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Abstract

A substantial body of work in machine learning
(ML) and randomized numerical linear algebra
(RandNLA) has exploited various sorts of random
sketching methodologies, including random sam-
pling and random projection, with much of the
analysis using Johnson–Lindenstrauss and sub-
space embedding techniques. Recent studies have
identified the issue of inversion bias – the phe-
nomenon that inverses of random sketches are not
unbiased, despite the unbiasedness of the sketches
themselves. This bias presents challenges for the
use of random sketches in various ML pipelines,
such as fast stochastic optimization, scalable sta-
tistical estimators, and distributed optimization.
In the context of random projection, the inversion
bias can be easily corrected for dense Gaussian
projections (which are, however, too expensive
for many applications). Recent work has shown
how the inversion bias can be corrected for sparse
sub-gaussian projections. In this paper, we show
how the inversion bias can be corrected for ran-
dom sampling methods, both uniform and non-
uniform leverage-based, as well as for structured
random projections, including those based on the
Hadamard transform. Using these results, we es-
tablish problem-independent local convergence
rates for sub-sampled Newton methods.

1. Introduction
Randomized numerical linear algebra (RandNLA) signifi-
cantly reduces computation, communication, and/or storage
overheads by using randomness as an algorithmic resource.

1School of Electronic Information & Communications,
Huazhong University of Science & Technology, Wuhan, Hubei,
China. 2ICSI, LBNL, and Department of Statistics, University
of California, Berkeley, USA. Correspondence to: Zhenyu Liao
<zhenyu_liao@hust.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

As a pivotal technique in RandNLA, random sketching –
which encompasses both random projection and random
sampling – is becoming increasingly critical in many mod-
ern large-scale machine learning (ML) applications.

More precisely, for a tall matrix A ∈ Rn×d with n ≫ d,
random projection proposes to obtain a sketch Ã ∈ Rm×d,
of size m ≪ n of A by randomly and linearly combin-
ing the rows of A; while random sampling, on the other
hand, carefully selects a small subset (of size m say) of
the rows A and rescales them to obtain Ã ∈ Rm×d. For
both approaches, it follows from Johnson–Lindenstrauss
(JL) type analysis (Johnson & Lindenstrauss, 1984) that the
random sketch Ã can be used as a “proxy” of A in many
downstream ML tasks, e.g., Ã⊤Ã ≈ A⊤A are close in
some sense with high probability, even with m ≪ n. This
leads to a significant boost in the running time, communica-
tion time, and/or memory cost, for many numerical meth-
ods (Drineas et al., 2006b; 2011; 2012; Avron et al., 2017;
Dereziński & Mahoney, 2021; Lacotte & Pilanci, 2022).
See also Mahoney (2011); Halko et al. (2011); Woodruff
(2014); Drineas & Mahoney (2018); Martinsson & Tropp
(2020); Dereziński & Mahoney (2021); Murray et al. (2023);
Dereziński & Mahoney (2024) and reference therein for an
overview of RandNLA and the applications in modern ML.

Despite this promising “complexity-accuracy” trade-off
achieved with random sketching, in many ML pipelines
ranging from linear/ridge regression to scalable statistical
estimation and fast stochastic optimization, the object of di-
rect interest is the sketched matrix inverse (Ã⊤Ã+C)−1 for
some (perhaps all-zeros or diagonal) positive semi-definite
(p.s.d.) C (instead of Ã⊤Ã itself). Since the matrix inverse
is a nonlinear operator, the fact that Ã⊤Ã is an unbiased or
nearly unbiased estimator of A⊤A (i.e., E[Ã⊤Ã] = A⊤A,
which is a major guide in forming the sketch Ã) does
not, in general, imply the unbiasedness of its inverse, i.e.,
E[(Ã⊤Ã)−1] ̸≈ (A⊤A)−1. This phenomenon of inversion
bias has been long known in the literature: in the case of
Gaussian random projection with Ã = SA for S ∈ Rm×n

having i.i.d. N (0, 1/m) entries, (Ã⊤Ã)−1 is known to
follow the inverse Wishart distribution (Haff, 1979) with
E[(Ã⊤Ã)−1] = m

m−d−1 (A
⊤A)−1 for m > d + 1. How-

ever, much less is known beyond the Gaussian setting. Build-
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ing upon recent progress in non-asymptotic random matrix
theory (RMT), it has recently been shown by Dereziński
et al. (2021b) that a similar inversion bias holds, and that it
can be corrected, with E[(Ã⊤Ã)−1] ≈ m

m−d (A
⊤A)−1, in

the sense of partial order of p.s.d. matrices, for sub-gaussian
and the so-called LEverage Score Sparsified (LESS) pro-
jections. The latter can be of greater practical interest than,
e.g., dense Gaussian or sub-gaussian projections, as it is sig-
nificantly sparser and can thus be evaluated more efficiently.

This precise characterization of inversion bias has direct
implications for RandNLA and ML. As a telling example,
Dereziński et al. (2021a) applied LESS sketches to New-
ton Sketch (Pilanci & Wainwright, 2017) and showed that
this Newton-LESS approach enjoys almost the same local
convergence rates as Newton Sketch with dense Gaussian
projections. This leads to a significantly better “complexity-
convergence” trade-off than the vanilla Gaussian projections
in stochastic second-order optimization methods.

1.1. Our Contributions

In this paper, we consider the inversion bias of random sam-
pling, including uniform and non-uniform sampling, as well
as structured random projections such as the Subsampled
Randomized (Walsh-)Hadamard Transform (SRHT) (Ailon
& Chazelle, 2006). The analysis framework in Dereziński
et al. (2021a;b) does not apply (to get non-vacuous results;
see, e.g., Proposition 2.8 and Remark 2.9 below). Instead,
we exploit novel and non-trivial connections between non-
asymptotic RMT and RandNLA to show that this inversion
bias can be precisely characterized and numerically cor-
rected. We also show how this inversion bias result can be
used to improve the local convergence rates of the popu-
lar sub-sampled Newton (SSN) method (Yao et al., 2018;
Roosta-Khorasani & Mahoney, 2019; Xu et al., 2020).

Our main contributions can be summarized as follows.

1. We provide precise characterization of the inversion
bias for general random sampling (in Theorem 3.1)
and the corresponding de-biased approach (in Propo-
sition 3.2). The proposed analysis and debiasing tech-
nique hold for exact and approximate leverage-based
sampling (Corollary 3.4), as well as the structured
SRHT (Corollary 3.7) as special cases.

2. With this precise inversion bias result, we further es-
tablish (in Theorem 4.3), the first problem-independent
local convergence rates for sub-sampled Newton that
approximately matches the dense Gaussian Newton
Sketch scheme. Numerical results are provided in Sec-
tion 5 to support these findings.

1.2. Related Work

Inversion bias. Given a matrix A ∈ Rn×d, the ma-
trix inverse (A⊤A)−1 is fundamental in ML, numeri-
cal computation, and statistics. Examples include lin-
ear functions (A⊤A)−1y that are crucial to Newton’s
methods (Boyd & Vandenberghe, 2004), quadratic forms
a⊤i (A

⊤A)−1ai (with a⊤i the ith row of A) in computing
matrix leverage scores (Drineas et al., 2012), and trace
forms, trL(A⊤A)−1 for some given L, of interest in uncer-
tainty quantification (Kalantzis et al., 2013) and experimen-
tal designs (Pukelsheim, 2006). In the case of tall matrices
with n ≫ d, random sketching applies to efficiently reduce
the computational overhead of (A⊤A)−1, by using a sketch
Ã = SA of A for random matrix S ∈ Rm×n with m ≪ n.
It has been shown recently (Dereziński et al., 2020; 2021a;b)
that these sketched inverses are biased for unstructured sub-
gaussian S, with E[(Ã⊤Ã)−1] ̸≈ (A⊤A)−1. In this paper,
we consider the (often practically more interesting) case of
structured random matrix S, including random sampling
matrices (Definition 2.1) and randomized Hadamard trans-
forms (Definition 3.6).

Different from our approach that explicitly modifies the
sketch to correct the bias, another line of work proposes to
use shrinkage-based correction techniques (Zhang & Pilanci,
2023; Romanov et al., 2024).

Random sampling. Random sampling is at the core of
RandNLA (Drineas et al., 2006a; Mahoney, 2011; Ma
et al., 2015; Drineas & Mahoney, 2016; Dereziński & Ma-
honey, 2021; 2024), and it plays a central role in fast ma-
trix multiplication (Drineas et al., 2006a), approximate re-
gression (Drineas et al., 2006b), and low-rank approxima-
tion (Cohen et al., 2017), to name a few. It is of particular
interest in scenarios where the dataset is massive and can-
not be stored and/or computed on a single machine, e.g.,
the census data (Wang et al., 2018) and online network
data (Deng et al., 2024). See Definition 2.1 below for a
formal definition of random sampling and discussions there-
after for commonly-used sampling schemes including (exact
and approximate) leverage score sampling (Mahoney, 2011;
Cohen et al., 2017), shrinkage leverage sampling (Ma et al.,
2015), as well as optimal subsampling (Wang et al., 2018;
Wang & Ma, 2021; Yu et al., 2022; Ma et al., 2022). In
this paper, instead of providing classical JL and subspace
embedding-type results on random sampling, we precisely
characterize (and correct) the inversion bias for a variety of
commonly-used random sampling schemes.

Sub-sampled Newton. Sub-sampled Newton (SSN) meth-
ods propose to approximate the Hessian in Newton’s method
using a small subset of samples, and they have been ex-
tensively studied within the fields of ML, RandNLA, and
optimization (Xu et al., 2016; Bollapragada et al., 2019;
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Roosta-Khorasani & Mahoney, 2019; Xu et al., 2020; Ye
et al., 2021). Although these fast optimization methods are
easy to implement, their convergence rates are challenging
to analyze. Existing results often depend on the Hessian
condition number or the Lipschitz constant and fall short of,
e.g., the problem-independent convergence rates achieved
by sub-gaussian Newton Sketch (Lacotte & Pilanci, 2019;
Dereziński et al., 2021a). In this paper, we establish the
first problem-independent local convergence rates for SSN
that closely align with Newton Sketch. This addresses the
convergence guarantee gap identified in Iterative Hessian
Sketch (Pilanci & Wainwright, 2016) for random sampling.

Random matrix theory (RMT). RMT studies the (lim-
iting) eigenspectra of large-dimensional random matri-
ces (Anderson et al., 2010) and finds its applications in
signal processing and communication (Couillet & Debbah,
2011), statistical finance (Plerou et al., 2002), optimiza-
tion (Paquette et al., 2021; 2023), and more recently in
large-scale ML (Pennington & Worah, 2017; Fan & Wang,
2020; Mei & Montanari, 2022; Couillet & Liao, 2022). A re-
cent line of work (Liao et al., 2020; 2021; Liao & Mahoney,
2021) has highlighted non-trivial connections between RMT
and RandNLA that this paper further develops.

1.3. Notations and Organization of the Paper

We denote scalars by lowercase letters, vectors by bold
lowercase, and matrices by bold uppercase. For a matrix
A ∈ Rn×d, we denote A⊤, a⊤i ∈ Rd, and ∥A∥ the trans-
pose, ith row, and spectral norm of A, respectively. We
denote A ⪯ B if B−A is p.s.d., and use Id for the iden-
tity matrix of size d. For a vector x ∈ Rd and a matrix
B ∈ Rd×d, we denote ∥x∥B ≡

√
x⊤Bx, with the conven-

tion ∥x∥ = ∥x∥Id . For a random variable x, we denote
E[x] the expectation of x and Eζ [x] the expectation of x,
conditional on the event ζ . We use Θ(·), and O(·) notations
as in standard computer science literature.

The remainder of this paper is organized as follows. Sec-
tion 2 presents preliminaries on random sampling and a
coarse-grained characterization of its inversion bias, by di-
rectly (and naively) adapting the proof approach from Derez-
iński et al. (2021b) (which turns out to be vacuous in our
setting). Section 3 delivers a fine-grained analysis of this
inversion bias and proposes an efficient non-vacuous debi-
asing approach. Section 4 demonstrates how these technical
results apply to establish problem-independent local conver-
gence rates for SSN. Section 5 provides numerical results
that support our theoretical findings. Section 6 provides
a conclusion, summarizing our findings and discussing fu-
ture perspectives. Additional material can be found in the
appendices.

2. Preliminaries on Random Sampling
In this section, we introduce a few definitions that will be
used in the remainder of this paper.

Definition 2.1 (Random sampling). For a matrix A ∈ Rn×d

with n ≥ d, a sketch Ã ∈ Rm×d of A can be constructed
by randomly sampling with replacement m from the n rows
of A with an importance sampling distribution, {πi}ni=1,∑n

i=1 πi = 1, and then rescaling by 1/
√
mπi. This can

be expressed as Ã = SA, with random sampling matrix
S ∈ Rm×n having only one nonzero entry per row.

Definition 2.1 includes commonly-used random sampling
schemes such as uniform sampling (with πi = 1/n), row-
norm-based sampling (with πi = ∥ai∥2/(

∑n
i=1 ∥ai∥2)),

exact or approximate leverage and ridge leverage score sam-
pling (Mahoney, 2011; El Alaoui & Mahoney, 2015) defined
below, as well as a mix between them, e.g., the shrinkage
leverage sampling (Ma et al., 2015).

Definition 2.2 (Leverage score sampling, Mahoney (2011)).
For a matrix A ∈ Rn×d of rank d with n ≥ d and a p.s.d.
matrix C ∈ Rd×d, the ith leverage score ℓCi of A given C,
is defined as ℓCi = a⊤i (A

⊤A + C)−1ai, i ∈ {1, . . . , n}.
The exact leverage score sampling refers to the random
sampling approach in Definition 2.1 with πi = ℓCi /deff , for
deff =

∑n
i=1 ℓ

C
i the effective dimension of A given C.

The leverage score sampling has been extensively studied
in RandNLA and ML. By taking C = 0d in Definition 2.2,
we obtain the standard leverage scores (Mahoney, 2011;
Drineas et al., 2012); and by taking C = λId, we ob-
tain the λ-ridge leverage scores (El Alaoui & Mahoney,
2015). Given A ∈ Rn×d, its leverage scores can be ap-
proximately computed in O(nnz(A) log n + d3(log d)2 +
d2 log n) time, for nnz(A) the number of non-zero en-
tries in A, see Drineas et al. (2012); Clarkson & Woodruff
(2017); Cohen et al. (2017).

We also introduce an “approximation factor” to measure
the extent to which one importance sampling distribution
approximates another importance sampling distribution (the
exact leverage score distribution, in our case).

Definition 2.3 (Importance sampling approximation factor).
For a matrix A ∈ Rn×d with n ≥ d, a p.s.d. matrix C ∈
Rd×d, and a random sampling matrix S ∈ Rm×n as in Def-
inition 2.1, with importance sampling distribution {πi}ni=1,
the (min and max) importance sampling approximation
factors of the random sampling scheme S is defined as
the pair (ρmin, ρmax), with ρmin ≡ min1≤i≤n ℓ

C
i /(πideff)

and ρmax ≡ max1≤i≤n ℓ
C
i /(πideff).

For us, the importance sampling approximation factors
(ρmin, ρmax) in Definition 2.3 provide qualitative charac-
terization on how the random sampling scheme under study
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differs from the exact leverage score sampling in Defini-
tion 2.2. This extends the classical notion of sampling
approximation factor in Drineas et al. (2006a) to include
both the maximum and the minimum. While prior work
primarily focuses on the max factor, here we focus on the
inversion bias, where the min factor also plays a natural and
significant role; see below in Section 3 and also Ma et al.
(2015), who first noted the importance of the min factor
in statistical style analysis. By the (generalized) median
inequality, we have ρmin ≤ 1 ≤ ρmax, with equality for
exact leverage score sampling.

It follows from Definition 2.1 that E[Ã⊤Ã] = A⊤A, so
that the randomly sampled matrix Ã⊤Ã is an unbiased
estimator of the true A⊤A. This, together with controls on
the higher-order moments of Ã⊤Ã, allows one to conclude
that Ã⊤Ã fluctuates, with high probability and within a
small “distance,” around the true A⊤A of interest. This can
be made precise using the relative error approximation (for
scalars and matrices) defined as follows.
Definition 2.4 (Relative error approximation). For a non-
negative scalar x̃ ≥ 0, we say x̃ is an ϵ-approximation of
(another scalar) x, denoted x̃ ≈ϵ x, if

(1 + ϵ)−1x ≤ x̃ ≤ (1 + ϵ)x. (1)

For x̃ being random, we say x̃ is an (ϵ, δ)-approximation of
x if (1) holds with probability at least 1− δ. Similarly, for
a p.s.d. matrix X̃, we say X̃ is an ϵ-approximation (or an
(ϵ, δ)-approximation when being random) if

X̃ ≈ϵ X ⇔ (1 + ϵ)−1X ⪯ X̃ ⪯ (1 + ϵ)X. (2)

Remark 2.5 (Subspace embedding). For Ã a sketch of A,
the property that Ã⊤Ã ≈ϵ A⊤A holds with probability
1− δ is known as (ϵ, δ)-subspace embedding in RandNLA.
This concept was introduced by Drineas et al. (2006b); see
also Mahoney (2011) for a history. It was subsequently
used in data-oblivious form by Sarlós (2006); Drineas et al.
(2011), and then popularized in data-oblivious form (and
mis-attributed to Sarlós (2006)) by Woodruff (2014). It
plays a central role in the statistical characterization of ran-
dom sketching techniques.

The focus of this paper is to go beyond the subspace
embedding-type results in Definition 2.4 and Remark 2.5,
and to assess the inversion bias of the form E[(Ã⊤Ã +
C)−1] (versus the true inverse (A⊤A+C)−1). To this end,
we need the following measure of unbiased estimators.
Definition 2.6 (Unbiased estimator). We say a random p.s.d.
matrix X̃ is an (ϵ, δ)-unbiased estimator of X if, conditioned
on an event ζ that happens with probability at least 1− δ,

(1+ ϵ)−1X ⪯ Eζ [X̃] ⪯ (1+ ϵ)X, and X̃ ⪯ O(1)X. (3)

Note that the error parameter ϵ in subspace embeddings
quantifies spectral approximation error, whereas the no-

tion of “unbiasedness” specifically refers to inversion bias.
Furthermore, while subspace embeddings automatically en-
sure ϵ-unbiasedness up to the same level of error ϵ, they
are generally not guaranteed to remain unbiased for a
smaller ϵ (Dereziński et al., 2021b).

With these definitions and notations at hand, we are ready
to assess the statistical properties of random sampling. A
first quantity of interest to the design of random sampling
is m, the number of trials needed to construct an (ϵ, δ)-
subspace embedding, for some given importance sampling
distribution {πi}ni=1. A slightly more general result is given
as follows.1

Lemma 2.7 (Subspace embedding for random sampling).
Given A ∈ Rn×d of rank d with n ≥ d and p.s.d. C ∈
Rd×d, let S be a random sampling matrix with number of
trials m and importance sampling distribution {πi}ni=1 as
in Definition 2.1, and let deff = tr(A⊤

CAC) be the effective
dimension of A given C with AC ≡ A(A⊤A +C)−1/2.
Then, there exists C > 0 independent of n, deff such that
for m ≥ Cρmaxdeff log(deff/δ)/ϵ

2, failure probability δ ∈
(0, 1/2), ϵ > 0, and ρmax in Definition 2.3, A⊤

CS
⊤SAC is

an (ϵ, δ)-approximation of A⊤
CAC.

The proof of Lemma 2.7 uses standard matrix concentration
techniques and is given in Appendix B. Note that Lemma 2.7
includes existing results of both leverage (C = 0d) and
ridge leverage score (C = λId) sampling as special cases,
see Chowdhury et al. (2018, Theorm 3).

With Lemma 2.7, we are now ready to evaluate the inver-
sion bias of random sampling. Since the matrix inverse
is nonlinear, for A⊤S⊤SA with E[A⊤S⊤SA] = A⊤A,
one should, a priori, not expect that (A⊤S⊤SA)−1 is an
unbiased or nearly unbiased estimator of (A⊤A)−1. In
the following result, we show (by adapting, in an almost
straightforward fashion, the scalar debiasing proof approach
of Dereziński et al. (2021a;b)) that this inversion bias can
be corrected, but only to some extent, using the same scalar
factor as for sub-gaussian or LESS projections. The proof
of Proposition 2.8 is given in Appendix C for completeness.

Proposition 2.8 (Coarse-grained debiasing of random sam-
pling). Given A ∈ Rn×d of rank d with n ≥ d and p.s.d.
C ∈ Rd×d, let S ∈ Rm×n be a random sampling matrix
with importance sampling distribution {πi}ni=1 as in Defini-
tion 2.1 and max importance sampling approximation factor
ρmax as in Definition 2.3. Then, there exists C > 0 indepen-
dent of n, deff such that if m ≥ Cρmaxdeff(log(deff/δ) +√
deff/ϵ) with δ ≤ m−3, ( m

m−deff
A⊤S⊤SA+C)−1 is an

(ϵ, δ)-unbiased estimator of (A⊤A+C)−1.

