentations? Data augmentations are widely viewed as essential for learning
representations from unlabeled data [1} 53]]. A celebrated theory, InfoMin [27], argues that effective
augmentations reduce mutual information between views while retaining task-relevant features.
However, our method does not rely on asymmetric views but instead uses unitary transformations
that preserve all information. Our results suggest that asymmetric views are not essential for SSL.

A recent study [12] highlights the importance of strong augmentations in instance discrimination by
showing that augmentations can cause different intra-class samples to align when their augmented
views overlap (i.e., two different cars appear similar when both are cropped to show only the wheels).



Table 5: Ablation on proposed method in /MU datasets for Activity and Step

HHAR usc Clemson
Method

Acc 1 W-F1 1 F1 1 Acc 1 W-FI 1 F1 1 MAPE | MAE | RMSE |
Ours 89.36+0.66 89.37+0.69 88.59+0.61 52.21+1.09 48.64+1.52 48.22+1.11 5.16+0.44 2.50+0.23 4.65+0.50

w/o OB 86.76 (-2.60) 85.88 (-3.49) 86.50 (-2.09) 44.70 (-7.51) 41.20 (-7.44) 41.95(-6.27) 7.50 (+2.34)  3.65 (+1.15) 5.79 (+1.14)
w/o OF 88.84 (-0.52) 87.88 (-1.49) 88.84 (-0.25) 49.06 (-3.15) 45.17 (-3.47)  45.61 (-2.61) 5.59 (+0.43) 2.72 (+0.22)  5.07 (+0.42)

wio @474 87.68 (-1.68) 86.84 (-2.53) 87.58 (-1.01) 51.26 (:0.95) 47.81(-0.83) 47.70(-0.52) 5.20 (+0.04) 2.45(-0.05) 4.53(:0.12)

Table 6: Ablation on proposed method in ECG and EEG datasets for CVD and Sleep

Method Chapman CPSC Sleep

Acc T FI 1 AUC 1 Acc T F11 AUC 1 Acc T F11 Kappa (k) T
Ours 87.21+0.80  96.50+0.21 85.30+0.98 52.10+0.90 87.114+0.40 51.26+1.18 77.30+1.04 68.05+0.86 69.16£1.32
w/o OB 86.79 (:0.42) 96.51 (+0.01) 85.90 (+0.60) 58.81 (+6.71) 89.35 (+2.24) 55.91 (+4.65) 81.15 (+3.85) 70.73 (+2.68) 7437 (+5.21)
w/o OF 81.82(-539) 94.15(-2.35) 79.26 (-6.04) 4583 (-6.27) 84.47 (-:2.64) 44.08 (-7.18)  73.91(-3.39)  63.98 (-4.07)  64.75 (-4.41)

wio ®i%  84.98 (2.23) 9570 (-0.80) 82.69 (-2.61) 51.44(-0.66) 86.59 (-0.52) 49.63 (-1.63)  79.30 (+2.00) 68.40 (+0.35) 71.67 (-2.51)

However, this explanation does not extend to our method. Since our transformations are unitary, the
views preserve the structure of the original sample without introducing overlaps across instances.
Our findings show that instance-discrimination—based self-supervised learning can succeed without
relying on hand-crafted strong augmentations for temporal signals. This opens the door for future
work to test whether the same holds in other modalities, such as images and audio.

Implicit bias An interesting finding from our experiments is that, although all encoders are trained
with the same loss at the same time and without stop-gradient operations (commonly used to prevent
collapse), the geometries of the learned representation differ significantly across encoders. We
attribute this to the applied data transformations, which introduce strong implicit biases that shape
each latent space in ways that emphasize different characteristics, such as global or local features.

5 Limitations

While our work demonstrates that instance discrimination-based SSL can be effective without aggres-
sive data augmentations, we do not provide a theoretical explanation for the observed performance
gains. We hypothesize that the representational improvements arise from implicit biases of the
transformations, though this remains unverified by formal theoretical analysis.

In terms of scope, our experiments primarily focused on classification tasks, as this setting involves a
wide variety of augmentations, including task-specific ones [5]], making it a natural testbed for our
augmentation-free approach. Nevertheless, since our method leverages both global (FFT) and local
(Gabor) representations for representation learning, it also holds potential for forecasting tasks where
capturing both long-range and localized temporal patterns is critical. Exploring this direction in both
self-supervised and supervised paradigms remains an important avenue for future work.

Finally, while our method applies Fourier and wavelet transformations, it is worth noting that although
the Fourier transform is computationally efficient [54], computing wavelet coefficients is expensive.
In our experiments, we mitigated this by caching the coefficients after a one-time computation. We
quantitatively evaluate the computational overhead of our method and other techniques in Appendix [F}
showing that our approach maintains competitive runtime compared to state-of-the-art works.



6 Related Work

Data augmentation in SSL. Learning representations through data transformations dates back
to early self-supervised learning methods, which introduced pretext tasks that reformulated the
problem into a supervised one, such as predicting image rotations [55]] or spatial contexts [S6),
57]. More recently, data augmentations have become a central component of SSL, with stronger
transformations applied to boost sample diversity [} [12, 44]. However, learning representations
with strong augmentations introduce new challenges [22, 58]. Mainly, strong augmentations can
alter the label of a sample [59], leading to model collapse [27], and may suppress informative
features [22]]. This often causes models to rely on a subset of features aligned with augmentation-
induced invariances, potentially ignoring others that are critical for downstream performance [[19]
20, 22]]. Motivated by these, we propose a method that replaces data augmentations with principled,
well-understood transformations. Instead of relying on task-specific, hand-tuned augmentations, our
approach performs instance discrimination using views generated from principled transformations.

Mapping between latent spaces Mapping between different representations is a growing area in
deep learning as it enables the use of pre or co-trained models across domains [60, |61]]. For instance,
authors in [62]] proposed a zero-shot communication method between latent spaces by projecting them
into a shared relative space, constructed from pairwise distances between anchor points. However,
this approach relies on anchor points to capture the structure of each latent space. More recent work
focuses on directly translating between latent spaces using affine or orthogonal transformations [63].
These methods are inspired by Procrustes analysis for latent space alignment [64,65]], which has been
applied in language processing 66, |67]]. Yet, orthogonal transformations preserve inner products and
therefore cannot capture the full representational differences learned by distinct encoders—an aspect
central to our approach. Instead, our method estimates the geometry of the target latent space, shaped
by domain-specific transformation biases, and enables its use in downstream tasks.

Multiview contrastive learning Learning representations with instance discrimination using multi-
ple views without strong augmentations was proposed early in SSL [68H70]. Earlier methods [[68]
used different channels (e.g., L and ab from an RGB image) as views, which act as implicit augmen-
tations and may bias the model toward certain features. In contrast, our method uses orthonormal
and overcomplete transformations that are unitary or redundant by design, avoiding feature selection
bias. Moreover, unlike prior work, we introduce lightweight mappers that learn the geometry of each
representation space to better align them during inference to enable effective linear probing.

Implicit bias from frequency Prior work has leveraged frequency information for representation
learning in temporal sequences [47} [71,9]. Some approaches, in line with ours, use the NT-Xent loss
to maximize agreement between time-domain inputs and their frequency-transformed counterparts
using the Fourier transform [47] or spectrograms [72, [73]. However, our method differs in two
key ways. First, these methods rely on additional encoders for each transformed view [47, [72]
and still require task-specific data augmentations. In contrast, we replace augmentations entirely
with principled transformations that generalize across datasets without task-specific tuning. Second,
previous work typically focuses on either global frequency features (via Fourier transform) [47, [74]
or localized frequency content (via spectrograms) [72} [73]]. Our method integrates both by jointly
using orthonormal and overcomplete representations while remaining more efficient using lightweight
latent space mappers instead of using separate modality-specific encoders.

7 Conclusion

In conclusion, we have shown that principled geometric transformations in the form of orthonor-
mal bases and overcomplete frames are effective for self-supervised representation learning. By
generating views through unitary and frame-based projections, our method uses complementary
manifolds without perturbing or enlarging the data. Crucially, our approach achieves up to 15-20%
performance gains across nine datasets in five tasks, without relying on larger backbone architectures
or handcrafted, domain-specific augmentations. Our results underscore the importance of exploiting
intrinsic geometric biases in data representations, opening a new avenue for SSL methods that
prioritize mathematical structure over empirical trial and error. We believe this work paves the way
toward more generalizable, augmentation-free self-supervision across a wide range of domains.
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contributions.
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used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
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Justification: Our theoretical results are given in Appendix [A]
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the implementation details in the main manuscript Sec-
tion[3.3]and Appendix
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: For double-blind review, we include our code in the supplementary materials.
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided details in Appendix [E.T|and
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation across three runs with different random seeds
to reflect the variability and statistical reliability of our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided the computer resources in Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research was conducted in accordance with the NeurIPS Code of Ethics,
and no ethical concerns or violations were identified.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work proposes a general self-supervised learning framework for temporal
data. It does not target a specific application area, and as such, it does not have direct or
immediate societal impact.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not include any pretrained language models, image generators
or scraped datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have added the relevant references in the appropriate sections of the
manuscript.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the source code accompanying our method as part of the supple-
mentary material under a CC BY-NC-SA: Attribution-NonCommercial-ShareAlike - license.
The code is documented and sufficient to reproduce the results presented in the paper. No
new datasets or personally identifiable data are introduced.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large language models (LLMs) were used in the development or implemen-
tation of the core methods in this research. Any LLM use was limited to minor writing or
editing support and did not impact the scientific contributions of the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Theoretical Analysis

Here, we present complete proofs of our theoretical study, starting with notations. We assume all the
samples are absolutely summable, and finite.

