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Abstract

We show that differentially private full f ine-tuning (DP-FFT) can distort pre-trained back-
bone features based on both theoretical and empirical results. We identify the cause of
the distortion as the misalignment between the pre-trained backbone and the randomly
initialized linear head. We prove that a sequential fine-tuning strategy can mitigate the fea-
ture distortion: first-linear-probing-then-fine-tuning (DP-LP-FFT). A new approximation
scheme allows us to derive approximate upper and lower bounds on the training loss of DP-
LP and DP-FFT, in a simple but canonical setting of 2-layer neural networks with ReLU
activation. Experiments on real-world datasets and architectures are consistent with our
theoretical insights. We also derive new upper bounds for 2-layer linear networks without
the approximation. Moreover, our theory suggests a trade-off of privacy budget allocation
in multi-phase fine-tuning methods like DP-LP-FFT.

1 Introduction

Today, many differentially-private (DP) machine learning pipelines proceed in two phases: (1) A model is
pre-trained (non-privately) on a public dataset. (2) The model is then fine-tuned on private data, using DP
optimization techniques such as DP stochastic gradient descent (DP-SGD) and its variants (Hoory et al.,
2021; De et al., 2022; Tang et al., 2023; Zhang et al., 2024b). Pre-training a backbone model on public data
enables differentially private fine-tuning to achieve improved performance across various downstream tasks
(Yu et al., 2022) and is proven to be necessary in some cases (Ganesh et al., 2023a).

Linear head

Feature extractor
Trainable layers

Linear probing Full fine-tuning

Figure 1: Linear probing (LP) freezes the
lower layers and optimizes the last linear
layer while full fine-tuning (FFT) optimizes
the whole network.

Despite these advances, the effect of DP on fine-tuning train-
ing dynamics remains poorly understood. Several key questions
are yet to be answered: (1) how does randomness (both of ini-
tialization and DP optimization) impact the pre-trained rep-
resentations? (2) What are the convergence rates of common
fine-tuning methods, such as DP full f ine-tuning (DP-FFT)
and DP linear probing (DP-LP, where feature representations
are frozen, and only the linear head is fine-tuned)? (3) Prior
work suggests that combining an early stage of DP-LP with
a later stage of DP-FFT yields better privacy-utility tradeoffs
(Tang et al., 2023), yet there is no theoretical understanding
of this phenomenon, nor is it clear how to optimally combine
these fine-tuning methods.

Answering these questions theoretically requires an analysis that can capture the fine-grained optimization
dynamics of DP fine-tuning. We seek a model of DP finetuning that satisfies 2 properties.

1. Architecture-sensitivity: The convergence dynamics must differentiate between representation learn-
ing in the backbone and learning in the linear head. The analyses of Bassily et al. (2014),Wang et al.
(2022),Fang et al. (2023),Ganesh et al. (2023b) focus only on the network’s dimension, failing to capture
this distinction.
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Figure 2: Left: Backbone feature quality evaluated by top-1 kNN accuracy on the downstream task, for
ResNet-50, through public pre-training on ImageNet-1K and differentially private fine-tuning on STL-10.
Right: Privacy budget trade-off in DP-LP-FFT, predicted in our theory, for WideResNet-16-4 on CIFAR-
10 (Tang et al., 2023).

2. Ability to model nonlinearities: The model should account for the nonlinearities introduced by multi
neural layers, unlike existing methods that simplify analysis by linearizing neural networks (Ye et al.,
2023a; Wang et al., 2024).

We propose a novel approximation of DP-SGD training dynamics based on linearizing Langevin diffusion
around the noise term. This approach offers new insights into DP fine-tuning and significantly simplifies
analysis by converting stochastic differential equations into ordinary differential equations (ODEs). We
validate our theoretical predictions with real experiments.

Main contributions. In summary, our key contributions are:

1. New approximation technique: In Section 2, we derive a first-order ODE via an asymptotic ex-
pansion of the stochastic noise in Langevin diffusion. Unlike previous methods, which linearize neural
network parameters, our technique preserves the multi-layer structure of deep learning models while sim-
plifying the analysis. This approach, commonly used in physics and control theory (Skorokhod et al.,
2002), is novel in the context of private machine learning and bridges the gap between non-private neural
network theory and the private regime.

2. Understanding of feature distortion: In Section 3, we provide a theoretical understanding of how
DP fine-tuning affects feature representations. Using our approximation, we prove that, in 2-layer ReLU
networks, randomly initialized linear heads distort pre-trained backbone features in the early stages of
DP-FFT. Empirically Figure 2 demonstrates that feature quality evaluated on private data initially
degrades during DP-FFT but later improves and surpasses pre-fine-tuning quality. Our theory also
predicts that running a single epoch of DP-LP before transitioning to DP-FFT can mitigate this initial
feature distortion, as shown empirically in the DP-LP-FFT curve of Figure 2 (left). This insight extends
the findings of Kumar et al. (2022), who showed that LP-FFT reduces feature distortion in non-private,
OOD scenarios, to in-distribution settings for both DP and non-DP cases.

3. Theoretical convergence bounds: In Section 4, we present new upper and lower bounds on the
training loss of DP-LP and DP-FFT for 2-layer ReLU networks using our approximation technique.
We also prove upper bounds for 2-layer linear networks without the approximation. To the best of our
knowledge, this is the first convergence analysis of DP-SGD on non-linear neural network architectures.

4. Mitigating feature distortion by combining fine-tuning methods: Prior work by Tang et al.
(2023) empirically showed that combining DP-LP and DP-FFT (DP-LP-FFT) can achieve better test
accuracy than either method alone. In Figure 2b, we demonstrate that allocating approximately 20% of
the privacy budget to DP-LP yields optimal test accuracy. In Section 5, we provide a partial theoretical
explanation for this phenomenon. Specifically, our bounds suggest that DP-FFT may underperform
relative to DP-LP at lower privacy budgets, while DP-LP-FFT can outperform both methods under
moderate privacy budgets. These predictions are empirically verified across various architectures and
benchmarks in Section 5.3.
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1.1 Related Work

Similar empirical phenomena have been explored in non-private, out-of-distribution (OOD) contexts by
Aghajanyan et al. (2021), Kumar et al. (2022), Trivedi et al. (2023), and Chen et al. (2024). Kumar
et al. (2022) demonstrated that non-DP fine-tuning distorts pre-trained features, leading to degraded OOD
performance. But their theory relies on the assumption that OOD test data exists in an orthogonal subspace
to the fine-tuning training data, leaving their results unable to explain why, in many transfer learning tasks,
linear-probe fine-tuning (LP-FFT) still outperforms both LP and full fine-tuning (FFT) in in-distribution
(ID) settings. Our work seeks to fill this research gap.

Wang et al. (2024) examined how pre-trained representations enhance DP fine-tuning within the neural
collapse framework, though their analysis was restricted to the final layer. Meanwhile, Tang et al. (2023)
empirically observed the privacy budget trade-off for WideResNet models pre-trained on synthetic data, but
without accompanying theoretical insights.

Analyses by Wang et al. (2019), Chen et al. (2020a), Ganesh et al. (2023b), and Fang et al. (2023) rely
on standard convexity/non-convexity and smoothness assumptions, which abstract away the simultaneous
dynamics between the backbone and linear head. Other works (Ye et al., 2023b; Wang et al., 2024) focus on
linearized models, limiting their ability to capture the nuanced interactions between these components. Our
explanation of representation alignment builds on the theoretical foundation of Min et al. (2024), which we
extend to a DP context using novel approximation tools.

2 Continuous modeling of differentially private fine-tuning

Notation. We use ∂ to denote both the deterministic and stochastic differential operators. The dot product
between vectors x, y is x⊤y, the Euclidean norm of vector x is ∥x∥2, and the infinity norm is ∥x∥∞. The
trace of a matrix is denoted by tr, and the ReLU activation is ϕ. For any twice differentiable function f(x),
its gradient is denoted ∇xf and its Hessian as Hxf . ⊔ denotes the disjoint union. [i] := {1, . . . , i}. The
cosine similarity between two vectors u, v is defined as cos(u, v) = u⊤v

∥u∥2∥v∥2
. We denote the privacy cost

estimated by Rényi divergence as r.

DP-SGD Dynamics. Differential privacy (DP) is a widely used framework for evaluating privacy leakage
in a dataset accessed through queries (Dwork & Roth, 2014). In machine learning, DP ensures that an ad-
versary cannot confidently determine whether specific training samples are part of the dataset. Differentially
Private Stochastic Gradient Descent (DP-SGD), introduced by Abadi et al. (2016), is the standard algorithm
for training deep neural networks while maintaining privacy.

Our fine-tuning theory is built on an analysis of DP-SGD dynamics. Although real-world algorithms are dis-
crete, continuous approximations—such as stochastic differential equations (SDE) like Langevin diffusion—
are often used to study these dynamics (Chourasia et al., 2021; Ye et al., 2023b). In a similar vein, Kumar
et al. (2022) use gradient flow, a continuous approximation of SGD, to study fine-tuning in a non-private
context.
Definition 2.1 (Langevin diffusion (Ganesh et al., 2023b)). Langevin diffusion is an SDE that models the
dynamics of a system influenced by both deterministic and random forces (Lemons & Gythiel, 1997). For
DP-SGD, we define a p-dimensional Langevin diffusion as follows:

∂θ = −∇θL(θ|f)∂t +
√

2σ2∂Qt, (1)

where θ ∈ Rp represents the neural network parameters, f is the network architecture, L(·|f) : Rp → R is
the training loss, and σ > 0 is the noise multiplier (Abadi et al., 2016). {Qt}t≥0 is the standard Brownian
motion in Rm modeling the Gaussian noise mechanism.

By Itô’s lemma (Ito, 1951), the Langevin diffusion of the training loss is given by

∂L =
[
−∥∇θL(θ|f)∥2

2 + σ2tr(HθL)
]

∂t +
√

2σ2(∇θL(θ|f))⊤∂Qt. (2)
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Ye et al. (2023b) study how random initialization affects DP-SGD performance in linearized neural networks
via Langevin diffusion. To facilitate theoretical analysis, they linearize the entire neural network using
1st-order Taylor expansions at the initial parameter θ0.

f(x) ≈ flin(x) := f(x)
∣∣∣∣
θ=θ0

+ ∂f(x)
∂θ

∣∣∣∣
θ=θ0

· (θ − θ0). (3)

Recently, this linearization technique has gained popularity for explaining key deep learning phenomena
(Ortiz-Jimenez et al., 2021). However, fully linearizing the model removes critical multi-layer interactions,
making this approach unsuitable for our analysis.

To address this, we view the optimization trajectory of neural networks as a dynamical system, with noise
in gradient updates treated as random perturbations. Applying the zeroth-order asymptotic expansion for
Equation (1) at the noise multiplier σ (Freidlin et al., 2012), we approximate:

∂θ ≈ ∂θ̃ = −∇L
(
θ̃
∣∣f) ∂t. (4)

This zeroth-order expansion helps circumvent the complex analysis of stochastic, non-linear equations. By
substituting the approximate parameter θ̃ into Equation (2), our modeling preserves the noisy behavior
characteristic of DP-SGD. We further explore this property in the next section.

2.1 Zeroth order approximation

The noise multiplier σ remains explicitly in our convergence bounds. We retain the key noise effects for
the loss dynamics by keeping the second-order term from Ito’s lemma in Equation (2) and preserving the
second-order terms associated with Brownian motion.

This approach allows us to capture the essential stochastic characteristics of DP-SGD without modeling the
full noise term directly on the parameters. In essence, this approximation enables us to analyze the expected
behavior of parameter updates while preserving the noise-sensitive behavior of the loss itself. By isolating
these core elements, we provide insights into the overall training dynamics under differential privacy without
losing the major noise effects that influence convergence properties and feature alignment.

To support our claim that this approximation does not introduce too much error, we have proved an error
approximation guarantee, which shows that our approximated model does not differ too much from the
original Langevin diffusion model. We present the theorem based on Langevin diffusion with gradient
clipping. We use the subscript t in θt to denote the parameter θ at training step t.

Clipped Langevin diffusion: ∂θt = −
∑

i∈[N ]

clipC(∇ℓi(θt|f))∂t +
√

2σ2∂Qt,

Zeroth order approximation: ∂θ̃t = −
∑

i∈[N ]

clipC

(
∇ℓi

(
θ̃t|f

))
∂t,

where clipC(u) := min
(

1,
C

∥u∥2

)
u.

(5)

Theorem 2.2 (Zeroth order approximation error). Denote the model parameter vector in original Langevin
diffusion as θt, and its zeroth-order approximated version as θ̃. For any training time t > 0 and clipping
threshold C > 0,

E
[∥∥θt − θ̃t

∥∥2] ≤
(

σ(2p) 1
2 t

1
2 + 2nCt

)2
(6)

Note that this approximation error significantly improves upon the O(exp(T )) error found under standard
regularity assumptions (Freidlin et al., 2012, Theorem 1.2, Chapter 2.1). The approximation does not remove
the effect of noise, nor is the resulting model equivalent to gradient flow. We defer the proof to Appendix F.

The the best of our knowledge, this is the first analysis of clipped Langevin diffusion as a continuous model
of DP-SGD. We present more technical details in Appendix F.
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3 Representation Alignment

In this section, we introduce the concept of representation alignment, present our theoretical findings, and
validate them with experiments. Representation alignment refers to the process by which the classification
head aligns itself with the pre-trained backbone features. During the DP-FFT process, this alignment creates
a characteristic trend in feature quality: initially, the randomly initialized linear head distorts the pre-trained
features, but as it better aligns with the backbone, the distortion diminishes, and the overall quality of the
backbone features improves over time.

3.1 Theory

Figure 3: Visualization of As-
sumption 3.1.

Our goal is to understand (1) how does DP fine-tuning distort the pre-
trained features in the backbone, and (2) under what conditions this dis-
tortion can be mitigated. We consider the simple binary classification
setup from Min et al. (2024), which provides a clear and intuitive un-
derstanding of representation alignment. The results generalize to our
experiments in Section 3.2. Specifically, we use a 2-layer fully-connected
neural network with h hidden nodes and ReLU activation ϕ,

f(x) = v⊤g(x) = v⊤ϕ(W ⊤x) =
h∑

j=1
vjϕ(w⊤

j x). (7)

fine-tuning on a dataset D := {(xi, yi)}n
i=1 with n inputs xi ∈ Rdx , and

binary labels yi ∈ {−1, 1}. The objective is to minimize the training
loss L(θ̃|f) :=

∑n
i=1 ℓ(yi, f(xi)), using the exponential loss ℓ(y, ŷ) :=

exp(−yŷ). Similar results hold for logistic loss (Min et al., 2024). For simplicity, we make the following
assumption.
Assumption 3.1 (Data correlation (Min et al., 2024)). For any pair of data (xi, yi), (xj , yj), the inputs are
positively/negatively correlated if the labels are the same/different.

inf
i,j∈[n]

[
(y1y2) · x⊤

1 x2

∥x1∥2∥x2∥2

]
:= µ > 0. (8)

We define two cones in Rdx that separate subspaces spanned by data points in the positive and negative
classes, respectively: S+ = {z ∈ Rdx : ∀i ∈ [n], Ix⊤

i
z>0 = Iyi=1}, S− = {z ∈ Rdx : ∀i ∈ [n], Ix⊤

i
z>0 = Iyi=−1}.

Min et al. (2024) prove that S+ ∩ S− = ∅, and xi ∈ S+/− if yi = 1/ − 1 (see Figure 3). We define the mean
data directions of class c ∈ {−1, 1} by x̄c :=

∑
i∈[n] xi · Iyi=c.