Remark 2.9 (On Proposition 2.8). While the debiasing factor

1Here we present the subspace embedding result in Lemma 2.7
on the (regularized) matrix AC ≡ A(A⊤A+C)−1/2. This is of
direct use in analyzing sub-sampled Newton methods in Section 4.
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m
m−deff

is the same as that proposed for random (e.g., sub-
gaussian or LESS) projections (Dereziński et al., 2021a;b),
the resulting inversion bias is significantly larger. In par-
ticular, we have, in the case of Proposition 2.8 and for
m = Θ(ρmaxdeff log deff), that ( m

m−deff
A⊤S⊤SA+C)−1

has an inversion bias of order O(
√
deff/ log deff). This is a

vacuous bound. It follows from Lemma 2.7 that for the same
choice of m, (A⊤S⊤SA+C)−1 is, without the debiasing
factor, an (O(1), δ)-approximation of (A⊤A+C)−1, and
thus has an inversion bias of order O(1). See Lemma B.1
in Appendix B for a proof of this fact.

From Remark 2.9, it appears that the inversion bias result in
Proposition 2.8 is disappointing: random sampling, in con-
trast with sub-gaussian or LESS random projections, while
being numerically attractive and easy to implement, does
not lead to a small inversion bias, at least with the m

m−deff

debiasing factor and the proof approach in Dereziński et al.
(2021a;b) under Proposition 2.8. One may thus wonder:

Is it possible to get sharper control on the inver-
sion bias of random sampling, either by introduc-
ing a different debiasing scheme and/or by using
a more refined proof than Proposition 2.8?

Below, we show that such improvement is indeed possible.

3. Fine-grained Analysis of Inversion Bias for
Random Sampling

We have seen in Proposition 2.8 and Remark 2.9 that the
scalar debiasing and the proof approach in Dereziński et al.
(2021a;b) do not lead, in the case of random sampling, to a
non-vacuous small inversion bias. In the following result,
we provide fine-grained analysis of the inversion bias of
random sampling (finer than that in Proposition 2.8), and
we show that the inverse (A⊤S⊤SA +C)−1 for random
sampling S is biased in a more involved fashion than random
projections studied in Dereziński et al. (2021a;b).

Theorem 3.1 (Inversion bias for random sampling: fine–
grained analysis). Given A ∈ Rn×d of rank d with n ≥ d
and p.s.d. C ∈ Rd×d, let S ∈ Rm×n be a random sampling
matrix with importance sampling distribution {πi}ni=1 as in
Definition 2.1 and (ρmin, ρmax) as in Definition 2.3. Then,
for diagonal matrix D = diag{Dii}ni=1 the solution to2

Dii=
m

m+ a⊤i (A
⊤DA+C)−1ai/πi

, (4)

there exists C > 0 independent of n, deff so that for m ≥
Cρmaxdeff(log(deff/δ)+1/ϵ2/3), δ ≤ m−3, (A⊤S⊤SA+
C)−1 is an (ϵ, δ)-unbiased estimator of (A⊤DA+C)−1.

2It can be checked that m
m+2ρmaxdeff

In ⪯ D ⪯ m
m+ρmindeff

In
with ρmin, ρmax in Definition 2.3. See Lemma D.3 in Appendix D.

Heuristic derivation of Theorem 3.1. For a more transpar-
ent understanding of the self-consistent equation in (4)
of Theorem 3.1, we provide here a heuristic deriva-
tion. The detailed proof of Theorem 3.1 is deferred
to Appendix D. Denote x⊤

s = e⊤isA/
√
πis , Q =

(A⊤S⊤SA + C)−1 =
(

1
m

∑m
s=1 xsx

⊤
s +C

)−1
and

Q−s = (
∑

j ̸=s
1
mxjx

⊤
j + C)−1, for which we have∑m

s=1
1
mE[xsx

⊤
s ] =

∑n
i=1 aia

⊤
i = A⊤A. Then, we fol-

low the deterministic equivalent framework (see, e.g., Couil-
let & Liao (2022, Chapter 2) for an introduction) and show
that ∥E[Q] − H̃−1∥ ≃ 0, for H̃ = A⊤DA + C, for
D ∈ Rn×n given in (4). First, note that ∥E[Q]− H̃−1∥ =

∥E[Q]A⊤DAH̃−1 − E[QA⊤S⊤SA]H̃−1∥, it then fol-
lows from Sherman-Morrison formula (Lemma A.3) that

E[QA⊤S⊤SA]H̃−1=

m∑
s=1

E

[
1
mQ−sxsx

⊤
s H̃

−1

1 + x⊤
s Q−sxs/m

]

=

n∑
i=1

E

[
Q−saia

⊤
i H̃

−1

1 + a⊤i Q−sai/mπi

]
.

Using the rank-one perturbation lemma of matrix inverse,
see, e.g., Silverstein & Bai (1995, Lemma 2.6), we obtain

E[QA⊤S⊤SA]H̃−1≃
n∑

i=1

E

[
Qaia

⊤
i H̃

−1

1 + a⊤i H̃
−1ai/mπi

]
=E [Q]A⊤DAH̃−1,

for D = diag{mπi/(mπi + a⊤i H̃
−1ai)}ni=1. This leads to

the self-consistent equation in (4) of Theorem 3.1.

Theorem 3.1 says that the (conditional) expectation
Eζ [(A

⊤S⊤SA+C)−1], instead of being close to (A⊤A+
C)−1, is in fact close to (A⊤DA + C)−1, with D de-
pending on A and the random sampling scheme per m
and {πi}ni=1 in an implicit fashion. While seemingly un-
interpretable and unusable at first sight, Theorem 3.1 can
be tuned to design a de-biased random sampling approach.
This is given in the following result.

Proposition 3.2 (Fine-grained debiasing for general random
sampling). Under the settings and notations of Theorem 3.1,
for ℓCis the iths leverage score of A as in Definition 2.2 and
standard random sampling matrix S as in Definition 2.1,
define the de-biased sampling matrix Š ∈ Rm×n as

Š=diag

{√
m/(m− ℓCis/πis)

}m

s=1

· S. (5)

Then, there exists constant C > 0 independent of n, deff
such that for m ≥ Cρmaxdeff(log(deff/δ) + 1/ϵ2/3), δ ≤
m−3, (A⊤Š⊤ŠA+C)−1 is an (ϵ, δ)-unbiased estimator
of (A⊤A+C)−1.
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Heuristic derivation of Proposition 3.2. To make the intu-
ition behind Proposition 3.2 more accessible, we present
here a heuristic derivation of (5). We refer the reader
to Appendix E for the detailed proof of Proposition 3.2.
Let Š⊤Š =

∑m
s=1 Fisis · eise⊤is/mπis for some de-

terministic Fii to be specified, Q̌ = (A⊤Š⊤ŠA +

C)−1 =
(

1
m

∑m
s=1 Fisisxsx

⊤
s +C

)−1
, and similarly

Q̌−s = ( 1
m

∑
l ̸=s Fililxlx

⊤
l + C)−1 as in the heuris-

tic derivation of Theorem 3.1 above. We thus have
1
m

∑m
s=1 E[Fisisxsx

⊤
s ] =

∑n
i=1 Fiiaia

⊤
i . Our goal is to

determine Q̌ (and Fii) such that ∥E[Q̌] −H−1∥ ≃ 0, for
H−1 = (A⊤A+C)−1. To this end, observe that

E[Q̌]−H−1=E[Q̌]A⊤AH−1 −E[Q̌A⊤Š⊤ŠA]H−1 ≃ 0.

By Sherman-Morrison formula (Lemma A.3), we obtain

E[Q̌A⊤Š⊤ŠA]H−1=E

[
Q̌−sFisisA

⊤eise
⊤
is
/πisAH−1

1 + Fisise
⊤
is
AQ̌−sA⊤eis/mπis

]

=

n∑
i=1

E
[

Q̌−sFiiA
⊤eie

⊤
i AH−1

1 + Fiie⊤i AQ̌−sA⊤ei/mπi

]
,

where we see the exact leverage score e⊤i AH−1A⊤ei =
a⊤i (A

⊤A + C)−1ai = ℓCi as in Definition 2.2 naturally
appears in the denominator from the derivation. Invoking
the rank-one perturbation lemma once more, we have that

E[Q̌A⊤Š⊤ŠA]H−1≃E[Q̌]A⊤
n∑

i=1

Fiieie
⊤
i

1 + FiiℓCi /mπi
AH−1

=E[Q̌]A⊤AH−1,

where we take the debiasing factor Fii = mπi/(mπi − ℓCi )
such that Fii/(1+Fiiℓ

C
i /mπi) = 1. This leads to the form

of the debiasing matrix Š as in (5) of Proposition 3.2.

Comparing the fine-grained results in Proposition 3.2 to the
coarse-grained results in Proposition 2.8, we see that the
large inversion bias in Proposition 2.8 is indeed a conse-
quence of the proof approach adapted from Dereziński et al.
(2021a;b), that is inadequate for random sampling and for
structured random projections such as the SRHT.
Remark 3.3 (Š as a random sampling scheme). Note that
Š ∈ Rm×n in Proposition 3.2 is nothing but another ran-
dom sampling matrix: it features exactly one nonzero entry
per row that is equal to (mπis − ℓCis)

−1/2, as opposed to
(mπis)

−1/2 for the standard random sampling S in Defi-
nition 2.1. This non-standard re-weighting (that uses the
leverage scores of A) ensures that (A⊤Š⊤ŠA +C)−1 is
a nearly unbiased estimate of (A⊤A+C)−1, per Proposi-
tion 3.2. From a computational perspective, the re-weighted
random sampling Š in (5) can be computationally demand-
ing due to the need for exact computation of leverage scores

ℓCi in (5). In Corollary E.1 of Appendix E, we consider
approximate leverage scores (which are much faster to com-
pute (Drineas et al., 2012; Clarkson & Woodruff, 2017;
Cohen et al., 2017)). We show that for a given sampling
scheme {πi}ni=1, replacing exact leverage scores with their
approximate counterparts in the de-biased sampling matrix
Š in (5) increases the inversion bias, but only very slightly.

Note from Proposition 3.2 that the proposed fine-grained
de-biasing matrix Š depends on the importance sampling
distribution only via ℓCi /πi. (See Appendix E.1 for the RMT
intuition on how the exact leverage scores arise from the
derivation.) As such, for any random sampling method with
πi ≈ ℓCi /deff close to those of exact leverage score sampling
in Definition 2.2, we have Š ≈ m

m−deff
S. This coincides

with the scalar debiasing scheme in the coarse-grained result
of Proposition 2.8, but it has a much smaller inversion bias.
This special case is discussed in the following result, proven
in Appendix E.3.2.

Corollary 3.4 (Inversion bias using scalar debiasing un-
der approximate leverage). Under the settings and nota-
tions of Theorem 3.1, for random sampling scheme with
sampling distribution πi ∈ [ℓCi /(deffρmax), ℓ

C
i /(deffρmin)]

with ρmin ∈ [1/2, 1] as in Definition 2.3,3 there exists
C > 0, ν ≥ logdeff

(log(deff/δ)), δ < m−3 such that
for m ≥ Cρmaxd

1+ν
eff , ( m

m−deff
A⊤S⊤SA + C)−1 is an

(ϵ, δ)-unbiased estimator of (A⊤A + C)−1 with inver-
sion bias ϵ = max{O(d

−3ν/2
eff ), O(ϵρd

−ν
eff )} and ϵρ =

max{ρ−1
min − 1, 1− ρ−1

max}.

Remark 3.5 (Inversion bias for exact versus approximate
leverage score sampling). It follows from Corollary 3.4
that for exact and/or approximate leverage score sampling
with ρmax ≥ ρmin/(2ρmin − 1) ≥ 1 and ρmin > (1 +

Θ(d
−ν/2
eff ))−1 > 1/2 (so that ϵρ = 1− ρ−1

max), the inversion
bias induced by the scalar debiasing m

m−deff
establishes the

following phase transition behavior:

1. if the random sampling scheme is sufficiently
close to exact leverage sampling, in that ρmax ∈
[ρmin/(2ρmin − 1), 1/(1 − Θ(d

−ν/2
eff ))] (or equiva-

lently the importance sampling probabilities satisfy
πi ∈ [(1 ± Θ(d

−ν/2
eff ))ℓCi /deff ]), then the inversion

bias under scalar debiasing is the same as that (of the
fine-grained matrix debiasing) in Proposition 3.2; but

2. if the random sampling scheme significantly devi-
ates from exact leverage sampling with ρmax >

1/(1 − Θ(d
−ν/2
eff )) (or equivalently |πi − ℓCi /deff | >

Θ(d
−ν/2
eff )ℓCi /deff ), then the inversion bias under scalar

3Note that by Definition 2.3 we have ρmin ≤ ℓCi /(πideff) ≤
ρmax for all i, which, together with ρmin ≥ 1/2 yields that |πi −
ℓCi /deff | ≤ ϵρℓ

C
i /deff ≤ ℓCi /deff .
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debiasing becomes larger than that in Proposition 3.2,
increases with ρmax, and saturates at ρmax = Θ(1).

This phase transition behavior is visualized in Figure 1. See
also Figure 4 in Appendix G for the numerical comparison
of inversion bias using scalar debiasing between exact and
approximate leverage score sampling.

ρmin
2ρmin−1

1

1−Θ(d
−ν/2
eff

)

Θ(1)

O(d
−3ν/2
eff

)

O(d−ν
eff

)

ρmax

In
ve

rs
io

n
bi

as
ϵ

Figure 1: The phase transition behavior of inversion bias ϵ
as a function of ρmax discussed in Remark 3.5 with scalar
debiasing.

As a side remark, it is known from Dereziński et al. (2021b,
Theorem 10) that for approximate leverage sampling, and
any scalar γ > 0,m > 0, (γA⊤S⊤SA+C)−1 with C =
0d is not an (ϵ, δ)-unbiased estimator of (A⊤A + C)−1,
with any ϵ ≤ cdeff/m and c > 0 an absolute constant. Thus,

1. in the case of approximate leverage score sampling
with ρmax = 3/2 and ρmin = 1/2, for any m ≥
Cρmaxdeff log deff , it follows from the proof of Corol-
lary 3.4 that the inversion bias is upper bounded by
O(deff/m), and this coincides with the lower bound in
Dereziński et al. (2021b, Theorem 10); and

2. in the case of exact leverage score sampling with
ρmax = ρmin = 1, the inversion bias can be made
smaller than deff/m under scalar debiasing.4

As an important consequence, Proposition 3.2 also applies to
effectively de-bias another commonly-used data-oblivious
sketching scheme, the SRHT (Ailon & Chazelle, 2006).

Definition 3.6 (Sub-sampled randomized Walsh–Hadamard
transform, SRHT, Ailon & Chazelle (2006)). For a given
matrix A ∈ Rn×d of rank d with n ≥ d, assume without
loss of generality that n = 2p for some integer p. Then, the
SRHT of A is given by

ÃSRHT = SHnDnA/
√
n ∈ Rm×n, (6)

4Notably, using exact (instead of approximate) leverage score
sampling in the same setting of Dereziński et al. (2021b, Theo-
rem 10), the inversion bias (conditioned on any event ζ that ensures
invertibility) can be made zero by taking γ = m

d
Eζ [1/b] for b dis-

tributed as Binomial(m, 1/d). This aligns with our conclusion of
a possibly smaller inversion bias than deff/m. See Corollary E.2
in Appendix E for a proof of this fact.

for uniform random sampling matrix S ∈ Rm×n, πi = 1/n
as in Definition 2.1, Hn ∈ Rn×n the Walsh–Hadamard
matrix of size n, and diagonal Dn ∈ Rn×n having i.i.d.
Rademacher random variables on its diagonal.

The SRHT in Definition 3.6 enjoys the following proper-
ties: the randomized Walsh–Hadamard transform HnDnA
of A is known to have approximately uniform leverages
scores, that is ℓCi (HnDnA/

√
n) ≈ deff/n, see Drineas

et al. (2011) and Tropp (2011, Theorems 3.1 and 3.2),
as well as Lemma E.4 in Appendix E.3 in our setting;
and since H⊤

nHn/n = In and D2
n = In, one has

1
nA

⊤DnH
⊤
nHnDnA = A⊤A, so that HnDnA/

√
n and

A have the same effective dimension. These lead to the fol-
lowing fine-grained debiasing result for SRHT with scalar
debiasing, proven in Appendix E.3.4.

Corollary 3.7 (Fine-grained debiasing for SRHT us-
ing scalar debiasing). Under the setting and notations
of Theorem 3.1, for ÃSRHT ∈ Rm×n the SRHT of
A as in Definition 3.6, then there exists C > 0,
ν ≥ 0, n exp(−deff) < δ < m−3 such that for
m ≥ Cρmaxd

1+ν
eff , ( m

m−deff
Ã⊤

SRHTÃSRHT + C)−1 is an

(O(d
−3ν/2
eff ) + O(ρ−1

max

√
log(n/δ)d

−ν−1/2
eff ), δ)-unbiased

estimator of (A⊤A+C)−1.5

4. Application to De-biased Sub-sampled
Newton with Improved Convergence

In this section, we show that the precise characterizations
of random sampling inversion bias and the debiasing tech-
niques in Section 3 apply to establish problem-independent
local convergence rates of SSN methods.

Consider the following optimization problem:

β∗ = argmin
β∈C

F (β) = argmin
β∈C

f(β) + Φ(β), (7)

for some smooth function F : Rd → R that can be de-
composed into f and Φ, and C ⊆ Rd a convex set. This
decomposition naturally arises in ML when, e.g., the loss
function F is the sum of the empirical risk f over a set of n
training samples and some regularization penalty Φ.

Newton’s method solves (7) by performing iterative updates
βt+1 = βt − µtH

−1
t (βt)∇F (βt), with µt the step size,

∇F (βt) ∈ Rd the gradient, and Ht(βt) ∈ Rd×d the Hes-
sian of F at βt that can be decomposed as

Ht(βt) = A(βt)
⊤A(βt) +C(βt), (8)

with A(βt) ∈ Rn×d and some p.s.d. matrix C(βt) =
∇2Φ(βt) ∈ Rd×d that takes a simple form, e.g., C(βt) =
2λId in the case of L2 regularization Φ(β) = λ∥β∥2.

5Recall from Definition 2.3 that here for SRHT, we have πi =
1/n and thus ρmax = max1≤i≤n nℓCi (HnDnA/

√
n)/deff .
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Despite having a locally super-linear convergence rate, New-
ton’s method suffers from a heavy computational burden
in forming the Hessian matrix Ht(βt), particularly when
the training samples n is large, e.g., n ≫ d. In this case,
the major computational bottleneck of Newton’s method
lies in the construction of A(βt)

⊤A(βt) for the inverse
Hessian matrix, as this takes O(nd2) time.6 Many random-
ized second-order methods have been proposed to replace
the exact Hessian inverse by some computationally efficient
estimate. Here, we consider SSN methods, that randomly
sample the Hessian (Yao et al., 2018; Roosta-Khorasani &
Mahoney, 2019; Xu et al., 2020) as follows.

Definition 4.1 (Sub-sampled Newton, SSN). To solve the
optimization problem in (7), the SSN method performs the
following iteration:

βt+1=βt−µt

(
A(βt)

⊤S⊤
t StA(βt) +C(βt)

)−1
gt, (9)

for t = 0, 1, . . . T , with gt ≡ ∇F (βt) ∈ Rd the gradient
of F at βt, µt the step size at time t, and random sampling
matrix St ∈ Rm×n as in Definition 2.1.

By randomly sampling the (computationally intense com-
ponent of the) Hessian matrix, each SSN step in (9) takes
only O(md2) time. The (local or global) convergence rates
of SSN have been extensively studied in the literature of
optimization, RandNLA, and ML; see, e.g., Xu et al. (2016);
Bollapragada et al. (2019); Roosta-Khorasani & Mahoney
(2019); Ye et al. (2021); Lacotte et al. (2021) and Section 1.2
above. In particular, Lacotte et al. (2021) proposed an adap-
tive SSN-type algorithm that achieves a quadratic conver-
gence rate by dynamically adjusting the sketch size, improv-
ing upon the well-established linear–quadratic rates of tradi-
tional SSN methods. Incorporating their adaptive algorithm
into our proposed de-biased approach could potentially ac-
celerate convergence further; however, this exploration lies
beyond the scope of the present work.

Due to the absence of precise characterizations of the sub-
sampled Hessian inverse, as in Theorem 3.1 and Proposi-
tion 3.2 (that allow to, e.g., prove the near-unbiasedness of
SSN iteration E[βt+1] ≈ βt − µtH

−1
t (βt)gt), it is tech-

nically challenging to obtain problem-independent conver-
gence rates for SSN. In the following, we fill this gap by
showing how our inversion bias results in Section 3 apply to
establish problem-independent local convergence rates for
de-biased SSN. We position ourselves under the following
standard assumption on the objective function F .

Assumption 4.2 (Lipschitz Hessian). F, f : Rd → R in
(7) have Lipschitz continuous Hessian with Lipschitz con-
stant L, that is, for any β,β′ ∈ Rd, max{∥∇2F (β) −
∇2F (β′)∥, ∥∇2f(β)−∇2f(β′)∥} ≤ L∥β − β′∥.