A.1 Representations and Notations
A.1.1 Orthonormal Bases and Overcomplete Frames

An orthonormal basis in a Hilbert space provides a complete set of mutually orthogonal unit-norm
vectors. The Fourier transform forms such a basis for square-integrable signals over finite intervals.
For a discrete signal x of length L, the discrete Fourier transform (DFT) is defined as:

1= .
Fi(k) = i Z z(n)e T,

n=0

where k indexes the discrete frequencies. In this normalized form, the Fourier basis satisfies:

DIk en) = Ix%,
k

making it a tight frame (also known as a Parseval frame [75]]). A frame can be a generalization of a
basis that allows for redundancy. A set {¢;} C H is a frame for Hilbert space H if:

Allx® < 7 Ix 00)* < Blx]%,

for all z € ‘H and constants 0 < A < B < oo. Frames provide stability and flexibility, especially for
non-stationary or noisy signals.

The Gabor wavelet transform is an example of such a redundant frame. It uses Gaussian-modulated si-
nusoids to achieve localized time-frequency decomposition, trading off time and frequency resolution
optimally [76]. The discrete Gabor wavelet transform for a signal x is defined as in below.

e = = S (),

n=0

where a controls the scale and b controls the translation (time shift); we use 48 log-spaced scales and
apply shifts at single time-step intervals. The detailed implementations for the wavelet calculations
are given in Appendix The Gabor wavelet ¢ (¢) is defined as:

Y(t) = 672%2 eI 2met

where o controls the width of the Gaussian envelope and £ is the center frequency. The Gabor wavelet
captures localized oscillations and is well-suited for analyzing transient or non-stationary features in
wide-range of signals. In our work, the Fourier transform provides a global view of signal frequency
content, while the Gabor wavelet transform enables fine-grained, localized analysis. Combining these
complementary perspectives improves the expressiveness of the learned representations.

The complete list of notations used throughout this manuscript is provided in Table[A.T.3]

A.1.2 Manifold

In our method, we define each latent representation space as a manifold M, similar to the manifold
hypothesis [77,[78]], which states that high-dimensional data often lies on low-dimensional structures
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within the ambient space. Since we generate three different latent representations (from time, Fourier,
and wavelet domains), we consider a collection of manifolds, each corresponding to a specific
transformation. In our implementation, each manifold is assigned a fixed latent dimension of 128,
resulting in a total latent dimension of 384 across the three manifolds. For a fair comparison, we set
the latent dimension to 384 for baseline methods, ensuring the linear classifier has the same number
of parameters during fine-tuning.

A.1.3 Notation List

Notation Description

X Temporal sequence represented as a bold lowercase symbol

Fx k] Fourier transformation of the temporal sequence with % frequencies

Wi (a,b) Gabor wavelet transformation of the temporal sequence

fx() The encoder to obtain representations for the temporal sequence

=0 The encoder to obtain representations for the Fourier transformed temporal sequence

fw() The encoder to obtain representations for the wavelet transformed temporal sequence

gx(.) The projector to obtain embeddings for the temporal sequence

gr () The projector to obtain embeddings for the Fourier transform of the temporal sequence

gw () The projector to obtain embeddings for the wavelet transformation of the temporal sequence
R The representations obtained from temporal sequence, i.e., R = fx(x)

) The representations obtained from the Fourier transformation of the temporal sequence
r) The representations obtained from the Gabor wavelet transformation of the temporal sequence
2 The embeddings of the sequence obtained from the projected representations, i.e. 2() = ¢ (ht)
zF) The embeddings of the Fourier transformed temporal sequence

zW) The embeddings of the wavelet transformed temporal sequence

s The representation mapping function from time to Fourier domain

Cbﬁfw The representation mapping function from time to Wavelet domain

il The embedding mapping function from time to Fourier domain

oLW The embedding mapping function from time to Wavelet domain

(a,b) The inner product of two vectors a and b

sim(zgd), z§-d,)) Cosine similarity between the embeddings

1 Perpendicular

T Temperature coefficient for NT-Xent loss

M Manifold notation

L A loss function, i.e., cross-entropy.

Table 7: Detailed list of notations used in this work
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A.2  Proof for Proposition

Proposition A.1 (Angle Concentration vs. Pairwise Spread). Ler b, ") ~ Unif (S41), where

h'Y) = f2(F(x)). Although individual samples across latent spaces tend toward orthogonality, the
pairwise angular difference A;; between distinct samples can span the full range up to 7.

arccos ((h(t),h(f)>) = g7 while arccos((hgt),hgt)» — arccos((h(}-),h(f)» =A7N; <7 ()

i j

Proof. The first part follows the Chernoff on the spherical cap for angle concentration, Let
R® ) Unif(S9-1) and write & := (b AT,

1
El]=0,  Varl¢]= . @®)
Lévy’s concentration [79} 80] gives, for every ¢ € (0, 1),
(d—2)e2
< _la—2)e”
Pr(lgl > ) < 2exp(—1F=) ——0 ©)
Hence & 25 0 and, by continuity of arccos at 0,
arccos & EN g (10)
Let distinct indices i # j while setting,
Vi=h" np" dimv=d-2>1 (d>3). (11)
Choose orthonormal w, u; € V. For any ¢ € [0, 7| define
hz(f) =u, h;r) =cos¢u+sinpu, (12)
Then
(W hT) = (B h7) =0, (A7 A7) = coso, (13)
Let
® ._ ®) (1) (F)._ (F) p(F)y _
0;; = arccos(h;”’, h;"), 0;; ' = arccos(h;” ', h;"’) = ¢. (14)
Thus
Aij =0 — 07 =0l — g, (15)

and varying ¢ over [0, 7] makes A;; sweep the full interval [95;) -, 95;)] C [—m,7]. In particular,
¢ = 0or 7 yields |A;;| = . O

Therefore, even though the angles from same samples concentrate at 7w /2, pairwise discrepancies can
reach any value up to the maximal 7.

In practice, although R and K are coupled via the same loss, we conjecture that the high-
dimensional geometry and symmetric repulsion of negatives make their joint distribution approximate
to the independent uniforms on S?~! [32]. This justifies modeling both latent spaces as samples from
Unif(S9~1) when analyzing angular gaps between non-matched pairs.
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A.3 Proof for Proposition [2.1

Proposition A.2. Ler f denote an optimal encoder under NT-Xent for domain d € {t, F,W}. If
for some unintended transformation W the encoder is invariant, i.e., f5(Wx) = f3(x), then for any
anchor sample x the NT-Xent loss across domains is lower bounded by the number of negatives.

((z(-d),zyi,)) > log(K +1) >0,

7

where K > 1 is the number of negatives that become near-positives due to the invariance.

Proof. For each domain d € {t, F, W}, let fq : X —R™ be the encoder and g4 the projection head.
We write the (unit-normalized) embedding as

2 D(x) = M ml sim(u,v) =u'v € [—
&) = gatae; €5 - and sim{w0): € [-1,1] (16)

For an anchor x in domain d and its positive view in domain d’ # d (same underlying sample), the
NT-Xent loss is

exp (sim(z(? (x), z(d) (x))/7)
exp (Sim(z(d) (x), z(d/)(X))/T) + gé: exp (sim(z(d) (%), z(dl)(xk))/T) ,

Ed,d’ (X) = —10g (17)

with temperature 7 > 0. The full instance-discrimination objective Lip (Equation [3) averages/sums
£4.q over all ordered domain pairs and batch samples.

Suppose there exists an unintended transformation W and a domain d € {¢, F, W} such that
fa(Wz) = fi(x) (18)
In a batch, let S C {k # i} be indices of near-positive negatives created by the invariance:
sim(z(d) (x), z(d/)(xk)) >1—9 forallke S, (19)
with |S| = K > 1 and some ¢ € [0, 1). In the exact invariance case, 0 = 0.