We assume that a “clustering” behavior emerges in the pre-trained features, which allows the features to
work well in transfer learning (Galanti et al., 2022). This phenomenon is well-documented in the neural
collapse literature (Kothapalli, 2023), suggests that pre-trained features wj tend to converge around the
mean direction for data in class c(j).
Assumption 3.2 (Collapsed neural features). For each wj in Equation (7) where j ∈ [h] (with h denoting
the dimension of the linear head), it holds that wj ∈ S+ or wj ∈ S−. We define c(j) = 1 if wj ∈ S+, and
c(j) = −1 if wj ∈ S−. Thus, there is a partition [h] = F+ ⊔ F− over the index set [h], such that for each wj ,{

j ∈ F+ if wj ∈ S+,

j ∈ F− if wj ∈ S−.
(9)

Feature quality. Assumption 3.2 says that data with positive label (resp. negative) only activates the
j-th neuron if j ∈ F+ (resp. j ∈ F−). As a result, any positive data pair, (x, y) and (x, y′) with y = y′,
activate the same set of neurons. From a contrastive learning viewpoint, it makes the representations of them
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semantically similar (Saunshi et al., 2019). Namely, when the features wj and data inputs xi are normalized
unit vectors, the difference between representations of a positive data pair is bounded by:

∥g(x) − g(x′)∥∞ ≤ max
yi=c(j)=y

cos(wj , xi), (10)

which represents the maximum cosine similarity between the features wj and the data points.

However, FFT or DP-FFT with random initialization may reduce the feature quality.
Theorem 3.3 (Random initialization causes feature distortion). If Assumption 3.1 and Assumption 3.2
hold, and the linear head is randomly initialized by v0 ∼ N (0, βIh×h), then with probability 1 − 2−h, ∀β >
0, ∃j ∈ [h], ∆t > 0 such that during the time interval (0, ∆t), DP-FFT distorts wj reducing its alignment with
the data cluster. The cosine similarity between wj and the data cluster mean x̄c(j) decreases monotonically:

∂

∂t
cos
(
wj , x̄c(j)

) ∣∣∣∣
t

< 0, ∀t ∈ (0, ∆t) (11)

For a pre-trained wj that aligns with c(j)-labeled data, DP-FFT (as modeled by Equation (4)) makes it
deviate from x̄c(j), the mean direction of those data. wj is optimal when cos(wj , x̄c(j)) = 1. This result holds
for both DP and non-DP settings and explains the potential feature distortion observed in in-distribution and
non-private settings, such as those studied by Kumar et al. (2022)). The stochastic analysis of non-smooth
loss, activation, cosine similarity functions is challenging without our approximation.

Next, we show that running (DP-)LP before (DP-)FFT could mitigate feature distortion.
Theorem 3.4 (DP-LP first mitigates feature distortion). Suppose Assumption 3.1 and Assumption 3.2 hold,
and the linear head is randomly initialized by v0 ∼ N (0, βIh×h) for any β > 0. There exists ∆t > 0 such
that after running DP-LP for time ∆t, switching to full fine-tuning ensures that DP-FFT does not distort
the pre-trained features. Specifically, cos(wj , x̄c(j)) is non-decreasing for all j ∈ [h]:

∂

∂t
cos
(
wj , x̄c(j)

) ∣∣∣∣
t

≥ 0, ∀t ∈ (∆t, +∞) (12)

See complete proofs of Theorem 3.3 and Theorem 3.4 in Appendix C.1.

3.2 Experiments on Representation Alignment

In this section, we show empirical evidence supporting Theorems 3.3 and 3.4.

Pre-training and Model. We pre-train Vision Transformers (ViT) and ResNet-50 backbones on ImageNet-
1K using Self-Supervised Learning methods, including BYOL (Grill et al., 2020) and MoCo v2 (Chen et al.,
2020b), as well as distillation methods (Touvron et al., 2021). Then we fine-tune the backbone with a linear
classification head on CIFAR-10 and STL-10 using DP-SGD.

Experiment protocols. We conduct public pre-training for 100 epochs with a batch size of 256. Following
this, we implement DP-SGD using the pre-trained weights and a randomly initialized linear head for 30
epochs. Each DP fine-tuning process is repeated with 5 random seeds and a batch size of 1000. We evaluate
the backbone features on both the pre-training and fine-tuning datasets, measuring feature quality through
top-1 kNN accuracy (Chen et al., 2023).

Private fine-tuning initially distorts features. Figure 4 qualitatively visualizes the effect of DP-FFT
on feature quality with respect to the private test data. We pre-train (BYOL) a ResNet-50 backbone on
ImageNet-1K and DP fine-tune (DP-SGD, ϵ = 1) it on STL-10. We qualitatively assess the features of the
private test data within the ResNet-50 backbone by visualizing the backbone mappings (outputs from the
penultimate layer) of data points using UMAP (McInnes et al., 2020). For simplicity, we only plot 3 classes
in CIFAR-10.

Figure 4 indicates that during the initial phases of DP-FFT, the randomly initialized linear head interferes
with the pre-trained features in the backbone network, leading to a degradation in feature quality on both
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Fine-tuning step=0

End of pre-training

Fine-tuning step=100

Early stage of DP-FFT

Fine-tuning step=1500

End of DP-FFT

(a) STL-10 (in-distribution)
Fine-tuning step=0

End of pre-training

Fine-tuning step=100

Early stage of DP-FFT

Fine-tuning step=1500

End of DP-FFT

(b) CIFAR-10 (out-of-distribution)

Figure 4: We pre-train (BYOL) a ResNet-50 backbone on ImageNet-1K and DP fine-tune (DP-SGD, ϵ = 1)
it on STL-10. We qualitatively evaluate the features in the ResNet-50 backbone by visualizing the backbone
mappings (penultimate layer outputs) of data points via UMAP (McInnes et al., 2020). These results suggest
that DP-FFT distorts feature quality before improving it, as predicted by Theorem 3.3.

the pre-training and fine-tuning datasets. This observation validates Theorem 3.3. Concurrently, the linear
head begins adapting to these pre-trained features, a process we refer to as “representation alignment.”
As this alignment progresses, the backbone starts to regain a portion of its original feature quality, which
had been degraded by DP noise and shifts in data distribution.

Linear probing mitigates feature distortion. To illustrate the benefits of linear probing, we first run
DP-LP for 1 epoch before transitioning to DP-FFT for the remaining epochs. In the initial steps of DP-FFT,
the feature distortion is significantly weaker (Figure 2a) if we first run DP-LP. This supports the claim of
Theorem 3.4.

We also evaluate features on the pre-training domain (see Figure 6).

4 DP Fine-tuning Convergence Rates

Section 3 showed that DP-LP-FFT can mitigate feature distortion. A natural question is, for a fixed privacy
budget, how do DP-LP and DP-FFT affect the convergence of fine-tuning loss function? We study this
question under two models: (1) our zeroth-order approximation of Langevin diffusion (Section 4.1), and
(2) a two-layer neural network without our zeroth-order approximation (Section 4.1.1). The second result
will be used to study the budget allocation of DP-LP-FFT in Section 5. To our knowledge, these are the
first convergence guarantees (approximate or not) for DP fine-tuning on explicit nonlinear neural network
architectures.

Privacy guarantees We begin by establishing the privacy guarantees of Langevin diffusion by bounding
the Rényi divergence of its trajectory distributions on neighboring datasets (Mironov, 2017). Both Ganesh
et al. (2023b) and Ye et al. (2023b) show that the Rényi divergence increases linearly over time. We use this
guarantee for all fine-tuning variants.
Theorem 4.1 (Rényi privacy guarantee (Ganesh et al., 2023b)). Suppose we initialize a pair of neural
network parameters θ, θ′ by some i.i.d. distributions Θ0, Θ′

0. We fine-tune θ, θ′ respectively on neighboring
datasets D, D′ via Langevin diffusion. Denote the distribution of the trajectory of θ by Θ[0,T ] over [0, T ].
Similarly, denote the trajectory distribution of θ′ by Θ′

[0,T ]. Then for any α ≥ 1, the Rényi divergence Rα is
bounded linearly in time,

r := Rα(Θ[0,T ]∥Θ′
[0,T ]) = O

(
α∆gT

σ2

)
(13)

where σ is the noise multiplier, and ∆g ≥ ∥∇L(θ; D) − ∇L(θ; D′)∥ is the upper bound of gradient difference
between neighboring datasets. Thus, for any δ ∈ (0, 1), the Langevin diffusion satisfies(

α∆gT

4σ2 + log(1/δ)
α − 1 , δ

)
− differential privacy. (14)
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4.1 Convergence Rates under the Zeroth-order Approximation

We follow the approximation scheme outlined in Equation (4)to derive convergence results for two-layer
ReLU neural networks. These results are derived from our zeroth-order approximation; recall that we bound
the error of this approximation relative to the Langevin dynamics model in Theorem 2.2. To support these
findings, we also include a separate convergence proof without the zeroth-order approximation for a two-layer
linear neural network in Section 4.1.1.
Theorem 4.2 (Approximate DP-LP loss convergence). If Assumption 3.1 and Assumption 3.2 hold at t = 0,
we can bound the loss after running DP-LP for t = T :

1
1

Lc(0) e−B1T + A1
B1

(1 − e−B1T )
≤ Lc(T ) ≤ 1

1
Lc(0) e−B2T + A2

B2
(1 − e−B2T )

(15)

where Lc(t) denotes the training loss of data points labeled c ∈ {−1, 1}, L = L1 + L2, and

A1 =
∑

wj∈Sc

[
maxyi=c w⊤

j xi

]2
B1 = 1

2 σ2
{∑

yi=c ∥relu(W ⊤xi)∥−2
2

}−1

A2 =
∑

wj∈Sc

[
minyi=c w⊤

j xi

]2
B2 = 1

2 σ2
{∑

yi=c ∥relu(W ⊤xi)∥4
2

}1/2

(16)

are constants for DP-LP.

When we set n = h = 2, y1 = −y2, w1 = x1 = −w2 = −x2, the upper and lower bounds are equal and we
achieve a tight bound on the DP-LP loss.
Theorem 4.3 (Approximate DP-FFT loss convergence). For simplicity, we assume that ∥xi∥2 = R for all
i ∈ [n]. If Assumption 3.1 and Assumption 3.2 hold, and we consider a balanced initialization ∥W∥2

F = ∥v0∥2
2

(Min et al., 2023a) at t = 0, then

(i) we lower bound the loss after running DP-FFT for T > 0:

Lc(T ) ≥ 1
1

Lc(0) e(1−exp(λcT ))AlCl/λc + Bl

Cl

[
1 − e(1−exp(λcT ))AlCl/λc

] (17)

where we define Al = ∥W0∥2
F , Bl = 2R2, Cl = R2σ2(1+µ2)

2 and λc = 2RLc(0).

(ii) we upper bound the loss after running DP-FFT for T > 0:

Lc(T ) ≤ 1
Bu

Cu
(1 − e−AcCuT ) + 1

Lc(0) e−AcCuT
(18)

where we define Ac =
∑

wj∈Sc

[
v2

j,t=0 + ∥wj∥2
2
]

, Bu = R2µ2 and Cu = 1
2 R2σ2.

4.1.1 Theory without the zeroth-order approximation (2-layer linear network)

We complement the results in Section 4.1 by removing the zeroth-order approximation in a simpler setup:
2-layer linear networks for a regression task. We define a linear network by replacing the ReLU activation
ϕ with an identity function in Equation (7). We collect the data inputs in a matrix X ∈ Rn×dx and put the
labels in a vector Y ∈ Rn. For simplicity, we assume that n ≥ d and XT X = Idx×dx

. We consider the MSE
training loss L(v, W ) := 1

2
∑

i∈[n](v⊤W ⊤xi − yi)2 = 1
2 ∥XWv − Y ∥2

2.

Note that the loss function is nonconvex in the parameters being fine-tuned, so the gradient descent training
becomes a nonlinear dynamical system. This significantly complicates theoretical analysis. Prior works
have dealt with the challenging analysis by using heavy approximations (Bu et al., 2023; Ye et al., 2023b).
We overcome these theoretical difficulties by using conservation laws and geometric properties of Langevin
dynamics (see Appendix for more detail).
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Pretrained features. We evaluate a backbone W by the least square error:

γ(W ) := inf
u∈Rh

L(u, W ) = Y T (In×n − XW (XW )†)Y. (19)

where (·)† denotes the pseudo inverse of a matrix. This metric measures the optimal loss for LP when fixing
the current features. γ = γ(W0) denotes the initial least square error. We suppose W0 has orthonormal
columns, following prior works (Tripuraneni et al., 2020; Kumar et al., 2022).
Theorem 4.4 (DP-LP loss convergence). If we randomly initialize the linear head v0 ∼ N (0, βIh×h) and
we run linear probing for time T , then

E[L(T )] ≤ 1
2(hβ + ∥Y ∥2)e−T + (γ + hσ2)(1 − e−T ) (20)

In this theorem, the first term describes that the loss tends to exponentially decrease, while the second term
describes the limiting behavior induced by linear probing and the added noise.
Theorem 4.5 (DP-FFT loss convergence). If v0 ∼ N (0, βIh×h) and Assumption E.7 holds, and we run
fine-tuning (Equation (98)) for time T , then the loss converges:

E[L(T )] ≤ 1
2(hβ + ∥Y ∥2

2)e−AT + L□(1 − e−AT ) (21)

where
{

A = hβ − 1 −
√

2σ2(1 + dx) > 0
L□ = σ2 (1+dx)∥XT Y ∥2+dx

A

.

This upper bound has a similar form to Equation (20) while the factor A of the exponential terms depends
on the initialization and the noise. When we take limit σ → 0 in Theorem 4.4 and 4.5, the Langevin diffusion
degenerates to a gradient flow and the loss converges exponentially to zero as T → ∞. This recovers known
results from the non-private optimization literature (Min et al., 2023a).

The bounds in Section 4.1 and Section 4.1.1 exhibit different dependencies on the hidden dimension h and
the data dimension dx due to the differing curvature properties of the loss functions in each setup. The
underlying reason is that the noise term introduced by Itô’s formula (Equation (2)) is influenced by the
curvature of the loss function. While the square function has constant curvature, the exponential function
does not, leading to varying noise impacts.

5 Budget Allocation between DP-LP and DP-FFT

Finally, we consider the DP-LP-FFT fine-tuning strategy, which first applies DP-LP for some portion r of
the privacy budget (i.e. for some number of training iterations), then uses the remaining privacy budget for
DP-FFT. In this section, we ask: given a fixed privacy budget, how should we allocate it across DP-LP and
DP-FFT? Our results, both theoretical and empirical, suggest that at low total privacy budget, one should
allocate more of the total privacy budget to DP-LP.

5.1 Results under Zeroth-order Approximation

We first show how to allocate privacy budget to avoid the feature distortion analyzed in Section 3, using the
zeroth-order approximation.
Theorem 5.1 (Estimated privacy budget allocated to DP-LP). If Assumption 3.1 and Assumption 3.2 hold
at t = 0, then for any ρ ∈ (0, 1), with probability (1 − ρ)h, we can avoid feature distortion by spending

r ∝ σ4
√

ln(2/ρ) (22)

amount r of privacy budget on DP-LP, where σ is the noise multiplier. That is, we ensure that ∀j ∈ [h],
and any t > 0 after DP-LP,

∂

∂t
cos
(
wj , x̄c(j)

) ∣∣∣∣
t

≥ 0 (23)
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According to Theorem 5.1, a greater proportion of the privacy budget should be allocated to DP-LP when
the total privacy budget is smaller.

5.2 Results without approximation (2-layer linear network)

Complementing the result of Section 5.1, we use the 2-layer linear model of Section 4.1.1 to show that DP-
LP-FFT may work better in some settings than linear probing or full fine-tuning alone. Linear probing first
can accelerate fine-tuning by aligning the linear head. The following result provides a convergence bound
for DP-LP-FFT when we linear-probe for time tlp, and then fully fine-tune for time t.
Proposition 5.2 (Convergence of DP-LP-FFT). Suppose we randomly initialize the linear head v0 ∼
N (0, βIh×h) and Assumption E.7 hold. We run linear probing for time tlp and then fine-tuning (Equa-
tion equation 98) for time t , then the loss is upper bounded by:

E[L(t)] ≤ E[Llp]e−At + L□(1 − e−At) (24)

where Llp is the expected loss after linear probing, A = hβ −1−
√

2σ2(1+dx), and L□ = σ2 (1+dx)∥XT Y ∥2+dx

A .
The coefficient A = E[λmax(D)] > 0 increases as tlp increases when we run linear probing in a finite time
interval tlp < ln

[
3 + h(σ2−β)

∥W ⊤
0 XT Y ∥2

2

]
.