6Of course, this does not need to be done explicitly.

Under Assumption 4.2, we evaluate the local convergence
rate of the following de-biased SSN iterations:

β̌t+1=β̌t−µt

(
A(β̌t)

⊤Š⊤
t ŠtA(β̌t) +C(β̌t)

)−1
gt, (10)

with de-biased Št = diag
{√

m/(m− ℓCis(β̌t)/πis)
}m

s=1
·

St as in Proposition 3.2, with ℓCis(β̌t) the iths leverage score
of A(β̌t) given C(β̌t). This leads to the following result.

Theorem 4.3 (Local convergence of de-biased SSN). Let
Assumption 4.2 hold. For p.d. A(β∗)⊤A(β∗) = ∇2f(β∗)
and p.s.d. C(β∗) = ∇2Φ(β∗), there exists a neighborhood
U of β∗ such that the de-biased SSN iteration in (10) start-
ing from β̌0 ∈ U satisfies, for U = {β : ∥β − β∗∥H <
(ρmaxdeffσmin/m)3/2/L}, step size µt = 1− ρmax

m/deff+ρmax
,

m ≥ Cρmaxd
1+ν
eff , and ν ≥ logdeff

(log(deffT/δ)) that(
Eζ

[
∥β̌T − β∗∥H
∥β̌0 − β∗∥H

])1/T

≤ ρmaxdeff
m

(1 + ϵ), (11)

holds for ϵ = O(d
−ν/2
eff ) and conditioned on an event ζ that

happens with probability at least 1 − δ. Here, σmin is the
smallest singular value of H ≡ A(β∗)⊤A(β∗) +C(β∗),
ρmax is the max importance sampling approximation fac-
tor in Definition 2.3 for ℓCi = max1≤t≤T ℓCi (β̌t) and
deff = max1≤t≤T deff(β̌t) with ℓCi (β̌t) and deff(β̌t) the
leverage scores and effective dimension of A(β̌t) given
C(β̌t), respectively.

The proof of Theorem 4.3 can be found in Appendix F.2.
The proof relies on a precise characterization of the second
inverse moment of the randomly sampled Hessian matrix,
extending beyond the first inverse moment result in Propo-
sition 3.2. Due to space limitation, this technical result is
presented in Proposition F.1 of Appendix F. For the sake of
practical implementation, we also present, in Corollaries F.5
and F.6 of Appendix F, local convergence rates of SSN it-
erations using scalar debiasing m/(m− deff) under exact
and approximate leverage score sampling as well as SRHT.

5. Numerical Experiments of De-biased SSN
In this section, we provide empirical evidence show-
ing the improved convergence (and a better “complexity–
convergence” trade-off as a consequence) of different de-
biased SSN methods proposed in Section 4, with respect to
several first- and second-order baseline optimization meth-
ods. We solve the following logistic regression problem

min
β∈Rd

1

n

n∑
i=1

log
(
1 + exp(−yia

⊤
i β)

)
+

λ

2
∥β∥2, (12)

of the form (7), for regularization λ > 0, where a⊤i ∈ Rd

is the ith row of data matrix A ∈ Rn×d sampled from both
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MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky,
2009) datasets, and y ∈ {±1}n the response vector. Im-
plementation details are provided in Appendix G. Note that
the time reported in Figures 2 and 3 include both the input
data pre-processing time ( e.g., the computation of exact or
approximate leverage scores, and Walsh–Hadamard trans-
form) and the computational overhead associated with the
sketching process.

Figure 2 assesses the impact of the sketch size m on both
relative error (∥β̌T −β∗∥2H/∥β̌0−β∗∥2H) and running time
of de-biased SSN employing approximate ridge leverage
score sampling (SSN-ARLev), in comparison to the Newton-
LESS method (Dereziński et al., 2021a) based on random
projection. The results in Figure 2 demonstrate that the
proposed de-biased SSN consistently outperforms Newton-
LESS across all tested sketch size m, exhibiting a superior
convergence–complexity trade-off. Notably, while the run-
ning time for Newton-LESS increases significantly with m,
that of SSN-ARLev remains approximately constant.
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Figure 2: Relative errors (in solid lines) and wall-clock
time (in dashed lines) as a function of the sketch size m,
for Newton-LESS and the proposed de-biased SSN-ARLev
methods, applied to logistic regression on both MNIST and
CIFAR-10 data. Relative errors are obtained after a fixed
number of iterations (T = 5 for MNIST data and T = 7 for
CIFAR-10 data). Results are obtained by averaging over 30
independent runs.

Figure 3 compares the relative errors as a function of wall-
clock time across various optimization methods:

1. First-order baselines: Gradient Descent (GD) and
Stochastic GD (SGD).

2. De-biased SSN methods using different sampling
schemes: Approximate λ-Ridge Leverage Score (AR-
Lev), Approximate Leverage Score (ALev), Shrinkage
Leverage Score (SLev) sampling (Ma et al., 2015), and
SRHT (see Definition 3.6 above).

3. Newton Sketch with LESS-uniform sketch
(LESS) (Dereziński et al., 2021a), which achieves
significantly shorter running times compared to the
original Newton Sketch with dense Gaussian sketches.
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Figure 3: Convergence–complexity trade-off between vari-
ous optimization methods on logistic regression for MNIST
and CIFAR-10 data, with sketch size m = 300 for MNIST
and m = 400 for CIFAR-10 data. Results are obtained by
averaging over 10 independent runs (except for GD that is
deterministic).

From Figure 3, we see that SSN methods, when prop-
erly de-biased, exhibit a significantly better convergence–
complexity trade-off than both first-order methods and the
Newton-LESS approach. The SRHT sampling outperforms
Newton-LESS but still lags slightly behind all other SSN
variants in speed. Among these, the SLev scheme edges out
ALev yet remains slower than ARLev. Across both datasets
tested, de-biased SSN with ARLev consistently delivers
the optimal convergence–complexity trade-off among all
methods evaluated.

6. Conclusions and Perspectives
In the work, we investigate the inversion bias inherent
in various random sampling schemes, including uniform
and non-uniform leverage-based sampling, as wel as struc-
tured random projections (e.g., the Hadamard transform-
based SRHT). Leveraging recent advances in RMT and
RandNLA, we provide a precise characterization of this
inversion bias and propose corresponding de-biasing tech-
niques. Notably, for approximate leverage sampling and
SRHT, this de-biasing reduces to a simple scalar rescaling.
We further show that our results enable an improved SSN
method, achieving local convergence rates comparable to
those of Newton Sketch with dense Gaussian projections.
Our theoretical insights are complemented by numerical
results on MNIST and CIFAR-10 datasets, underscoring the
practical relevance of the proposed approach.

It would be of future interest to see whether the proposed
debiasing technique, when wisely combined with adap-
tive sampling schemes, can achieve or even improve the
quadratic convergence in Lacotte et al. (2021). In addition,
it is also worthwhile to extend our debiasing framework to
dependent sampling methods (Cortinovis & Kressner, 2024),
such as volume sampling, which may further improve SSN’s
efficiency and convergence.
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Supplementary Material of
Fundamental Bias in Inverting Random Sampling Matrices

with Application to Sub-sampled Newton

The technical appendices of this paper are organized as follows.

• We recall a few technical lemmas that will be used in our proofs in Appendix A.

• The proof of Lemma 2.7 on the subspace embedding property for random sampling is given in Appendix B.

• The proof of Proposition 2.8 on coarse-grained debiasing of random sampling is given in Appendix C.

• The proof of Theorem 3.1 on fine-grained analysis of inversion bias for random sampling is given in Appendix D.

• The proof of Proposition 3.2 on fine-grained debiasing for random sampling is given in Appendix E.

• The proof concerning results on the application to de-biased SSN in Section 4 is given in Appendix F.

• Implementation details for the numerical results in Section 5 are given in Appendix G.

A. Useful Lemmas
In this section, we introduce a few technical lemmas to be used in subsequent sections.

Lemma A.1 (Singular value bounds of symmetric p.s.d. matrices, Zhan (2001, Theorem 2.1)). For real symmetric p.s.d.
matrices J,K ∈ Rs×s having (ordered) singular values σ1(J) ≥ σ2(J) ≥ . . . ≥ σs(J) and σ1(K) ≥ σ2(K) ≥ . . . ≥
σs(K), the singular values of the difference J−K are bounded as

σj(J−K) ≤ σj

(
J 0
0 K

)
, j = 1, . . . , s.

In particular, we obtain

∥J−K∥ ≤ max{∥J∥, ∥K∥}.

Lemma A.2 (Intrinsic matrix Bernstein, Tropp (2015, Theorem 7.3.1)). Let X1, . . . ,Xn be n independent real symmetric
random matrices such that E[Xi] = 0, max1≤i≤n ∥Xi∥ ≤ ρ1, and

∑n
i=1 E[X2

i ] ⪯ B for some symmetric p.s.d. matrix B.
Then, for any ϵ ≥ ∥B∥1/2 + ρ1/3, we have

Pr

(∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≥ ϵ

)
≤ 4 trB

∥B∥
exp

(
− ϵ2/2

∥B∥+ ρ1ϵ/3

)
.

Lemma A.3 (Sherman–Morrison formula). For an invertible matrix A ∈ Rn×n and two vectors u,v ∈ Rn, A+ uv⊤ is
invertible if and only if 1 + v⊤A−1u ̸= 0 and

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Besides, it also follows that

(A+ uv⊤)−1u =
A−1u

1 + v⊤A−1u
.

Lemma A.4 (Burkholder inequality, Burkholder (1973)). For {yi}ni=1 a real martingale difference sequence with respect to
the increasing σ-field Fi, we have

E

∣∣∣∣∣
n∑

i=1

yi

∣∣∣∣∣
T
 ≤ LT · E

( n∑
i=1

y2i

)T/2
 ,

for any integer T ≥ 2 and some constant LT > 0 independent of n.
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We will use Lemma A.4 to establish concentration results for resolvent/inverse matrices. In that context, the increasing
σ-field Fi is defined with respect to the independent trials of random sampling (i.e., the rows of the random sampling matrix
S ∈ Rm×n in Definition 2.1, see Lemma D.1 in Appendix D.3 and the discussion thereafter.

Theorem A.5 (Hanson-Wright inequality, Vershynin (2018)). Assume x = (x1, . . . , xn) ∈ Rn be a random vector with
independent, mean-zero, sub-gaussian variables. For a matrix M ∈ Rn×n and any t ≥ 0, then we have

Pr
(∣∣x⊤Mx− E[x⊤Mx]

∣∣ ≥ t
)
≤ 2 exp

[
−cmin

(
t2

K4∥M∥2F
,

t

K2∥M∥

)]
,

where ∥ · ∥F denotes the Frobenius norm, K = max1≤i≤n inf{s > 0 : E[exp(x2
i /s

2)] ≤ 2}, and c is a universal constant.

B. Proof of Lemma 2.7
In this section, we present the proof of Lemma 2.7. Recall that our objective is, for A ∈ Rn×d of rank d with n ≥ d,
p.s.d. C ∈ Rd×d, S some random sampling matrix with number of trials m and importance sampling distribution
{πi}ni=1 as in Definition 2.1, deff = tr(A⊤

CAC) the effective dimension of A given C with AC ≡ A(A⊤A +C)−1/2

as in Definition 2.2, and max importance sampling approximation factor ρmax as in Definition 2.3, to show that for
m ≥ Cρmaxdeff log(deff/δ)/ϵ

2, A⊤
CS

⊤SAC is an (ϵ, δ)-approximation of A⊤
CAC. That is

(1 + ϵ)−1A⊤
CAC ⪯ A⊤

CS
⊤SAC ⪯ (1 + ϵ)A⊤

CAC, (13)

holds with probability at least 1− δ.

First note that, for AC ≡ A(A⊤A+C)−1/2 ∈ Rn×d, we have

A⊤
CS

⊤SAC −A⊤
CAC =

m∑
s=1

(
aCisaC

⊤
is

mπis

− A⊤
CAC

m

)
≡

m∑
s=1

Fs,

where a⊤Ci ∈ Rd denotes the ith row of AC. Given AC, it follows from Definition 2.1 that the indices is are i.i.d. drawn
with replacement from the index set {1, . . . , n}. We would like to apply the Intrinsic matrix Bernstein, Lemma A.2, to
bound the sum of random matrices A⊤

CS
⊤SAC −A⊤

CAC =
∑m

s=1 Fs. To this end, note first that given AC we have

E[Fs] = 0d. (14)

It then remains to bound (i) the spectral norm ∥Fs∥ and (ii) the sum
∑m

s=1 E[F2
s] in the sense of p.s.d. matrices. By Lemma

A.1 and the triangle inequality, for s = 1, . . . ,m, we get

∥Fs∥ ≤ max
1≤i≤n

{∥∥∥∥aCiaC
⊤
i

mπi

∥∥∥∥ , 1

m

}
=

1

m
max
1≤i≤n

{
∥aCi∥2

πi
, 1

}
=

ρmaxdeff
m

≡ ρ1,

where we recall ∥A⊤
CAC∥ ≤ 1 and ρmax = max1≤i≤n ∥aCi∥2/(πideff) ≥ 1 is the max importance sampling approxima-

tion factor in Definition 2.3.

Further note that, per its definition Fs =
aCis

aC
⊤
is

mπis
− A⊤

CAC

m , we have(
Fs +

A⊤
CAC

m

)2

=
∥aCis∥2 · aCisaC

⊤
is

m2π2
is

= F2
s + Fs

A⊤
CAC

m
+

A⊤
CAC

m
Fs +

(A⊤
CAC)

2

m2
. (15)

Taking expectations on both sides of (15) and applying (14), we get

E[F2
s] +

(A⊤
CAC)

2

m2
=

n∑
i=1

πi
∥aCi∥2 · aCiaC

⊤
i

m2π2
i

⪯ ρmaxdeff
m2

A⊤
CAC.

Thus,
m∑
s=1

E[F2
s] ⪯

ρmaxdeff
m

A⊤
CAC ≡ P,
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for which we have ∥P∥ = ρmaxdeff

m ∥A⊤
CAC∥ and tr(P) =

ρmaxd
2
eff

m , so that trP
∥P∥ = deff

∥A⊤
CAC∥ .

Recall that ∥A⊤
CAC∥ ≤ 1, applying Lemma A.2, we obtain

1− Pr

(
1

1 + ϵ
A⊤

CAC ⪯ A⊤
CS

⊤SAC ⪯ (1 + ϵ)A⊤
CAC

)
≤ Pr

(
∥A⊤

CS
⊤SAC −A⊤

CAC∥ > ϵ
)
= Pr

(∥∥∥∥∥
m∑
s=1

Fs

∥∥∥∥∥ > ϵ

)

≤ 4∥A⊤
CAC∥−1deff exp

(
− ϵ2/2

ρmaxdeff

m ∥A⊤
CAC∥+ ρmaxdeff

m ϵ/3

)

= 4∥A⊤
CAC∥−1deff exp

(
− ϵ2

ρmaxdeff

m (2∥A⊤
CAC∥+ 2ϵ/3)

)
.

Clearly, Pr( 1
1+ϵA

⊤
CAC ⪯ A⊤

CS
⊤SAC ⪯ (1 + ϵ)A⊤

CAC) ≤ 1− δ holds if

4∥A⊤
CAC∥−1deff exp

(
− ϵ2

ρmaxdeff

m (2∥A⊤
CAC∥+ 2ϵ/3)

)
≤ δ, (16)

that can be rewritten as

m ≥ ρmaxdeff(2∥A⊤
CAC∥+ 2ϵ/3)

ϵ2
log

(
4∥A⊤

CAC∥−1deff
δ

)
. (17)

Since ϵ ≤ 1 and ∥A⊤
CAC∥ ≤ 1, (17) holds if m ≥ 8ρdeff

3ϵ2 log(
4∥A⊤

CAC∥−1deff

δ ).

Lastly, let us check the condition ϵ ≥ ∥P∥1/2 + ρ1/3 in Lemma A.2 is satisfied. Solving (16) for ϵ, we get

4∥A⊤
CAC∥−1deffexp

(
− ϵ2

ρmaxdeff

m (2∥A⊤
CAC∥+ 2ϵ/3)

)
≤ δ

=⇒ ϵ2 − 2ρmaxdeff
3m

log(4∥A⊤
CAC∥−1deff/δ)ϵ− 6

ρmaxdeff∥A⊤
CAC∥

3m
log(4∥A⊤

CAC∥−1deff/δ) ≥ 0

=⇒ ϵ2 − 2vϵ− 6∥A⊤
CAC∥v ≥ 0

=⇒ ϵ ≥ v +
√

v2 + 6∥A⊤
CAC∥v,

where v = ρmaxdeff

3m log(
4∥A⊤

CAC∥−1deff

δ ). As δ < 1 and 4∥A⊤
CAC∥−1deff > e, we have log(

4∥A⊤
CAC∥−1deff

δ ) ≥ 1. As
such, we get v ≥ ρ1/3 and 6∥A⊤

CAC∥v ≥ ∥P∥, so that ϵ ≥ ∥P∥1/2 + ρ1/3 holds. This concludes the proof of Lemma 2.7.
□

Given the subspace embedding result in Lemma 2.7, it can be shown that the inversion (A⊤S⊤SA+C)−1 also satisfies
a similar subspace embedding property and is close to the (population) inversion (A⊤A + C)−1. This is given in the
following result.

Lemma B.1. Under the settings and notations of Lemma 2.7, we have that (A⊤S⊤SA+C)−1 is an (ϵ, δ)-approximation
of (A⊤A+C)−1.

Proof of Lemma B.1. Denote H = A⊤A + C (so that ∥H− 1
2CH− 1

2 ∥ ≤ 1), it then follows from Lemma 2.7 that
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A⊤
CS

⊤SAC is an (ϵ, δ)-approximation of A⊤
CAC, that is,

1

1 + ϵ
A⊤

CAC ⪯ A⊤
CS

⊤SAC ⪯ (1 + ϵ)A⊤
CAC

⇒ 1

1 + ϵ
(A⊤

CAC +H− 1
2CH− 1

2 ) ⪯ A⊤
CS

⊤SAC +H− 1
2CH− 1

2 ⪯ (1 + ϵ)(A⊤
CAC +H− 1

2CH− 1
2 )

⇒ 1

1 + ϵ
H ⪯ A⊤S⊤SA+C ⪯ (1 + ϵ)H.

⇒ 1

1 + ϵ
H−1 ⪯ (A⊤S⊤SA+C)−1 ⪯ (1 + ϵ)H−1,

where we recall the definition AC = A(A⊤A+C)−1/2. This concludes the proof of Lemma B.1.

C. Proof of Proposition 2.8
The proof of Proposition 2.8 follows roughly the same line as that of Dereziński et al. (2021a, Theorem 6) and Dereziński
et al. (2021b, Theorem 11). It is provided here for completeness.

Here, we focus on the differences from the proof in Dereziński et al. (2021a;b) by considering now S under study is a
random sampling matrix as in Definition 2.1.

To start with, we introduce the following condition that is crucial to the proof in Dereziński et al. (2021a;b) and of our
Proposition 2.8 here.

Condition C.1 (Concentration property of random vector s). Given V ∈ Rn×d, the n-dimensional random vector s satisfies
Var[s⊤VBV⊤s] ≤ α · tr(VB2V⊤) for all p.s.d. matrices B ∈ Rd×d and some α > 0.

The proof of Proposition 2.8 then comes in the following two steps:

1. construct a high probability event ζ (via subspace embedding-type results in Lemma 2.7), on which the inverse
(A⊤S⊤SA+C)−1 exists (in particular for C = 0d); and

2. conditioned on that event ζ, bound the spectral norm ∥Id − Eζ [Q̃]H∥ via “leave-one-out” type analysis, for H =

A⊤A+C and Q̃ = (γA⊤S⊤SA+C)−1 with γ = m
m−deff

.

Let us start with the first step, for random sampling in Definition 2.1, denote x⊤
s = e⊤is/

√
πisA ∈ Rd the ith row of the

sketch Ã, so that E[xsx
⊤
s ] = A⊤A. Denote

H = A⊤A+C, Q̃ = (γA⊤S⊤SA+C)−1 =

(
m∑
s=1

γ

m
xsx

⊤
s +C

)−1

, γ =
m

m− deff
, (18)

and

Q̃−s =

∑
j ̸=s

γ

m
xjx

⊤
j +C

−1

,

that is independent of xs.

Without loss of generality, assume that t = m/3 is an integer, and define the following events:

ζj :

tj∑
s=t(j−1)+1

1

t
xsx

⊤
s ⪰ 1

2
A⊤A, j = 1, 2, 3, ζ =

3⋂
j=1

ζj . (19)

Recall that γ = m
m−deff

> 1, the events ζj imply

tj∑
s=t(j−1)+1

γ

t
xsx

⊤
s ⪰ 1

2
A⊤A, j = 1, 2, 3.
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Here, the event ζj presents that the (weighted) average of the rank-one matrices xsx
⊤
s over the corresponding j-th third of

indices 1, . . . , n forms a sketch (of size t = m/3) of A⊤A that is a “lower” 1/2-spectral-approximation of A⊤A in the
sense of Definition 2.4.