Per-pair lower bound. Fix (d, d’) and an anchor sample x. We can define the positive similarity

between embeddings as sy = sim(z(d), z(d/)). If we split the negative set into S (the K near-
positives) and R (the rest). From (I7) and (I9), we can write the loss function as in Equation [20]

espoS/T espos/T

g, (x) = —log

- 7 - > —lo
eSpos/T + ZkES esim(z(D (x),z(4) (x)) /7 + ZT‘ER esim(-)/T 8 eSpos/T + K e(1=8)/7
(20)
Factor e*re=/7 from the denominator,

1
laa(x) > —log [ .
1+ Ke =

At optimum, s,0s = 1 (0r sp0s > 1 — € in the approximate case). Since the RHS is decreasing in
Spos» the weakest bound (i.e., smallest lower bound that still holds) is obtained at 5,05 = 1, giving

1—-8—spos
= log(l +Ke = )

loa(x) > log(l + Ke—é/T) Q1)

In particular, for exact near-positives (6 = 0), {4 4 (x) > log(K + 1).

As is standard, we assume that at the NT-Xent optimum positive pairs align [31, 32], i.e.,
sim(2(9(x), 2(4)(x)) = 1. To extend this proof, we have also provided a case which also cov-

ers the approximate case. If s,os > 1 — ¢ for some small € > 0, then

loar(z) > 1og(1+Ke?) > 1og(1+Ke*5/T),

because € > 0. Thus, Equation still holds. O
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The bound in Equationis tight when s,0s = 1 and exactly K negatives have similarity 1 — ¢ while
all others contribute negligibly, so the denominator equals e'/7 + Ke(1=9)/7,

Extending to the full objective, recall that £;p (Eq.[3) sums/averages ¢4 4 over all ordered domain
pairs (d, d’) with d # d’. For a fixed anchor x, if invariance induces K 4 near-positive negatives
with parameter 04 - for pair (d, d’), then applying Equation to each pair and summing gives

Z Ed,d’ (X) Z Z 10g<1 + Kd}d’ e_éd,d’/7)7 (22)

dd’ dd’

and by linearity of expectation,

Lo 2 Bx| > log(1 4+ Kaa e teel7) 23)

d#d
Asymptotically, for fixed 7 and bounded d4 4, each affected pair contributes ©(log(1 + Ky,4/)) =
Q(log Kg4,4). If a nonzero fraction p of a batch of size B yields near-positives per affected pair
(Kq,a = O(B)), then {4 4 (x) = Q(log B) and consequently Lip = Q( > dza 108 B) over those

pairs. Thus any unintended invariance that produces even a single near-positive per ordered pair
enforces a nontrivial lower bound; if collisions scale with batch size, the bound grows at least
logarithmically in B.

Unintended invariances therefore inflate the NT-Xent denominator through near-positive negatives,
yielding the lower bound in Equation[21] We complete the proof by showing the objective cannot be
minimized without bound when such invariances hold.
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B

Algorithm

In this section, we present the pseudocode for our method during pre-training and inference. Algo-
rithm[T] describes the training procedure, which takes a sample, x, and model components as inputs,
and outputs the trained encoder and latent space mappers.

Algorithm 1 Pre-training algorithm for the proposed method

1:
2:
3:

10:

11:

Input: x, Fy, W, and the required models, i.e., fx(.).

Output: fy(.), 77, oW > The output of the pre-training is the single encoder with mappers

hY = f.(x), A = f£(F), h™Y) = fLy (W) > Obtain representations for each input

2 = g (W), 2 = gr(h7)), 2z = gy (™)) > Obtain embeddings for each representation

D LD =Yg dern F W) TR bt [E(z](ﬂl, zid/)) +0(2, zg{)l)} > Instance discrimination loss
d#d’

20 =07 (20), 20" = L7 (2()) > Obtain the estimated embeddings for both transformations

Lo = & 7 (20) 7

+ % H@;ﬁw (z(t)) -z H > Mapping loss for embeddings
1 1

Freeze { fx, f=, fw}; Omit, {gx, gw, gw, @77, ®L7M}; Train {®L 7, &!7W}

hY = f(x), ) = f£(F), hY) = fLy (W) &> Obtain representations using trained models

hf,f) =&t F (hW), hé;fv ) = O (h(®) b Obtain the estimated representations for transformations

i () 7,4

Loy = + ’@ﬁfw (h(t)) — M H1 > Mapping loss for representations

Return: f,(.), ®577, &4

Algorithm 2] outlines the inference process, using only the main encoder and lightweight mappers.
After applying the mappers, we concatenate the resulting representations for linear probing. During
linear probing, both the main encoder and the mappers are kept frozen.

Algorithm 2 The proposed method for inference

1:
2:
3:

bl

Input: x, f,(.), ®,77, and &LV,
Output: h > The output of the pre-training is the representations

h® = fx(x) > Obtain representations for inputs

hg? = o7 (hWY), hg{v ) = ®!7W(RM®) b Obtain the estimated representations in other domains

est est

h = [h(” ; rZ) h(W)] > Concatenate features from all domains

Return: h
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C Pairwise Distances

In addition to angular comparisons, we report the /> distances between sample pairs in the time,
Fourier, and wavelet domains. Figures[3] [6 and[7] visualize these results. If pairwise distances were
preserved across latent spaces, all points would lie along the y = x line—i.e., the distance between

samples ¢ and j in the time-domain latent space R would match that in the transformed domain

h'YD, where d € {F, W}.
L
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Figure 5: Pairwise ¢ distance comparisons across domains and datasets for heart rate estimation.
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We conducted this investigation across tasks involving both single- and multi-channel temporal
data. It is worth noting that while some datasets exhibit closer alignment between latent spaces,
we observed consistent and non-negligible deviations across all tasks, indicating that latent space
geometries differ across applications.
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Figure 6: Pairwise ¢ distance comparisons across domains and datasets for activity recognition.
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Figure 7: Pairwise ¢y distance comparisons across domains and datasets for cardiovascular disease
and sleep classification.

These figures reveal substantial deviations from y = « line, indicating that distances between samples
(i # j) in the latent space vary across domains. Importantly, these discrepancies are consistent despite
all encoders being trained jointly with the same objective. These observations further support our
motivation for leveraging multiple latent spaces to capture complementary structure in the data.
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D Additional Experiments

D.1 Embedding mappers

We have employed embedding space mappers (®%~¢ ) after projection layers to improve predictability
across latent spaces and reduce estimation error. In this section, we have presented the ablation
experiments regarding the performance when the embedding mappers are excluded (w/o ®L9) from
our method. The results are given in Tables 8] 0] and [T0]

Table 8: Further ablation on proposed method in PPG datasets for HR estimation

Method IEEE SPC12 IEEE SPC22 DaLiAppg

MAE | RMSE | ot MAE | RMSE | ot MAE | RMSE | ot
Ours 8.84+0.50 14.374095  82.67+130 14.06+1.09  21.48+201  54.884189  9.13£020  16.92+0.56  63.72+0.06
wlo ®L¢ 9.87 (+1.03) 1585 (+1.48) 79.78 (-2.89) 1517 (+1.11) 2475 (+227) 53.19(-1.69) 9.83 (+0.70) 17.68 (+0.76)  61.15 (-2.57)
Lin. @44 9.77 (+0.93) 1627 (+1.90) 78.77 (-3.90) 15.61 (+1.55) 24.10 (+2.58) 54.10 (-0.78) 9.23 (+0.10)  16.98 (+0.06)  63.67 (-0.05)

Non. Lin. @;?d 10.11 (+1.27)  16.06 (+1.69)  78.97 (-3.70)  15.62 (+1.56) 24.65 (+3.17) 53.03 (-1.85) 8.92(-021) 16.52(-0.30)  64.29 (+0.57)

Table 9: Further ablation on proposed method in /MU datasets for Activity and Step

Method HHAR usc Clemson

Acc t W-FI 1 F1 1 Acct W-FI 1 Fl 1 MAPE | MAE | RMSE |
Ours 89.36+0.66 89.37+0.69 88.59+0.61 52.21+1.09 48.64+1.52 48.22+1.11 5.16+0.44 2.50+0.23 4.65+0.50
wlo L4 87.77 (-1.59)  86.91 (-2.54)  87.51 (-1.08)  52.09 (-0.12)  49.31 (+0.67) 49.25 (+1.03) 5.31 (+0.15) 2.57 (+0.07) 4.76 (+0.11)
Lin. ®},>¢ 87.99 (-1.37)  87.12(-2.25) 87.88(:0.71) 51.13(-1.08) 47.55(-1.09) 47.54 (-0.68) 5.79 (+0.63) 2.55 (+0.05) 4.67 (+0.02)

Non. Lin. ®*¢  90.41 (+1.05) 89.59 (+0.22) 9036 (+1.77) 53.20 (+0.99) 48.27 (-:0.37)  49.01 (+0.79) 6.40 (+1.24) 3.11 (+0.61) 546 (+0.81)

Table 10: Further ablation on proposed method in ECG and EEG datasets for CVD and Sleep

Method Chapman CPSC Sleep

Acc T F11 AUC 1 Acc T F1 1 AUC 1 Acc T F11 Kappa (k) T
Ours 87.21 £0.80  96.50 +0.21  85.30 £0.98  52.10+0.90  87.01 £1.10 5126 £1.18  77.30 £1.04  68.05 £0.86  69.16 +1.32
wio &L 86.43 (-0.78)  96.31 (-0.19)  84.40 (-0.90)  52.03 (-0.07)  87.39 (+0.38) 51.10(-0.16)  77.98 (+0.68) 68.04 (-0.01)  70.23 (+1.11)
Lin. @44 86.35 (-0.86)  96.06 (-0.44) 8426 (-1.04) 50.58 (-1.52)  86.55 (-0.46) 48.78 (-1.48)  77.83 (+0.53) 68.61 (+0.56)  70.02 (+0.86)

Non. Lin. ‘P;L‘“i 90.91 (+3.70)  97.96 (+1.46)  89.76 (+4.46) 56.30 (+4.20) 88.09 (+1.08) 53.44 (+2.18) 79.93 (+2.63) 70.27 (+2.22) 73.10 (+3.94)

As can be seen in these tables, removing the embedding space mappers (®£~%) consistently leads to
decreased performance across all datasets. In a few cases where the performance appears slightly
better, the improvement remains within the range of standard deviation and is not statistically
significant. These results support the role of embedding-level mapping in enhancing performance.