Corollary 5.3. Suppose we randomly initialize the linear head v0 ∼ N (0, βIh×h) and Assumption E.7
hold. Then the two-phase method, first-linear-probing-then-finetuning (LP-FFT), could achieve a tighter
loss upper bound than linear probing or fine-tuning in expectation if we first run linear probing for tlp <

ln
[
3 + h(σ2−β)

∥W ⊤
0 XT Y ∥2

2

]
.

Corollary 5.3 suggests that when we fix other hyperparameters (e.g. the total training time T ), the perfor-
mance of LP-FFT depends on the noise scale σ. If σ is large enough such that T < ln

[
3 + k(σ2−β)

∥B0XT Y ∥2
2

]
,

then LP may be the best; if σ is small enough such that ln
[
3 + k(σ2−β)

∥B0XT Y ∥2
2

]
≤ 0, then FT may be

the best; LP-FT could achieve the best performance when the noise scale is in a proper interval σ2 ∈(
β − 2 ∥B0XT Y ∥2

2
k , β + (eT − 3) ∥B0XT Y ∥2

2
k

)
.

In our theory without approximation, these predictions are based only on upper bounds, so we cannot
conclusively say that any fine-tuning approach outperforms another. Nonetheless, our theoretical results in
two approaches suggest that the smaller the total budget, the more privacy budget should be allotted to
DP-LP.

5.3 Experiments
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(a) Private utility curves (σ = 0.3)
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Figure 5: Utility curves for pretraining on ImageNet-1K and fine-tuning on CIFAR-10 over ResNet-50, with
pretrained features from MoCo-v2 and MoCo-v3 (Chen et al., 2020b; Chen* et al., 2021). We compare the
performance from pre-trained weights of different pre-training epochs (200/800 epochs for MoCo-v2, 300/1k
epochs for MoCo-v3). The x-axis sweeps the number of LP epochs from 0 to 10; the remaining epochs (out
of 10) use FFT.
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To illustrate the privacy budget trade-off, we empirically evaluate the benefits of DP-LP-FFT on real data
and architectures.

DP-LP-FFT outperforms other fine-tuning methods: Pre-training on synthetic data. We fol-
low the setup in Tang et al. (2023) and generate utility curves for ϵ = 1, 2, 3 (Figure 2b). We pre-train
WideResNet with synthetic images generated from StyleGAN-oriented (Baradad et al., 2021) , and fine-tune
it with DP-SGD on CIFAR-10. The x-axis sweeps the fraction of privacy budget allocated to DP-LP, and
the remaining budget is used for DP-FFT. We find that at various privacy levels, DP-LP-FFT gives a clear
advantage over either DP-FFT or DP-LP alone.

Figure 2b presents a different trend from our theoretical prediction, where we expect the optimal budget ratio
for DP-LP to increase as the privacy noise grows. A possible intuitive explanation is that, in the Figure 2b
experiments, the pre-training data is synthetic, making it ’distant’ from the CIFAR-10 fine-tuning data
distribution. This divergence may violate our assumption that the pre-trained weights wj are well-aligned
with the fine-tuning data xi.

DP-LP-FFT outperforms other fine-tuning methods: Pre-training on ImageNet-1K. Figure 5
illustrates the utility curves on ResNet-50 for σ = 0, 0.3. 1. To demonstrate utility curves for DP-LP-FFT,
we vary the number of epochs of linear probing from eLP = 0 to eLP = 10; all remaining epochs (out of
10 total) are allocated to full fine-tuning, i.e., eF F T = 10 − eLP . Note that full fine-tuning corresponds to
eLP = 0 (the leftmost point of our subplots), and linear probing corresponds to eLP = 10. We observe that
for non-private optimization (Figure 5b), full fine-tuning achieves the highest test accuracy. However, for
DP-SGD (Figure 5a), linear probing outperforms full fine-tuning, and DP-LP-FFT outperforms both DP-LP
and DP-FFT.

Model ResNet18 MobileNetv3 TransformerDeiT

ϵ ∞ 1.29 0.57 ∞ 1.29 0.57 ∞ 1.29 0.26
LP 68.540.02 67.900.12 66.600.04 71.120.31 69.540.08 67.320.03 95.740.04 93.610.08 94.210.08
LP-FFT 72.660.12 68.650.08 59.791.03 71.300.11 71.180.06 66.940.08 96.820.08 93.660.15 93.620.05
FFT 73.690.03 59.791.03 53.820.37 77.020.31 63.060.05 45.120.07 96.170.08 90.310.53 84.190.82

Table 1: Test accuracies of DP-LP, DP-LP-FFT, and DP-FFT on various architectures.

Comparing DP fine-tuning methods. As suggested by Theorem 5.1 and Corollary 5.3, as the noise
scale σ increases, the best fine-tuning strategy changes from DP-FFT (small σ, low privacy regime) to DP-
LP-FFT, to DP-LP (large σ, high privacy regime). To qualitatively test this prediction, we sweep over
different noise scales σ and fix other hyperparameters in each benchmark and model architecture. We sort
the rows by the number of parameters of each model and the noise scale in an ascending order. For each
experiment setting, we report average test accuracies with standard errors. As expected, among the three
fine-tuning methods (Table 1), DP-FFT almost always does the best under small noise scales (including the
non-private setting where σ = 0), DP-LP-FFT does the best under moderate noise scales, and DP-LP does
the best under large noise scales. The close non-DP (ϵ) performance of FFT and LP-FFT on transformer
architectures is consistent with previous observations in Kumar et al. (2022, Table 1).

TransformerDeiT

ϵ ∞ 12.28 1.29 0.57 0.26
LP 95.810.05 95.550.05 94.800.06 94.210.08 92.480.27
LP-LoRA 96.20.05 95.900.03 94.810.08 94.180.05 91.990.19
LoRA 96.260.05 95.500.06 94.760.08 93.050.09 91.280.43

Table 2: Test accuracies of LP, LP-LoRA, LoRA on TransformerDeiT.

1The model performance is compromised because we replace the BatchNorm (Ioffe & Szegedy, 2015) in the pre-trained
weights with GroupNorm (Wu & He, 2018). BatchNorm relies on batch statistics, which conflicts with the principles of
differential privacy.
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More experiments on parameter-efficient fine-tuning (PEFT) methods. We conduct experiments
with another fine-tuning trick: differentially private LoRA (Hu et al., 2022a). We run experiments on the
Mini-DeiT-Ti architecture, where we use LoRA instead of full fine-tuning. In these experiments (Table 2),
our batch size is 1000, and our LoRA rank is set to 8. We observe the same trend as what we saw for
full fine-tuning; namely, as we increase the noise scale (i.e., as we reduce epsilon, giving a stronger privacy
guarantee), it becomes more beneficial to use LP-LoRA or even just LP.

6 Conclusion and Discussion

We characterize the training dynamics of DP fine-tuning under a simplified theoretic setup (2-layer neu-
ral networks, separable datasets with -1/1 labels) using a Langevin diffusion-based approximation of DP-
SGD, with an asymptotic expansion of random perturbations in dynamical systems as an approximation
for Langevin diffusion. Our theory identifies and explains the phenomenon of representation distortion and
alignment during DP fine-tuning, which we confirm empirically. Our work takes a step towards understand-
ing how different private fine-tuning strategies can be mixed to improve performance, which could be useful
for designing or mixing other strategies, such as memory-efficient zeroth-order optimization with differential
privacy (Zhang et al., 2024a).

Limitations and open questions There are several open questions we cannot cover in this work, such as
generalizing our results to multi-layer neural networks with our approximation technique, the effect of other
loss functions on the fine-tuning dynamics, and loss lower bounds for DP-LP/FFT without the zeroth-order
approximation. Moreover, it is unclear how to apply our theory to other fine-tuning methods like LoRA (Hu
et al., 2022b), as well as generative models for which neural collapse does not happen. Understanding whether
the zeroth-order approximation can facilitate analysis in these settings is an interesting and important
question for future work.

Reproducibility Statement. We have included full proofs for all theoretical results and sufficient exper-
imental details in appendices to reproduce our results. We will also release our code under a permissive
open-source license upon acceptance.
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A Additional experiment results

In this section, we provide more experiment results and detailed configurations.

Evaluations back in the pre-training distribution (Figure 6). We also evaluate the feature quality
on ImageNet1-K, the pre-training dataset. The representation alignment for the pre-training domain is
different: once a proper alignment is achieved, the backbone gradually recovers a portion of its original
feature quality, which had been compromised due to DP noise and distribution-shift.

Experiment setup in Table 1. We use batch size 1000 and and sweep over a range of learning rates
{9, 5, 1, 0.5, 0.2, 0.15, 0.1, 0.05, 0.025}.

Summary of experiment configurations. We run experiments on five deep learning models and four
transfer learning benchmarks to verify if our theoretical prediction, the existence of concave utility curves,
generalizes to deep neural networks and real datasets. Each experimental setting comprises: (1) a model
architecture, (2) a (larger) dataset for public pretraining, and (3) a (smaller) dataset as the private data for
fine-tuning. The benchmarks we use are:

• ImageNet-1K→CIFAR-10. ImageNet-1K is a large-scale dataset. We initialize pretrained features
of ResNet-50 from MoCo-v2 Chen et al. (2020b) and MoCo-v3 Chen* et al. (2021), trained on
ImageNet-1K Russakovsky et al. (2015) without privacy. We then privately fine-tune the ResNet-50
on CIFAR-10.
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Figure 6: Backbone feature quality evaluated by average top-1 kNN accuracy on the pre-training dataset,
for ResNet-50, through public pre-training on ImageNet-1K and differentially private fine-tuning on STL-10.

• ImageNet-1K→STL-10. We pretrain a DeiT model on ImageNet then pretrain a Mini-DeiT-Ti model
with weight distillation from the DeiT model Touvron et al. (2021); Zhang et al. (2022). After that,
we privately fine-tune the Mini-DeiT-Ti model on STL-10 Coates et al. (2011) for 20 epochs.

• CIFAR-10→STL-10. We pretrain the feature extractor on CIFAR-10 Krizhevsky (2009) using
stochastic gradient descent without privacy mechanisms. Then we finetune the pretrained features
and a randomly initialized linear head on STL-10. This benchmark has been studied in the context
of domain adaptation French et al. (2018); Kumar et al. (2022). The training subset of STL-10 only
contains 500 images. To align with the small scale fine-tuning data, we run the experiments with
smaller and data-efficient models: MobileNet-v3 and ResNet-18.

• RandP→CIFAR-10. To reproduce the results of Tang et al. (2023) and verify the general existence
of concave utility curves, we also consider a slightly non-standard pretraining protocol. We pretrain
a wide residual network (WRN) Zagoruyko & Komodakis (2016) on synthetic images generated by
random diffusion processes. We follow the settings in Tang et al. (2023).

We employ early stopping, and select the optimal learning rate based on the accuracy of the in-distribution
validation.

B Technical results

Lemma B.1 (Holder’s inequality for sums). For a sequence x = [xi]ni=1 of positive real numbers and p > 0,
define ∥x∥p := (

∑n
i=1 xp

i )1/p. Then for any pair of positive real numbers p > 0, q > 0 with 1
p + 1

q = 1, and
any pair of sequence of positive real numbers x and y,

∥xy∥1 ≤ ∥x∥p∥y∥q

Lemma B.2 (Reverse Holder’s inequality for sums). For a sequence x = [xi]ni=1 of positive real numbers and
p > 0, define ∥x∥p := (

∑n
i=1 xp

i )1/p. Then for any pair of positive real numbers p > 0, q > 0 with 1
p − 1

q = 1,
and any pair of sequence of positive real numbers x and y,

∥xy∥1 ≥ ∥x∥p∥y∥−q

Lemma B.3 (Reverse QM-AM inequality for sums). For a sequence x = [xi]ni=1 of positive real numbers,(
n∑

i=1
xi

)2

≥
n∑

i=1
x2

i

Lemma B.4 (µ-coherent data conic hull (Min et al., 2024, Lemma 5)). Define a conic hull K := CH({yixi :
i ∈ [n]}) = {

∑n
i=1 aiyixi : ∀ai ≥ 0, i ∈ [n]}. If Assumption 3.1 holds, i.e. the dataset is separable, then K is

µ-coherent:
∀z1, z2 ∈ K\{0}, cos(z1, z2) ≥ µ
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Corollary B.5 (Orthogonally separable =⇒ linearly separable (Min et al., 2024)). If Assumption 3.1 holds,
then ∃γ > 0 and z ∈ SD−1 such that

∀i ∈ [n], yi⟨z, xi⟩ ≥ γ

Proof of Corollary B.5. We prove the existence statement by picking a valid pair of z, γ. Take z := y1x1
∥x1∥2

.
Then ∀i ∈ [n],

yi⟨z, xi⟩ =∥xi∥2 cos(y1x1, yixi)
//by Lemma B.4

≥∥xi∥2µ

≥µ · min
i∈[n]

∥xi∥2

Therefore γ = µ · mini∈[n] ∥xi∥2.

C Appendix: Representation alignment

C.1 Theory

The Langevin diffusion of wj on a n-sized data cluster (j ∈ [h]) is

ẇj =
n∑

i=1
yi exp(−yif(xi; W, v))vjrelu′(w⊤

j xi)xi + σ∂Qt, (25)

where Qt is a vector containing D independent 1-dimensional Brownian motion.

The Langevin diffusion of v on a n-sized data cluster is

v̇ =
n∑

i=1
yi exp(−yif(xi; W, v))relu(W ⊤xi) + σ∂Qt,

where Qt is a vector containing h independent 1-dimensional Brownian motion.

We rewrite the Langevin diffusion by asymptotic expansion (Freidlin et al., 2012, Equation 2.1, Chapter
2.2), {

vj ≈ v
(0)
j + σv

(1)
j + · · ·

wj ≈ w
(0)
j + σw

(1)
j + · · · ,

(26)

i.e. we expand the Langevin diffusion as a linear combination of the original gradient flow and a linear
stochastic diffusion. {

v̇
(0)
j =

∑n
i=1 yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
ẇ

(0)
j =

∑n
i=1 yi exp(−yif(xi; W (0), v(0)))v(0)

j relu′((w(0)
j )⊤xi)xi.

(27)

Lemma C.1 (Zeroth order invariance of locally linearized LD). If we rewrite the Langevin diffusion by
asymptotic expansion (Freidlin et al., 2012, Equation 2.1, Chapter 2.2),{

vj ≈ v
(0)
j + σv

(1)
j

wj ≈ w
(0)
j + σw

(1)
j .

then the layer invariance still holds for zeroth order approximation

d

dt
[(v(0)

j )2 − ∥w
(0)
j ∥2

2] = 0. (28)

This result is similar to the imbalance matrix in gradient flow (Arora et al., 2018; Du et al., 2018; Min et al.,
2023a).
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We are ready to prove Theorem 3.3.

Proof of Theorem 3.3. The explicit expression of the cosine value is

cos(wj , x̄c(j)) =
w⊤

j x̄c(j)

∥wj∥2∥x̄c(j)∥2
(29)

Without loss of generality, let ∥x̄c(j)∥2 = 1. To show that the cosine value decreases with high probability,
we only need to prove that the derivative of (w⊤

j x̄c(j))2

∥wj∥2
2

is negative at t = 0 with high probability. The explicit
derivative expression is

∂

∂t
cos(wj , x̄c(j)) =

2(w⊤
j x̄c(j))

∥wj∥2
2

[
∥wj∥2

2x̄⊤
c(j)

∂wj

∂t
− x̄⊤

c(j)wjw⊤
j

∂wj

∂t

]
(30)

=
2(w⊤

j x̄c(j))
∥wj∥2

2

[
∥wj∥2

2x̄c(j) − (x̄⊤
c(j)wj)wj

]⊤ ∂wj

∂t
(31)

//by Assumption 3.2 (32)

sign
(

∂

∂t
cos(wj , x̄c(j))

)
=sign

([
∥wj∥2

2x̄c(j) − (x̄⊤
c(j)wj)wj

]⊤ ∂wj

∂t

)
(33)

=sign
(

vj(∥wj∥2
2 − (x̄⊤

c(j)wj)2)
)

(34)

=sign(vj) (35)

Since we initialize v ∼ N (0, βIh×h), with probability 1 − 2−h, there exists j such that vj < 0 at t = 0 =⇒
∂
∂t cos(wj , x̄c(j)) < 0 at t = 0. By the continuity of the approximated Langevin diffusion, there exists ∆t > 0
such that for any t ∈ (0, ∆t),

∂

∂t
cos(wj , x̄c(j)) < 0. (36)

Proof of Theorem 3.4. In the proof of Theorem 3.3, we show that for wj ∈ Sc, c ∈ {−1, 1},

sign
(

∂

∂t
cos(wj , x̄c(j))

)
= sign(vj) · sign(c) (37)

To mitigate the feature distortion after some time index ∆t, we only need c · vj > 0. For DP-LP, every ∂
∂t vj

increases/decreases if c = 1/−1. Therefore, for any initialization, there exists ∆t such that sign(vj) = sign(c)
after time index ∆t. If we switch to DP-FFT after ∆t, ∂

∂t cos(wj , x̄c(j)) > 0 for any j ∈ [h]. Thus cos(wj , x̄c(j))
is non-decreasing in DP-FFT.