In the case of random sampling in Definition 2.1, the events ζ1, ζ2, and ζ3 are independent. As such, for each s ∈ {1, . . . ,m},
there exists an index j = j(s) ∈ {1, 2, 3} such that

1. ζj is independent of xs; and

2. conditioned on ζj one has Q̃ ⪯ Q̃−s ⪯ 6H−1, which, for m > 2deff , further leads to γH1/2Q̃−sH
1/2 ⪯ 12Id.

Following the decomposition of Eζ [Q̃] in Dereziński et al. (2021a;b) with γ̃s = 1 + γ
mx⊤

s Q̃−sxs, we write

Id − Eζ [Q̃]H = Eζ [Q̃−s(xsx
⊤
s −A⊤A)]︸ ︷︷ ︸

Z̃0

+Eζ [Q̃−s − Q̃]A⊤A︸ ︷︷ ︸
Z̃1

+Eζ

[(
γ

γ̃s
− 1

)
Q̃−sxsx

⊤
s

]
︸ ︷︷ ︸

Z̃2

. (20)

Recall that Q̃ in (18) is p.s.d. symmetric, to establish the result in Proposition 2.8, it suffices to bound the spectral norm

∥Id −H
1
2Eζ [Q̃]H

1
2 ∥ ≤ ∥H 1

2 Z̃0H
− 1

2 ∥+ ∥H 1
2 Z̃1H

− 1
2 ∥+ ∥H 1

2 Z̃2H
− 1

2 ∥, (21)

for Z̃0, Z̃1, Z̃2 defined in (20).

Without loss of generality, assume that the events ζ1 and ζ2 are independent of xs, and set ζ
′
= ζ1

⋂
ζ2 as well as

δ3 = Pr(¬ζ3). To bound (21), we first recall the following results from the proof of Dereziński et al. (2021a;b).
Lemma C.2. Under the settings and notations of Proposition 2.8, we have,

1. for a p.s.d. random matrix M (or a non-negative random variable) living in the probability space of S,

Eζ [M] =
E[(
∏3

j=1 1ζj )M]

Pr(ζ)
⪯ 1

1− δ
E[1ζ′M] ⪯ 2Eζ′ [M], (22)

where 1ζj is the indicator of the event ζj .

2. ∥H1/2Z̃1H
−1/2∥ = O( 1

m ).

Next, we bound the terms invoking Z̃0 and Z̃2 in (21), particularly by emphasizing the difference between our proof of
Proposition 2.8 here from that of Dereziński et al. (2021a;b). By δ3 ≤ 1

2 and

Z̃0 = − 1

1− δ3
Eζ′ [Q̃−s(xsx

⊤
s −A⊤A) · 1¬ζ3 ],

it follows that

∥H 1
2 Z̃0H

− 1
2 ∥ ≤ 12Eζ′ [(1 + x⊤

s H
−1xs) · 1¬ζ3 ].

We now need to bound the (conditional) expectation Eζ′ [(1 + x⊤
s H

−1xs) · 1¬ζ3]. To do this, we resort to Condition C.1
with an appropriate choice of α. Note that

E[x⊤
s H

−1xs] = tr(H−1A⊤A) = deff ,

per Definition 2.2, it follows that

Var[x⊤
s H

−1xs] = Var[e⊤is/
√
πisAH−1A⊤eis/

√
πis ]

= E[(x⊤
s H

−1xs)
2]− (E[x⊤

s H
−1xs])

2 =

n∑
i=1

(a⊤i H
−1ai)

2

πi
− d2eff

≤ ρmaxd
2
eff − d2eff = O(ρmaxd

2
eff),

17
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for max importance sampling approximation factor ρmax in Definition 2.3, which implies that α in Condition C.1 satisfies

α = O(ρmaxdeff).

Further, by Chebyshev’s inequality, one has, for x ≥ 2deff , that Pr(x⊤
s H

−1xs ≥ x | ζ ′
) ≤ αdeff/x

2. This further leads to,
for δ3 ≤ 1/m3,

∥H 1
2 Z̃0H

− 1
2 ∥ ≤ 12

∫ ∞

0

Pr(x⊤
s H

−1xs · 1¬ζ3 ≥ x | ζ ′)dx+O
( 1

m3

)
≤ 24m2δ3 + 12

∫ ∞

2m2

Pr(x⊤
s H

−1xs ≥ x | ζ ′)dx+O
( 1

m3

)
≤ O

( 1

m

)
+

αdeff
m2

= O

(
α
√
deff
m

)
.

We then move on to bound the last term concerning Z̃2 in (21). Applying Cauchy-Schwarz inequality twice, we get

∥H 1
2 Z̃2H

− 1
2 ∥ ≤

√
Eζ [(γ̃s − γ)2]︸ ︷︷ ︸

T̃1

· sup
∥u∥=1

4

√
Eζ

[
(u⊤H

1
2 Q̃−sxs)4

]
︸ ︷︷ ︸

T̃2

· sup
∥u∥=1

4

√
Eζ

[
(u⊤H− 1

2xs)4
]

︸ ︷︷ ︸
T̃3

. (23)

We start by bounding the term T̃3 using Condition C.1 with B = AH−1/2uu⊤H−1/2A⊤. Noting that tr(B) =
u⊤H−1/2A⊤AH−1/2u ≤ 1, we get

Eζ

[
(u⊤H− 1

2xs)
4
]
≤ 2Eζ′

[
(u⊤H

1
2xs)

4
]
= 2E[(x⊤

s H
− 1

2uu⊤H− 1
2xs)

2]

= 2Varζ′ [(x⊤
s H

− 1
2uu⊤H− 1

2xs)
2] + 2(Eζ′ [x⊤

s H
− 1

2uu⊤H− 1
2xs])

2

≤ 2

n∑
i=1

(a⊤i H
− 1

2uu⊤H− 1
2 ai)

2

πi
+ 2(tr(B))2

≤ 2ρmaxdeff

n∑
i=1

u⊤H− 1
2 aia

⊤
i H

− 1
2u+ 2(tr(B))2

≤ 2ρmaxdeff tr(B) + 2(tr(B))2 ≤ 2(ρdeff + 1) = O(α+ 1),

for α = O(ρmaxdeff) in Condition C.1. This results in T̃3 = O( 4
√
α+ 1). Similarly, we bound T̃2 by taking B =

AQ̃−sH
1/2uu⊤H1/2Q̃−sA

⊤ in Condition C.1. It follows tr(B) ≤ u⊤(H1/2Q̃−sH
1/2)2u ≤ 62 and tr(B2) ≤ 64, so

that T̃2 = O( 4
√
α+ 1).

It thus remains to bound the first term T̃1 in (23). Noting γ̄ = Eζ′ [γ̃s] = 1 + γ
m tr(Eζ′ [Q̃−s]A

⊤A), we write

Eζ

[
(γ̃s − γ)2

]
≤ 2(γ − γ̄)2 +

2γ2

m2
Eζ′ [(tr(Q̃−s − Eζ′ [Q̃−s])A

⊤A)2]

+
2γ2

m2
Eζ′ [(tr(AQ̃−sA

⊤)− x⊤
s Q̃−sxs)

2].

Analogously as above, letting B = AQ̃−sA
⊤ so that tr(B2) ≤ 36deff in Condition C.1, we have, for m ≥ 2deff that

2γ2

m2
Eζ′

[(
tr(AQ̃−sA

⊤)− x⊤
s Q̃−sxs

)2]
=

2γ2

m2
Eζ′

[
n∑

i=1

πi(tr(AQ−sA
⊤)− a⊤i Q̃−sai

πi
)2

]

=
2γ2

m2
Eζ′

[(
tr(AQ−sA

⊤)
)2]

+
2γ2

m2
Eζ′

[
n∑

i=1

(a⊤i Q̃−sai)
2

πi

]
− 4γ2

m2
Eζ′

[(
tr(AQ−sA

⊤)
)2]

≤ 72γ2ρmaxd
2
eff

m2
− 2γ2

m2
Eζ′

[(
tr(AQ−sA

⊤)
)2]

≤ 72γ2ρmaxd
2
eff

m2
≤ 288ρmaxd

2
eff

m2
= O

(
αdeff
m2

)
,
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with again α = O(ρmaxdeff) in Condition C.1.

This, following the line of arguments in Dereziński et al. (2021a), further leads to

Eζ

[
(γ̃s − γ̄)2

]
≤ O

(
αdeff
m2

)
,

which, together with |γ − γ̄| = O(
√
αdeff/m), yields that T̃1 = O(

√
αdeff/m).

This allows us to conclude that

∥H 1
2 Z̃2H

− 1
2 ∥ ≤ T̃1 · T̃2 · T̃3 = O

(
α
√
deff
m

)
.

Putting everything together, we conclude that

∥Id −H
1
2Eζ [Q̃]H

1
2 ∥ = O

(
α
√
deff
m

)
,

with α = O(ρmaxdeff) in Condition C.1. This concludes the proof of Proposition 2.8. □

D. Proof and Discussions of Theorem 3.1
In this section, we start by presenting in Appendix D.1 the intuition for the self-consistent equation in (4) of Theorem 3.1.
The detailed proof of Theorem 3.1 is given in Appendix D.2. In Appendix D.3, we provide discussions and auxiliary results
on Theorem 3.1.

D.1. RMT Intuition on the Self-consistent Equation in Theorem 3.1

Here, we present a heuristic derivation of the self-consistent equation in (4) of Theorem 3.1. Let us recall some notations
from Theorem 3.1. Let x⊤

s = e⊤is/
√
πisA as in Appendix C. For the ease of further use, we denote

Q = (A⊤S⊤SA+C)−1 =

(
1

m

m∑
s=1

xsx
⊤
s +C

)−1

.

and Q−s = (
∑

j ̸=s
1
mxjx

⊤
j +C)−1, for which we get

m∑
s=1

1

m
E[xsx

⊤
s ] =

n∑
i=1

aia
⊤
i = A⊤A.

Then, we follow the deterministic equivalent framework (see Couillet & Liao (2022, Chapter 2) for an introduction) and
show that ∥E[Q]− H̃−1∥ ≃ 0, for H̃ = A⊤DA+C, where D ∈ Rn×n is the diagonal matrix in Theorem 3.1. Note that

∥E[Q]− H̃−1∥ = ∥E[Q]A⊤DAH̃−1 − E[QA⊤S⊤SA]H̃−1∥ ≃ 0,

and using Sherman-Morrison formula in Lemma A.3, we further ascertain that

E[QA⊤S⊤SAH̃−1] =

m∑
s=1

E

[
1
mQ−sxsx

⊤
s H̃

−1

1 + x⊤
s Q−sxs/m

]
=

n∑
i=1

E

[
Q−saia

⊤
i H̃

−1

1 + a⊤i Q−sai/mπi

]

≃
n∑

i=1

E

[
Q−saia

⊤
i H̃

−1

1 + a⊤i H̃
−1ai/mπi

]
.

Using the rank-one perturbation lemma in Silverstein & Bai (1995, Lemma 2.6), we obtain

E[QA⊤S⊤SAH̃−1] ≃
n∑

i=1

E

[
Qaia

⊤
i H̃

−1

1 + a⊤i H̃
−1ai/mπi

]
= E

[
Q

n∑
i=1

aia
⊤
i

1 + a⊤i H̃
−1ai/mπi

H̃−1

]
= E [Q]A⊤DAH̃−1,

so that D = diag
{

mπi

mπi+a⊤
i H̃−1ai

}n

i=1
. This leads to the self-consistent equation in (4) of Theorem 3.1.
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D.2. Detailed Proof of Theorem 3.1

As outlined in Appendix C, the proof of Theorem 3.1 also comes in the following two steps:

1. construct a high probability event ζ as in (19); and

2. conditioned on that event ζ, bound the spectral norm ∥Id − Eζ [Q]H̃∥ using “leave-one-out” analysis.

Furthermore, for each s ∈ {1, . . . ,m}, there also exists an index j = j(s) ∈ {1, 2, 3} such that, conditioned on ζj , we have
Q ⪯ Q−s ⪯ 6H−1.

To complete the proof of Theorem 3.1, we first rewrite

∥Id − H̃
1
2Eζ [Q]H̃

1
2 ∥ = ∥H̃ 1

2 (Eζ [Q]H̃− Id)H̃
− 1

2 ∥.

Taking γs = 1 + 1
mx⊤

s Q−sxs, s = 1, . . . ,m, and D̃s =
1

1+ 1
mx⊤

s H̃−1xs
, we then get

Eζ [Q]H̃− Id = (Eζ [Q]− H̃−1)H̃ = Eζ

[
Q
(
A⊤DA−A⊤S⊤SA

)
H̃−1

]
H̃

= Eζ

[
Q
(
A⊤DA−A⊤S⊤SA

)]
= Eζ [Q−Q−s]A

⊤DA︸ ︷︷ ︸
Z1

+Eζ [Q−s(A
⊤DA− D̃sxsx

⊤
s )]︸ ︷︷ ︸

Z2

+Eζ [Q−s(D̃s −
1

γs
)xsx

⊤
s ]︸ ︷︷ ︸

Z3

,

which yields

∥Id − H̃
1
2Eζ [Q]H̃

1
2 ∥ = ∥H̃ 1

2 (Z1 + Z2 + Z3)H̃
− 1

2 ∥

≤ ∥H̃ 1
2Z1H̃

− 1
2 ∥+ ∥H̃ 1

2Z2H̃
− 1

2 ∥+ ∥H̃ 1
2Z3H̃

− 1
2 ∥. (24)

Then, we bound the first term ∥H̃1/2Z1H̃
−1/2∥. Together with the fact that the event ζ

′
is independent of xs, and using the

Sherman-Morrison formula in Lemma A.3 and (22), we get

Eζ [Q−s −Q] = Eζ [
1

mγs
Q−sxsx

⊤
s Q−s] ⪯ 2Eζ′ [

1

mγs
Q−sxsx

⊤
s Q−s]

=
2

m
Eζ′ [Q−sxsx

⊤
s Q−s] ⪯

2

m
Eζ′ [Q−s

n∑
j=1

aja
⊤
j Q−s]

=
2

m
Eζ′ [Q−sA

⊤AQ−s] ⪯
2

m
Eζ′ [Q−sHQ−s],

which, by incorporating the fact that H̃ ⪯ H and the event ζ indicates H1/2Q−sH
1/2 ⪯ 6Id, leads to

∥H̃ 1
2Z1H̃

− 1
2 ∥ ≤ ∥H̃ 1

2Eζ [Q−Q−s]H̃
1
2 H̃− 1

2A⊤DAH̃− 1
2 ∥

≤ ∥H̃ 1
2H− 1

2 ∥∥H 1
2Eζ [Q−Q−s]H

1
2 ∥∥H− 1

2 H̃
1
2 ∥∥H̃− 1

2A⊤DAH̃− 1
2 ∥

≤ ∥H̃ 1
2H− 1

2 ∥2∥H 1
2Eζ [Q−Q−s]H

1
2 ∥ ≤ 2

m
∥Eζ′ [H

1
2Q−sH

1
2H

1
2Q−sH

1
2 ]∥

≤ 72

m
. (25)

Further, we move on to bound the second term in (24). Recalling the assumption regarding ζ1, ζ2, ζ
′

and δ3 from Appendix C,
we have

Eζ [Q−s(A
⊤DA− D̃sxsx

⊤
s )] =

1

1− δ3
(Eζ′ [Q−s(A

⊤DA− D̃sxsx
⊤
s )]− Eζ′ [Q−s(A

⊤DA− D̃sxsx
⊤
s ) · 1¬ζ3 ])

= − 1

1− δ3
Eζ′ [Q−s(A

⊤DA− D̃sxsx
⊤
s ) · 1¬ζ3 ].
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Then, it follows that

∥H̃ 1
2Z2H̃

− 1
2 ∥ ≤ 2∥H̃ 1

2Eζ′ [Q−s(A
⊤DA− D̃sxsx

⊤
s ) · 1¬ζ3]H̃− 1

2 ∥

≤ 2∥Eζ′ [H̃
1
2Q−sH̃

1
2 H̃− 1

2 (A⊤DA− D̃sxsx
⊤
s ) · 1¬ζ3]H̃− 1

2 ∥

≤ 12∥H̃ 1
2H−1H̃

1
2 ∥Eζ′ [∥H̃− 1

2 (A⊤DA− D̃sxsx
⊤
s ) · 1¬ζ3H̃− 1

2 ∥]

≤ 12Eζ′ [∥H̃− 1
2 (A⊤DA− D̃sxsx

⊤
s ) · 1¬ζ3H̃− 1

2 ∥]

≤ 12Eζ′ [(1 + ∥H̃− 1
2 D̃sxsx

⊤
s H̃

− 1
2 ∥) · 1¬ζ3]

≤ 12Eζ′ [(1 + D̃sx
⊤
s H̃

−1xs) · 1¬ζ3] = 12δ3 + 12Eζ′ [D̃sx
⊤
s H̃

−1xs · 1¬ζ3].

It follows from Lemma D.3 and m ≥ 2ρmaxdeff that

∥H 1
2 H̃−1H

1
2 ∥ ≤ m+ 2ρmaxdeff

m
∥H 1

2H−1H
1
2 ∥ =

m+ 2ρmaxdeff
m

≤ 2, (26)

so that

Varζ′ [D̃sx
⊤
s H̃

−1xs] ≤ Eζ′ [(D̃sx
⊤
s H̃

−1xs)
2] =

n∑
j=1

πj

(
ma⊤j H̃

−1aj

mπj + a⊤j H̃
−1aj

)2

=

n∑
j=1

D2
jj(a

⊤
j H̃

−1aj)
2

πj
≤

n∑
j=1

∥H 1
2 H̃−1H

1
2 ∥2(a⊤j H−1aj)

2

πj

≤ 4ρmaxdeff

n∑
j=1

a⊤j H
−1aj ≤ 4ρmaxd

2
eff ,

and

Eζ′ [D̃sx
⊤
s H̃

−1xs] =

n∑
j=1

mπj

mπj + a⊤j H̃
−1aj

a⊤j H̃
−1aj ≤

n∑
j=1

∥H 1
2 H̃−1H

1
2 ∥a⊤j H−1aj ≤ 2deff .

Using Chebyshev’s inequality, we get, for x > 2deff ,

Pr(D̃sx
⊤
s H̃

−1xs ≥ x | ζ ′) ≤ 4ρmaxd
2
eff

x2
.