D.2 Latent space mappers

When using latent space mappers, we employed lightweight nonlinear convolutional networks (see
Section [E.3] for architectural details). Here, we report results from replacing the mapper with either a
simple linear layer (Lin. ®.7) or a nonlinear two-layer multilayer perceptron (MLP &% ~%). We
present the results in Tables|[8] [0] and [T0}

As shown in the tables, replacing the convolutional mapper with a linear layer results in a noticeable
performance drop, suggesting that the relationships between latent spaces are too complex for simple
linear mappings. Although a non-linear MLP improves performance on some datasets, its two-layer
structure significantly increases the parameter count. To ensure a fair comparison with prior work
while avoiding added computational overhead, we use our lightweight convolutional architecture.

D.3 Using all encoders instead of mappers

We evaluate a variant of our method that directly uses the original representations from all encoders,
rather than mapping the time-domain representations into other domains. This setup yields a 4-5%
performance improvement over our default approach. However, it significantly increases the number
of parameters at inference time, making it less efficient. These results suggest a promising direction
for future work: leveraging principled transformations can substantially boost performance, though
careful trade-offs with inference cost should also be considered.
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D.4 Cross domain results

Cross-domain evaluations are commonly used to assess the generalization of self-supervised learning
methods across datasets [47, 48]]. Following this practice, we pretrain each model on a dataset and
fine tune it on another from a different domain, following the setup in [48]]. Both supervised models
in our experiments (FCN and ResNet) are initialized randomly and trained. We present the result in
Tables[IT]and[T2] Unlike linear probing, where only the linear classifier is trained with a limited data,
fine-tuning updates the entire encoder. To ensure consistency, we use the same limited data size as in
linear probing, avoiding settings that resemble supervised training with abundant labeled data.

Table 11: Performance comparison of methods for Activity and Step in cross domain settings

HHAR usc Clemson
Method

Acct W-F1 F11 Acc t W-F1 1 F11 MAPE | MAE | RMSE |
Supervised
FCN 91.804+0.65 91.86+0.65 91.07+0.72 48.87+0.74 46.02+0.95 45334082 5.02+0.26 2.86+0.15 4.05+0.13
ResNet 92.974+1.21  93.01+1.19 92.27+1.19 52.17+1.22  49.38+0.84 48.01+£1.22 6.55+2.37 3.78+1.44 5.04+1.43
Self-Supervised
SimCLR (in) 52404020 51.544030 50.79£020 29.16+£0.69 29.02+£0.67 28.99+0.79 8.70+£0.22  4.36+0.13  6.30+0.24
SimCLR (cross) 53.174£0.23  52.15+0.24 51.03+025 30.18+047 29.63+0.82 29.45+0.82 8.37+0.21  4.20+0.13 6.11+0.24
BYOL (in) 49.64+248 48.63+2.75 48.02+2.59 28.40+1.23 28234142 28234096 9.35+0.19  4.72+0.12  6.79+0.24
BYOL (cross) 50.53+1.97 47.43+2.61 49294231 28.86+1.15 29.544+140 29.51+1.05 9.534+0.12  4.39+0.15 6.25+0.33
VICReg (in) 43.82+1.17 42.86+0.84 42.16+0.76 23.75+£1.00 23.16+1.03 22.92+1.21 10.87+0.61 5.474+035 7.78+0.14
VICReg (cross) 43.26+1.04 42.18+0.84 43.63+0.79 24.43+1.06 24.98+1.03 22.66+1.04 9.75+0.51 5.11+0.35 7.37+0.14

Barlow Twins (in) 52.474+0.84 51.73+0.87 51.194+0.87 27.24+0.19 26.844+0.20 26.25+0.77 9.89+0.35 4.95+0.15  7.03+0.21
Barlow Twins (cross)  53.844+0.81 52.67+0.83 52.31+0.81 28.94+0.23 27.52+021 26.93+0.71 9.81+0.33 4.13+£0.17  6.91+0.18

CLIP (in) 48.66+0.50 47.32+0.54 47.87+£0.51 25.554+0.63 25.78+125 25.17+0.75 8.52+0.46 4.26+0.23  6.73+0.63
CLIP (cross) 49.97+0.50 45.63+0.52 46.98+0.51 25.73+0.61 25.46+1.21 24.93+0.71 7.73+0.46 3.90+0.23  5.99+0.63
TS-TCC (in) 85.51+0.46 85.33+0.59 84.84+0.64 33.61+0.72 33.11+1.09 33.91+£0.79 5.61+0.15 2.70+0.06  4.69+0.38
TS-TCC (cross) 86.25+041 86.71+0.33 83.744+0.62 33.80+0.73 33.814+0.78 33.38+0.84 4.91+0.15 3.02+0.06  4.60+0.38
SimMTM (in) 41.77+0.60 40.80+0.77 40.14+0.68 22.34+0.28 25.68+0.41 29.72+1.78 8.77+0.18 4.61+£032  6.90+0.18
SimMTM (cross) 43.76+0.52  42.98+0.66 40.38+0.57 23.18+0.26 27.17+049 30.15+1.71 8.01+0.16  4.14+0.30 6.02+0.15
TF-C (in) 40.12+047  40.20+£0.49 38.74+049 30.78+0.39 28.16+0.23 30.82+1.41 12.47+0.72 6.31+0.37 7.93+0.30
TF-C (cross) 41.40+0.52  40.12+047  39.11+0.58 31.53+0.48 30.71+0.21 31.78+1.19 12.10+£0.55 6.13+0.28 7.03+0.28
TS2Vec (in) 86.13+0.12  84.30+0.27 83.984+0.29 35.40+0.96 32.17+1.26 35474142 5.9240.93 3.01+0.28  5.02+0.42
TS2Vec (cross) 87.81+0.13  83.96+0.21 84.12+0.28 36.18+0.95 32.67+1.21 35.87+1.23 5.99+0.93 3.24+0.28 5.23+0.42
Ours (in) 89.36+0.66 89.37+0.69 88.59+0.61 52.21+1.09 48.64+1.52 48.22+1.11 5.16+0.44 2.50+0.13  4.65+0.45
Ours (cross) 90.32+0.63 89.95+0.61 89.10+0.53 53.31+0.87 49.73+1.21 49.32+1.02 5.01+0.41 2.13+0.21 4.33+0.41

For experiments regarding the activity recognition and step counting tasks (Table[IT]), we have first
used electrocardiogram signals to pretrain models and then fine tune on the specific dataset. Each
method includes two rows: the first shows in-domain results (also reported in the main manuscript),
and the second shows cross-domain performance. Results are organized top-to-bottom per method to
facilitate easier comparison.