D Approximate convergence of DP-LP and DP-FFT

D.1 Approximate DP-LP convergence

We add some extra notations for the following proofs:

• Positive data subset I+ := {i ∈ [n] : yi > 0}

• Negative data subset I− := {i ∈ [n] : yi < 0}

• Positive head cluster V+(t) := {j ∈ [h] : sign(vj(t)) > 0}

• Negative head cluster V−(t) := {j ∈ [h] : sign(vj(t)) < 0}
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• Index function I : RD → {I+, I−} maps feature vector to its cluster

I (w) =


I+ w ∈ S+

I− w ∈ S−

∅ otherwise

We first derive the upper bound for approximate DP-LP.

Upper bound proof of Theorem 4.2. We construct a lower bound of the drift terms in the zeroth order ap-
proximation

∥∇vL(0)∥2
2 =

h∑
j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
)2

(38)

=
h∑

j=1

 ∑
i∈I (w

(0)
j

)

yi exp(−yif(xi; W (0), v(0)))relu((w(0)
j )⊤xi)


2

(39)

≥
h∑

j=1

[
min

i∈I (w
(0)
j

)
relu((w(0)

j )⊤xi)
]2
 ∑

i∈I (w
(0)
j

)

yi exp(−yif(xi; W (0), v(0))))


2

(40)

=
h∑

j=1

[
min

i∈I (w
(0)
j

)
relu((w(0)

j )⊤xi)
]2
 ∑

i∈I (w
(0)
j

)

exp(−yif(xi; W (0), v(0))))


2

(41)

=
∑

j∈V+

[
min
i∈I+

relu((w(0)
j )⊤xi)

]2
(L(0)

+ )2 +
∑

j∈V−

[
min
i∈I−

relu((w(0)
j )⊤xi)

]2
(L(0)

+ )2 (42)

≥ min

∑
j∈V+

[
min
i∈I+

relu((w(0)
j )⊤xi)

]2
,
∑

j∈V−

[
min
i∈I−

relu((w(0)
j )⊤xi)

]2
[(L(0)

+ )2 + (L(0)
− )2

]
(43)

≥1
2 min

∑
j∈V+

[
min
i∈I+

relu((w(0)
j )⊤xi)

]2
,
∑

j∈V−

[
min
i∈I−

relu((w(0)
j )⊤xi)

]2
[L(0)

+ + L(0)
−

]2
(44)

=1
2 min

∑
j∈V+

[
min
i∈I+

relu((w(0)
j )⊤xi)

]2
,
∑

j∈V−

[
min
i∈I−

relu((w(0)
j )⊤xi)

]2
 (L(0))2 (45)

We construct an upper bound of the diffusion terms in the zeroth order approximation

1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2
2

=1
2σ2

n∑
i=1

{
ℓ(yi, f(xi; W (0), v(0)))

}
·
{

∥relu((W (0))⊤xi)∥2
2

}
//by Lemma B.1

≤1
2σ2

{
n∑

i=1
ℓ2(yi, f(xi; W (0), v(0)))

}1/2

·

{
n∑

i=1
∥relu((W (0))⊤xi)∥4

2

}1/2

//by Lemma B.3

≤1
2σ2

{
n∑

i=1
ℓ(yi, f(xi; W (0), v(0)))

}
·

{
n∑

i=1
∥relu((W (0))⊤xi)∥4

2

}1/2
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=1
2σ2L(0) ·

{
n∑

i=1
∥relu((W (0))⊤xi)∥4

2

}1/2

Then we have an upper bound

L(0)(T ) ≤ 1
1

L(0)(0) e−BT + A
B (1 − e−BT )

where constants A, B are defined asA = 1
2 min

{∑
j∈V+

[
mini∈I+ relu((w(0)

j )⊤xi)
]2

,
∑

j∈V−

[
mini∈I− relu((w(0)

j )⊤xi)
]2
}

B = 1
2 σ2 {∑n

i=1 ∥relu((W (0))⊤xi)∥4
2
}1/2

We give the lower bound of approxiamte DP-LP below. We first give a loose lower bound as
a warm-up. Then we improve the techniques and provide a tight lower bound.

Loose lower bound proof of Theorem 4.2. We rewrite the Langevin diffusion by asymptotic expansion (Frei-
dlin et al., 2012, Equation 2.1, Chapter 2.2)

L̇(0) = − ∥∇vL(0)∥2
2 + 1

2σ2
n∑

i=1
y2

i ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2
2

= − ∥∇vL(0)∥2
2 + 1

2σ2
n∑

i=1
ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2

2

≥ − ∥∇vL(0)∥2
2 +

(
min

i∈V(0)
+

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2
∑

i∈V(0)
+

ℓ(yi, f(xi; W (0), v(0)))

+
(

min
i∈V(0)

−

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2
∑

i∈V(0)
−

ℓ(yi, f(xi; W (0), v(0)))

= − ∥∇vL(0)∥2
2 +

(
min
i∈[n]

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2
∑
i∈[n]

ℓ(yi, f(xi; W (0), v(0)))

= − ∥∇vL(0)∥2
2 +

(
min
i∈[n]

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2L(0)

= −
h∑

j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
)2

+
(

min
i∈[n]

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2L(0)

//by trapping

= −
∑

j∈V(0)
+

∑
i∈I+

exp(−f(xi; W (0), v(0)))relu((w(0)
j )⊤xi)

2

−
∑

j∈V(0)
−

∑
i∈I−

exp(f(xi; W (0), v(0)))relu((w(0)
j )⊤xi)

2

+
(

min
i∈[n]

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2L(0)
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≥ −
(

max
j∈[h],i∈[n]

(relu((w(0)
j )⊤xi))2

) ∑
j∈V(0)

+

∑
i∈I+

exp(−f(xi; W (0), v(0)))

2

−
(

max
j∈[h],i∈[n]

(relu((w(0)
j )⊤xi))2

) ∑
j∈V(0)

−

∑
i∈I−

exp(f(xi; W (0), v(0)))

2

+
(

min
i∈[n]

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2L(0)

//a2 + b2 ≤ (a + b)2 when a > 0, b > 0

≥ −
(

max
j∈[h],i∈[n]

(relu((w(0)
j )⊤xi))2

) ∑
j∈[h]

∑
i∈[n]

exp(−f(xi; W (0), v(0)))

2

+
(

min
i∈[n]

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2L(0)

≥ − h

(
max

j∈[h],i∈[n]
(relu((w(0)

j )⊤xi))2
)∑

i∈[n]

exp(−f(xi; W (0), v(0)))

2

+
(

min
i∈[n]

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2L(0)

≥ − h

(
max

j∈[h],i∈[n]
(relu((w(0)

j )⊤xi))2
)

(L(0))2 +
(

min
i∈[n]

∥relu((W (0))⊤xi)∥2
2

)
· 1

2σ2L(0)

In linear probing, the coefficients h
(

maxj∈[h],i∈[n](relu((w(0)
j )⊤xi))2

)
and 1

2 σ2 (mini∈[n] ∥relu((W (0))⊤xi)∥2
2
)

are constants. We replace them with dummy notation A and B. We solve the first-order nonlinear ODE by
turning it into a first-order linear ODE.

L̇(0) ≥ − A(L(0))2 + BL(0)

1
(L(0))2 L̇(0) ≥ − A + B

1
L(0)

− d

dt

(
1

L(0)

)
≥ − A + B

1
L(0)

L(0)(T ) ≥ 1
1

L(0)(0) e−BT + A
B (1 − e−BT )

Remark D.1 (On the qualitative properties of loose DP-LP lower bound). If we take the limit to initial point,
then the lower bound degenerate to the initial loss value.

lim
t→0

1
1

L(0)(0) e−BT + A
B (1 − e−BT )

= L(0)(t = 0) = L(t = 0) (46)

If we take the limit to infinite time,

lim
t→∞

1
1

L(0)(0) e−BT + A
B (1 − e−BT )

= B

A
=

1
2 σ2 (mini∈[n] ∥relu((W (0))⊤xi)∥2

2
)

h
(

maxj∈[h],i∈[n](relu((w(0)
j )⊤xi))2

) (47)

the following interpretation holds:

1. For larger noise σ ↑, the lower bound is higher, i.e. worse performance.

2. For bad alignment between pretrained features W (0) and data points, both the denominator and the
numerator could shrink. It is not obvious how the lower bound changes.
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In the following result, we modify the proof, replace the min(·), and provide a tighter bound.

Tight lower bound proof of Theorem 4.2. This is an alternative construction of a lower bound for drift terms
in the zeroth order approximation

∥∇vL(0)∥2
2 =

h∑
j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
)2

=
∑

j∈V(0)
+

∑
i∈I+

exp(−f(xi; W (0), v(0)))relu((w(0)
j )⊤xi)

2

+
∑

j∈V(0)
−

∑
i∈I−

exp(f(xi; W (0), v(0)))relu((w(0)
j )⊤xi)

2

//by Lemma B.3

≤

 ∑
j∈V(0)

+

∑
i∈I+

exp(−f(xi; W (0), v(0)))relu((w(0)
j )⊤xi)


2

+

 ∑
j∈V(0)

−

∑
i∈I−

exp(f(xi; W (0), v(0)))relu((w(0)
j )⊤xi)


2

≤

∑
j∈[h]

∑
i∈[n]

exp(−f(xi; W (0), v(0)))relu((w(0)
j )⊤xi)

2

=

∑
i∈[n]

∑
j∈[h]

exp(−f(xi; W (0), v(0)))relu((w(0)
j )⊤xi)

2

≤

∑
i∈[n]

[
max
j∈[h]

relu((w(0)
j )⊤xi)

]
exp(−f(xi; W (0), v(0)))

2

//by Lemma B.1

≤

∑
i∈[n]

[
max
j∈[h]

relu((w(0)
j )⊤xi)

]2
∑

i∈[n]

exp(−f(xi; W (0), v(0)))2


//by Lemma B.3

≤

∑
i∈[n]

[
max
j∈[h]

relu((w(0)
j )⊤xi)

]2
∑

i∈[n]

exp(−f(xi; W (0), v(0)))

2

≤

∑
i∈[n]

[
max
j∈[h]

relu((w(0)
j )⊤xi)

]2
 (L(0))2

We replace the A constant by
∑

i∈[n]

[
maxj∈[h] relu((w(0)

j )⊤xi)
]2

. This is an alternative construction of a
lower bound for diffusion-resulted terms in the zeroth order approximation

1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2
2
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=1
2σ2

n∑
i=1

{
ℓ(yi, f(xi; W (0), v(0)))

}
·
{

∥relu((W (0))⊤xi)∥2
2

}
//by Lemma B.2

≥1
2σ2

{
n∑

i=1
ℓ1/2(yi, f(xi; W (0), v(0)))

}2

·

{
n∑

i=1
∥relu((W (0))⊤xi)∥−2

2

}−1

//by Lemma B.3

≥1
2σ2

{
n∑

i=1
ℓ(yi, f(xi; W (0), v(0)))

}
·

{
n∑

i=1
∥relu((W (0))⊤xi)∥−2

2

}−1

≥1
2σ2L(0) ·

{
n∑

i=1
∥relu((W (0))⊤xi)∥−2

2

}−1

We replace the B constant by
{∑n

i=1 ∥relu((W (0))⊤xi)∥−2
2
}−1 in the previous proof of loose lower bound of

Theorem 4.2. Similarly,
L(0)(T ) ≥ 1

1
L(0)(0) e−BT + A

B (1 − e−BT )

where A =
∑

i∈[n]

[
maxj∈[h] relu((w(0)

j )⊤xi)
]2

, B = 1
2 σ2 {∑n

i=1 ∥relu((W (0))⊤xi)∥−2
2
}−1. The limit of this

lower bound is

lim
t→∞

1
1

L(0)(0) e−BT + A
B (1 − e−BT )

=B

A
= 1

2σ2

{
n∑

i=1
∥relu((W (0))⊤xi)∥−2

2

}−1
∑

i∈[n]

[
max
j∈[h]

relu((w(0)
j )⊤xi)

]2


−1

Example D.2 (On the downstream alignment of pretrained features (Theorem 4.2)). Here we provide an
example on how the pretrained feature space affects the linear probing lower bound in Theorem 4.2 in
the overparametrized regime. Consider one data point x+ and two pretrained features w+,1, w+,2 with
∥x+∥2 = ∥w+,1∥2 = ∥w+,2∥2 = 1, cos(x+, w+,2) = 1

3 π.

1. If we get lucky such that w+,1 = x+, then the limit is B
A = 15

24 σ2.

2. If the w+,1 is not so good for the downstream task such that cos(x+, w+,1) = 1
6 π, then the limit becomes

B
A = 16

24 σ2.

Since 16
24 > 15

24 , we can tell that when the pretrained features do not align well with the downstream task,
the lower bound gets higher, i.e. worse performance.

D.2 Approximate DP-FT convergence

Analysis of DP-FFT loss diffusion. In the following 0th-order approximation of loss Langevin diffusion,
denote the drift term by W -gradient as T1, the drift term by v-gradient as T2, the diffusion term by W -hessian
as T3, the diffusion term by v-hessian as T4.

L̇(0) = −
∥∥∥∇W L(0)

∥∥∥2

F︸ ︷︷ ︸
T1

−
∥∥∥∇vL(0)

∥∥∥2

2︸ ︷︷ ︸
T2

(48)

+ 1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))

∥relu((W (0))⊤xi)∥2
2 +

h∑
j=1

(v(0)
j )2[relu′((w(0)

j )⊤xi)]2∥xi∥2
2

 (49)
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= −
h∑

j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
)2

(50)

−
h∑

j=1

∥∥∥∥∥
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0xi

∥∥∥∥∥
2

2

(51)

+ 1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))

∥relu((W (0))⊤xi)∥2
2 +

h∑
j=1

(v(0)
j )2

1
2
(w

(0)
j

)⊤xi>0
∥xi∥2

2

 (52)

= −
h∑

j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
)2

︸ ︷︷ ︸
T2

(53)

−
h∑

j=1

∥∥∥∥∥
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0xi

∥∥∥∥∥
2

2︸ ︷︷ ︸
T1

(54)

+ 1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2

2︸ ︷︷ ︸
T4

(55)

+ 1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))

h∑
j=1

(v(0)
j )2

1
2
(w

(0)
j

)⊤xi>0
∥xi∥2

2︸ ︷︷ ︸
T3

(56)

Upper bound proof of Theorem 4.3. 1. Upper bounds for T1, T3. For T1, the key idea is ∥x∥2
2 ≥ ⟨x, z⟩2

for any unit vector z.

T1 = −
h∑

j=1

∥∥∥∥∥
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0xi

∥∥∥∥∥
2

2

//since ∀x ∈ RD, z ∈ SD−1, ∥x∥2
2 ≥ ⟨x, z⟩2

≤ −
h∑

j=1

〈
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0xi, z

〉2

= −
h∑

j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0 ⟨xi, z⟩

)2

= −
h∑

j=1
(v(0)

j )2

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))1(w

(0)
j

)⊤xi>0 ⟨xi, z⟩

)2

//pick z = y1x1

∥x1∥2
, by Corollary B.5

≤ − γ2
h∑

j=1
(v(0)

j )2

(
n∑

i=1
exp(−yif(xi; W (0), v(0)))1(w

(0)
j

)⊤xi>0

)2

= − γ2
h∑

j=1
(v(0)

j )2

 ∑
i∈I (w

(0)
j

)

exp(−yif(xi; W (0), v(0)))


2
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= − γ2
h∑

j=1
(v(0)

j )2

 ∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))


2

For T3, we align its form with T1.