This, together with δ3 ≤ δ ≤ 1
m3 and m > ρmaxdeff further leads to

∥H̃ 1
2Z2H̃

− 1
2 ∥ ≤ O

( 1

m3

)
+ 12

∫ ∞

0

Pr(D̃sx
⊤
s H̃

−1xs · 1¬ζ3 ≥ x | ζ ′)dx

≤ O
( 1

m3

)
+ 24m2δ3 + 12

∫ ∞

2m2

Pr(D̃sx
⊤
s H̃

−1xs ≥ x | ζ ′)dx

≤ O
( 1

m3

)
+

24

m
+ 48ρmaxd

2
eff

∫ ∞

2m2

1

x2
dx ≤ O

( 1

m

)
+

24ρmaxd
2
eff

m2

= O

(√
ρ3maxd

3
eff

m3

)
.
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Using (22) and (26), we bound the last term in (24) as follows:

∥H̃ 1
2Z3H̃

− 1
2 ∥ ≤ sup

∥u∥=1,∥v∥=1

Eζ

[
|D̃s − γ−1

s ||u⊤H̃
1
2Q−sxsx

⊤
s H̃

− 1
2v|
]

≤ sup
∥u∥=1,∥v∥=1

2Eζ′

[
|D̃s − γ−1

s ||u⊤H̃
1
2Q−sxsx

⊤
s H̃

− 1
2v|
]

= sup
∥u∥=1,∥v∥=1

2Eζ′

[∣∣∣∣∣ 1
mx⊤

s Q−sxs − 1
mx⊤

s H̃
−1xs

D̃−1
s γs

∣∣∣∣∣ ∣∣∣u⊤H̃
1
2Q−sxsx

⊤
s H̃

− 1
2v
∣∣∣]

≤ sup
∥u∥=1,∥v∥=1

Eζ′

[∣∣∣∣∣a⊤isQ−sais − a⊤isH̃
−1ais

mπis

∣∣∣∣∣ (u⊤H̃
1
2Q−sxsxsQ−sH̃

1
2u+ v⊤H̃− 1

2xsx
⊤
s H̃

− 1
2v)

]

= sup
∥u∥=1

Eζ′

 n∑
j=1

∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣u⊤H̃
1
2Q−saja

⊤
j Q−sH̃

1
2u


+ sup

∥v∥=1

Eζ′

 n∑
j=1

∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣v⊤H̃− 1
2 aja

⊤
j H̃

− 1
2v


≤ sup

∥u∥=1

Eζ′

 max
1≤j≤n

∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣
n∑

j=1

u⊤H̃
1
2Q−saja

⊤
j Q−sH̃

1
2u


+ sup

∥v∥=1

Eζ′

 max
1≤j≤n

∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣
n∑

j=1

v⊤H̃− 1
2 aja

⊤
j H̃

− 1
2v


≤ sup

∥u∥=1

Eζ′

[
max
1≤j≤n

∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣u⊤H̃
1
2Q−sA

⊤AQ−sH̃
1
2u

]

+ sup
∥v∥=1

Eζ′

[
max
1≤j≤n

∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣v⊤H̃− 1
2A⊤AH̃− 1

2v

]

≤ Eζ′

[
max
1≤j≤n

∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣ ∥H̃ 1
2H− 1

2 ∥2∥H 1
2Q−sH

1
2 ∥2∥H− 1

2A⊤AH− 1
2 ∥

]

+ Eζ′

[
max
1≤j≤n

∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣ ∥H̃− 1
2H

1
2 ∥2∥H− 1

2A⊤AH− 1
2 ∥

]

(a)

≤ max
1≤j≤n

38Eζ′

[∣∣∣∣∣a⊤j Q−saj − a⊤j H̃
−1aj

mπj

∣∣∣∣∣
]

(b)

≤ max
1≤j≤n

38

√√√√Eζ′

[
(a⊤j Q−saj − a⊤j H̃

−1aj)2
]

(mπj)2

= max
1≤j≤n

38

√√√√Eζ′

[
(a⊤j Q−saj − Eζ′ [a⊤j Q−saj ])2

]
(mπj)2︸ ︷︷ ︸

M1

+ max
1≤j≤n

38
|Eζ′ [a⊤j Q−saj ]− a⊤j H̃

−1aj |
mπj︸ ︷︷ ︸

M2

, (27)

where in (a) we use the fact that A⊤A ⪯ H, H̃ ⪯ H and the event ζ indicates H1/2Q−sH
1/2 ⪯ 6Id, along with (26), and

in (b) we use Cauchy-Schwarz inequality. Then, by Lemma D.1, we bound the term M1 in (27) as

M1 ≤ max
1≤j≤n

2736L
1
2
2

√
ρmaxdeff

m

(a⊤j H
−1aj)2

(mπj)2
+ max

1≤j≤n
645L

1
2
2

√
1

m

(a⊤j H
−1aj)2

(mπj)2
= O

(√
ρ3maxd

3
eff

m3

)
.
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Now, it remains to bound the second term M2 in (27). Using again (26), we get

|Eζ′ [a⊤j Q−saj ]− a⊤j H̃
−1aj | = |a⊤j H̃− 1

2 H̃
1
2Eζ′ [Q−s − H̃−1]H̃

1
2 H̃− 1

2 aj |

≤ a⊤j H̃
−1aj∥H̃

1
2 (Eζ′ [Q−s]− H̃−1)H̃

1
2 ∥ ≤ 2a⊤j H

−1aj∥H̃
1
2 (Eζ′ [Q−s]− H̃−1)H̃

1
2 ∥

≤ 2a⊤j H
−1aj∥H̃

1
2 ((Eζ′ − Eζ)[Q−s] + Eζ [Q−s −Q] + Eζ [Q]− H̃−1)H̃

1
2 ∥

≤ 2a⊤j H
−1aj

∥H̃ 1
2 (Eζ′ − Eζ)[Q−s]H̃

1
2 ∥︸ ︷︷ ︸

G1

+ ∥H̃ 1
2Eζ [Q−s −Q]H̃

1
2 ∥︸ ︷︷ ︸

G2

+∥H̃ 1
2 (Eζ [Q]H̃− Id)H̃

− 1
2 ∥

 . (28)

Noting δ3 < 1
m3 and

Eζ [Q−s] =
1

1− δ3
(Eζ′ [Q−s]− δ3Eζ′ [Q−s|¬δ3]),

we have, for the term G1 defined in (28), that

G1 =
δ3

1− δ3
∥H̃ 1

2 (Eζ′ [Q−s]− Eζ′ [Q−s|¬δ3])H̃
1
2 ∥

≤ 2δ3(∥H̃
1
2Eζ′ [Q−s]H̃

1
2 ∥+ ∥H̃ 1

2Eζ′ [Q−s|¬δ3]H̃
1
2 ∥) ≤ 24δ3 ≤ 24

m3
.

For the term G2 in (28), it follows from (25) that G2 = O( 1
m ). We thus have

M2 ≤ 76 max
1≤j≤n

a⊤j H
−1aj

mπj

(
O

(
1

m3

)
+O

(
1

m

)
+ ∥H̃ 1

2Z1H̃
− 1

2 ∥+ ∥H̃ 1
2Z2H̃

− 1
2 ∥+ ∥H̃ 1

2Z3H̃
− 1

2 ∥
)

≤ 76ρmaxdeff
m

(
O

(
1

m3

)
+O

(
1

m

)
+ ∥H̃ 1

2Z1H̃
− 1

2 ∥+ ∥H̃ 1
2Z2H̃

− 1
2 ∥+ ∥H̃ 1

2Z3H̃
− 1

2 ∥
)

≤ 76ρmaxdeff
m

(
O

(
1

m3

)
+O

(
1

m

)
+O

(
1

m

)
+O

(√
ρ3maxd

3
eff

m3

)
+O

(√
ρ3maxd

3
eff

m3

)
+M2

)
,

which, for m > 76ρmaxdeff , yields that

M2 = O

(√
ρ3maxd

3
eff

m3

762ρ2maxd
2
eff

(m− 76ρmaxdeff)2

)
= O

(√
ρ3maxd

3
eff

m3

)
.

Putting everything together, we conclude that ∥H̃1/2Eζ [Q]H̃1/2 − Id∥ = O
(√

ρ3maxd
3
eff/m

3
)

. This concludes the proof
of Theorem 3.1. □

D.3. Discussions on Theorem 3.1 and Auxiliary Results

Lemma D.1. Under the settings and notations of Theorem 3.1 and let Varζ′ [·] denote the variance conditioned on the event
ζ

′
with xs independent of ζ

′
. Then, we have

Varζ′ [a⊤j Q−saj ] ≤
5184L2ρmaxdeff(a

⊤
j H

−1aj)
2

m
+

288L2(a
⊤
j H

−1aj)
2

m
.

Proof of Lemma D.1. Use Q−sl to denote the matrix (A⊤S⊤
−slS−slA+C)−1 where S−sl is the matrix S without the sth

and lth rows; let that, for each pair s, l, one of ζ1, ζ2 is independent of both xs and xl. Without loss of generality, we
assume that it is ζ1. Also, let Eζ′ ,l[·] be the expectation conditioned on ζ

′
and the σ-field Fl generated by the basic events

x1, . . . ,xl. To apply the Burkholder inequality in Lemma A.4, we rewrite a⊤j Q−saj − Eζ′ [a⊤j Q−saj ] as the martingale
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difference sequence

a⊤j Q−saj − Eζ′ [a⊤j Q−saj ] = Eζ′ ,m[a⊤j Q−saj ]− Eζ′ ,0[a
⊤
j Q−saj ]

=

m∑
l=1

(Eζ′ ,l − Eζ′ ,l−1)[a
⊤
j Q−saj − a⊤j Q−slaj ] +

m∑
l=1

(Eζ′ ,l − Eζ′ ,l−1)[a
⊤
j Q−slaj ]

= −
m∑
l=1

(ϕl + φl),

where ϕl = (Eζ′ ,l − Eζ′ ,l−1)[a
⊤
j Q−slaj − a⊤j Q−saj ], and φl = −(Eζ′ ,l − Eζ′ ,l−1)[a

⊤
j Q−slaj ]. Analogous to (22), we

have the following result, the proof of which is straightforward.

Lemma D.2. Under the settings and notations of Theorem 3.1, we have, for a p.s.d. random matrix M (or a non-negative
random variable) living in the probability space of S,

Eζ′ [M] =
E[(
∏2

j=1 1ζj )M]

Pr(ζ ′)
⪯ 1

1− δ
E[1ζ1M] ⪯ 2Eζ1 [M], (29)

where 1ζj is the indicator of the event ζj .

Conditioned on ζ
′
, using (29) and the fact that

a⊤j Q−slaj − a⊤j Q−saj =
1

m

a⊤j Q−slxlx
⊤
l Q−slaj

1 + 1
mx⊤

l Q−slxl

,

we obtain the following bound on the second moment of ϕl as

Eζ′ [ϕ2
l ] ≤ 2Eζ1 [ϕ

2
l ] ≤ 2Eζ1

( 1

m

a⊤j Q−slxlx
⊤
l Q−slaj

1 + 1
mx⊤

l Q−slxl

)2
 ≤ 2Eζ1

 n∑
i=1

πi

(
1

mπi

a⊤j Q−slaia
⊤
i Q−slaj

1 + 1
mπi

a⊤i Q−slai

)2


≤ 2Eζ1

[
n∑

i=1

1

m2πi

(
a⊤j Q−slaia

⊤
i Q−slaj

)2]

≤ 2

m2
Eζ1

[
n∑

i=1

a⊤j Q−slaia
⊤
i Q−slaj

a⊤j Q−slHQ−slaja
⊤
i H

−1ai

πi

]

≤ 2ρmaxdeff
m2

Eζ1

[
n∑

i=1

a⊤j Q−slaia
⊤
i Q−slaja

⊤
j Q−slHQ−slaj

]

≤ 2ρmaxdeff
m2

Eζ1 [a
⊤
j Q−slA

⊤AQ−slaja
⊤
j Q−slHQ−slaj ]

≤ 2ρmaxdeff
m2

Eζ1 [(a
⊤
j Q−slHQ−slaj)

2].

This, combined with the fact that H1/2Q−slH
1/2 ⪯ 6Id, results in

Eζ′ [ϕ2
l ] ≤

2592ρmaxdeff
m2

(a⊤j H
−1aj)

2.

Subsequently, we proceed to bound |φl|. Considering that ζ1 is independent of xl, it follows that Eζ1,l[a
⊤
j Q−slaj ] =

Eζ1,l−1[a
⊤
j Q−slaj ]. Then, noting that, for δ2 = Pr(¬ζ2) < 1

m ,

Eζ′ ,l[a
⊤
j Q−slaj ] =

1

1− δ2
Eζ1,l[a

⊤
j Q−slaj ]−

δ2
1− δ2

Eζ1,l[a
⊤
j Q−slaj |¬ζ2],
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and

Eζ′ ,l−1[a
⊤
j Q−slaj ] =

1

1− δ2
Eζ1,l−1[a

⊤
j Q−slaj ]−

δ2
1− δ2

Eζ1,l−1[a
⊤
j Q−slaj |¬ζ2],

so that

|φl| = |(Eζ′ ,l − Eζ′ ,l−1)[a
⊤
j Q−slaj ]| ≤

δ2
1− δ2

|(Eζ1,l − Eζ1,l−1)[a
⊤
j Q−slaj |¬ζ2]|

≤ 2δ2Eζ1 [a
⊤
j Q−slaj |¬ζ2] ≤ 12δ2a

⊤
j H

−1aj <
12a⊤j H

−1aj

m
.

Consequently, let yl = −(ϕl + φl) such that
∑m

l=1 yl = a⊤j Q−saj − Eζ′ [a⊤j Q−saj ], it follows from the Burkholder
inequality in Lemma A.4 (for T = 2) that

Varζ′ [a⊤j Q−saj ] = Eζ′

∣∣∣∣∣
m∑
l=1

yl

∣∣∣∣∣
2
 ≤ L2

m∑
l=1

Eζ′ [(ϕl + φl)
2] ≤ 2L2

m∑
l=1

Eζ′ [ϕ2
l ] + 2L2

m∑
l=1

Eζ′ [φ2
l ]

≤
5184L2ρmaxdeff(a

⊤
j H

−1aj)
2

m
+

288L2(a
⊤
j H

−1aj)
2

m
.

This concludes the proof of Lemma D.1.

Below is the proof of the result in Footnote 2.
Lemma D.3 (On the self-consistent D). For a given matrix A ∈ Rn×d, let S be a random sampling matrix with number
of trials m and importance sampling distribution {πi}ni=1 as in Definition 2.1, and let C ∈ Rd×d be a p.s.d. matrix and
deff =

∑n
i=1 ℓ

C
i with leverage score ℓCi as in Definition 2.2. We have

m

m+ 2ρmaxdeff
In ⪯ D ⪯ m

m+ ρmindeff
In,

in the sense of p.s.d. matrices, where we recall ρmax = max1≤i≤n ℓ
C
i /(πideff) and ρmin = min1≤i≤n ℓ

C
i /(πideff).

Proof of Lemma D.3. For each Dii, i = 1, . . . , n, it follows from its definition in Theorem 3.1 that

Dii =
mπi

mπi + a⊤i (A
⊤DA+C)−1ai

≥ mπi

mπi +D−1
mina

⊤
i (A

⊤A+C)−1ai
,

where Dmin = min1≤i≤n Dii ≤ 1. Without loss of generality, let Dmin = Dnn and use the fact that m ≥ Cρmaxdeff ≥
CℓCn /πn = Ca⊤n (A

⊤A+C)−1an/πn, we obtain a lower bound on Dnn as

Dnn =
mπn

mπn + a⊤n (A
⊤DA+C)−1an

≥ mπn

mπn +D−1
nna⊤n (A

⊤A+C)−1an

≥ mπn

mπn +D−1
nnC−1mπn

=
C

C +D−1
nn

,

so that Dnn ≥ C−1
C ≡ ∆ > 1/2, for some C > 2. Then, it follows that, for i = 1, . . . , n,

Dii ≥
mπi

mπi +∆−1a⊤i (A
⊤A+C)−1ai

≥ m

m+∆−1a⊤i (A
⊤A+C)−1ai/πi

≥ m

m+∆−1ρmaxdeff
.

This together with C > 2 results in

Dii ≥
m

m+ 2ρmaxdeff
.

On the other hand, we have

Dii =
m

m+ a⊤i (A
⊤DA+C)−1ai/πi

≤ m

m+ a⊤i (A
⊤A+C)−1ai/πi

≤ m

m+ ρmindeff
.

Consequently, we have that m
m+2ρmaxdeff

In ⪯ D ⪯ m
m+ρmindeff

In, this concludes the proof of Lemma D.3.
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E. Proof of Proposition 3.2
In this section, we start by presenting the RMT intuition for Proposition 3.2, and in particular how the exact leverage scores
ℓCi comes into play in the analysis and debiasing, in Appendix E.1. The detailed proof of Proposition 3.2 is then given in
Appendix E.2; and finally we provide discussions and auxiliary results on Proposition 3.2 in Appendix E.3.

E.1. RMT Intuition on Proposition 3.2

Here, we present the heuristic derivation of Proposition 3.2. First, let us recall some notations from Proposition 3.2: let
x⊤
s = e⊤is/

√
πisA as in Appendix C, for the ease of further use, let

Š⊤Š =

m∑
s=1

Fisis ·
eise

⊤
is

mπis

,

for some deterministic Fii to be specified, and

Q̌ = (A⊤Š⊤ŠA+C)−1 =

(
1

m

m∑
s=1

Fisisxsx
⊤
s +C

)−1

,

and similarly Q̌−s = ( 1
m

∑
l ̸=s Fililxlx

⊤
l +C)−1, for which we have

1

m

m∑
s=1

E[Fisisxsx
⊤
s ] =

n∑
i=1

Fiiaia
⊤
i .

Our objective here is to find Q̌ (and Fii) such that ∥E[Q̌]−H−1∥ ≃ 0, for H−1 = (A⊤A+C)−1. This is

E[Q̌]−H−1 = E[Q̌]A⊤AH−1 − E[Q̌A⊤Š⊤ŠA]H−1 ≃ 0.

Using the Sherman-Morrison formula in Lemma A.3, we further ascertain that

E[Q̌A⊤Š⊤ŠAH−1] = E

[
Q̌−sFisisA

⊤eise
⊤
is
/πisAH−1

1 + Fisise
⊤
is
AQ̌−sA⊤eis/mπis

]
=

n∑
i=1

E
[

Q̌−sFiiA
⊤eie

⊤
i AH−1

1 + Fiie⊤i AQ̌−sA⊤ei/mπi

]

≃
n∑

i=1

E
[

Q̌−sFiiA
⊤eie

⊤
i AH−1

1 + Fiie⊤i AH−1A⊤ei/mπi

]
,

where we observe that the exact leverage score e⊤i AH−1A⊤ei = a⊤i (A
⊤A+C)−1ai = ℓCi given C as in Definition 2.2

naturally appears in the denominator from this leave-one-out derivation.

This, together with the rank-one perturbation lemma in Silverstein & Bai (1995, Lemma 2.6), gives that

E[Q̌A⊤Š⊤ŠAH−1] ≃ E[Q̌]A⊤
n∑

i=1

Fiieie
⊤
i

1 + FiiℓCi /mπi
AH−1 = E[Q̌]A⊤AH−1,

where we take the debiasing factor Fii = mπi/(mπi − ℓCi ) such that Fii/(1 + Fiiℓ
C
i /mπi) = 1. This thus leads to

Š = diag

{√
m/(m− ℓCis/πis)

}m

s=1

· S, is ∈ {1, . . . , n}.

E.2. Detailed Proof of Proposition 3.2

The proof of Proposition 3.2 follows the same line of arguments as in that of Theorem 3.1. In the following, we presented
the proof for completeness. We specifically highlight the difference in the proof of Proposition 3.2 from that of Theorem 3.1,
where Q is replaced by Q̌.

The proof of Proposition 3.2 also comes in the following two steps:
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1. construct a high-probability event ζ, as in (19); and

2. conditional on the event ζ, derive a bound for the spectral norm ∥Id − Eζ [Q̌]H∥ using again the “leave-one-out” type
analysis.

For the second term above, we have, for m > 2ρmaxdeff that

Fisis <
mπis

mπis − 2−1mπis

< 2, s = 1, . . . ,m. (30)

This yields that, for given s ∈ {1, . . . ,m}, there exists an index j = j(s) ∈ {1, 2, 3} such that Q̌ ⪯ Q̌−s ⪯ 6H−1 holds
on the event ζj .

Denote γ̌s = 1 + 1
mFisisx

⊤
s Q̌−sxs, we then obtain

Eζ [Q̌]H− Id = (Eζ [Q̌]−H−1)H = Eζ

[
Q̌

(
A⊤A−

m∑
s=1

1

m
Fisisxsx

⊤
s

)
H−1

]
H

= Eζ

[
Q̌

(
A⊤A−

m∑
s=1

1

m
Fisisxsx

⊤
s

)]
= Eζ [Q̌A⊤A]− Eζ

[
1

γ̌s
Q̌−sFisisxsx

⊤
s

]
= Eζ [Q̌− Q̌−s]A

⊤A︸ ︷︷ ︸
Ž1

+Eζ [Q̌−s(A
⊤A− xsx

⊤
s )]︸ ︷︷ ︸

Ž2

+Eζ

[(
1− Fisis

γ̌s

)
Q̌−sxsx

⊤
s

]
︸ ︷︷ ︸

Ž3

,

which leads to

∥Id −H
1
2Eζ [Q̌]H

1
2 ∥ = ∥H 1

2 (Eζ [Q̌]H− Id)H
− 1

2 ∥ ≤ ∥H 1
2 Ž1H

− 1
2 ∥+ ∥H 1

2 Ž2H
− 1

2 ∥+ ∥H 1
2 Ž3H

− 1
2 ∥. (31)

We first bound the first term ∥H1/2Ž1H
−1/2∥ in (31). Adapting the bound for Eζ [Q−s −Q] and ∥H̃1/2Z1H̃

−1/2∥ in the
proof of Theorem 3.1 in Appendix D.2, and using (30) along with the fact that H1/2Q̌−sH

1/2 ⪯ 6Id when conditioned on
ζ

′
, we get

Eζ [Q̌−s − Q̌] ⪯ Eζ

[
Fisis

γ̌sm
Q̌−sxsx

⊤
s Q̌−s

]
⪯ 4

m
Eζ′ [Q̌−sHQ̌−s], (32)

and

∥H 1
2 Ž1H

− 1
2 ∥ = ∥H 1

2Eζ [Q̌−s − Q̌]H
1
2H− 1

2A⊤AH− 1
2 ∥ = O

(
1

m

)
.

Next, we bound the second term ∥H1/2Ž2H
−1/2∥ in (31). Note that Eζ′ [x⊤

s H
−1xs] = deff and

Varζ′ [x⊤
s H

−1xs] ≤ Eζ′ [(x⊤
s H

−1xs)
2] =

n∑
j=1

πj

(a⊤j H
−1aj)

2

π2
j

=

n∑
j=1

(a⊤j H
−1aj)

2

πj
≤ ρmaxd

2
eff .

Then, using Chebyshev’s inequality, we have, for x ≥ 2deff that

Pr(x⊤
s H

−1xs ≥ x | ζ ′) ≤ ρmaxd
2
eff

x2
.