For the cardiovascular disease classification (CVD) task (Table rlz[), we pretrain models on EEG
signals and fine-tune them on ECG datasets. For sleep stage classification, we pretrain on both ECG
datasets and fine-tune on a small subset of the EEG dataset. The results are summarized in Table
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Table 12: Performance comparison of methods for CVD and Sleep in cross domain settings

Method Chapman CPSC Sleep
Acc T AUC 1 F11 Acc T AUC 1 F11 Acc T W-F1 1 Kappa 1

Supervised

FCN 84.63+2.13  95.40+0.57 82414240 63.64+1.12 91.30+0.02 60.43+1.04 71.98+0.86 63.33+0.84 62.01+1.30
ResNet 93.16+0.41  98.59+0.05 92.02+0.42 75.21+1.73 95.024+0.03 71.70£1.90 76.94+0.97 67.52+1.95 69.14+0.61
SimCLR (in) 75.2840.57 93.554+0.25 74.04+£0.50 50.10+0.41 87.20+0.07 50.10+£0.24 72.45+2.32 58.93+1.59 59.47+3.20
SimCLR (cross) 76.58+0.55 93.924+0.22 75.39+0.48 51.03£0.40 87.48+0.06 50.25+0.22 73.56+£2.25 59.84+1.55 60.41£3.10
BYOL (in) 77.08+0.40 93.74+0.18  75.80+0.35 52.90+0.30 87.05+0.22 50.89+0.38 70.77+0.27 58.23+0.55 55.90£1.20
BYOL (cross) 77.10£0.38  94.81+0.16  77.18+0.42 52.95+0.28 87.32+0.20 51.35+0.36 71.82+0.25 59.29+0.52 56.80£1.15
VICReg (in) 70.10£1.90 89.35+0.93 67.84+1.79 46.21+£1.29 84.70+£0.50 42.51+0.96 68.72+1.03 57.24+1.04 57.13+1.42
VICReg (cross) 71.31£1.83  89.78+0.90 68.75£1.70 47.38+1.26 85.09+0.47 43.25+091 69.75£1.00 58.10£1.01 58.06+1.38

Barlow Twins (in) 72.43+145 91.17+£0.60 70.42+1.53 48.67+£0.51 85.784+0.19 44.57+0.53 70.10+£0.62 57.724+0.81 57.88+0.82
Barlow Twins (cross)  73.21+1.41 91.61+0.57 71.38£1.50 49.3240.48 86.14+0.18 45.33+0.50 71.13+0.60 58.52+0.78 58.71+0.79

CLIP (in) 82.98+0.96 95.15+0.42 81.00£1.03 50.01+0.89 86.40+0.32 47.99+0.89 73.16+0.81 62.06+091 63.75£1.23
CLIP (cross) 83.69+0.94 95.39+0.39 81.85£1.01 51.13+£0.85 86.61+0.31 48.88+0.86 74.25+0.78 63.10£0.89 64.80£1.20
TS-TCC (in) 73.50+£0.55 90.65+0.07 71.10+0.57 51.59+122 86.32+0.16 50.27+£1.32 62.80£1.13 52.434+1.05 48.98+1.68
TS-TCC (cross) 74.66+£0.53  91.00+0.06  72.10+0.55 52.35£1.18 86.51+0.15 51.17+£1.29 63.78£1.10 53.424+1.03 49.97£1.65
SimMTM (in) 84.29+1.29 95.87+0.18 83.31+1.25 51.70+£0.23 87.08+0.21 50.62+0.55 74.69+1.84 63.53+121 65.31+2.76
SimMTM (cross) 85.21+1.25 96.03+0.17 84.20+£1.20 52.34+0.22 87.33£0.20 51.52+0.53 75.88+1.78 64.60+1.18 66.31+2.71
TF-C (in) 85.844+0.39 96.10+£0.10 84.71+040 47.86+0.69 86.27+£0.05 45.424+0.66 64.50+£1.80 56.77+2.21 52.61+2.41
TF-C (cross) 86.67+0.37 96.284+0.09 85.43+0.38 49.31+0.67 86.55+0.04 46.21+£0.64 65.65+1.75 57.86+2.17 53.72+2.35
TS2Vec (in) 78.87£1.03 90.23+0.24  81.324+047 48.73+0.85 85.49+0.37 46.57+£1.10 65.71£1.06 55.324+1.77 56.81£1.90
TS2Vec (cross) 80.03+£1.00 90.48+0.23 82.13+0.45 49.61+0.82 85.76+0.35 47.28+1.07 66.94+1.04 56.34+1.74 57.84+1.87
Ours (in) 87.21+0.80 96.50+0.21 85.30+0.98 52.10+£0.90 87.11+0.40 51.26+1.18 77.304+1.04 68.05+0.86 69.16+1.32
Ours (cross) 88.03+0.78  96.78+0.20 86.01+0.95 53.11+0.87 88.03+0.48 52.02+1.14 78.21+£1.01 69.01+0.83 70.15+1.28

As shown in Tables and our method demonstrates strong generalization across domains,
achieving the best performance in 17 out of 18 metrics across 6 datasets. This is particularly
important because our approach employs specific transformations, such as Fourier and wavelet
projections, which are inherently sensitive to the signal’s sampling rate.

Despite variations in sampling rates between source and target datasets, our method consistently
outperforms others. While similar resilience to sampling rate differences has been observed in prior
works that employs frequency-domain representations [47], we hypothesize that the adaptability
of our method stems from fine-tuning both the main encoder and the latent space mappers, which
enables adaptation to cross-domain evaluation similar to previous methods.

D.5 Comparison with larger models

In our experiments, we aimed to ensure fair comparisons across methods by controlling for model
capacity and training data. Therefore, we used the same or closely matched backbone architectures
with the same amount of training data across methods, allowing us to isolate and evaluate the effect
of the representation learning strategy itself rather than differences in model or data scale.

Foundation models, while powerful, involve substantially larger architectures and extensive pretrain-
ing on massive datasets. As such, a direct comparison in our experiments is not straightforward.
Nonetheless, for completeness, we conducted experiments with CBraMod [81]], one of the most recent
of these foundation models for brain signals. Specifically, we used the publicly available pretrained
weights and evaluated on the Sleep-EDF dataset. Features were extracted using the pretrained model,
followed by either (i) training only a linear classifier or (ii) fine-tuning the full network on the same
training split. We have reported the results in Table CBraMod employs a transformer layer

Table 13: Comparison with the pretrained CBraMod on Sleep-EDF.

Method Linear Evaluation Fine-tuning
CBraMod (pretrained) 65.03 £0.63 72.98 + 0.47
Ours 69.19 + 1.32 71.13 + 0.84
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for sequence-to-sequence sleep staging, whereas we applied a linear classifier for consistency with
other baselines. It is also worth noting that CBraMod was not originally trained on single-channel
EEG, which may partly explain the lower evaluation performance. While fine-tuning increases the
performance of CBraMod more compared to ours, it is important to note that it has a larger parameter
count than our backbone, giving it greater capacity to adapt when all weights are updated according
to the task. This makes direct comparison under fine-tuning less informative, as the performance
difference can largely reflect model size rather than the quality of the learned representations.

By contrast, linear evaluation offers a fair basis for comparison, as only a lightweight classifier is
trained. Our results show that, despite its smaller design, our approach remains competitive.

D.6 Comparison with heavy specialized augmentations

To further assess the performance of our method, we compared it against augmentation-heavy
baselines, including TimesURL [82] and Finding Order in Chaos [5]], which introduces frequency
domain based mixup. Table[I4]reports results. For Finding Order in Chaos (FOC), we reproduced the
results on SPC12 (where dataset splits differ slightly from our setup), and report the original numbers
from the paper for SPC22 and DaLiA. Our method consistently outperforms augmentation-heavy
baselines, with improvements of approximately 8-9% across all datasets. These results highlight that

Table 14: Performance comparison of our method with augmentation-heavy baselines

Method IEEE SPC12 IEEE SPC22 DaLiA

MAE | RMSE | ot MAE | RMSE | pt MAE | RMSE | ot
Supervised
FCN 15.13+0.50  21.63+0.48 52.09+543 16.57+091 26.20+0.60 55.98+0.78 12.45+0.12 18.35+0.24 56.98+0.78
ResNet 7.08+0.20 13.60+0.38  79.60+1.10  9.90+1.47 16.67+£1.60 67.584+2.98 5.50+0.05 10.84+0.03  82.10+0.06
Self-Supervised
SimCLR 12.4240.05 20.96+£0.30 73.62+0.52 16.414£0.22 22.62+0.39 52.16+1.12  16.88+0.19 22.64+0.22 56.37+0.21
TimesURL 13.40+042  19.85+0.61 75.13+1.22  17.924+0.88 24.73+£1.25 50.10+£1.97 14.624+0.31 21.57+0.44 60.17+0.11
FOC 11.15+0.34¢  17.894+0.83 77.43+0.30 12.254+0.47 18.20+0.61 57.13+0.42 10.57+0.55 20.374+0.73 62.834+0.22
Ours 8.84+0.50 14.37+0.95 82.67+1.30 14.06+£1.09 21.48+2.01 54.88+1.89 9.13+0.20 16.92+0.56  63.72+0.06

our approach achieves stronger performance compared to methods based on heavy augmentations.
While augmentations can be beneficial for certain datasets, their generalization is often limited due to
the diverse characteristics of signals and the varying invariances required across tasks.

D.7 Significance analysis

In our experiments, some methods achieve strong results on specific datasets; however, our approach
consistently ranks highest across tasks. For instance, TF-C performs well on ECG (ranking second to
ours in Table 3, but its accuracy falls to about 30% on the activity recognition (Table[2).

We evaluate significance across 27 tasks (3 datasets x 3 metrics for HR, 3x3 for Activity/Step, 3x3
for CVD/Sleep). After ranking, we run the Friedman test and apply Nemenyi post-hoc comparisons.
The critical difference diagram is given in Figure|[§]

Overall (27 tasks) - Critical Difference (Nemenyi, alpha=0.05)
1 2 3 4 5 6 7 8

Ours (1) (8) VICReg

TS2Vec (4.8) (7) TE-C

SimCLR (5.3)

CLIP (5.5) 5.5) SIMMT

Figure 8: The critical diagram for all tasks. Numbers show average ranks (lower is better); horizontal
bars connect methods not significantly different. Our method achieves the best average rank.