T3 =1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))

h∑
j=1

(v(0)
j )2

1
2
(w

(0)
j

)⊤xi>0
∥xi∥2

2

//since ∀i ∈ [n], |yi| = 1

=1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))
h∑

j=1
(v(0)

j )2
1(w

(0)
j

)⊤xi>0∥xi∥2
2

=1
2σ2

h∑
j=1

(v(0)
j )2

n∑
i=1

∥xi∥2
21(w

(0)
j

)⊤xi>0ℓ(yi, f(xi; W (0), v(0)))

≤1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

(v(0)
j )2

n∑
i=1

1(w
(0)
j

)⊤xi>0ℓ(yi, f(xi; W (0), v(0)))

=1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

(v(0)
j )2

∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))

2. Upper bounds of T2, T4. For T2, we use linear separability.

T2 = −
h∑

j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
)2

//by Corollary B.5

≤ −
h∑

j=1

∑
i∈[n]

exp(−yif(xi; W (0), v(0)))1(w
(0)
j

)⊤xi>0γ∥w
(0)
j ∥2

2

= − γ2
h∑

j=1
∥w

(0)
j ∥2

2

 ∑
i∈I (w

(0)
j

)

exp(−yif(xi; W (0), v(0)))


2

= − γ2
h∑

j=1
∥w

(0)
j ∥2

2

 ∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))


2

For T4, we align its form with T3.

T4 =1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2

2

//since ∀i ∈ [n], |yi| = 1

=1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2
2

=1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))
∑
j∈[h]

1(w
(0)
j

)⊤xi>0⟨w(0)
j , xi⟩2

≤1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))
∑
j∈[h]

1(w
(0)
j

)⊤xi>0∥w
(0)
j ∥2

2∥xi∥2
2
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≤1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

∥w
(0)
j ∥2

2
∑
i∈[n]

1(w
(0)
j

)⊤xi>0ℓ(yi, f(xi; W (0), v(0)))

=1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

∥w
(0)
j ∥2

2
∑

i∈I (w
(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))

3. Combine upper bounds of T1, T2, T3, T4.

L̇(0) =T1 + T2 + T3 + T4

≤ − γ2
h∑

j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))

//abbr. ℓi := ℓ(yi, f(xi; W (0), v(0)))

= − γ2
h∑

j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓi

=
h∑

j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

]−γ2

 ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) ∑
i∈I (w

(0)
j

)

ℓi




∵ (v(0)
j )2 + ∥w

(0)
j ∥2

2 ≥ (v(0)
j,t=0)2 + ∥w

(0)
j,t=0∥2

2

∴ When the drift term (negative) still dominates the dynamics, we take t = 0 for (v(0)
j )2 + ∥w

(0)
j ∥2

2.

L̇(0) ≤
h∑

j=1

[
(v(0)

j,t=0)2 + ∥w
(0)
j,t=0∥2

2

]−γ2

 ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) ∑
i∈I (w

(0)
j

)

ℓi




4. Decompose loss by trapping. If the trapping condition holds, we can decompose the loss L(0) =
L(0)

+ + L(0)
− , where L(0)

∗ is only controlled by wj if w
(0)
j ∈ S∗ (∗ ∈ {+, −}).

L̇(0)
∗ ≤

∑
j∈[h],w(0)

j
∈S∗

[
(v(0)

j,t=0)2 + ∥w
(0)
j,t=0∥2

2

]−γ2

 ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) ∑
i∈I (w

(0)
j

)

ℓi




≤
∑

j∈[h],w(0)
j

∈S∗

[
(v(0)

j,t=0)2 + ∥w
(0)
j,t=0∥2

2

]{
−γ2

(
L(0)

∗

)2
+ 1

2σ2
(

max
i∈[n]

∥xi∥2
2

)
L(0)

∗

}

Let u = 1/L(0)
∗ , A =

∑
j∈[h],w(0)

j
∈S∗

[
(v(0)

j,t=0)2 + ∥w
(0)
j,t=0∥2

2

]
, B = γ2, C = 1

2 σ2 (maxi∈[n] ∥xi∥2
2
)
. Then

−du

dt
≤ − AB + ACu
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AB exp(ACt) ≤ d

dt
(ueACt)

B

C
(exp(ACt) − 1) ≤ueACt − u0

B

C
(exp(ACt) − 1) + u0 ≤ueACt

B

C
(1 − exp(−ACt)) + u0e−ACt ≤u

L(0)
∗ ≤ 1

B
C (1 − e−ACt) + 1

L(0)
t=0,∗

e−ACt

The time limit of the upper bound is

lim
t→∞

L(0)
∗ ≤C

B
= σ2

2γ2

(
max
i∈[n]

∥xi∥2
2

)
= 1

2
maxi∈[n] ∥xi∥2

2
mini∈[n] ∥xi∥2

2
σ2 1

µ2

5. Combine clustered losses.

L(0) =L(0)
− + L(0)

+

≤ 1
B
C (1 − e−A+Ct) + 1

L(0)
t=0,+

e−A+Ct
+ 1

B
C (1 − e−A−Ct) + 1

L(0)
t=0,−

e−A−Ct

Lower bound (type I) proof of Theorem 4.3. 1. Upper bounds for T1, T3. For T1, the key idea is ∥x∥2
2 ≥

⟨x, z⟩2 for any unit vector z.

T1 = −
h∑

j=1

∥∥∥∥∥
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0xi

∥∥∥∥∥
2

2

//since ∀x ∈ RD, z ∈ SD−1, ∥x∥2
2 ≥ ⟨x, z⟩2

≤ −
h∑

j=1

〈
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0xi, z

〉2

= −
h∑

j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0 ⟨xi, z⟩

)2

= −
h∑

j=1
(v(0)

j )2

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))1(w

(0)
j

)⊤xi>0 ⟨xi, z⟩

)2

//pick z = y1x1

∥x1∥2
, by Corollary B.5

≤ − γ2
h∑

j=1
(v(0)

j )2

(
n∑

i=1
exp(−yif(xi; W (0), v(0)))1(w

(0)
j

)⊤xi>0

)2

= − γ2
h∑

j=1
(v(0)

j )2

 ∑
i∈I (w

(0)
j

)

exp(−yif(xi; W (0), v(0)))


2

= − γ2
h∑

j=1
(v(0)

j )2

 ∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))


2
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For T3, we align its form with T1.

T3 =1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))

h∑
j=1

(v(0)
j )2

1
2
(w

(0)
j

)⊤xi>0
∥xi∥2

2

//since ∀i ∈ [n], |yi| = 1

=1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))
h∑

j=1
(v(0)

j )2
1(w

(0)
j

)⊤xi>0∥xi∥2
2

=1
2σ2

h∑
j=1

(v(0)
j )2

n∑
i=1

∥xi∥2
21(w

(0)
j

)⊤xi>0ℓ(yi, f(xi; W (0), v(0)))

≤1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

(v(0)
j )2

n∑
i=1

1(w
(0)
j

)⊤xi>0ℓ(yi, f(xi; W (0), v(0)))

=1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

(v(0)
j )2

∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))

2. Upper bounds of T2, T4. For T2, we use linear separability.

T2 = −
h∑

j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
)2

//by Corollary B.5

≤ −
h∑

j=1

∑
i∈[n]

exp(−yif(xi; W (0), v(0)))1(w
(0)
j

)⊤xi>0γ∥w
(0)
j ∥2

2

= − γ2
h∑

j=1
∥w

(0)
j ∥2

2

 ∑
i∈I (w

(0)
j

)

exp(−yif(xi; W (0), v(0)))


2

= − γ2
h∑

j=1
∥w

(0)
j ∥2

2

 ∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))


2

For T4, we align its form with T3.

T4 =1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2

2

//since ∀i ∈ [n], |yi| = 1

=1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2
2

=1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))
∑
j∈[h]

1(w
(0)
j

)⊤xi>0⟨w(0)
j , xi⟩2

≤1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))
∑
j∈[h]

1(w
(0)
j

)⊤xi>0∥w
(0)
j ∥2

2∥xi∥2
2

≤1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

∥w
(0)
j ∥2

2
∑
i∈[n]

1(w
(0)
j

)⊤xi>0ℓ(yi, f(xi; W (0), v(0)))
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=1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

∥w
(0)
j ∥2

2
∑

i∈I (w
(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))

3. Combine upper bounds of T1, T2, T3, T4.

L̇(0) =T1 + T2 + T3 + T4

≤ − γ2
h∑

j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓ(yi, f(xi; W (0), v(0)))

//abbr. ℓi := ℓ(yi, f(xi; W (0), v(0)))

= − γ2
h∑

j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) h∑
j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓi

=
h∑

j=1

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

]−γ2

 ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) ∑
i∈I (w

(0)
j

)

ℓi




∵ (v(0)
j )2 + ∥w

(0)
j ∥2

2 ≥ (v(0)
j,t=0)2 + ∥w

(0)
j,t=0∥2

2

∴ When the drift term (negative) still dominates the dynamics, we take t = 0 for (v(0)
j )2 + ∥w

(0)
j ∥2

2.

L̇(0) ≤
h∑

j=1

[
(v(0)

j,t=0)2 + ∥w
(0)
j,t=0∥2

2

]−γ2

 ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) ∑
i∈I (w

(0)
j

)

ℓi




4. Decompose loss by trapping. If the trapping condition holds, we can decompose the loss L(0) =
L(0)

+ + L(0)
− , where L(0)

∗ is only controlled by wj if w
(0)
j ∈ S∗ (∗ ∈ {+, −}).

L̇(0)
∗ ≤

∑
j∈[h],w(0)

j
∈S∗

[
(v(0)

j,t=0)2 + ∥w
(0)
j,t=0∥2

2

]−γ2

 ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
max
i∈[n]

∥xi∥2
2

) ∑
i∈I (w

(0)
j

)

ℓi




≤
∑

j∈[h],w(0)
j

∈S∗

[
(v(0)

j,t=0)2 + ∥w
(0)
j,t=0∥2

2

]{
−γ2

(
L(0)

∗

)2
+ 1

2σ2
(

max
i∈[n]

∥xi∥2
2

)
L(0)

∗

}

Let u = 1/L(0)
∗ , A =

∑
j∈[h],w(0)

j
∈S∗

[
(v(0)

j,t=0)2 + ∥w
(0)
j,t=0∥2

2

]
, B = γ2, C = 1

2 σ2 (maxi∈[n] ∥xi∥2
2
)
. Then

−du

dt
≤ − AB + ACu

AB exp(ACt) ≤ d

dt
(ueACt)
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B

C
(exp(ACt) − 1) ≤ueACt − u0

B

C
(exp(ACt) − 1) + u0 ≤ueACt

B

C
(1 − exp(−ACt)) + u0e−ACt ≤u

L(0)
∗ ≤ 1

B
C (1 − e−ACt) + 1

L(0)
t=0,∗

e−ACt

The time limit of the upper bound is

lim
t→∞

L(0)
∗ ≤C

B
= σ2

2γ2

(
max
i∈[n]

∥xi∥2
2

)
= 1

2
maxi∈[n] ∥xi∥2

2
mini∈[n] ∥xi∥2

2
σ2 1

µ2

5. Combine clustered losses.

L(0) =L(0)
− + L(0)

+

≤ 1
B
C (1 − e−A+Ct) + 1

L(0)
t=0,+

e−A+Ct
+ 1

B
C (1 − e−A−Ct) + 1

L(0)
t=0,−

e−A−Ct

Lower bound (type III) proof of Theorem 4.3. 1. Lower bounds for T1, T3. For T1, we use(
maxk∈[n] ∥xk∥2

2
)
.

T1 = −
h∑

j=1

∥∥∥∥∥
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))v(0)

j 1(w
(0)
j

)⊤xi>0xi

∥∥∥∥∥
2

2

//abbr. ℓi := exp(−yif(xi; W (0), v(0)))

= −
h∑

j=1

∥∥∥∥∥∥∥
∑

i∈I (w
(0)
j

)

yiℓiv
(0)
j xi

∥∥∥∥∥∥∥
2

2

= −
h∑

j=1

∥∥∥∥∥∥∥
∑

i∈I (w
(0)
j

)

ℓiv
(0)
j xi

∥∥∥∥∥∥∥
2

2

= −
∑
j∈[h]

(v(0)
j )2

∥∥∥∥∥∥∥
∑

i∈I (w
(0)
j

)

ℓixi

∥∥∥∥∥∥∥
2

2

≥ −
∑
j∈[h]

(v(0)
j )2

 ∑
i∈I (w

(0)
j

)

ℓi ∥xi∥2


2

≥ −
(

max
k∈[n]

∥xk∥2
2

) ∑
j∈[h]

(v(0)
j )2

 ∑
i∈I (w

(0)
j

)

ℓi


2

For T3, we align its form with T1.

T3 =1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))

h∑
j=1

(v(0)
j )2

1
2
(w

(0)
j

)⊤xi>0
∥xi∥2

2
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=1
2σ2

n∑
i=1

ℓi

h∑
j=1

(v(0)
j )2

1(w
(0)
j

)⊤xi>0∥xi∥2
2

=1
2σ2

∑
j∈[h]

(v(0)
j )2

∑
i∈I (w

(0)
j

)

ℓi∥xi∥2
2

≥1
2σ2

(
min
k∈[n]

∥xk∥2
2

) ∑
j∈[h]

(v(0)
j )2

 ∑
i∈I (w

(0)
j

)

ℓi


2. Lower bounds for T2, T4. For T2, we use ⟨x, y⟩ ≤ ∥x∥2∥y∥2.

T2 = −
h∑

j=1

(
n∑

i=1
yi exp(−yif(xi; W (0), v(0)))relu((w(0)

j )⊤xi)
)2

= −
h∑

j=1

 ∑
i∈I (w

(0)
j

)

yi exp(−yif(xi; W (0), v(0)))(w(0)
j )⊤xi


2

= −
∑
j∈[h]

 ∑
i∈I (w

(0)
j

)

ℓi⟨w(0)
j , xi⟩


2

≥ −
∑
j∈[h]

 ∑
i∈I (w

(0)
j

)

ℓi∥w
(0)
j ∥2∥xi∥2


2

≥ −
(

max
k∈[n]

∥xk∥2
2

) ∑
j∈[h]

∥w
(0)
j ∥2

2

 ∑
i∈I (w

(0)
j

)

ℓi


2

For T4, we align its form with T2.

T4 =1
2σ2

n∑
i=1

y2
i ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2

2

//since ∀i ∈ [n], |yi| = 1

=1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))∥relu((W (0))⊤xi)∥2
2

=1
2σ2

n∑
i=1

ℓ(yi, f(xi; W (0), v(0)))
∑
j∈[h]

1(w
(0)
j

)⊤xi>0⟨w(0)
j , xi⟩2

=1
2σ2

∑
j∈[h]

∑
i∈I (w

(0)
j

)

ℓi⟨w(0)
j , xi⟩2

//by Lemma B.4

≥1
2σ2

∑
j∈[h]

∑
i∈I (w

(0)
j

)

ℓiµ
2∥w

(0)
j ∥2

2∥xi∥2
2

=1
2σ2µ2

∑
j∈[h]

∥w
(0)
j ∥2

2
∑

i∈I (w
(0)
j

)

ℓi∥xi∥2
2
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≥1
2σ2µ2

(
min
k∈[n]

∥xk∥2
2

) ∑
j∈[h]

∥w
(0)
j ∥2

2

 ∑
i∈I (w

(0)
j

)

ℓi


3. Combine lower bounds of T1, T2, T3, T4.

L̇(0) =T1 + T2 + T3 + T4

≥ −
(

max
k∈[n]

∥xk∥2
2

) ∑
j∈[h]

[
(v(0)

j )2 + ∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓi


2

+ 1
2σ2

(
min
k∈[n]

∥xk∥2
2

) ∑
j∈[h]

[
(v(0)

j )2 + µ2∥w
(0)
j ∥2

2

] ∑
i∈I (w

(0)
j

)

ℓi


//by balancedness, ∥w

(0)
j ∥2

2 = (v(0)
j )2

≥ − 2
(

max
k∈[n]

∥xk∥2
2

) ∑
j∈[h]

∥w
(0)
j ∥2

2

 ∑
i∈I (w

(0)
j

)

ℓi


2

+ σ2(1 + µ2)
2

(
min
k∈[n]

∥xk∥2
2

) ∑
j∈[h]

∥w
(0)
j ∥2

2

 ∑
i∈I (w

(0)
j

)

ℓi


4. Decompose loss by trapping. If the trapping condition holds, we can decompose the loss L(0) =
L(0)

+ + L(0)
− , where L(0)

∗ is only controlled by wj if w
(0)
j ∈ S∗ (∗ ∈ {+, −}).