Analogous to the bound on Eζ [Q−s(A
⊤DA− D̃sxsx

⊤
s )] and ∥H̃1/2Z2H̃

−1/2∥ in Appendix D.2, we get

Eζ [Q̌−s(A
⊤A− xsx

⊤
s )] = − 1

1− δ3
Eζ′ [Q̌−s(A

⊤A− xsx
⊤
s ) · 1¬ζ3 ],
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and

∥H 1
2 Ž2H

− 1
2 ∥ ≤ 12δ3 + 12Eζ′ [x⊤

s H
−1xs · 1¬ζ3] = 12δ3 + 12

∫ ∞

0

Pr(x⊤
s H

−1xs · 1¬ζ3 ≥ x | ζ ′)dx

= O

(√
ρ3maxd

3
eff

m3

)
.

Now, we move on to bound the last term ∥H1/2Ž3H
−1/2∥ in (31). Considering (30), it follows that

∣∣∣∣1− Fisis

γ̌s

∣∣∣∣ =
∣∣∣∣∣ a⊤isQ̌−sais − ℓCis
mπis − ℓCis + a⊤isQ̌−sais

∣∣∣∣∣ ≤
∣∣∣∣∣a⊤isQ̌−sais − ℓCis

mπis − ℓCis

∣∣∣∣∣ = Fisis

∣∣∣∣∣a⊤isQ̌−sais − ℓCis
mπis

∣∣∣∣∣
≤ 2

∣∣∣∣∣a⊤isQ̌−sais − ℓCis
mπis

∣∣∣∣∣ = 2

∣∣∣∣∣a⊤isQ̌−sais − a⊤isH
−1ais

mπis

∣∣∣∣∣ . (33)

Following the bound on ∥H̃1/2Z3H̃
−1/2∥ in Appendix D.2, and recalling (30), we further have

∥H 1
2 Ž3H

− 1
2 ∥ ≤ sup

∥u∥=1,∥v∥=1

Eζ

[∣∣∣∣1− Fisis

γ̌s

∣∣∣∣ ∣∣∣u⊤H
1
2 Q̌−sxsx

⊤
s H

− 1
2v
∣∣∣]

≤ max
1≤j≤n

74

√
Eζ′

[
(a⊤j Q̌−saj − a⊤j H

−1aj)2
]

(mπj)2

= max
1≤j≤n

74

√√√√Eζ′

[
(a⊤j Q̌−saj − Eζ′ [a⊤j Q̌−saj ])2

]
(mπj)2︸ ︷︷ ︸

M̌1

+ max
1≤j≤n

74

∣∣∣Eζ′ [a⊤j Q̌−saj ]− a⊤j H
−1aj

∣∣∣
mπj︸ ︷︷ ︸

M̌2

, (34)

Subsequently, like the bounds for M1 and M2 in Appendix D.2, and using (30), we obtain the following bounds for M̌1

and M̌2:

M̌1 = O

(√
ρ3maxd

3
eff

m3

)
,

and

M̌2 ≤ max
1≤j≤n

74a⊤j H
−1aj

mπj
(∥H 1

2 (Eζ′ − Eζ)[Q̌−s]H
1
2 ∥+ ∥H 1

2Eζ [Q̌−s − Q̌]H
1
2 ∥+ ∥H 1

2 (Eζ [Q̌]H− Id)H
− 1

2 ∥)

= O

(√
ρ3maxd

3
eff

m3

)
.

Combining the above, we conclude that ∥Id −H1/2Eζ [Q̌]H1/2∥ = O
(√

ρ3maxd
3
eff/m

3
)

, and thus complete the proof of
Proposition 3.2. □

E.3. Discussions on Proposition 3.2 and Auxiliary Results

Here, we present some auxiliary results in addition to the fine-grained debiasing results in Proposition 3.2. Precisely, we
show in Appendix E.3.1 that by substituting exact leverage scores with some (computationally efficient) approximations
leads to a controlled inversion bias. We then provide the proof of Corollary 3.4 in Appendix E.3.2. A “counter-example” to
Dereziński et al. (2021b, Theorem 10) that uses scalar debiasing to achieve zero inversion bias in the case of exact leverage
score sampling is given in Appendix E.3.3. Finally, we establish the proof of Corollary 3.7 in Appendix E.3.4.
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E.3.1. DISCUSSIONS ON DEBIASING Š USING APPROXIMATE LEVERAGE SCORES

Corollary E.1 (Fine-grained debiasing Š using approximate leverage scores). Under the setting and notations of Theorem 3.1,
if one uses approximate leverage scores ℓ̌Ci in the debiasing matrix, instead of the exact leverage scores ℓCi in (5) in
Proposition 3.2, that is

Š = diag

{√
m/(m− ℓ̌Cis/πis)

}m

s=1

· S, (1− ω)ℓCi ≤ ℓ̌Ci ≤ (1 + ω)ℓCi , ω ∈ [0, 1].

Then, there exists C > 0 independent of n, deff such that for m ≥ Cρmaxdeff(log(deff/δ) + max
{
ω/ϵ, 1/ϵ2/3

}
) with

δ ≤ m−3, (A⊤Š⊤ŠA+C)−1 is an (ϵ, δ)-unbiased estimator of (A⊤A+C)−1.

Proof of Corollary E.1. The proof of Corollary E.1 largely follows the proof of Proposition 3.2, and is presented here for
completeness. In the following, we emphasize the difference from the proof of Proposition 3.2, particularly regarding the
matrix Š, which is constructed using the approximate leverage scores denoted by ℓ̌Ci as

Š = diag

{√
m/(m− ℓ̌Cis/πis)

}m

s=1

· S, is ∈ {1, . . . , n}.

This implies, in the proof of Proposition 3.2 that

Fisis =
mπis

mπis − ℓ̌Cis
. (35)

Note that in this setting, we have, for ω ∈ [0, 1] that |ℓ̌Ci − ℓCi | ≤ ωℓCi and ℓ̌Ci ≤ (1 + ω)ℓCi ≤ 2ℓCi . As such, for
m ≥ Cρmaxdeff ≥ CℓCi /πis with C > 4, we have

Fisis ≤ mπis

mπis − 2ℓCi
< 2.

Thus, adapting the proof of Proposition 3.2, we get the same bounds on ∥H1/2Ž1H
−1/2∥ and ∥H1/2Ž2H

−1/2∥ as in
Appendix E.2, that is

∥H 1
2 Ž1H

− 1
2 ∥ = O

(
1

m

)
, ∥H 1

2 Ž2H
− 1

2 ∥ = O

(√
ρ3maxd

3
eff

m3

)
.

Next, we establish a bound for the term ∥H1/2Ž3H
−1/2∥ in the setting of Corollary E.1. Using (35), we obtain∣∣∣∣1− Fisis

γ̌s

∣∣∣∣ =
∣∣∣∣∣ a⊤isQ̌−sais − ℓ̌Cis
mπis − ℓ̌Cis + a⊤isQ̌−sais

∣∣∣∣∣ ≤
∣∣∣∣∣a⊤isQ̌−sais − ℓ̌Cis
(1− C−1)mπis

∣∣∣∣∣ ≤ 2

∣∣∣∣∣a⊤isQ̌−sais − ℓ̌Cis
mπis

∣∣∣∣∣
≤ 2

∣∣∣∣∣a⊤isQ̌−sais − ℓCis
mπis

∣∣∣∣∣+ 2

∣∣∣∣∣ℓCis − ℓ̌Cis
mπis

∣∣∣∣∣ ≤ 2

∣∣∣∣∣a⊤isQ̌−sais − ℓCis
mπis

∣∣∣∣∣+ 2ωρmaxdeff
m

.

This, together with (34) yields that

∥H 1
2 Ž3H

− 1
2 ∥ = O

(
ωρmaxdeff

m
+

√
ρ3maxd

3
eff

m3

)
.

Putting these bounds together, we conclude the proof of Corollary E.1.

E.3.2. PROOF OF COROLLARY 3.4

The proof Corollary 3.4 largely mirrors that of Proposition 3.2, and is included here for thoroughness. For m > Cdeff with
C > 2, we have

Fisis =
m

m− deff
=

mπis

mπis − deffπis

≤ mπis

(1− C−1)mπis

< 2.
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Then, recalling πi ∈ [ℓCi /(deffρmax), ℓ
C
i /(deffρmin)] such that |πi−ℓCi /deff | ≤ ϵρℓ

C
i /deff with ϵρ = max{(ρ−1

min−1), (1−
ρ−1
max)}, and (33) can be rewritten as∣∣∣∣1− Fisis

γ̌s

∣∣∣∣ =
∣∣∣∣∣ a⊤isQ̌−sais − deffπis

mπis − deffπis + a⊤isQ̌−sais

∣∣∣∣∣ ≤
∣∣∣∣∣a⊤isQ̌−sais − deffπis

(1− C−1)mπis

∣∣∣∣∣ ≤ 2

∣∣∣∣∣a⊤isQ̌−sais − ℓCis
mπis

∣∣∣∣∣+ 2

∣∣∣∣∣ℓCis − deffπis

mπis

∣∣∣∣∣
≤ 2

∣∣∣∣∣a⊤isQ̌−sais − ℓCis
mπis

∣∣∣∣∣+ 2deff

∣∣∣∣∣ℓCis/deff − πis

mπis

∣∣∣∣∣ ≤ 2

∣∣∣∣∣a⊤isQ̌−sais − ℓCis
mπis

∣∣∣∣∣+ 2ϵρdeff
ℓCis/deff

mπis

≤ 2

∣∣∣∣∣a⊤isQ̌−sais − ℓCis
mπis

∣∣∣∣∣+ 2ϵρρmaxdeff
m

.

This, combined with the bound in (34), gives that

∥H 1
2 Ž3H

− 1
2 ∥ = O

(
ϵρρmaxdeff

m
+

√
ρ3maxd

3
eff

m3

)
.

Recall the proof of Proposition 3.2 that

∥H 1
2 Ž1H

− 1
2 ∥ = O

(
1

m

)
, ∥H 1

2 Ž2H
− 1

2 ∥ = O

(√
ρ3maxd

3
eff

m3

)
.

Putting these together, we conclude the proof of Corollary 3.4.

In particular, taking ρmax = 3/2 and ρmin = 1/2, we have ϵρ = 1 and thus an inversion bias of order O(deff/m). □

E.3.3. A “COUNTEREXAMPLE” TO DEREZIŃSKI ET AL. (2021B, THEOREM 10)

Corollary E.2 (“Counterexample” to the lower bound in Dereziński et al. (2021b, Theorem 10) using exact leverage
sampling). For any n ≥ 2d ≥ 4 , there exists A ∈ Rn×d, an exact leverage score sampling matrix S ∈ Rm×n in
Definition 2.2 and a high probability event ζ (that ensures the invertibility of A⊤S⊤SA), such that when conditioned on ζ,
(γA⊤S⊤SA+C)−1 is an unbiased estimator of (A⊤A+C)−1 for γ = m

d Eζ [1/b], b distributed as Binomial(m, 1/d),
and C = 0d.

Proof of Corollary E.2. We begin by recalling the setup of the matrix A in Dereziński et al. (2021b, Theorem 10). Without
loss of generality, assume n = 2d (otherwise, we pad A with zeros). The matrix A consists of n = 2d scaled standard
basis vectors, where consecutive rows are defined as a⊤2(i−1)+1 = a⊤2(i−1)+2 = 1√

2
e⊤i for i ≥ 2, and the first two rows are

a⊤1 = 1√
4
e⊤1 , a⊤2 = 3√

4
e⊤1 . This is

A =



1√
4

0 . . . 0
3√
4

0 . . . 0

0 1√
2

. . . 0

0 1√
2

. . . 0
...

...
. . .

...
0 0 . . . 1√

2

0 0 . . . 1√
2


.

In this case we have A⊤A = Id and C = 0d, so that the leverage scores satisfy ℓC1 = 1
4 , ℓC2 = 3

4 , and ℓC2(i−1)+1 =

ℓC2(i−1)+2 = 1
2 for i ≥ 2. The leverage score sampling distribution {πi}ni=1 as in Definition 2.2, used to construct the

sampling matrix S of size m ≥ d, is thus given by

πi =


1
4d , for i = 1,
3
4d , for i = 2,
1
2d , otherwise.
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For any γ > 0, the matrix γA⊤S⊤SA is diagonal, with diagonal entries given by[
γA⊤S⊤SA

]
ii
=

γdbi
m

, for i = 1, . . . , d,

where bi’s are all identically (but not independently) distributed as Binomial(m, 1/d). Then, conditioning on any high
probability event ζ that ensures the invertibility of A⊤S⊤SA, it follows that

Eζ

[[(
γA⊤S⊤SA

)−1
]
ii

]
=

m

γd
Eζ

[
1

bi

]
, for i = 1, . . . , d,

so that

Eζ

[(
γA⊤S⊤SA

)−1
]
=
(
A⊤A

)−1

with γ = m
d Eζ [1/b], where b is any one of the aforementioned {bi}di=1. This completes the proof of Corollary E.2.

E.3.4. PROOF OF COROLLARY 3.7

The proof of Corollary 3.7 comes in the following two steps:

1. construct two independent high probability events: ζω on which the randomized Walsh–Hadamard transform HnDnA
of A as in Definition 3.6 has approximately uniform leverages scores; and ζ as in (19) to subspace embedding, but for
x⊤
s = e⊤isHnDnA/

√
nπis ∈ Rd the iths row of ÃSRHT; and

2. conditioned on the event ζ
⋂
ζω, apply the bounds in Appendix E.3.2 to obtain inversion bias for

( m
m−deff

Ã⊤
SRHTÃSRHT +C)−1, where deff =

∑n
i=1 ℓ

C
i is the effective dimension of A given C.

We start by recalling some notations from (the proof of) Proposition 3.2. Denote AC = AH−1/2 with H = A⊤A+C and
let ℓCi (HnDnA/

√
n) = ∥e⊤i HnDnAC∥2/n be the ith leverage score of HnDnA/

√
n. Define the following event ζω:

ζω :

∣∣∣∣ℓCi (HnDnA/
√
n)− deff

n

∣∣∣∣ ≤ ω, ∀1 ≤ i ≤ n.

Note that this is equivalent to, for uniform sampling with πi = 1/n that∣∣∣∣ℓCi (HnDnA/
√
n)− deffπi

mπi

∣∣∣∣ ≤ n

m
ω, ∀1 ≤ i ≤ n.

Next, we verify that the event ζω holds with a controlled probability. Precisely, some C > 0, it follows from Lemma E.4
below and ∥AC∥2F = deff that

Pr

(∣∣∣∣ℓCi (HnDnA/
√
n)− deff

n

∣∣∣∣ ≥ ω, 1 ≤ i ≤ n

)
≤ δ

2
, (36)

with ω ≥ max{C
√

deff log(n/δ)/n,C log(n/δ)/n}, which is equivalent to∣∣∣∣ℓCi (HnDnA/
√
n)− deffπi

mπi

∣∣∣∣ ≤ max

{
C
√
deff log(n/δ)

m
,
C log(n/δ)

m

}
, for 1 ≤ i ≤ n.

Further recall from Lacotte et al. (2021, Lemma 1) that a sampling size m ≥ Cρmax(deff + log(1/(ϵδ)) log(deff/δ)/ϵ
2),

ρmax ≡ max1≤i≤n nℓ
C
i (HnDnA/

√
n)/deff and ϵ ∈ (0, 1/2] suffices to ensure that H−1/2Ã⊤

SRHTÃSRHTH
−1/2 is an

(ϵ, δ)-approximation of A⊤
CAC. This leads to Pr(ζ) ≤ δ/2. Combining the above results, we obtain Pr(ζ

⋂
ζω) ≤ δ. This,

together with

∥H 1
2 Ž3H

− 1
2 ∥ = O

(√
ρ3maxd

3
eff

m3

)
+O

(
max
1≤i≤n

∣∣∣∣ℓCi (HnDnA/
√
n)− deffπi

mπi

∣∣∣∣) ,

∥H 1
2 Ž1H

− 1
2 ∥ = O

(
1

m

)
, ∥H 1

2 Ž2H
− 1

2 ∥ = O

(√
ρ3maxd

3
eff

m3

)
.

in Appendix E.3.2, concludes the proof of Corollary 3.7. □
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Remark E.3 (SRHT inversion bias with different sampling sizes). Recalling (36), we observe that

ρmax = max
1≤i≤n

nℓCi (HnDnA/
√
n)/deff ≤ 2

holds with the probability at least 1 − δ/2. Consequently, choosing m ≥ C(deff + log(1/(ϵδ)) log(deff/δ)/ϵ
2) suffices

to ensure that H−1/2Ã⊤
SRHTÃSRHTH

−1/2 is an (ϵ, δ)-approximation (or subspace embedding) of A⊤
CAC. On the other

hand, note from Corollary 3.7 that

1. by taking ν = 0, a number of m = Θ(deff) samples with n exp(−deff) < δ < m−3, we have that
( m
m−deff

Ã⊤
SRHTÃSRHT + C)−1 is an (O(1), δ)-unbiased estimator of (A⊤A + C)−1: This, in particular, agrees

with the above subspace embedding condition up to logarithmic factor.

2. taking ν > 1 in Corollary 3.7 allows one to (further) reduce the inversion bias (to a level that is significantly smaller
than O(1)) by increasing the sample size m = Θ(d1+ν

eff ).

Lemma E.4 (Row norms). Let Hn ∈ Rn×n be the Walsh–Hadamard matrix of size n ≥ 4 as in Definition 3.6 and
Dn = diag(υ) ∈ Rn×n with υ ∈ Rn a Rademacher random vector. Then, we have, for a matrix X ∈ Rn×d with n ≥ d
and t ≥ max{∥XX⊤∥F

√
log(2n/δ)/(cn2), ∥X∥2 log(2n/δ)/(cn)} that

Pr

(∣∣∣∣∥e⊤i HnDnX∥2

n
− ∥X∥2F

n

∣∣∣∣ ≥ t, 1 ≤ i ≤ n

)
≤ δ,

where ∥ · ∥F denotes the Frobenius norm, and c > 0 is a universal constant.

Proof of Lemma E.4. Recall from Definition 3.6 that both Hn and Dn are orthogonal matrices such that H⊤
nD

2
nHn/n = In.

Fix a row index i ∈ {1, . . . , n} and consider

∥e⊤i HnDnX∥2

n
= ∥υ⊤EX∥2,

where E = diag(e⊤i Hn/
√
n) is a diagonal matrix formed from the ith row of Hn/

√
n. Observe that E2 = 1

nIn, we further
have

E[υ⊤EXX⊤Eυ] = tr(E[X⊤Eυυ⊤EX]) = tr(X⊤E2X) =
∥X∥2F
n

.

Note that

∥EXX⊤E∥ = ∥X⊤E2X∥ =
∥X∥2

n
,

∥EXX⊤E∥2F = tr(EXX⊤E2XX⊤E) = tr(XX⊤E2XX⊤E2) =
∥XX⊤∥2F

n2
,

and

K = max
1≤i≤n

inf{s > 0 : E[exp(υ2
i /s

2)] ≤ 2} = (log(2))−1/2 > 1,

where υi is the ith variable of υ. Apply Hanson-Wright inequality in Theorem A.5 with t ≥
max{log(2)∥XX⊤∥F

√
log(2n/δ)/(cn2), log(2)∥X∥2 log(2n/δ)/(cn)}, for each i = 1, . . . , n, we have

Pr

(∣∣∣∣∥e⊤i HnDnX∥2

n
− ∥X∥2F

n

∣∣∣∣ ≥ t

)
≤ δ

n
.

Taking a union bound over these n events, we conclude the proof of Lemma E.4.
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F. Proof of the Results in Section 4
In this section, we present proof of the results in Section 4. Precisely, to establish convergence guarantees for the bias-
corrected SSN iteration in (9), we first introduce in Proposition F.1 a fine-grained non-asymptotic bound on second moment
of the normalized sub-sampled inverse matrix in Proposition F.1 and present its proof in Appendix F.1. Stemming from this
second inverse moment analysis, we also provide non-asymptotic bounds on the second inverse moment for the exact and/or
approximate leverage sampling and SRHT in Corollary F.2 and Corollary F.3, respectively, under scalar debiasing. Then, in
Appendix F.2, we provide the detailed proof of Theorem 4.3. Finally, further discussions and additional results related to
Theorem 4.3 are provided in Appendix F.3.

Proposition F.1 (Fine-grained analysis of second inverse moment). For a given matrix A ∈ Rn×d, let S be a random
sampling matrix with number of trials m and importance sampling distribution {πi}ni=1 as in Definition 2.1, and let
C ∈ Rd×d be a p.s.d. matrix and CA = (A⊤A +C)−1/2C(A⊤A +C)−1/2 ∈ Rd×d. Define deff = tr(A⊤

CAC) with

AC ≡ A(A⊤A+C)−1/2 ∈ Rn×d and the fine-grained de-biased sampling matrix Š = diag
{√

m/(m− ℓCis/πis)
}m

s=1
·S

as in Proposition 3.2. Then, for diagonal matrix F̄ = diag{F̄ii}ni=1 with

F̄ii =
aCi

⊤Eζ [(A
⊤
CŠ

⊤ŠAC +CA)−2]aCi

mπi
,

and aC
⊤
i ∈ Rd the ith row of AC, there exists universal constant C > 0 independent of n, deff such that for

m ≥ Cρmaxdeff(log(deff/δ) + 1/ϵ2/3) with δ ≤ m−3 and max factor ρmax = max1≤i≤n ℓ
C
i /(πideff) in Definition 2.3,

(A⊤
CŠ

⊤ŠAC +CA)−2 is an (ϵ, δ)-unbiased estimator of Id +AC
⊤F̄AC.