37



E Experiments

Here, we give a detailed description of datasets, architectures, metrics, and training details for our
experiments. We performed our experiments on NVIDIA GeForce RTX 4090 GPUs, involving
training with three random seeds for all datasets, totaling approximately 680 GPU hours including ab-
lation. All experiments fit within 24 GB of GPU memory, without requiring excessive computational
resources. We reported the mean of three runs with the standard deviation.

E.1 Datasets

In this section, we give details about the datasets that are used during our experiments.

E.1.1 Human Activity Recognition and Step counting

Clemson The Clemson dataset has 30 participants (15 males, 15 females), where each participant
wore three Shimmer3 sensors. We used the IMU sensor readings from non-dominant wrists to predict
step count where each sensor recorded accelerometer and gyroscope data at 15 Hz. We calculated
the total magnitude of the accelerometer and fed it to the model as a pre-processing without any
filtering. We used window lengths of 32 seconds without an overlap in the regular walking setting. We
conducted 10-fold cross-validation, with each fold consisting of 3 subjects. Pre-training is performed
using 9 folds, with the remaining fold held out for testing. The test fold is not used during either
pre-training or linear fine-tuning.

HHAR Heterogeneity Dataset for Human Activity Recognition (HHAR) is collected by nine
subjects within an age range of 25 to 30 performing six daily living activities with eight differ-
ent smartphones—Although HHAR includes data from smartwatches as well, we use data from
smartphones—that were kept in a tight pouch and carried by the users around their waists [37]].
Subjects then perform 6 activities: ‘bike’, ‘sit’, ‘stairs down’, ‘stairs up’, ‘stand’, and ‘walk’. Due to
variant sampling frequencies of smart devices used in HHAR dataset, we downsample the readings to
50 Hz and apply 100 (two seconds) and 50 as sliding window length with step size, the windows are
normalized to zero mean with unit standard deviation. We used the first four subjects (i.e., a, b, c, d)
as source domains.

USC USC human activity dataset (USC-HAD) is composed of 14 subjects (7 male, 7 female,
aged 21 to 49 with a mean of 30.1) executing 12 activities with a sensor on the front right hip. The
data dimension is six (3-axis accelerometer, 3-axis gyroscope) and the sample rate is 100 Hz. 12
activities include walking forward, walking left, walking right, walking upstairs, walking downstairs,
running forward, jumping up, sitting, standing, sleeping, elevator up, and elevator down. We used the
pre-processing technique with a smaller window size such that the input contains six channels with
100 features (it is sampled in a sliding window of 1 second and 50% overlap, resulting in 100 features
for each window). The same normalization is also applied to windows before feeding to models. We
used the same setup with UCIHAR while source subjects are chosen as the last four this time.

E.1.2 Heart Rate Prediction

IEEE SPC This competition provided a training dataset of 12 subjects (SPC12) and a test dataset
of 10 subjects [36]. The IEEE SPC dataset overall has 22 recordings of 22 subjects, ages ranging
from 18 to 58 performing three different activities [83]]. Each recording has sampled data from three
accelerometer signals and two PPG signals along with the sampled ECG data and the sampling
frequency is 125 Hz. All these recordings were recorded from the wearable device placed on the
wrist of each individual. All recordings were captured with a 2-channel pulse oximeter with green
LEDs, a tri-axial accelerometer, and a chest ECG for the ground-truth HR estimation. During our
experiments, we used PPG channels. We choose the first five subjects of SPC12 as source domains
similar to activity recognition setup while the last six subjects of SPC22 are used for source domains
to prevent overlapping subjects with SPC12.

DaLiA PPG dataset for motion compensation and heart rate estimation in Daily Life Activities
(DaLiA) was recorded from 15 subjects (8 females, 7 males, mean age of 30.6), where each recording
was approximately two hours long. PPG signals were recorded while subjects went through different
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daily life activities, for instance sitting, walking, driving, cycling, working, and so on. PPG signals
were recorded at a sampling rate of 64 Hz. The first five subjects are used as source domains.

All PPG datasets are standardized as follows. Initially, a fourth-order Butterworth bandpass filter
with a frequency range of 0.5-4 Hz is applied to PPG signals. Subsequently, a sliding window of 8
seconds with 2-second shifts is employed for segmentation, followed by z-score normalization of
each segment. Lastly, the signal is resampled to a frequency of 25 Hz for each segment.

E.1.3 Cardiovascular disease (CVD) classification

CPSC China Physiological Signal Challenge 2018 (CPSC2018), held during the 7th International
Conference on Biomedical Engineering and Biotechnology in Nanjing, China. This dataset consists
of 6,877 (male: 3,699; female: 3,178) and 12 lead ECG recordings lasting from 6 seconds to 60
seconds with 500 Hz. We use the original labelling [39] with one normal and eight abnormal types as
follows: atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle
branch block, premature atrial contraction, premature ventricular contraction, ST-segment depression,
ST-segment elevated. We resampled recordings to 100 Hz and excluded recordings of less than 10
seconds.

Chapman Chapman University, Shaoxing People’s Hospital (Chapman) ECG dataset which pro-
vides 12-lead ECG with 10 seconds of a sampling rate of 500 Hz. The recordings are downsampled
to 100 Hz, resulting in each ECG frame consisting of 1000 samples. The labeling setup follows the
same approach as in [40] with four classes: atrial fibrillation, GSVT, sudden bradycardia, and sinus
rhythm. The ECG frames are normalized to have a mean of 0 and scaled to have a standard deviation
of 1. We split the dataset to 80-20% for training and testing as suggested in [40].

We choose leads I, II, III, and V2 during our experiments for both ECG datasets. We followed a
similar setup with prior works [84] and considered each dataset as a single domain different from
previous tasks. The fine-tuning of the linear layer, which is added to the frozen pre-trained encoder,
is performed with 80% of the same domain.

E.1.4 Sleep stage classification

We used the Sleep-EDF dataset which has five classes: wake (W), three different non-rapid eye
movements (N1, N2, N3), and rapid eye movement (REM). The dataset includes whole-night PSG
sleep recordings, where we used a single EEG channel (i.e., Fpz-Cz) with a sampling rate of 100 Hz.
We followed the same data split as TSTCC [44], with no additional pre-processing. The only
difference is that, for linear probing, we used a random 10% subset of the unseen data rather than the
full set, reflecting our setup where labeled data is significantly smaller than unlabeled data.

E.2 Baselines
E.2.1 Supervised

FCN We use a 1D Fully Convolutional Network (FCN) that processes multichannel temporal inputs.
The model consists of three convolutional layers with increasing filter sizes (32, 64, and 128), each
followed by max pooling operations to progressively reduce the temporal resolution. A final linear
layer maps the output to class logits. We chose this architecture for the supervised and self-supervised
learning paradigms as it was widely used before in the literature [5].

ResNet We use the same backbone as in the self-supervised methods for the supervised baseline,
integrating a linear layer and training the model from scratch using random initialization.

We perform a grid search over key hyperparameters for both networks, focusing on learning rate and
batch size. The learning rate is initialized at 1e-3 and reduced by half if validation performance does
not improve for 15 epochs. The batch size is fixed at 64.
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E.2.2 Self-Supervised
Fundamentals

SimCLR SimCLR [1]] introduces a contrastive learning framework for self-supervised visual repre-
sentation learning. The method relies on maximizing agreement between differently augmented views
of the same image via a contrastive loss in the latent space. We follow the previous implementations
of SImCLR for time series [5, 185]].

BYOL For the BYOL implementation, the exponential moving average parameter is set to 0.996
where the projector size is set to 128. We set the learning rate to 0.03 similar to other SSL techniques.
Following the original implementation, we use a weight decay parameter of 1.5e — 6.

VICReg We follow the original implementation and set the coefficients for each loss term to 25
(A), 25 (), and 1 (v), corresponding to the invariance, variance, and covariance terms, respectively.
Although we conducted a search for these loss term values, no performance enhancements were
detected across the tasks.

0= Xs(z,2")] + p [v(2) + v()] + v [e(2) + ()], (24)

where s is the mean-squared Euclidean distance, v is a hinge function on the standard deviation of
the embeddings along the batch dimension, c is the covariance regularization term as the sum of the
squared off-diagonal coefficients

Barlow Twins Barlow Twins [45} [86] presents an objective function that naturally avoids collapse
for SSL by measuring the cross-correlation matrix between the outputs of two identical networks fed
with augmented versions of a sample, and making it as close to the identity matrix as possible. This
causes the embedding vectors of augmented versions of a sample to be similar, while minimizing the
redundancy between the components of these vectors. Following the original implementation, we
applied batch normalization to the extracted embeddings and set the hyperparameter \ coefficient (in
Equation 25)) to 0.005.

L= (1-Ca)’+A> Y CF (25)

i i g
where C' is the cross-correlation matrix computed between the two sets of normalized embeddings.