L̇(0)
∗ ≥ − 2

(
max
k∈[n]

∥xk∥2
2

) ∑
j∈[h],w(0)

j
∈S∗

∥w
(0)
j ∥2

2(L(0)
∗ )2 + σ2(1 + µ2)

2

(
min
k∈[n]

∥xk∥2
2

) ∑
j∈[h],w(0)

j
∈S∗

∥w
(0)
j ∥2

2L(0)
∗

=


∑

j∈[h],w(0)
j

∈S∗

∥w
(0)
j ∥2

2

 ·
{

−2
(

max
k∈[n]

∥xk∥2
2

)
(L(0)

∗ )2 + σ2(1 + µ2)
2

(
min
k∈[n]

∥xk∥2
2

)
L(0)

∗

}

The time limit of the loss lower bound is

lim
t→∞

L(0)
∗ ≥ 1

2
mink∈[n] ∥xk∥2

2
maxk∈[n] ∥xk∥2

2
σ2 1 + µ2

2

By the previous lower bound proof,

∥W (0)∥2
F ≤ ∥W

(0)
0 ∥2

F e2(maxk∈[n] ∥xi∥2)L(0)
0 t

Let u = 1
L(0)

∗
, A = ∥W

(0)
0 ∥2

F , λ2 = 2(maxk∈[n] ∥xi∥2)L(0)
0 , B = 2 maxk∈[n] ∥xk∥2

2, C = σ2(1+µ2)
2 mink∈[n] ∥xk∥2

2.
Then consider integrating factor exp(AC/λ2 exp(λ2t)).

− d

dt
u ≥Aeλ2t(−B + Cu)

ABeλ2t ≥ACeλ2tu + d

dt
u

ABeλ2t exp(AC/λ2 exp(λ2t)) ≥AC exp(AC/λ2 exp(λ2t))eλ2tu + exp(AC/λ2 exp(λ2t)) d

dt
u

B

C

d

dt
[exp(AC/λ2 exp(λ2t))] ≥ d

dt
(u · exp(AC/λ2 exp(λ2t)))

B

C
[exp(AC/λ2 exp(λ2t)) − exp(AC/λ2)] ≥u · exp(AC/λ2 exp(λ2t)) − u0 · exp(AC/λ2)

B

C
[1 − exp(AC/λ2(1 − exp(λ2t)))] ≥u − u0 · exp(AC/λ2(1 − exp(λ2t)))
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L(0)
∗ ≥ 1

1
L(0)

∗,t=0
eAC/λ2(1−exp(λ2t)) + B

C

[
1 − eAC/λ2(1−exp(λ2t))

]
5. Combine clustered losses.

L(0) =L(0)
− + L(0)

+

≥ 1
1

L(0)
+,t=0

eAC/λ2(1−exp(λ2t)) + B
C

[
1 − eAC/λ2(1−exp(λ2t))

] + 1
1

L(0)
−,t=0

eAC/λ2(1−exp(λ2t)) + B
C

[
1 − eAC/λ2(1−exp(λ2t))

]

D.3 Privacy budget allocation

Proof of Theorem 5.1. For any j ∈ [h], with probability 1 − ρ, its initial absolute value is bounded by

|vj | ≤
√

2β2 ln(2/ρ) (57)

Then with probability (1 − ρ)h, the maximum worse initial value is bounded by

max
j∈[h]

(cj · vj) ≤
√

β2 ln(2/ρ) (58)

where we define cj by wj ∈ Scj
. The approximate DP-LP dynamics is

v̇j =
n∑

i=1
yiℓirelu(w⊤

j xi) (59)

Say wj ∈ Sc for some c ∈ {−1, 1}, then during DP-LP, when sign(vj(T )) = sign(vj(0)),

|vj(T ) − vj(0)| =
∫ T

0

∑
yi=c

ℓirelu(w⊤
j xi)dt (60)

≥ min
yi=c

|relu(w⊤
j xi)|

∫ T

0
Lc(t)dt (61)

//by Theorem 4.2 (62)

≥ min
yi=c

relu(w⊤
j xi)

1
2 σ2

{∑
yi=c ∥relu(W ⊤xi)∥−2

2

}−1

∑
wj∈Sc

[
maxyi=c w⊤

j xi

]2 (63)

=1
2σ2 minyi=c relu(w⊤

j xi)∑
wj∈Sc

[
maxyi=c w⊤

j xi

]2
{∑

yi=c

∥relu(W ⊤xi)∥−2
2

}−1

(64)

=1
2σ2Q (65)

where we define a constant Q to describe the pre-training quality. If the pre-trained features are better, Q
becomes larger. To mitigate the feature distortion, we need c · vj > 0, then the necessary DP-LP run-time is

∆t ∝ σ2

Q

√
β2 ln(2/ρ) ∝ σ2

Q

√
ln(2/ρ) (66)

where we ignore β as it is typically pre-determined in real implementations (e.g. the Linear layers in
PyTorch).

E Appendix: Theory without approximation

For convenience, we use different notations for the data input dimension d = dx and the backbone weight
matrix B = W ⊤ in the following proofs.
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E.1 Itô’s formula and its consequences

We denote Mm,n(R) as the space of m-by-n real matrices.
Theorem E.1 (Itô’s formula). Let Xt be a Rn-valued Itô process satisfying the stochastic differential equation
∂Xt = A1(t, Xt)∂t + A2(t, Xt)∂Wt with A1(t, Xt) being Rn-valued, A2(t, Xt) being Mm,n(R)-valued, and Wt

being a standard n-dimensional brownian motion. Let f : [0, ∞) × Rn → R be a function with continuous
partial derivatives. Then Yt := f(t, Xt) is also an Itô process, and its stochastic differential equation is

∂Yt = ∂f(t, Xt)
∂t

∂t + ⟨∇f(t, Xt), A1(t, Xt)∂t + A2(t, Xt)∂Wt⟩ + 1
2 ⟨A2(t, Xt)∂Wt, Hf A2(t, Xt)∂Wt⟩ (67)

where Hf is the Hessian matrix of f over Xt defined as (Hf )ij = ∂2f
∂(Xt)i∂(Xt)j

and (Xt)i denotes the i-th
entry of random vector Xt.
Corollary E.2 (Loss dynamics during linear probing). During linear probing (Equation equation 92), the
stochastic differential equation describing the loss dynamics is

∂Llp = −(BT
0 v − XT Y )T BT

0 B0(BT
0 v − XT Y )∂t +

√
2σ2(BT

0 v − XT Y )T BT
0 ∂Wt + hσ2∂t. (68)

Proof of Corollary E.2. By Itô’s formula (Equation equation E.1), the loss dynamics is

∂Llp =∂
1
2∥XBT

0 v − Y ∥2 (69)

=(XBT
0 v − Y )T XBT

0 ∂v + 1
2(∂v)T B0XT XBT

0 (∂v) (70)

=(XBT
0 v − Y )T XBT

0 ∂v + 1
2(∂v)T (∂v) (71)

//by Definition E.5 (72)
=(XBT

0 v − Y )T XBT
0 [−B0XT (XBT

0 v − Y )∂t +
√

2σ2∂Wt] + hσ2∂t (73)
=(BT

0 v − XT Y )T BT
0 [−B0(BT

0 v − XT Y )∂t +
√

2σ2∂Wt] + hσ2∂t (74)
= − (BT

0 v − XT Y )T BT
0 B0(BT

0 v − XT Y )∂t +
√

2σ2(BT
0 v − XT Y )T BT

0 ∂Wt + hσ2∂t (75)

Corollary E.3 (Loss dynamics during fine-tuning). During fine-tuning (Equation equation 93), the stochas-
tic differential equation describing the loss dynamics is

∂Lft = − (BT v − XT Y )T BT B(BT v − XT Y )∂t + (BT v − XT Y )T BT
√

2σ2∂Wt

− (BT v − XT Y )T (BT v − XT Y )vT v∂t + (BT v − XT Y )T (
√

2σ2∂W ′
t )v

+ σ2∥B∥2
F ∂t + σ2d∥v∥2

2∂t.

(76)

where we use ∂ as the differential sign and use d as the data input dimension.

Proof of Corollary E.3. Similar to Corollary E.2, we use Itô’s formula (Equation E.1), the loss dynamics of
fine-tuning is

∂Lft =∂
1
2∥XBT v − Y ∥2 (77)

=1
2
〈
∇v∥(XBT v − Y )∥2, ∂v

〉
+ 1

2
〈
∇B∥(XBT v − Y )∥2, vec(∂B)

〉
(78)

+ 1
4(∂v)T H∥(XBT v−Y )∥2(∂v) + 1

4 [vec(∂B)]T H∥(XBT v−Y )∥2vec(∂B) (79)

=(XBT v − Y )T XBT ∂v + (XBT v − Y )T X(∂B)T v (80)
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+ 1
2(∂v)T BXT XBT (∂v) + 1

2 [vec(∂B)]T


v1
0
...

vh

 [v1 0 · · · vh

]︸ ︷︷ ︸
d×h

vec(∂B) (81)

= − (BT v − XT Y )T BT B(BT v − XT Y )∂t + (BT v − XT Y )T BT
√

2σ2∂Wt (82)
− (BT v − XT Y )T (BT v − XT Y )vT v∂t + (BT v − XT Y )T (

√
2σ2∂W ′

t )v (83)
+ σ2trace(BBT )∂t + σ2d∥v∥2∂t (84)

= − (BT v − XT Y )T BT B(BT v − XT Y )∂t + (BT v − XT Y )T BT
√

2σ2∂Wt (85)
− (BT v − XT Y )T (BT v − XT Y )vT v∂t + (BT v − XT Y )T (

√
2σ2∂W ′

t )v (86)
+ σ2∥B∥2

F ∂t + σ2d∥v∥2
2∂t (87)

Remark E.4 (Noise effects on linear networks). In the loss dynamics of fine-tuning (Corollary E.3), the noise
induced deterministic terms

σ2(∥B∥2
F + d∥v∥2

2)∂t

does not explicitly depend on the linear head size h. We do a sanity check for this result in a discretized
setting (so that we skip Itô’s lemma and stochastic calculus). Say we inject noise ∆B to B, where ∆B is a
h×d-matrix, and its entries are independent and follow Gaussian distribution N (0, σ). Then the expectation
of the perturbed loss is:

E[L] =1
2E[∥X(B + ∆B)T v − Y ∥2] (88)

=1
2∥XBT v − Y ∥2 + E[(XBT v − Y )T X(∆B)T v] + 1

2E[vT ∆B(∆B)T v] (89)

=1
2∥XBT v − Y ∥2 + 1

2E[vT ∆B(∆B)T v] (90)

=1
2∥XBT v − Y ∥2 + 1

2σ2 · d · ∥v∥2 (91)

As a result, we find that, in the discrete updates, the noise induced deterministic terms does not explicitly
depend on the linear head size h either. So our findings in the continuous case matches the discrete case.

E.2 Modified Langevin diffusion

Definition E.5 (Langevin diffusion for linear probing). Let Qt be the standard h-dimensional Brownian
motion. Then the Langevin diffusion for linear probing is defined by the following stochastic differential
equation:

∂v = − ∇vL(v, B0)∂t +
√

2σ2∂Qt

= − B0XT (XBT
0 v − Y )∂t +

√
2σ2∂Qt. (92)

Here we use “∂” as the differential notation.
Definition E.6 (Langevin diffusion for fine-tuning). Let Qt be the standard h-dimensional brownian motion
and Q′

t be a matrix whose entries are standard and independent brownian motions. Then we define the
Langevin diffusion for fine-tuning a two-layer linear network as

∂v = −∇vL(v, B)∂t +
√

2σ2∂Qt

= −BXT (XBT v − Y )∂t +
√

2σ2∂Qt

∂B = −∇BL(v, B)∂t +
√

2σ2∂Q′
t

= −v(XBT v − Y )T X∂t +
√

2σ2∂Q′
t.

(93)
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Here we introduce an assumption based on random initialization. It describes a common phenomenon in
differential privacy deployment: the loss might not converge if the privacy mechanism perturbs the gradients
too much (Ponomareva et al., 2023). To ensure that DP-SGD works for full fine-tuning, we assume that the
noise scale (or variance) in the privacy mechanism is upper bounded by a constant.

Assumption E.7 (Upper bounded noise scale). Let β >
−∥XT Y ∥+

√
∥XT Y ∥2+4(1+dx)∥XT Y ∥+4dx

2h . Then we
assume that the noise scale σ > 0 we add for privacy in the fine-tuning process is upper-bounded by

σ2 < min
{

hβ + ∥B0XT Y ∥2

2h
,

hβ − 1√
2(1 + d)

,
1

1 +
√

2(1 + d)

[
hβ(hβ + ∥XT Y ∥2)
(1 + d)∥XT Y ∥ + d

− 1
]}

. (94)

Equation (20) upper monotonically decreases in time if Assumption E.7 also holds.

To understand the properties of a dynamics analysis problem, it can be useful to identify invariants, or
functions whose output is conserved during optimization. Such conservation laws can be seen as a "weaker"
form of implicit bias, helping to elucidate which properties (e.g., sparsity, low-rank) are preferred by the
optimization dynamics among a potentially infinite set of minimizers (Marcotte et al., 2023). To prove the
convergence of our optimization, we study the imbalance matrix, an invariant for multi-layer linear networks
that has previously been studied in the context of gradient flows (but not Langevin dynamics, to the best
of our knowledge).
Definition E.8 (Imbalance matrix). For a two-layer linear network, we define the imbalance matrix as

D := vvT − BBT . (95)

Prior work on gradient flows has found that the imbalance matrix remains invariant over the evolution of
gradient flows modeling gradient descent (Arora et al., 2018; Du et al., 2018; Marcotte et al., 2023). This
property can be used to derive tight convergence bounds (Min et al., 2021; 2023a). However, a similar
analysis has not materialized for Langevin diffusion models of DP-GD.

We observe that prior work on Langevin diffusion to analyze private optimization has implicitly assumed
that the sensitivity of each layer in a neural network is the same (Ganesh et al., 2023b; Ye et al., 2023b).
Hence, they fix a uniform noise scale for every parameter of the network. Under these conditions, we show
that, when we ignore the sensitivity of each layer and use a uniform noise scale σ, the imbalance matrix is
not invariant in expectation, unlike in (noise-free) gradient flow (Arora et al., 2018; Du et al., 2018; Marcotte
et al., 2023); that is, its derivative over time is nonzero. This complicates the use of the imbalance matrix
for theoretical analysis (Ye & Du, 2021).
Lemma E.9 (Imbalance matrix in fine-tuning). During fine-tuning (Equation (93)), the derivative of the
imbalance matrix D in Definition E.8 is

∂

∂t
E[D] = (1 − d)σ2Ih×h, (96)

where d is the dimension of data inputs (B ∈ Rh×d).