Note that Proposition F.1 can be seen as a second-order extension of (the first-order inversion bias in) Proposition 3.2. As
we shall see below in Appendix F.2, this result is instrumental in establishing the convergence rate for SSN in Theorem 4.3.

F.1. Proof of Proposition F.1

Following the methodology of the proofs of Theorem 3.1 and Proposition 3.2, the proof of Proposition F.1 also comes in the
following two steps:

1. construct an high probability event ζ as in (19); and

2. conditional on the event ζ, derive a bound for the spectral norm ∥Eζ [(A
⊤
CŠ

⊤ŠAC +CA)−2]− (Id +A⊤
CF̄AC)∥,

using again “leave-one-out” type analysis.

First, let us recall some notations from the proofs of Theorem 3.1 and Proposition 3.2. For the ease of further use, denote

Š = diag {Fisis}
m
s=1 · S, is ∈ {1, . . . , n}, Fisis =

√
m/(m− ℓCis/πis),

H = A⊤A+C, AC = AH−1/2, and x̂⊤
s = e⊤isAC/

√
πis such that E[x̂sx̂

⊤
s ] = A⊤

CAC. Further let

Q̂ = (A⊤
CŠ

⊤ŠAC +CA)−1 =

(
m∑
s=1

1

m
Fisis x̂sx̂

⊤
s +CA

)−1

, and Q̂−s =

 m∑
j ̸=s

1

m
Fjjx̂jx̂

⊤
j +CA

−1

.

To prove Proposition F.1, we first rewrite

Eζ [Q̂
2]− (Id +A⊤

CF̄AC) = Eζ [Q̂− Id]︸ ︷︷ ︸
T1

+Eζ [Q̂(Q̂− Id)]−A⊤
CF̄AC. (37)
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Then, along with A⊤
CAC +CA = Id and let γ̂s = 1 + 1

mFisis x̂
⊤
s Q̂−sx̂s = γ̌s, s = 1, . . . ,m, we get

Eζ [Q̂(Q̂− Id)] = Eζ [Q̂(Q̂(A⊤
CAC −A⊤

CŠ
⊤ŠAC))] = Eζ [Q̂

2A⊤
CAC]− Eζ

[
m∑
s=1

Q̂
FisisQ̂−sx̂sx̂

⊤
s

mγ̂s

]

= Eζ [Q̂
2A⊤

CAC]− Eζ

[
m∑
s=1

FisisQ̂
2
−sx̂sx̂

⊤
s

mγ̌s

]
+ Eζ

[
m∑
s=1

F 2
isis

Q̂−sx̂sx̂
⊤
s Q̂

2
−sx̂sx̂

⊤
s

m2γ̌2
s

]

= Eζ [Q̂
2A⊤

CAC]− Eζ

[
FisisQ̂

2
−sx̂sx̂

⊤
s

γ̌s

]
+ Eζ

[
F 2
isis

Q̂−sx̂sx̂
⊤
s Q̂

2
−sx̂sx̂

⊤
s

mγ̌2
s

]

= Eζ

[
Q̂2A⊤

CAC − Q̂2
−sx̂sx̂

⊤
s

]
︸ ︷︷ ︸

T2

+Eζ

[
Q̂2

−s

(
1− Fisis

γ̌s

)
x̂sx̂

⊤
s

]
︸ ︷︷ ︸

T3

+Eζ

[
F 2
isis

Q̂−sx̂sx̂
⊤
s Q̂

2
−sx̂sx̂

⊤
s

mγ̌2
s

]
, (38)

where the second and third equalities follow from the Sherman–Morrison formula. Further define F̄
′
= diag{F̄ ′

ii}ni=1 with
F̄

′

ii = aC
⊤
i Eζ [Q̂

2
−s]aCi/mπi. Using (37) and (38), we get

Eζ [Q̂
2]− (Id +A⊤

CF̄AC) = T1 +T2 +T3 + Eζ

[
F 2
isis

Q̂−sx̂sx̂
⊤
s Q̂

2
−sx̂sx̂

⊤
s

mγ̌2
s

]
−A⊤

CF̄AC

= T1 +T2 +T3 + Eζ [Q̂− Id]A
⊤
CF̄AC︸ ︷︷ ︸

T4

+Eζ [(Q̂−s − Q̂)A⊤
CF̄AC]︸ ︷︷ ︸

T5

+ Eζ [Q̂−s(A
⊤
CF̄

′
AC −A⊤

CF̄AC)]︸ ︷︷ ︸
T6

+ Eζ

[
x̂⊤
s Q̂

2
−sx̂sQ̂−sx̂sx̂

⊤
s

m

]
− Eζ [Q̂−s(A

⊤
CF̄

′
AC)]︸ ︷︷ ︸

T7

+ Eζ

[(
F 2
isis

γ̌2
s

− 1

)
x̂⊤
s Q̂

2
−sx̂sQ̂−sx̂sx̂

⊤
s

m

]
︸ ︷︷ ︸

T8

.

At this point, note from Proposition 3.2 that ∥T1∥ = O
(√

ρ3maxd
3
eff/m

3
)

. Using Q̂ = H1/2Q̌H1/2, and noting the fact
that ζ ′ implies that

Q̌ ⪯ Q̌−s ⪯ 6H−1, (39)

we have F̄ii ≤ aC
⊤
i Eζ [Q̂

2]aCi/mπi ≤ 36ρmaxdeff/m < 1, which, together with Proposition 3.2 yields that ∥T4∥ =

O
(√

ρ3maxd
3
eff/m

3
)

.

Now, we proceed to bound T2. We first write

∥T2∥ = ∥Eζ [Q̂
2A⊤

CAC]− Eζ [Q̂
2
−sA

⊤
CAC]∥+ ∥Eζ [Q̂

2
−sA

⊤
CAC]− Eζ [Q̂

2
−sx̂sx̂

⊤
s ]∥

≤ ∥Eζ [(Q̂
2 − Q̂2

−s)A
⊤
CAC]∥︸ ︷︷ ︸

T21

+ ∥Eζ [Q̂
2
−s(A

⊤
CAC − x̂sx̂

⊤
s )]∥︸ ︷︷ ︸

T22

.

Recalling A⊤
CAC = H−1/2A⊤AH−1/2 ⪯ Id, we get, for the first term T21, that

T21 ≤ ∥Eζ [Q̂
2 − Q̂2

−s]∥ ≤ ∥Eζ [Q̂(Q̂− Q̂−s)]∥+ ∥Eζ [(Q̂− Q̂−s)Q̂−s]∥
(a)
=

∥∥∥∥Eζ

[
Fisis

mγ̌s
Q̂Q̂−sx̂sx̂

⊤
s Q̂−s

]∥∥∥∥+ ∥∥∥∥Eζ

[
Fisis

mγ̌s
Q̂−sx̂sx̂

⊤
s Q̂

2
−s

]∥∥∥∥
(b)
= 2

∥∥∥∥Eζ

[
Fisis

mγ̌s
Q̂2

−sx̂sx̂
⊤
s Q̂−s

]∥∥∥∥+ ∥∥∥∥Eζ

[
F 2
isis

m2γ̌2
s

Q̂−sx̂sx̂
⊤
s Q̂

2
−sx̂sx̂

⊤
s Q̂−s

]∥∥∥∥ , (40)
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where we used (again) Sherman–Morrison formula twice in the step (a) and (b), respectively. For the first term in (40),
using the fact that Fisis/γ̌s < Fisis < 2, together with (22) and (39), we get∥∥∥∥Eζ

[
Fisis

mγ̌s
Q̂2

−sx̂sx̂
⊤
s Q̂−s

]∥∥∥∥ = sup
∥u∥=1,∥v∥=1

Eζ

[
Fisis

mγ̌s
u⊤Q̂2

−sx̂sx̂
⊤
s Q̂−sv

]
≤ 4

m
sup

∥u∥=1,∥v∥=1

Eζ′

[
|u⊤Q̂2

−sx̂sx̂
⊤
s Q̂−sv|

]
≤ 2

m
sup

∥u∥=1,∥v∥=1

Eζ′

[
u⊤Q̂2

−sx̂sx̂
⊤
s Q̂

2
−su+ v⊤Q̂−sx̂sx̂

⊤
s Q̂−sv

]

≤ 2

m
sup

∥u∥=1,∥v∥=1

Eζ′

 n∑
j=1

u⊤Q̂2
−saCj

a⊤Cj
Q̂2

−su+ v⊤Q̂−saCj
a⊤Cj

Q̂−sv


≤ 2

m
sup

∥u∥=1,∥v∥=1

Eζ′

[
u⊤Q̂2

−sA
⊤
CACQ̂

2
−su+ v⊤Q̂−sA

⊤
CACQ̂−sv

]
= O

( 1

m

)
.

Analogously as above, we have, for the second term in (40) that∥∥∥∥Eζ

[
F 2
isis

m2γ̌2
s

Q̂−sx̂sx̂
⊤
s Q̂

2
−sx̂sx̂

⊤
s Q̂−s

]∥∥∥∥ ≤ 8

m2
∥Eζ′ [Q̂−sx̂sx̂

⊤
s Q̂

2
−sx̂sx̂

⊤
s Q̂−s]∥

=
8

m2

∥∥∥∥∥∥Eζ′

 n∑
j=1

Q̂−saCjaC
⊤
j Q̂

2
−saCjaC

⊤
j Q̂−s

πj

∥∥∥∥∥∥
=

288ρmaxdeff
m2

∥∥∥Eζ′

[
Q̂−sA

⊤
CACQ̂−s

]∥∥∥ = O
(ρmaxdeff

m2

)
.

We thus conclude that T21 = O(1/m).

Following the methodology used to bound ∥H1/2Ž2H
−1/2∥ and ∥H1/2Ž3H

−1/2∥ in Appendix E.2, together with (39), we
get similarly

T22 = O

(√
ρ3maxd

3
eff

m3

)
, ∥T3∥ = O

(√
ρ3maxd

3
eff

m3

)
.

Utilizing the fact that F̄ii ≤ 36ρmaxdeff/m, together with (32) and (39), it follows that

∥T5∥ ≤ ∥Eζ [Q̂−s − Q̂]∥∥A⊤
CF̄AC∥ ≤ O

(
ρmaxdeff

m2

)
.

Since (39) and T21 = O(1/m), we can bound ∥T6∥ as

∥T6∥ ≤ ∥Eζ [Q̂−s]∥∥AC∥2∥F̄
′
− F̄∥ ≤ 6 max

1≤j≤n

|aC⊤
j (Eζ [Q̂

2
−s]− Eζ [Q̂
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mπj

≤ 6ρmaxdeff
m

∥Eζ [Q̂
2
−s]− Eζ [Q̂

2]∥ = O
(ρmaxdeff

m2

)
.

We then move on to bound ∥T7∥. We start by rewriting

∥T7∥ =

∥∥∥∥∥Eζ

[
Q̂−s

(
A⊤

CF̄
′
AC −

x̂⊤
s Q̂
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−sx̂sx̂sx̂

⊤
s

m

)]∥∥∥∥∥ ≤

∥∥∥∥∥Eζ
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′
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2
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⊤
s

m

)]∥∥∥∥∥︸ ︷︷ ︸
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+

∥∥∥∥∥Eζ
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⊤
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+

∥∥∥∥∥Eζ
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2
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⊤
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.
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Note that Eζ′

[
Q̂−s

(
A⊤

CF̄
′
AC − x̂⊤

s Eζ [Q̂
2
−s]x̂sx̂sx̂

⊤
s

m

)]
= 0. By adapting the techniques of bounding ∥H1/2Ž2H

−1/2∥ in

Appendix E.2, for δ3 < m−3, we further get

T71 ≤ 2

∥∥∥∥∥Eζ′
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]∥∥∥∥∥
≤ O

(
ρmaxdeff

m4

)
+ 12Eζ′

[
x̂⊤
s Eζ [Q̂

2
−s]x̂sx̂

⊤
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m
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]
.

Furthermore, applying the Chebyshev’s inequality again, and considering Eζ′ [x̂⊤
s Eζ [Q̂

2
−s]x̂sx̂

⊤
s x̂s/m] ≤ 36ρmaxd

2
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⊤
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⊤
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2
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]
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4
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,

it follows that, for x ≥ 72ρmaxd
2
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2
−s]x̂sx̂

⊤
s x̂s/m ≥ x | ζ ′) ≤ 64ρ3maxd

4
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2x2). Subsequently, by
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∫ ∞
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∫ ∞
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.

This leads to T71 = O
(√

ρ3maxd
3
eff/m

3
)

.

Next, we show a bound on T72. Using again (22) and (39), we get
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Observe that adapting the proof of Lemma D.1, we can readily ascertain the following:

Eζ′

[
(aC

⊤
j (Eζ′ [Q̂2

−s]− Q̂2
−s)aCj)

2
]
= Varζ′

[
aC

⊤
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⊤
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m

)
,

so that T72 = O
(√
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3
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3
)

. Recalling (39) again, we derive
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s (Eζ [Q̂

2
−s]− Eζ′ [Q̂2

−s])x̂sx̂
⊤
s x̂s

m

∣∣∣∣∣
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−s]− Eζ′ [Q̂2

−s])aCj | ≤ 2δ3aC
⊤
j aCj(∥Eζ′ [Q̂2

−s]∥+ ∥Eζ′ [Q̂2
−s | 1¬ζ3 ]∥) ≤

144aC
⊤
j aCj

m3
.

This results in T73 = O(ρmaxd
2
eff/m

4).

Now, it remains to bound ∥T8∥. Noting (39) and Fisis
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≤ 2, it follows that
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Further, applying the techniques of bounding ∥H1/2Ž3H
−1/2∥ in Appendix E.2 again, we get ∥T8∥ =

O
(√

ρ5maxd
5
eff/m

5
)

. Putting the above together, we conclude that

∥Eζ [Q̂
2]− (Id +A⊤

CF̄AC)∥ = O

(√
ρ3maxd

3
eff

m3

)
.

This thus concludes the proof of Proposition F.1. □

Based on the second inverse moment result in Proposition F.1, we follow the line of arguments in Corollary 3.4 and Corol-
lary 3.7,to derive the following fine-grained second inverse moment results for exact and/or approximate leverage score
sampling and SRHT using scalar debiasing. The proofs of these results follow from a direct combination of the proofs of
Corollary 3.4, Corollary 3.7 and Proposition F.1, and are omitted here.
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Corollary F.2 (Second inverse moment using scalar debiasing under approximate leverage). Under the settings and notations
of Proposition F.1, for any random sampling scheme with sampling distribution πi ∈ [ℓCi /(deffρmax), ℓ

C
i /(deffρmin)] with

some ρmin ∈ [1/2, 1] as in Definition 2.3 and diagonal matrix F̄ = diag{F̄ii}ni=1 with

F̄ii =
aCi

⊤Eζ [(
m

m−deff
A⊤

CS
⊤SAC +CA)−2]aCi

mπi
.

Then, there exists universal constant C > 0 independent of n, deff such that for m ≥ Cρmaxdeff log(deff/δ) with
δ ≤ m−3, ( m

m−deff
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CS
⊤SAC + CA)−2 is an (ϵ, δ)-unbiased estimator of Id + AC

⊤F̄AC with inversion bias
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O
(√

ρ3maxd
3
eff/m

3
)
, O(ϵρρmaxdeff/m)

}
for ϵρ = max{ρ−1

min − 1, 1− ρ−1
max}.

Corollary F.3 (Second moment for SRHT using scalar debiasing ). Under the settings and notations of Proposition F.1, for
ÃSRHT ∈ Rm×n the SRHT of A as in Definition 3.6, and diagonal matrix F̄ = diag{F̄ii}ni=1 with

F̄ii =
e⊤i HnDnACEζ [(

m
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−1/2 +CA)−2]A⊤
CDnHnei

nmπi
,

then there exists universal constant C > 0 independent of n, deff and n exp(−deff) < δ < m−3

such that for m ≥ Cρmaxdeff log(deff/δ) with max factor ρmax = max1≤i≤n nℓ
C
i (HnDnA/

√
n)/deff ,

( m
m−deff

H−1/2Ã⊤
SRHTÃSRHTH

−1/2 + CA)−2 is an (ϵ, δ)-unbiased estimator of Id + 1
nA

⊤
CDnHnF̄HnDnAC with

inversion bias ϵ = O
(√

ρ3maxd
3
eff/m

3 +
√
deff log(n/δ)/m

)
.

These results are extension of the results in Corollaries in 3.4 and 3.7, and can be used to derive SSN local convergence rates
under exact/approximate leverage and SRHT similar to Theorem 4.3. See Corollaries F.5 and F.6 in Appendix F.3.

F.2. Proof of Theorem 4.3

Here, we prove Theorem 4.3 by adapting the proof approaches of our Propositions 3.2 and F.1 and Dereziński et al. (2021a,
Theorem 10). The proof of Theorem 4.3 comes in the following two steps:

• we first establish Lemma F.4 that connects the de-biased SSN iterations β̌t+1 to the true βt+1; and

• perform detailed convergence analysis of de-biased SSN.

To begin, we define a high probability event ζt for each t = 0, . . . , T − 1, as defined in (19). These events are established
independently for each iteration, and we denote ζ =

⋂T−1
t=0 ζt. Under the setting of Theorem 4.3, it follows from Lemma 2.7

that Pr(ζt) ≥ 1 − δ/T and Pr(ζ) ≥ 1 − δ. These events will be constantly exploited in the remainder of the proof of
Theorem 4.3.

Proceeding to the core of our proof, we present an auxiliary lemma, which uses Propositions 3.2 and F.1 to connect the
de-biased iteration β̌t+1 to the true Newton iteration βt+1. This is pivotal to prove Theorem 4.3. Note that this result is
universally applicable to any de-biased β̌t and is independent of the smoothness assumption on F in, e.g., Assumption 4.2.

Lemma F.4. Let Ht = ∇2f(β̌t) + C(β̌t) with ∇2f(β̌t) = A(β̌t)
⊤A(β̌t) and C(β̌t) = ∇2Φ(β̌t) a p.s.d. matrix,

and let β̌t+1 be the de-biased SSN iteration as in (10) with de-biased Št as in Proposition 3.2. Denote ∆t = βt − β∗

and ∆̌t = β̌t − β∗. If the exact Newton step βt+1 = β̌t − µtH
−1
t gt (with gt the gradient of F at β̌t) is a descent

direction, i.e., ∥∆t+1∥Ht ≤ ∥∆̌t∥Ht , then, there exists universal constant C > 0 independent of n, deff such that for
m ≥ Cρmaxdeff(log(deffT/δ) + 1/ϵ2/3) with ϵ > 0, δ ≤ m−3, we have

Eζt [∥∆̌t+1∥2Ht
] ≤ ∥∆t+1∥2Ht

+ ϵ∥∆̌t∥2Ht
+

36ρmaxdeff
m

∥βt+1 − β̌t∥2∇2f(β̌t)
.

Here, ρmax is the max importance sampling approximation factor in Definition 2.3 for ℓCi = max1≤t≤T ℓCi (β̌t) and
deff = max1≤t≤T deff(β̌t) with ℓCi (β̌t) and deff(β̌t) the leverage scores and effective dimension of A(β̌t) given C(β̌t),
respectively.
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Proof of Lemma F.4. In both this proof and the subsequent proof of Theorem 4.3, to simplify the notation, we abbreviate
AC(β̌t) as AC. We first recall some notations from (the proof of) Proposition F.1. Let pt = βt+1 − β̌t = −µtH

−1
t gt,

and Q̂t = (A⊤
CŠ

⊤
t ŠtAC + CA)−1 with the de-biased sampling matrix Št = diag

{√
m/(m− ℓCis(β̌t)/πis)

}m

s=1
· St

as in Proposition 3.2 and CA = H
−1/2
t C(β̌t)H

−1/2
t . Define the diagonal matrix F̄ = diag{F̄ii}ni=1 with F̄ii =

aCi
⊤Eζt [(A

⊤
CŠ

⊤ŠAC +CA)−2]aCi/mπi as in Proposition F.1 and aC
⊤
i ∈ Rd the ith row of AC.