CLIP Contrastive Language-Image Pretraining (CLIP) [46] learns joint representations by aligning
paired image and text embeddings through contrastive learning. To compare our method with this,
we adapted a similar strategy for time series by treating the time-domain signal and its Fourier-
transformed version as two modalities. Specifically, we applied a CLIP-style objective by training
separate encoders for the time and frequency domains and maximizing the similarity between their
paired embeddings. During inference, we only used time encoder with linear probing. This setup mir-
rors CLIP’s approach to aligning image-text pairs, but instead aligns time-frequency representations
of the same signal.
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Temporal sequence

TS-TCC We follow the same architecture implementation with the losses, i.e., contextual and
temporal contrasting. TS-TCC proposed applying two separate augmentations, one augmentation
is weak (jitter-and-scale) and the other is strong (permutation-and-jitter). The authors also change
the strength of the permutation window from dataset to dataset. In our experiments, we first used
the original augmentations for each time series task, however, we observed performance decreases
depending on the signal type. We, therefore, applied the specific augmentations for each time series,
where we observed a general performance improvement in other SSL techniques as well.

TS2Vec TS2Vec [49] is a SSL method specifically designed for time series based on contrastive
(instance and temporal wise) learning in a hierarchical way over augmented context views where
the context is generated by applying timestamp masking and random cropping on the input time
series. Following the original framework, we use a dilated CNN architecture with a depth of 10 and
hidden size of 64, which has a similar number of parameters with the architectures used by other
SSL methods. The batch size is set to 8 and the number of epochs to 120, following the original
manuscript. Although we experimented with larger batch sizes, as SSL methods often benefit from
them, we observed no performance gains.

TF-C The Time-Frequency Consistency (TF-C) method [47] introduces a self-supervised learning
framework for time series data by aligning representations from both time and frequency domains
using the absolute Fourier transform. TF-C employs specific augmentations in both domains, such
as jittering in the time domain, and perturbations like adding or removing/decreasing frequency
components in the Fourier domain, to create diverse views. During inference, TF-C utilizes both the
time-domain and frequency-domain encoders, combining their outputs to form the final representation,
thereby integrating information from both domains for downstream tasks. In contrast, our method
avoids this by requiring only a single encoder at inference. We use the original implementation
provided at github.com/mims-harvard/TFC-pretraining,

SImMTM SimMTM [48] presents a masked modeling framework tailored for temporal data. In
time series, semantic information is heavily embedded in temporal variations, and random masking
may disrupt critical patterns, making reconstruction unnecessarily difficult. SimMTM mitigates this
by treating masked modeling as a manifold learning problem. Instead of reconstructing masked points
directly from nearby unmasked values, it recovers them via weighted aggregation from multiple
complementary masked sequences. We use the same ResNet backbone for SiImMTM to ensure fair
comparison with other SSL methods. We also experimented with the original backbone proposed
in the paper but observed no performance improvement. For our evaluation, we follow the original
manuscript’s hyperparameter settings for the masking ratio and the number of positive (masked)
series. In addition, we explore the effects of training dynamics by running SimMTM with our higher
batch size (1024) compared to the paper’s smaller batch sizes (128-256), and we test both short
training epochs (40-50 as used in the original) and longer schedules, treating these as part of a
hyperparameter search. We observed performance degradation when reducing the number of epochs,
so we run all baseline methods for the same number of epochs to ensure a fair comparison. We use
the official implementation provided at|github.com/thuml/SimMTM,
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E.3 Implementation Details

Here, we have provided the details of the architectures, and hyperparameters. Primarily, we used the
1D ResNet [51] implementation in the supervised settings. While some alternative deep learning
models can perform better in a specific time series tasks such as the combination of convolutional and
LSTM layers [87, 88|, we focused on residually connected convolutional architectures as backbones
for representation learning.

E.3.1 Architectures

Here, we present the details of architectures that are investigated for the performance of shift-invariant
techniques. Some details that are not given in the tables are as follows. Batch normalization [89] is
applied after each convolutional block. ReLU activation is employed following batch normalization,
in line with [50]. We also applied a Dropout [90] with 0.5 after each activation and before the
convolutions. Finally, a global average pooling is implemented before the linear layers.

Table 15: Model architectures used in our experiments

(a) ResNet architecture for the main encoder (b) Architecture for W(a, b)
# Blocks Layer Kernel Output Layer Input — Output Description
1 Input (C,T) - €T Input (C,F,T) Input
1 Conv G (64172 AvgPool  — (C, F/2,T/2)
] Conv 5, 1) (128, T/4) AvgPool2 — (C,F/4,T/4)
Conv 5, 1) (128, T/4) Convl — (N,F,T) Conv block

. Conv2 — (2N, F/2,T/2)
1 L - 1 ) ’

meat (n_classes.) Concatl + Pooll Merge
# Parameters for dataset (C,F,T) Conv3 — (3N, F/4,T/4)
IEEE SPC & Dalia (C=1, T=200)  ~210k L
Chapman & CPSC (C=4. T=1000) ~197k ggﬁsjtz J_“)P(‘jf}{]z FJ8.T)S) Merge
Clemson (C=1, T=240) ~200k ’ ’ . .
HHAR (C=6, T=51) ~200k FC1 — (1, 25) L}near (time)
USC (C=6, T=100) ~200k FC2 — (128) Final output
Sleep (C=1, T=3000) ~210k # Parameters for dataset (C,F)

IEEE SPC & Dalia (C=1, F=48) ~500k
Chapman & CPSC (C=4,F=48) ~500k

Clemson (C=1, F=48) ~500k
HHAR (C=6, F=48) ~550k
. USC (C=6, F=48 ~550k
(¢) Architecture for F(x) S leep((C=1, F= 48)) ~520k
Branch Layer Output
(d) Architecture for mappers &t~
Conv1D (16, T)
: Residual (32, 172) Kernel Output
Amplitude  poGdual (64 T/4) Layer Size e
Linear (64)
Input (1, L) - (1,L)
ConvlD (16, T) ConvlD (3, 1), stride=2 (64, L/2)
Phase Res@dual (32, T/2) ReL.U _ (64,1L/2)
Residual (64, T/4) Conv Transpose (3, 1), stride=2 (1, L)
Linear (64)
All datasets ~500
Output Concatenate  (128)
All datasets ~55k

Our latent space mappers are lightweight, with each containing approximately 500 parameters,
resulting in a total of only 1k additional parameters during inference. This keeps the overall inference
cost of our method low. Moreover, even when baseline models are scaled up to match or exceed the
total parameter count of all encoders, they still fall short in performance, highlighting the effectiveness
of our approach over brute-force model scaling.
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E.3.2 Augmentations

We applied commonly used augmentations for each task, with details listed in Table In each
epoch, two random augmentations were applied per sample and instance discrimination is applied.

For the heart rate prediction task, we used: permutation, noise, scale, and shift.

For activity recognition and step detection from inertial signals, we used: permutation, noise,
scale, shift, and rotation.

For cardiovascular disease and sleep stage classification, we used: resample, noise, scale,
negate, and shift.

These augmentation sets follow prior work [5, 184,185, 91], ensuring task-relevant diversity.

Table 16: Common time series augmentations

Domain Augmentation Details
Noise Add Gaussian noise sampled from normal distribution, A'(0, 0.4)
Time Scale Amplify channels by a random distortion sampled from normal distribution N/ (2, 1.1)
Negate Multiply the value of the signal by a factor of -1
Permute Split signals into no more than 5 segments, then permute the segments
and combine them into the original shape
Resample Interpolate the time-series to 3 times its original sampling rate
and randomly down-sample to its initial dimensions
Rotation Rotate the 3-axial (x, y, and z) readings of each IMU sensor by a random degree, which follows a
uniform around a random axis in the 3D space. (Only applied for Activity Recognition)
Time Flip Flip the time series in time for all channels, i.e., X 44 [n] = X[—n]
Shift Apply circular shift with a random amount
Random Zero Out Randomly chose a section to zero out
Permutation + Noise =~ Combination of Permutation and Noise
Noise + Scale Combination of Noise and Scaling
Highpass Apply a highpass filter in the frequency domain to reserve high-frequency components
Frequency  Lowpass Apply a lowpass filter in the frequency domain to reserve low-frequency components
Phase shift Shift the phase of time-series data with a randomly generalized number

Noise in Frequency

Add Gaussian noise, sampled from normal distribution A/ (0, 0.5), to the frequency spectrum

Although we also experimented with frequency domain augmentations given in Table [I§|for each
task, we observed consistent performance degradation. As a result, we excluded these frequency
augmentations from all baseline comparisons.

E.3.3 Transformations

Fourier transformation For the Fourier transformation, we compute the FFT using the full length
of each input signal without applying any task-specific padding or optimization. Since the input signals
are real-valued, we calculate only the positive (real) frequencies, leveraging the Hermitian symmetry
of the spectrum. We normalize the FFT using ﬁ by setting norm=ortho’ in PyTorch’s [92]]

torch.fft.rfft, ensuring the transformation is orthonormal.