Our main observation is that by modeling differences in sensitivity of different layers, we can recover the
invariance property of the imbalance matrix. The following proposition characterizes the sensitivity of the
linear head and the feature extractor, and illustrates why they have differing sensitivities at initialization.
Proposition E.10. We assume that the training dataset D = (X, Y ) is normalized such that XT X =
Id×d, ∥Y ∥2 = 1. We initialize the linear head by v0 ∼ N (0, βIh×h) and β = h/

√
d. At the initialization

of full fine-tuning, the linear head v has a greater layer sensitivity (Béthune et al., 2024) than the feature
extractor B:

∆(∇vL(v0, B0)) = Θ
(√

d · ∆(∇BL(v0, B0))
)

(97)

Based on this observation, we propose a modified version of Langevin diffusion for full fine-tuning, which
accounts for layer-wise sensitivity. With this modified definition, the imbalance matrix is again invariant in
expectation.
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Figure 7: Evaluation of layer-wise sensitivity when running DP-GD on 2-layer linear networks and synthetic
data (Béthune et al., 2024). We initialize the network parameter according to Proposition E.10. We take
average on 104 random seeds with standard error smaller than 10−3.

Definition E.11 (Modified Langevin diffusion for fine-tuning). Let Qt be the standard h-dimensional brow-
nian motion. Let Q′

t be a h×d matrix whose entries are standard and independent brownian motions. Then
we define the modified Langevin diffusion for fine-tuning a two-layer linear network as

∂v = − ∇vL(v, B)∂t +
√

2σ2d∂Qt

= − BXT X(BT v − XT Y )∂t +
√

2σ2d∂Qt

∂B = − ∇BL(v, B)∂t +
√

2σ2∂Q′
t

= − v(XBT v − Y )T X∂t +
√

2σ2∂Q′
t.

(98)

The only difference between this diffusion and Equation (93) is the additional factor of
√

d, shown in red,
reflecting the fact that the linear head has greater function sensitivity than the feature extractor.

E.3 Linear probing loss upper bound

The main idea of the proofs for convergence is to replace gradient terms with loss terms. By doing so, we
obtain inequalities containing only loss terms and some other constants.

For the linear probing setting, we first show the strong convexity of the loss function. Then we can use the
Lojasiewicz inequality to replace gradient terms with the loss terms.
Lemma E.12 ((Strong) convexity of linear probing phase). The empirical risk L = 1

2
∑n

i=1 ℓ(f(xi), yi) is
1-strongly convex.
Lemma E.13 (Initial loss before linear probing). If we initialize the linear head by vt=0 ∼ N (0, βIh×h),
then the expected empirical risk before linear probing is

E[L0] = 1
2(hβ + ∥Y ∥2) (99)

Proof of Lemma E.13. We initialize the linear head with a Gaussian distribution N (0, βIh×h). So the ex-
pected initial loss is:

E[L0] =1
2E[∥XBT

0 v0 − Y ∥2] (100)
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=1
2E[vT

0 B0XT XBT
0 v0 + Y T Y − 2Y T XBT

0 v0] (101)

=1
2E[vT

0 B0BT
0 v0 + Y T Y ] (102)

//we assumed in section 3.1 that B0 has orthogonal rows (103)

=1
2E[vT

0 v0 + Y T Y ] (104)

//by vt=0 ∼ N (0, Ih×h) (105)

=1
2(hβ + ∥Y ∥2) (106)

Theorem E.14 (Expected loss upper bound of linear probing). The expected empirical risk in linear probing
is upper bounded by

E[Llp(t)] ≤ e−tE[L0] + (1 − e−t)(γ + hσ2) (107)

Proof of Theorem 4.4. By Lemma E.12, L is 1-strongly convex, we have the Lojasiewicz inequality. Here
we abuse the notation L and consider it as a function of the linear head v because we fix B0 in the linear
probing process.

L(v) − {min
v

L} ≤ 1
2∥∇vL(v)∥2

2 (108)

For simplicity, we denote E[L] := L̂. Consider the Langevin diffusion in Equation equation 92 when L(v) −
{minv L} − hσ2 > 0, by Corollary E.2:

∂L(v) =⟨∇vL(v), −∇vL(v)∂t +
√

2σ2∂Wt⟩ + hσ2∂t (109)
∂L(v) ≤ − ∥∇vL(v)∥2

2∂t + ⟨∇vL(v),
√

2σ2∂Wt⟩ + hσ2∂t (110)
//By Lojasiewicz inequality (111)

∂L(v) ≤(−L(v) + {min
v

L})∂t + ⟨∇vL(v),
√

2σ2∂Wt⟩ + hσ2∂t (112)

∂(E[L(v)] − {min
v

L} − hσ2) ≤ − (E[L(v)] − {min
v

L})∂t + hσ2∂t (113)

∂(L̂ − {min
v

L} − hσ2) ≤ − (L̂ − {min
v

L} − hσ2)∂t (114)

//When L̂ − {min
v

L} − hσ2 > 0 (115)

∂ ln |L̂ − {min
v

L} − hσ2| ≤ − 1∂t (116)

ln |L̂ − {min
v

L} − hσ2| ≤ ln |L̂(v0) − {min
v

L} − hσ2| − t (117)

L̂ − {min
v

L} − hσ2 ≤e−t(L̂(v0) − {min
v

L} − hσ2) (118)

L̂ ≤e−t(L̂(v0) − {min
v

L} − hσ2) + {min
v

L} + hσ2 (119)

L̂ ≤e−tL̂(v0) + (1 − e−t)({min
v

L} + hσ2) (120)

L̂ ≤e−tL̂(v0) + (1 − e−t)(γ + hσ2) (121)

When we substitute the initial loss L(v0) with the hyper-parameters we use in the random initialization, we
obtain the following corollary.
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Corollary E.15 (Expected loss upper bound of linear probing from random initialization). If we initialize
the linear head by vt=0 ∼ N (0, Ih×h), then the expected loss is upper bounded by

E[Llp(t)] ≤ 1
2(hβ + ∥Y ∥2)e−t + (1 − e−t)(γ + hσ2) (122)

Proof of Corollary E.15. The result is immediate when we combine Lemma E.13 and Theorem 4.4.

E.4 Imbalance matrix from linear probing

In the convergence analysis of fine-tuning, we eliminate variables and simplify the Langevin dynamics by
the imbalance matrix. In this part, we characterize how the imbalance matrix changes in the linear probing
phase. The following results will later help us analyze LP-FT.
Lemma E.16 (Eigenvalues of imbalance matrix at the beginning of fine-tuning). During the linear probing
phase (Equation equation 92), for the imbalance matrix defined in Definition E.8,

1. the minimum eigenvalue of the imbalance matrix is always −1;

2. other eigenvalues evolve in this way:

E[λ] = E
[
∥v∥2

2
]

− 1 ≥ −1 (123)

Proof of Lemma E.16. Consider any eigenpair (λ, u) of matrix D, we have

Du =λu (124)
(vvT − B0BT

0 )u =λu (125)
(vvT − Ih×h)u =λu (126)

(vT u)v =(λ + 1)u (127)
(128)

We can take any u ⊥ v and (u, −1) is an eigenpair of D. So −1 is always an eigenvalue of D. We need to
discuss two different cases here:

1. If λ = −1, we only know that u ⊥ v.

2. If λ ̸= −1, then v and u are parallel. Say u = αv, then

u = vT u

λ + 1v (129)

αv =α∥v∥2
2

λ + 1 v (130)

=⇒ λ =∥v∥2
2 − 1 ≥ −1 (131)

Proposition E.17 (Expected eigenvalue of imbalance matrix at the beginning of fine-tuning). Say we run
linear probing for time t. If we initialize the linear head by vt=0 ∼ N (0, Ih×h), then for the imbalance matrix
defined in Definition E.8, we have

E[∥v∥2] = hβe−2t + 2∥B0XT Y ∥2(e−t − e−2t) + (∥B0XT Y ∥2 + hσ2)(1 − e−2t) (132)

throughout the linear probing process. Then by Lemma E.16, for those eigenvalues not equal to −1, we have

E[λ] = E
[
∥v∥2

2
]

− 1 = hβe−2t + 2∥B0XT Y ∥2(e−t − e−2t) + (∥B0XT Y ∥2 + hσ2)(1 − e−2t) − 1 (133)

at the beginning of fine-tuning after linear probing.
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Proof of Proposition E.17. By Equation equation 92, the Langevin diffusion of linear probing is:

∂v = −B0XT (XBT
0 v − Y )∂t +

√
2σ2∂Wt = −v∂t + B0XT Y ∂t +

√
2σ2∂Wt (134)

We consider the evolution of vT v: by Itô’s formula (Equation equation E.1)

∂vT v =2vT ∂v + (∂v)T Ih(∂v) (135)
∂vT v = − 2vT (v − B0XT Y )∂t + 2vT

√
2σ2∂Wt + 2hσ2∂t (136)

∂vT v =(−2vT v + 2vT B0XT Y )∂t + 2vT
√

2σ2∂Wt + 2hσ2∂t (137)

To solve the above equation, we need to solve the dynamics of vT B0XT Y :

∂Y T XBT
0 v = − Y T XBT

0 (v − B0XT Y )∂t +
√

2σ2∂Wt (138)
∂E[Y T XBT

0 v] = − E[Y T XBT
0 v]dt + ∥B0XT Y ∥2∂t (139)

∂

∂t
E[Y T XBT

0 v − ∥B0XT Y ∥2] = − E[Y T XBT
0 v − ∥B0XT Y ∥2] (140)

∂

∂t
ln |E[Y T XBT

0 v − ∥B0XT Y ∥2]| = − 1 (141)

|E[Y T XBT
0 vt − ∥B0XT Y ∥2]| =|E[Y T XBT

0 v0 − ∥B0XT Y ∥2]| · exp(−t) (142)

When we initialize the linear head by vt=0 ∼ N (0, Ih×h), we have E[Y T XBT
0 v0] = 0. Then

|E[Y T XBT
0 vt − ∥B0XT Y ∥2]| =|E[Y T XBT

0 v0 − ∥B0XT Y ∥2]| · exp(−t) (143)
E[∥B0XT Y ∥2 − Y T XBT

0 vt] =E[∥B0XT Y ∥2 − Y T XBT
0 v0] · exp(−t) (144)

So we can rewrite Equation equation 137 as:

∂E[∥v∥2] =(−2E[∥v∥2] + 2E[vT B0XT Y ])∂t + 2hσ2∂t (145)
∂E[∥v∥2] =(−2E[∥v∥2] + 2(E[∥B0XT Y ∥2 − Y T XBT

0 v0] · exp(−t) + ∥B0XT Y ∥2))∂t + 2hσ2∂t (146)
1
2

∂

∂t
E[∥v∥2] = − E[∥v∥2] + E[∥B0XT Y ∥2 − Y T XBT

0 v0] · exp(−t) + (∥B0XT Y ∥2 + hσ2) (147)

Let a1 = E[∥B0XT Y ∥2 −Y T XBT
0 v0], a2 = ∥B0XT Y ∥2 +hσ2, f(t) = E[∥v∥2] and rewrite the above equation:

1
2f ′(t) + f(t) =a1e−t + a2 (148)

f ′(t) + 2f(t) =2a1e−t + 2a2 (149)
e2tf ′(t) + 2e2tf(t) =2a1et + 2a2e2t (150)

e2tf(t)
∣∣∣∣t
0

=(2a1et + a2e2t)
∣∣∣∣t
0

(151)

e2tf(t) =f(0) + 2a1(et − 1) + a2(e2t − 1) (152)
f(t) =f(0)e−2t + 2a1(e−t − e−2t) + a2(1 − e−2t) (153)

Since we initialize the linear head by vt=0 ∼ N (0, Ih×h), we have f(0) = hβ and a1 = ∥B0XT Y ∥2.

Lemma E.18 (Imbalance matrix in fine-tuning). During fine-tuning (Equation equation 93), the imbalance
matrix D in Definition E.8 evolves as

∂

∂t
E[D] = (1 − d)σ2Ih×h (154)

where d is the dimension of data inputs (B ∈ Rh×d).
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Proof of Lemma E.9. We prove this lemma by analyzing the infinitesimal generator A of imbalance matrix
D at any time:

A(D)ij := lim
t↓0

ED[(D(t))ij ] − (D)ij

t
(155)

=0 + σ2
∑

i′∈[h]

∑
j′∈[h]

1[i′ = j′ = i = j] (156)

− σ2
∑

i′∈[h],j′∈[d]

∑
i′′∈[h],j′′∈[d]

1[i′ = i′′ = i = j and j′ = j′′] (157)

the generator is zero for i ̸= j. So we can just consider the case where i = j.

A(D)ii =σ2
∑

i′∈[h]

∑
j′∈[h]

1[i′ = j′ = i] (158)

− σ2
∑

i′∈[h],j′∈[d]

∑
i′′∈[h],j′′∈[d]

1[i′ = i′′ = i and j′ = j′′] (159)

=(1 − d)σ2 (160)

Lemma E.19 (Monotonic eigenvalue of imbalance matrix in fine-tuning). Denote Dlp as the imbalance
matrix right after linear probing phase. All eigenvalues of the imbalance matrix are decreasing in expectation
during fine-tuning. Specifically,

E[λ(D)] = E[λ(Dlp)] + (1 − d)σ2t (161)

where t is the time-span of fine-tuning process.

Proof of Lemma E.19. Pick any eigenpair (λ, u) of imbalance matrix D (Definition E.8) such that ∥u∥2 = 1.
By Itô’s lemma (Equation equation E.1):

∂λ =uT (∂D)u + uT (∂D)(λI − D)†(∂D)uT (162)
=(1 − d)σ2∥u∥2

2∂t + ∂Mt + (1 − d)2σ4uT (λI − D)†uT (163)
=(1 − d)σ2∂t + ∂Mt + (1 − d)2σ4uT (λI − D)†uT (164)

where Mt is the martingale induced by the Brownian noise and (·)† denotes the pseudo inverse of a certain
matrix. Say the the singular value decomposition (SVD) of D is

D = UΣUT = U

λ1 0
λ2

0
. . .

UT (165)

where we have λ ∈ diagΣ and u being a column vector in U . So we can write the SVD of (λI − D) as:

λI − D = V Σ′V T = V

λ − λ1 0
λ − λ2

0
. . .

V T (166)

where we obtain V by removing u in the columns of U and we obtain Σ′ by removing λ in Σ. Then the
pseudo inverse of (λI − D) is

(λI − D)† = V Σ′V T = V


1

λ−λ1
0

1
λ−λ2

0
. . .

V T (167)
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Since U is orthogonal, we shall have V T u = 0. Then we can rewrite the stochastic dynamics of D as:

∂

∂t
E[λ] = (1 − d)σ2 (168)

E.5 Fine-tuning loss

Lemma E.20 (Bounding the norm of linear head ∥v∥2
2). During fine-tuning (Equation equation 93), we can

bound the norm of ∥v∥2
2 with the imbalance matrix D in Definition E.8 as

λ +
√

λ2 + 4∥w∥2

2 ≤ ∥v∥2
2 ≤

λ̄ +
√

λ̄2 + 4∥w∥2

2 (169)

where we denote λ = λmin(D̂), λ̄ = λmax(D̂).

Proof of Lemma E.20. Given the information of imbalance matrix, we can bound the linear head norm.
Denote λ = λmin(D), λ̄ = λmax(D). Denote w = BT v and multiply D with v on both sides:

vT Dv =(vT v)2 − (vT B)(BT v) (170)
vT Dv =∥v∥4

2 − ∥w∥2
2 (171)

We have a range for the Rayleigh quotient: xT Dx
xT x

∈ [λ, λ̄]. So we obtain two inequalities:{
∥v∥4

2 − ∥w∥2
2 ≥ λ∥v∥2

2
∥v∥4

2 − ∥w∥2
2 ≤ λ̄∥v∥2

2
(172)

=
{

∥v∥4 − λ∥v∥2 − ∥w∥2 ≥ 0
∥v∥4 − λ̄∥v∥2 − ∥w∥2 ≤ 0

(173)

To get a lower bound of v, we can solve two quadratic inequalities. For the first quadratic equation, since
the smaller root is non-positive, λ −

√
λ2 + 4∥w∥2 ≤ 0, we just bound ∥v∥2 with the larger root:

∥v∥2 ≥
λ +

√
λ2 + 4∥w∥2

2 (174)

similarly, for the second quadratic equation, we obtain an upper bound for ∥v∥2 with the right-side zero
point:

∥v∥2 ≤
λ̄ +

√
λ̄2 + 4∥w∥2

2 (175)

Lemma E.21 (Bounding eigenvalues of BT B (re-stated from Min et al. (2023b))). During fine-tuning
(Equation equation 93), we can bound any nonzero eigenvalue λi of BT B as

λi ∈

−λ̄ +
√

λ̄2 + 4(zT
i w)2

2 ,
−λ +

√
λ2 + 4(zT

i w)2

2

 (176)

where we use the imbalance matrix D in Definition E.8 and denote{
λ̄ = λmax(D)
λ = λmin(D)

(177)
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Proof of Lemma E.21. The proof of this lemma follows the proof of Lemma 3 in Min et al. (2023b). BT B is
symmetric and positive semidefinite (xT BT Bx = ∥Bx∥2

2 ≥ 0). So every eigenvalue of BT B is non-negative.