Building on the results from Proposition 3.2 and Proposition F.1, for ϵ = O
(√

ρ3maxd
3
eff/m

3
)

, we obtain

Eζt [∥∆̌t+1∥2Ht
]− ∥∆t+1∥2Ht

= Eζt [∥β̌t+1 − βt+1∥2Ht
] + 2∆⊤

t+1HtEζt [β̌t+1 − βt+1]

= 2µt∆
⊤
t+1H

1
2
t Eζt [(Q̂t − Id)]H

1
2
t H

−1
t gt + µ2

tg
⊤
t H

−1
t H

1
2
t Eζt [(Q̂t − Id)

2]H
1
2
t H

−1
t gt

≤ 2∥∆t+1∥Ht
∥pt∥Ht

∥Eζt [Q̂t]− Id∥+ p⊤
t H

1
2
t Eζt [Q̂

2
t − Id − 2(Q̂t − Id)]H

1
2
t pt

≤ 2∥∆t+1∥Ht∥pt∥Ht∥Eζt [Q̂t]− Id∥+ 2∥pt∥2Ht
∥Eζt [Q̂t]− Id∥+ p⊤

t H
1
2
t Eζt [Q̂

2
t − Id −A⊤

CF̄tAC]H
1
2
t pt

+ p⊤
t H

1
2
t A

⊤
CF̄tACH

1
2
t pt

≤ 2ϵ∥∆t+1∥Ht
∥pt∥Ht

+ 2ϵ∥pt∥2Ht
+ ∥pt∥2Ht

∥Eζt [Q̂
2
t ]− Id −A⊤

CF̄tAC∥+ ∥pt∥2∇2f(β̌t)
∥F̄t∥

≤ ϵ∥∆t+1∥Ht
∥pt∥Ht

+ ϵ∥pt∥2Ht
+ ∥pt∥2∇2f(β̌t)

max
1≤i≤n

aCi
⊤Eζt [Q̂

2
t ]aCi

mπi

≤ ϵ∥∆̌t∥Ht
∥pt∥Ht

+ ϵ∥pt∥2Ht
+

36ρmaxdeff
m

∥pt∥2∇2f(β̌t)
,

which combined with ∥pt∥Ht ≤ ∥∆t+1∥Ht + ∥∆̌t∥Ht ≤ 2∥∆̌t∥Ht and ∥∆̌t∥Ht∥pt∥Ht ≤ 2∥∆̌t∥2Ht
leads to

Eζt [∥∆̌t+1∥2Ht
]− ∥∆t+1∥2Ht

≤ 2ϵ∥∆̌t∥2Ht
+ 4ϵ∥∆̌t∥2Ht

+
36ρmaxdeff

m
∥pt∥2∇2f(β̌t)

= ϵ∥∆̌t∥2Ht
+

36ρmaxdeff
m

∥pt∥2∇2f(β̌t)
.

This concludes the proof of Lemma F.4.

Proof of Theorem 4.3. First note that by Assumption 4.2, we have the following result

∥Ht∆̌t − gt∥H−1
t

≤ υ∥∆̌t∥Ht
, Ht ≈υ H, for υ = O

(√
ρ3maxd

3
eff

m3

)
. (41)

Letting ∆̌t = β̌t − β∗ and ∆t = βt − β∗, we then show (41) holds under Assumption 4.2. Consider β̌t ∈ U for all t, we
get the following condition:

∥∆̌t∥H <

(
ρmaxdeffσmin

m

)3/2

/L,

where σmin denotes the smallest eigenvalue of H. We further derive

∥H− 1
2 (Ht −H)H− 1

2 ∥ ≤ 1

σmin
∥Ht −H∥ ≤ L

σmin
∥β̌t − β∗∥ =

L

σmin
∥∆̌t∥ ≤ L

σ
3/2
min

∥∆̌t∥H ≤
√

ρ3maxd
3
eff

m3
= υ,

which leads to that Ht ≈υ H. We now advance to verify the second part of (41). Recalling that the standard analysis of
Newton’s method (Boyd & Vandenberghe, 2004), we have

∥Ht∆̌t − gt∥ =

∥∥∥∥Ht∆̌t −
(∫ 1

0

∇2F (β∗ + τ∆̌t)dτ

)
∆̌t

∥∥∥∥ ≤ ∥∆̌t∥
∫ 1

0

∥∇2F (β̌t)−∇2F (β∗ + τ∆̌t)∥dτ

≤ ∥∆̌t∥
∫ 1

0

(1− τ)L∥∆̌t∥dτ =
L

2
∥∆̌t∥2,
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which together with υ < 1/2 and the fact that Ht ≈υ H implies that ∥H−1
t ∥ ≤ 1+υ

σmin
achieves

∥Ht∆̌t − gt∥H−1
t

≤
√

1 + υ

σmin
∥Ht∆̌t − gt∥ ≤

√
L2(1 + υ)

4σmin
∥∆̌t∥2 ≤

√
L2(1 + υ)

4σ3
min

∥∆̌t∥2H ≤ υ
√
1 + υ

2
∥∆̌t∥H

≤ υ(1 + υ)3/2

2
∥∆̌t∥Ht

≤ υ∥∆̌t∥Ht
.

Thus, (41) holds.

Next, we proceed to the main part of the proof. We first rewrite ∥∆t+1∥2Ht
as

∥∆t+1∥2Ht
= ∆⊤

t+1Ht(βt+1 − β̌t + β̌t − β∗) = ∆⊤
t+1Ht∆̌t − µt∆

⊤
t+1gt

= (1− µt)∆
⊤
t+1gt +∆⊤

t+1(Ht∆̌t − gt)

= (1− µt)∆
⊤
t+1Ht∆̌t − (1− µt)∆

⊤
t+1(Ht∆̌t − gt) + ∆⊤

t+1(Ht∆̌t − gt)

= (1− µt)(∆̌
⊤
t Ht∆̌t − µtg

⊤
t ∆̌t) + µt∆

⊤
t+1(Ht∆̌t − gt)

= (1− µt)
2∥∆̌t∥2Ht

+ µt(∆t+1 + (1− µt)∆̌t)
⊤(Ht∆̌t − gt).

Invoking (41) and triangle inequality, we get

∥∆t+1∥2Ht
≤ (1− µt)

2∥∆̌t∥2Ht
+ υµt∥∆t+1∥Ht

∥∆̌t∥Ht
+ υµt(1− µt)∥∆̌t∥2Ht

.

With the fact that if x2 ≤ ax+ b then x2 ≤ a2 + 2b, it follows that:

∥∆t+1∥2Ht
≤ υ2µ2

t∥∆̌t∥2Ht
+ 2(1− µt)

2∥∆̌t∥2Ht
+ 2υµt(1− µt)∥∆̌t∥2Ht

= (2(1− µt)
2 + 2υµt + µ2

t (υ
2 − 2υ))∥∆̌t∥2Ht

≤ 2((1− µt)
2 + υµt)∥∆̌t∥2Ht

.

It then follows from Lemma F.4 and the inequality ∇2f(β̌t) ⪯ Ht that

Eζt [∥∆̌t+1∥2Ht
]− ∥∆t+1∥2Ht

≤ υ∥∆̌t∥2Ht
+

36ρmaxdeff
m

∥pt∥2Ht
. (42)

For the second term in (42), we rewrite

36ρmaxdeff
m

∥pt∥2Ht
=

36ρmaxdeff
m

µ2
t (g

⊤
t ∆̌t − g⊤

t H
−1
t (Ht∆̌t − gt))

=
36ρmaxdeff

m
µ2
t (∆̌

⊤
t Ht∆̌t − ∆̌⊤

t (Ht∆̌t − gt)− g⊤
t H

−1
t (Ht∆̌t − gt))

=
36ρmaxdeff

m
µ2
t∥∆̌t∥2Ht

− 36ρmaxdeff
m

µ2
t (∆̌t +H−1

t gt)
⊤(Ht∆̌t − gt)).

Using again (41), we further get

−36ρmaxdeff
m

µ2
t (∆̌t +H−1

t gt)
⊤(Ht∆̌t − gt) =

36ρmaxdeff
m

(−µ2
t ∆̌t + µt(∆t+1 − ∆̌t))

⊤(Ht∆̌t − gt)

≤ 36ρmaxdeffυ

m
µt(µt + 2)∥∆̌t∥2Ht

.

Then, putting the above together, we have

Eζt [∥∆̌t+1∥2Ht
] ≤

(
(2(1− µt)

2 + 2υµt + υ +
36ρmaxdeff

m
µ2
t +

36ρmaxdeffυ

m
µt(µt + 2)

)
∥∆̌t∥2Ht

=

((
2(1− µt)

2 +
36ρmaxdeff

m
µ2
t

)
+ υ

(
2µt + 1 +

36ρmaxdeff
m

µt(µt + 2)

))
∥∆̌t∥2Ht

,

40



Fundamental Bias in Inverting Random Sampling Matrices with Application to SSN

which along with υ = O
(√

ρ3maxd
3
eff/m

3
)

and µt =
1

1+ρmaxdeff/m
< 1 results in

Eζt [∥∆̌t+1∥2Ht
] ≤

((
2(1− µt)

2 +
36ρmaxdeff

m
µ2
t

)
+ υ

)
∥∆̌t∥2Ht

≤
(
37ρmaxdeff

m
+ υ

)
∥∆̌t∥2Ht

.

Applying υ < 1
2 and the fact that Ht ≈υ H indicates ∥v∥2Ht

≈υ ∥v∥2H, we get the following bound:

Eζt [∥∆̌t+1∥2H] ≤ (1 + υ)Eζt [∥∆̌t+1∥2Ht
] ≤ (1 + υ)

(
37ρmaxdeff

m
+ υ

)
∥∆̌t∥2Ht

≤ (1 + υ)2
(
37ρmaxdeff

m
+ υ

)
∥∆̌t∥2H =

(
ρmaxdeff

m
+ υ

)
∥∆̌t∥2H, (43)

where the constant “(1 + υ)2 · 37” is absorbed into m.

Now, it remains to check that β̌t ∈ U for all t when conditioned on the event ζ =
⋂T−1

t=0 ζt. Assuming that this holds
for t = 0, then it remains to prove that, conditioned on the event ζ, ∥∆̌t+1∥H ≤ ∥∆̌t∥H holds for each t almost surely.
Following the fact that Proposition 3.2 implies that, conditioned on ζt, we obtain

∥Q̂t − Id∥ ≤ ε,

where Lemma 2.7 guarantees that ε is small. Adapting the techniques used in the proof of Lemma F.4 and by the analysis of
the exact Newton step ∆t+1, we arrive at

∥∆̌t+1∥2Ht
≤ ∥∆t+1∥2Ht

+ 2∥∆t+1∥Ht
∥pt∥Ht

∥Q̂t − Id∥+ p⊤
t H

1
2
t (Q̂t − Id)

2H
1
2
t pt

≤ ∥∆t+1∥2Ht
+ 8∥∆̌t∥2Ht

∥Q̂t − Id∥ ≤
(
ε+

ρmaxdeff
m

+ υ

)
∥∆̌t∥2Ht

.

From Lemma 2.7, it is deduced that ε+ ρmaxdeff

m + υ is sufficiently small. Using Ht ≈υ H again, we deduce ∥∆̌t+1∥2H ≤
∥∆̌t∥2H. Consequently, we infer that every iterate lies within U , and the result (43) holds for t = 0, 1, . . . , T − 1. Putting
the above together, we conclude that, conditioned on the event ζ that holds with probability at least 1− δ, the union bound
(11) is achieved, thereby completing the proof. □

F.3. Additional Results on SSN and Further Discussions

Based on the above analysis, for any sampling method whose sampling probabilities are close to the exact approximate
leverage scores, we then show that using scalar debiasing m/(m − deff) yields a slightly weaker local convergence
result for SSN than that in Theorem 4.3, yet achieves enhanced computational efficiency. The result naturally follows by
recalling Corollary 3.4 and Corollary F.2, and adapting the proof of Theorem 4.3 with a neighborhood U = {β : ∥β −
β∗∥H < ulevσ

3/2
min/L} in place of U = {β : ∥β − β∗∥H < (ρmaxdeffσmin/m)3/2/L}, and the corresponding proof is

omitted for brevity.
Corollary F.5 (Local convergence of SSN using scalar debiasing under approximate leverage ). Under the
settings and notations of Theorem 4.3, for any random sampling scheme with sampling distribution πi ∈
[ℓCi (β̌t)/(deff(β̌t)ρmax(β̌t)), ℓ

C
i (β̌t)/(deff(β̌t)ρmin(β̌t))] as in Corollary 3.4, there exists a neighborhood U of β∗ such

that the de-biased SSN iteration β̌t+1 = β̌t − µt

(
m

m−deff (β̌t)
A(β̌t)

⊤S⊤
t StA(β̌t) +C(β̌t)

)−1

gt starting from β̌0 ∈ U

satisfies, for U = {β : ∥β − β∗∥H < ulevσ
3/2
min/L}, step size µt = 1 − ρmax

m/deff+ρmax
, and m ≥ Cρmaxdeff log(deffT/δ),

that (
Eζ

[
∥β̌T − β∗∥H
∥β̌0 − β∗∥H

])1/T

≤ ρmaxdeff
m

(1 + ϵ+ ϵρ),

holds for ϵ = O
(√

ρmaxdeff/m
)
, ϵρ = max{ρ−1

min − 1, 1 − ρ−1
max} and conditioned on an event ζ that happens with

probability at least 1 − δ. Here, ulev = (ρmaxdeff/m)3/2 + ϵρρmaxdeff/m, σmin is the smallest singular value of
H ≡ A(β∗)⊤A(β∗) + C(β∗), deff = max1≤t≤T deff(β̌t) with ℓCi (β̌t) and deff(β̌t) the leverage scores and effective
dimension of A(β̌t) given C(β̌t), respectively, ρmax = max1≤t≤T ρmax(β̌t) and ρmin = min1≤t≤T ρmin(β̌t) with
ρmax(β̌t) and ρmin(β̌t) the (max and min) importance sampling approximation factors (of A(β̌t) given C(β̌t)) in
Definition 2.3.
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Similarly, for SRHT, applying the scalar debiasing m/(m− deff) to SSN also leads to a slightly weaker local convergence
than that in Theorem 4.3 but offers greater computational efficiency. This follows readily by recalling Corollary 3.7
and Corollary F.3, and adapting the proof of Theorem 4.3 with a neighborhood U = {β : ∥β − β∗∥H < uSRHTσ

3/2
min/L}

instead of U = {β : ∥β − β∗∥H < (ρmaxdeffσmin/m)3/2/L}, and we omit the detailed proof for brevity.

Corollary F.6 (Local convergence of SSN for SRHT using scalar debiasing). Under the settings and notations of Theorem 4.3,
for ÃSRHT(β̌t) = StHnDnA(β̌t)/

√
n ∈ Rm×n the SRHT of A as in Definition 3.6, there exists a neighborhood U

of β∗ such that the de-biased SSN iteration β̌t+1 = β̌t − µt

(
m

m−deff (β̌t)
Ã⊤

SRHT(β̌t)S
⊤
t StÃSRHT(β̌t) +C(β̌t)

)−1

gt

starting from β̌0 ∈ U satisfies, for U = {β : ∥β − β∗∥H < uSRHTσ
3/2
min/L}, step size µt = 1 − ρmax

m/deff+ρmax
, m ≥

Cρmaxdeff log(deffT/δ), and Tn exp(−deff) < δ < Tm−3, that

(
Eζ

[
∥β̌T − β∗∥H
∥β̌0 − β∗∥H

])1/T

≤ ρmaxdeff
m

(1 + ϵ), (44)

holds for ϵ = O

(√
ρmaxdeff/m+ ρ−1

max

√
d−1
eff log(nT/δ)

)
and conditioned on an event ζ that happens with probability

at least 1 − δ. Here, uSRHT = (ρmaxdeff/m)3/2 +
√

deff log(nT/δ)/m, σmin is the smallest singular value of H ≡
A(β∗)⊤A(β∗) +C(β∗), deff = max1≤t≤T deff(β̌t) with ℓCi (β̌t) and deff(β̌t) the leverage scores and effective dimension
of HnDnA(β̌t)/

√
n given C(β̌t), respectively, ρmax = max1≤t≤T ρmax(β̌t) with ρmax(β̌t) the max importance sampling

approximation factor (of HnDnA(β̌t)/
√
n given C(β̌t)) in Definition 2.3.

Remark F.7 (Comparison between Corollary F.6 and Lacotte et al. (2021, Theorem 2)). Using Corollary 3.7 and Corollary F.3
with ν = 0, it follows, by adapting the proof of Theorem 4.3, that for a number m > Cdeff of samples, the linear convergence
rate in Corollary F.6 holds but with a right-hand side term of O(1) in (44). That is similar to the problem-dependent linear
convergence rate obtained in e.g., Lacotte et al. (2021, Theorem 2) for self-concordant f , Φ, and F in (7). Notably, using
a larger number of samples m as in Corollary F.6 (than Θ(deff)), the (linear) convergence rate in Corollary F.6 becomes
dependent on ρmaxdeff/m, whereas the linear or quadratic rates stated in Lacotte et al. (2021, Theorem 2) cannot be
characterized using n, deff or m.

G. Additional Numerical Experiments and Implementation Details
Here, we provide in Appendix G.1 and Appendix G.2 implementation details of the numerical experiments on SSN in
Section 5, and then in Appendix G.3 additional numerical results on the inversion bias under approximate versus exact
leverage score sampling.

G.1. Sketching Matrices and Step Size

For a data matrix A ∈ Rn×d, the approximate ridge leverage scores and leverage scores are computed using the method
provided in Drineas et al. (2012) and Cohen et al. (2017). The LESS-uniform sketching matrix is constructed as in
Dereziński et al. (2021a, Section E.1). Further implementation details, including those for the SRHT, are available in the
public repository provided by Dereziński et al. (2021a) at https://github.com/lessketching/newtonsketch.
Additionally, the Shrinkage Leverage Score sampling probability is formulated by combining uniform sampling probability
and approximate leverage score sampling probability in equal proportions.

In our experiments, the first-order methods, Gradient Descent and Stochastic Gradient Descent, are used with a fixed step
size. As done in Dereziński et al. (2021a), second-order methods, specifically Sub-sampled Newton and Newton Sketch
with Less-uniform Sketches, employ step sizes that are dynamically adjusted using a line search algorithm based on the
Armijo condition (Bonnans et al., 2006, Chapter 3).

For a fair comparison of the “convergence-complexity” trade-off across different optimization methods, the time reported in
Figures 2 and 3 include the time for input data pre-processing, e.g., the computation of exact or approximate leverage scores,
and Walsh–Hadamard transform, as well as the computational overhead associated with the sketching process. And we fix
in Figures 2 and 3 the ridge regularization parameter to λ = 10−2 for both MNIST and CIFAR-10 data in Section 5.
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G.2. Datasets

For MNIST data matrix, we have n = 213 and d = 27, and for CIFAR-10 data, we have n = 214 and d = 28. We use
torchvision.transforms from PyTorch to pre-process each image. We divide the ten classes of MNIST and CIFAR-10
datasets into two groups, assigning them labels of −1 and +1, respectively.

G.3. Inversion Bias for Exact versus Approximate Leverage Score Sampling under Scalar Debiasing

In this section, we present empirical experiments to compare the inversion bias of exact versus approximate leverage score
sampling under scalar debiasing m/(m− deff), as shown in Corollary 3.4 and discussed in Remark 3.5, for both MNIST
and CIFAR-10 data.

Figure 4 depicts the inversion bias (with and without the scalar debiasing m/(m − deff) measured in spectral norm:
∥H1/2(E[( m

m−deff
A⊤S⊤SA + λId)

−1] − (A⊤A + λId)
−1)H1/2∥ and ∥H1/2(E[(A⊤S⊤SA + λId)

−1] − (A⊤A +

λId)
−1)H1/2∥, H = A⊤A+ λId ) as a function of the sketch size m, using the following random sampling schemes:

1. RLev: Exact λ-ridge leverage score sampling with scalar debiasing m/(m− deff).

2. NO-RLev: Standard exact λ-ridge leverage score sampling without scalar debiasing m/(m− deff).

3. ARLev: Approximate λ-ridge leverage score sampling (identical to that used in Section 5) with scalar debiasing
m/(m − deff), where the approximate ridge leverage scores ℓ̂Ci ≈ ∥e⊤i A(A⊤S⊤

1 S1A + λId)
−1/2∥2 are computed

using sparse Johnson Lindenstrauss transform (SJLT) (Clarkson & Woodruff, 2017) S1 ∈ Rm1×n of size m1.

4. NO-ARLev: Standard approximate λ-ridge leverage score sampling without scalar debiasing m/(m− deff).

5. DARLev: A more efficient double-sketches variant of approximate λ-ridge leverage score sampling, together with scalar
debiasing m/(m− deff), where the approximate ridge leverage scores ℓ̂Ci ≈ ∥e⊤i A((A⊤S⊤

1 S1A+ λId)
−1/2S⊤

2 )∥2
are constructed using two SJLT matrices S1 ∈ Rm1×n and S2 ∈ Rm2×d, with m2 < m1, see (Drineas et al., 2012;
Cohen et al., 2017).

6. NO-DARLev: As DARLev but without the scalar debiasing m/(m− deff).

We observe from Figure 4 that the inversion bias of all random sampling methods consistently decreases as m increases.
Comparing solid to dashed lines, we see that the proposed scalar debiasing effectively reduces the inversion bias by a
significant margin. We also find that RLev yields a lower inversion bias compared to its approximate counterparts ARLev
and DARLev, under the scalar debiasing. These results corroborate the conclusions in Corollary 3.4 and Remark 3.5.
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Figure 4: Inversion bias as a function of the sketch size m, for various sampling methods on both MNIST and CIFAR-10
data, with ridge parameter λ = 10−1 for MNIST data and λ = 10−6 for CIFAR-10 data. The results are averaged over 500
independent runs.
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