Wavelet transformation For the wavelet transformation, we use the continuous Morlet wavelet
with 48 logarithmically spaced scales computed via np.geomspace (1, 128, num=48), without
any task-specific tuning or dataset-dependent adjustments. This configuration is applied uniformly
across all datasets to highlight the versatility and generality of our method. We use PyWavelets [93]
implementation.
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F Computational Overhead of Techniques

We analyze the computational overhead of SSL techniques designed for temporal data. We break
down the main operations of TS2VEC [49], TS-TCC [44]], TF-C [47], and simMTM [48]], and provide
empirical comparisons in Table

TS2Vec TS2Vec samples overlapping subsegments for hierarchical contrastive loss. For each
sample, it randomly selects a crop length [ € [2%*!, T], defines a crop interval [c;, c,] and an
extended context interval [e;, e,-], and applies per-sample random offsets to generate two augmented
views. These views are passed through a shared encoder, producing two embeddings. TS2Vec aligns
their overlapping subsegments using a temporal contrastive loss and recursively applies pooling to
compute multiple loss terms at increasingly coarser resolutions. This multiscale loss is recomputed
for every pair at each layer depth, leading to quadratic scaling with the number of layers. Moreover,
because the crops are randomly sampled, TS2Vec forwards large sections of samples multiple
times with different windows. Despite using a shared encoder, this repeated window sampling and
depth-wise contrastive loss accumulation make training slow, especially on long sequences.

TS-TCC In each batch, TS-TCC generates two augmented views using weak and strong augmen-
tations, and processes both through a shared encoder to obtain temporal feature sequences. The
temporal contrasting module performs a cross-view prediction task: it uses an autoregressive model
to summarize the past of one view into a context vector and predicts the future of the other view using
linear projections. For each sample, this involves computing predictions for multiple future steps,
comparing them against the target view, and accumulating a contrastive loss. This adds sequential
dependency to training, as the model must first encode the past then perform multiple forward passes
to compare predicted and true representations. While TS-TCC leverages efficient architectures like
Transformers, the temporal prediction task and dual-view contrastive losses make it less parallelizable
than methods that process views independently or avoid cross-timestep dependencies.

TF-C In each batch, TF-C computes time and frequency representations in parallel using separate
encoders and applies multiple contrastive losses. The input is first transformed via FFT to obtain
frequency-domain features. Two augmented views are generated: one in time via temporal augmen-
tations (e.g., jittering, scaling), and one in frequency via spectral perturbations (adding/removing
frequency components). Both views are processed by their respective encoders and projectors. TF-C
then computes contrastive losses in three spaces: time-time, frequency-frequency, and time-frequency.
The time-frequency consistency loss includes four cross-domain pairings (e.g., original time vs.
perturbed frequency) and is implemented using a triplet-style margin loss. This results in eight
forward passes per sample (two augmentations X two domains X two projections).

simMTM SimMTM introduces two coupled components: masked contrastive learning and masked
reconstruction. In each batch, a contrastive similarity matrix is computed over all samples and their
masked variants, involving a full pairwise dot-product followed by calculating KL-divergence with
soft targets. The reconstruction further adds cost by aggregating weighted representations using the
similarity matrix and applying a linear projection to reconstruct masked sequences. While these
components operate in parallel, the simultaneous use of large similarity matrices and reconstruction
targets slows down training, especially with high masking rates or long windows.

Table|l7|reports the average execution time per epoch for each method, measured using an NVIDIA
GeForce RTX 4090 GPU with 24GB of memory. For each run, we timed only the core training
operations using a unified timing function that accounts for both CPU and GPU execution. The table
presents the mean and standard deviation across the five runs. For our method, the computation of
wavelet and Fourier domain transformations for a batch of samples takes ~ 2 seconds.

Table 17: Time taken (in seconds) for each SSL technique for a single epoch

Metric Ours TS2Vec TS-TCC TF-C simMTM
Execution Time (sec) 18.6740.05 310£0.07 6.474+0.09 21.614+0.02 68.144-0.99
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A key advantage of our method is that the frequency-domain preprocessing (FFT and Gabor trans-
forms) is performed only once and cached, rather than recomputed at every epoch. In contrast,
traditional temporal augmentations (e.g., permutation, scaling with noise) must be regenerated each
epoch, introducing repeated overhead.

To quantify this difference, we report the runtime for a batch of 1024 samples (each being a univariate
time series of length 200) measured on an NVIDIA RTX 4090 (Table[I8). FFT and Gabor transforms
take 0.0075s and 3.59s, respectively, but these costs are paid once and do not scale with the number
of epochs. By comparison, temporal augmentations scale linearly with training length: permutation
requires 0.021 x epoch count seconds and scale+noise requires 0.010 x epoch count seconds. At
500 epochs—common for SSL methods—our preprocessing yields about a 4 x speedup, and the
advantage grows further for longer runs.

Table 18: Runtime of preprocessing steps (batch size 1024) measured on NVIDIA RTX 4090. Unlike
augmentations, FFT and Gabor transforms are cached after one-time computation.

Transform 1 epoch (s) 500 epochs (s)
FFT 0.0075 0.0075
Gabor 3.59 3.59
Permutation 0.021 x epoch_count 10.5
Scale + Noise  0.010 x epoch_count 5.0

We note that our comparison focuses on the most commonly used temporal augmentations such as
permutation and scaling with noise. If we additionally implement and compare with the specialized
time-series augmentation strategies [Sl], which often require auxiliary models or complex frequency-
domain modifications, the computational gap becomes even larger. In such cases, the advantage of
our one-time preprocessing approach increases substantially, as these specialized augmentations add
both runtime overhead and architectural complexity, whereas our method retains efficiency.
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G Expanded Related Work

This section extends the related work discussed in the main paper by highlighting methods that aim
to eliminate reliance on augmentations in self-supervised learning, as well as efforts to mitigate the
representational biases introduced by common augmentations.

Representation invariance Representation learning methods have shown to be effective in several
tasks. Several works explain this success by relating the success of learned representations to
invariancy caused by data augmentations [[17, 121} 94, |30]]. However, such invariance could be harmful
to downstream tasks [95, 96] if they rely on the characteristics of the data augmentations, e.g.,
location, amplitude-sensitive. One proposed solution to this limitations involves constructing separate
embedding spaces, each invariant to all but one augmentation [17]]. While this approach allows for
disentangling the effects of different augmentations, it is constrained by the number of predefined
embedding spaces and comes with increased computational cost. Another method introduces an
augmentation-aware module that learns to predict the differences in augmentation parameters (e.g.,
cropping positions) between two randomly transformed samples [21]].

However, this technique has several drawbacks. First, it requires explicit parameterization of each
augmentation, which is particularly challenging for temporal data where augmentation semantics
(e.g., shifts, warps) are less structured than in images. Second, its effectiveness remains dependent on
the choice and quality of augmentations used, reintroducing domain-specific tuning.

In contrast, our method leverages principled, isometric transformations that preserve the geometry of
the data, without enforcing explicit invariance. This allows the model to retain signal characteristics
that may be important for downstream tasks and would otherwise be suppressed by augmentations [[17].
For example, when shift invariance is beneficial in temporal tasks, our approach captures it naturally
through domain projections such as the Fourier transform [97]], without depending on handcrafted
augmentations or specialized architectures [98]].

Augmentation-free SSL. Learning representations without relying on augmentations has been
explored in domains where strong transformations risk distorting the data structure, such as
graphs [99, [100] and time series [8, [74]. In graph learning, for instance, augmentation-free ap-
proaches generate alternative views by identifying nodes with similar local structures and global
semantics [99]. However, these strategies are specialized for graph topologies and do not directly
translate to temporal sequences. More recently, authors in [§] introduced random projections as a
modality and application-agnostic alternative for self-supervised learning. While this strategy pro-
vides a generic way to avoid manual augmentations, in practice, domain-aware contrastive methods
equipped with carefully designed augmentations still tend to outperform projection-based approaches
when reliable inductive biases about the data are available.

Our method goes a step further by eliminating the need for augmentations across diverse time-series
applications, while still outperforming specialized augmentation strategies tailored to specific tasks,
thereby highlighting its algorithmic superiority.

For time-series data, a recent approach introduced a temporal-frequency co-training model for semi-
supervised learning, using time and Fourier domain transformations to generate pseudo-labels [74].
These methods generally overlook the non-stationary nature of temporal signals. Relying solely on
Fourier transforms limits representation to global frequency patterns and may miss short-duration
events. In contrast, our method incorporates wavelet frames to capture local temporal variations,
enabling finer resolution of transient signal components which are critical for representation learning.

Moreover, prior work often assumes that data should cluster similarly in time and frequency do-
mains [74]], implicitly treating the two latent spaces as geometrically aligned. Our empirical results
challenge this assumption, showing that latent representations across domains differ. To address
this, we introduce domain-specific latent space mappers that align and exploit the complementary
structure of each space, enhancing representation learning.
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