D has at most one positive eigenvalue: if D has more than one eigenvalues, then the subspace of Rh spanned
by the all positive eigenvectors has dimension at least 2, which must have non-trivial intersection with
ker(vT ) as dim(ker(vT )) = h − 1. Then there exists a nonzero vector z ∈ ker(vT ) such that zT Dz > 0, which
would imply −zT BBT z = zT Dz > 0, a contradiction.

For any eigenvalue-eigenvector pair (λi, zi) of BT B where λi ̸= 0 and zi ∈ Sd−1,

λ2
i =zT

i (BT B)2zi (178)
//replace something with imbalance matrix (179)

λ2
i =(zT

i w)2 − zT
i BT DBzi (180)

λ2
i − (zT

i w)2 = − zT
i BT DBzi (181)

λ2
i − (zT

i w)2 ∈(zT
i (BT B)zi) · [−λmax, −λmin] (182)

λ2
i − (zT

i w)2 ∈λi · [−λmax, −λmin] (183)

again, we can rewrite this as two quadratic inequalities{
λ2

i + λmaxλi − (zT
i w)2 ≥ 0

λ2
i + λminλi − (zT

i w)2 ≤ 0
(184)

from them we know that there are two possible intervals:
λi ∈

[
−∞,

−λmax−
√

λ2
max+4(zT

i
w)2

2

]
∪
[

−λmax+
√

λ2
max+4(zT

i
w)2

2 , +∞
]

λi ∈
[

−λmin−
√

λ2
min+4(zT

i
w)2

2 ,
−λmin+

√
λ2

min+4(zT
i

w)2

2

] (185)

Note that we must have λi ≥ 0 since BT B is positive semidefinite. So we can rewrite the bounds:

λi ∈

[
−λmax +

√
λ2

max + 4(zT
i w)2

2 ,
−λmin +

√
λ2

min + 4(zT
i w)2

2

]
(186)

since the function f(x) = −x +
√

x + c2 is monotonically decreasing, we have f(λmax) ≤ f(λmin), i.e. the
lower bound is no greater than the upper bound, i.e. the above interval is always non-empty.

E.6 Numerical conjecture on the eigenvalues

Conjecture E.22 (Small relative error induced by Jensen gap (Equation 218)). We denote the minimum
eigenvalue of the imbalance matrix D as λ. The relative error E[max(0,−λ)1/2]2−E[λ]

E[max(0,−λ)1/2]2 increases slowly in time
and is smaller than 1% under reasonable number of training epochs. Here we provide an empirical example
with huge noise scale (much greater than the common noise scale in real-world applications). We observe
that the relative approximation error is insignificant even with huge noise scale.

E.7 Fine-tuning loss upper bound

Lemma E.23 (Imbalance matrix in fine-tuning under layerwise noise). During fine-tuning (Equation (98)),
the imbalance matrix D in Definition E.8 evolves as

E
[

dD

dt

]
= 0 (187)
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Figure 8: Growth of the relative error E[max(0,−λ)1/2]2−E[λ]
E[max(0,−λ)1/2]2 in the experiment setting: (1) we use a two-layer linear

network with a linear head of size h = 8 and a feature extractor of size h × d = 8 × 10; (2) we train the linear network
with DP-SGD; (3) we repeat the experiment with large noise multipliers σ = 50 and σ = 100.

Proof of Lemma E.23. We prove this lemma by analyzing the infinitesimal generator A of imbalance matrix
D:

A(D0(v, B))ij := lim
t↓0

ED0 [Dij ] − (D0)ij

t
(188)

=0 + σ2
∑

i′∈[h]

∑
j′∈[h]

1[i′ = j′ = i = j] (189)

− σ2
∑

i′∈[h],j′∈[d]

∑
i′′∈[h],j′′∈[d]

1[i′ = i′′ = i = j and j′ = j′′] (190)

the generator is zero for i ̸= j. So we can just consider the case where i = j.

A(D0(v, B))ii =σ2
∑

i′∈[h]

∑
j′∈[h]

1[i′ = j′ = i] (191)

− σ2
∑

i′∈[h],j′∈[d]

∑
i′′∈[h],j′′∈[d]

1[i′ = i′′ = i and j′ = j′′] (192)

=(d − d)σ2 (193)
=0 (194)

Theorem E.24 (Loss upper bound of fine-tuning). In fine-tuning under layerwise noise (Equation equa-
tion 98), we have

E[L] ⪅ E[L]e(−λ̄+
√

2σ2(1+d))t + L□(1 − e(−λ̄+
√

2σ2(1+d))t) (195)

where L□ = σ2 (1+d)∥XT Y ∥−dλ

λ̄−
√

2σ2(1+d) .

Proof of Theorem 4.5. We first simplify the loss dynamics:

∂L =∂
1
2∥XBT v − Y ∥2 (196)

=1
2
〈
∇v∥XBT v − Y ∥2, ∂v

〉
+ 1

2
〈
∇B∥XBT v − Y ∥2, vec(∂B)

〉
(197)

+ 1
4(∂v)T H∥XBT v−Y ∥2(∂v) + 1

4 [vec(∂B)]T H∥XBT v−Y ∥2vec(∂B) (198)

=(XBT v − Y )T XBT ∂v + (XBT v − Y )T X(∂B)T v (199)

+ 1
2(∂v)T BBT (∂v) + 1

2 [vec(∂B)]T H∥XBT v−Y ∥2vec(∂B) (200)
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= − (XBT v − Y )T XBT BXT (XBT v − Y )∂t + (XBT v − Y )T XBT
√

2σ2d∂Wt (201)
− (XBT v − Y )T XXT (XBT v − Y )vT v∂t + (XBT v − Y )T X(

√
2σ2∂W ′

t )v (202)
+ σ2trace(BBT )∂t + σ2d∥v∥2∂t (203)

= − (BT v − XT Y )T BT B(BT v − XT Y )∂t + (BT v − XT Y )T BT
√

2σ2∂Wt (204)
− (BT v − XT Y )T (BT v − XT Y )vT v∂t + (BT v − XT Y )T (

√
2σ2∂W ′

t )v (205)
+ σ2trace(BT B)∂t + σ2d∥v∥2∂t (206)

By Lemma E.20 and Lemma E.21, we have

∂EL = − E[(w − XT Y )T (BT B + vT vId×d)(w − XT Y )]∂t + σ2E[∥B∥2
F + d∥v∥2

2]∂t (207)

≤E

−∥w − XT Y ∥2
2

λ +
√

λ2 + 4∥w∥2

2 ∂t − ∥w − XT Y ∥2
2

−λ̄ +
√

λ̄2 + 4(zT
minw)2

2 ∂t

 (208)

+ E

σ2d
−λ +

√
λ2 + 4(zT

minw)2

2 ∂t + σ2d
λ̄ +

√
λ̄2 + 4∥w∥2

2 ∂t

 (209)

≤ − 1
2E[∥w − XT Y ∥2

2(Λmin + Λmax)]∂t + 1
2σ2E[dΓmin + Γmax]∂t (210)

where we define

Λmin = λ +
√

λ2 + 4∥w∥2 ≥ max (0, 2λ)

Λmax = −λ̄ +
√

λ̄2 + 4(zT
minw)2 ≥ max

(
0, −2λ̄

)
Γmin = −λ +

√
λ2 + 4(zT

minw)2 ≤ max (2∥w∥, 2∥w∥ − 2λ) = 2∥w∥ + 2 max(0, −λ)

Γmax = λ̄ +
√

λ̄2 + 4∥w∥2 ≤ max(2∥w∥, 2∥w∥ + 2λ̄) = 2∥w∥ + 2 max(0, λ̄)

(211)

Denote the probability measure of the state at time t as νt. Then by using Jensen’s inequality, reverse
Hölder’s inequality, etc., we can bound the first term:

E[∥w − w∗∥2
2(Λmin + Λmax)] =

∫
∥w − w∗∥2

2(Λmin + Λmax)dνt (212)

≥
(∫

∥w − w∗∥−1
2 dνt

)−2(∫
(Λmin + Λmax)1/2dνt

)2
(213)

=E[∥w − w∗∥−1
2 ]−2E[(Λmin + Λmax)1/2]2 (214)

≥E[∥w − w∗∥2
2]E[(Λmin + Λmax)1/2]2 (215)

according our empirical observation (Conjecture E.22) (216)
we ignore the Jensen gap for the second multiplier (217)

⪆ − 1
2E[∥w − w∗∥2

2]E[λ̄] (218)

By Lemma E.19 (219)
=E[∥w − w∗∥2

2](−E[λ̄(D0)] + (d − 1)σ2t) (220)
=2(−E[λ̄(D0)] + (d − 1)σ2t) · E[L] (221)

Then we rewrite the upper bound:

∂E[L] ≤ − 1
2E[∥w − XT Y ∥2

2(Λmin + Λmax)]∂t + 1
2σ2E[dΓmin + Γmax]∂t (222)

∂E[L] ⪅ − λ̄E[L]∂t + σ2(
√

2(1 + d)E[L]1/2 + (1 + d)∥XT Y ∥ − dλ)∂t (223)
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∂E[L] ⪅(−λ̄ +
√

2σ2(1 + d))E[L]∂t + σ2((1 + d)∥XT Y ∥ − dλ)∂t (224)

E[L] ⪅E[L]e(−λ̄+
√

2σ2(1+d))t + L□(1 − e(−λ̄+
√

2σ2(1+d))t) (225)

where L□ = σ2 (1+d)∥XT Y ∥−dλ

λ̄−
√

2σ2(1+d) .

F Theory with Clipping

In this section, we present the first theoretical investigation on Langevin diffusion with clipping. We believe
that our contribution is significant for the Langevin diffusion and private optimization research community.
We summarize our findings and contributions in the following list:

• A new definition for Langevin diffusion with clipping (Definition F.1).

• Zeroth order approximation error for the clipped Langevin diffusion (Theorem F.3).

• Privacy guarantee for the clipped Langevin diffusion (Theorem F.4).

• The exact “discrete vs. continuous” algebraic correspondence between the clipped Langevin diffusion
and vanilla DP-SGD (Remark F.2).

• Feature distortion analysis for the clipped Langevin diffusion (Theorem F.5).

• The existence proof of a unique strong solution for the clipped Langevin diffusion (Corollary F.7).

Definition F.1 (Clipped Langevin diffusion). Say we work on parameter θ ∈ Rp to minimize a group of
loss functions {ℓi}i∈[n]. The parameter evolve according to the following stochastic differential equation.

∂θ = −
∑
i∈[n]

clipC(∇ℓi(θ))∂t + σ∂ξt (226)

This equation is the clipped Langevin diffusion. ξt is a vector containing p independent 1-dimensional
Brownian motion. The clipping function is defined by a constant C > 0 and

clipC(∇ℓi(θ)) := min
(

1,
C

∥∇ℓi(θ)∥2

)
∇ℓi(θ).

This definition allows us to establish the first exact "discrete vs. continuous" algebraic correspondence
between clipped Langevin diffusion and vanilla DP-SGD, creating a continuous analytical framework that
closely mirrors real DP-SGD implementations.
Remark F.2 (Algebraic correspondence between the clipped Langevin diffusion and DP-SGD). The update
rule of the vanilla DP-SGD with step-size η > 0 can be written as (Abadi et al., 2016):

θk+1 = θk − η
1

|B|
∑
i∈Bk

(
clipC(∇ℓi(θ)) + σN (0, C2I)

)
(227)

where B is the batch size and Bk is the batch of data points sampled at step k. We can rewrite the update
rule by assuming full sampling, η̃ = η 1

|B| and σ̃ = σC:

θk+1 = θk − η̃
∑
i∈[n]

(clipC(∇ℓi(θ)) + σ̃N (0, I)) (228)

One can compare this update rule with the clipped Langevin diffusion (Equation (226)):

∂θ = −
∑
i∈[n]

clipC(∇ℓi(θ))∂t + σ∂ξt (229)
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It is easy to see the algebraic correspondence between the above two equations. We provide a rigorous
derivation of DP-SGD update by discritizing the clipped Langevin diffusion with the Euler–Maruyama
method.

Suppose that we want to solve the clipped Langevin diffusion on some interval of time [0, T ]. Then the
Euler–Maruyama approximation to the true solution θ is the Markov chain θ̃ defined as follows:

• Partition the interval [0, T ] into K equal subintervals of width η̃ > 0:

0 = τ0 < τ1 < · · · < τK = T and η̃ = T

K
(230)

• Let θ̃0 = θ0 at the initialization.

• Iteratively compute θ̃k for 1 ≤ k ≤ K by

θ̃k = θ̃k−1 − η
∑
i∈[n]

(
clipC(∇ℓi(θ̃k−1)) + σN (0, I)

)
(231)

In this way, we rediscover the update rules for DP-SGD by discretizing the clipped Langevin diffusion.

We give an approximation error bound following (Freidlin et al., 2012, Theorem 1.2, Chapter 2.1).
Theorem F.3 (Zeroth order approximation error). For all t > 0, δ > 0, we have

E
[∥∥∥θt − θ

(0)
t

∥∥∥2
]

≤
(

σ(2p) 1
2 t

1
2 + 2nCt

)2
(232)

Proof of Theorem F.3.

E[∂∥θt − θ
(0)
t ∥2] =E[⟨θt − θ

(0)
t , ∂θt − ∂θ

(0)
t ⟩ + 2pσ2∂t] (233)

∂E[∥θt − θ
(0)
t ∥2] ≤E[4nC∥θt − θ

(0)
t ∥∂t + 2pσ2∂t] (234)

E[∥θt − θ
(0)
t ∥2] ≤

∫ T

0
(4nC · E[∥θt − θ

(0)
t ∥] + 2pσ2)∂t (235)

E[∥θt − θ
(0)
t ∥2] ≤

∫ T

0
(4nC ·

√
E[∥θt − θ

(0)
t ∥2] + 2pσ2)∂t (236)

E[∥θt − θ
(0)
t ∥2] ≤2pσ2T + 4nC

∫ T

0
·
√

E[∥θt − θ
(0)
t ∥2]∂t (237)

By Lemma F.10, we have

E[∥θt − θ
(0)
t ∥2] ≤

(
σ(2p) 1

2 t
1
2 + 2nCt

)2
(238)

Note that this approximation error significantly improves upon the O(exp(T )) error found under standard
regularity assumptions (Freidlin et al., 2012, Theorem 1.2, Chapter 2.1).

We present a privacy guarantee for the clipped Langevin diffusion by deriving an upper bound on the KL
divergence.
Theorem F.4 (KL Divergence Bound for Clipped Langevin Diffusion). Let θ0, θ′

0 have the same distribution
Θ0, Θ′

0, θT be the solution to Equation (226) given initial condition θ0 and database D, θ′
T be the solution to

Equation (226) given initial condition θ′
0 and database D′, such that D ∼ D′. Let Θ[0,T ] be the distribution

of the trajectory θt∈[0,T ]. Then for any T > 0:

KL(Θ[0,T ]∥Θ′
[0,T ]) ≤ 2n2C2

σ2 T (239)
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Proof of Theorem F.4. By Theorem B.1 & 3.1 of Ye et al. (2023a),

KL(Θ[0,T ]∥Θ′
[0,T ]) = 1

2σ2

∫ T

0
E


∥∥∥∥∥∥
∑
i∈[n]

clipC(∇ℓi(θ; D)) −
∑
i∈[n]

clipC(∇ℓi(θ; D′))

∥∥∥∥∥∥
2

2

 dt

≤ 1
2σ2

∫ T

0
4n2C2dt

=2n2C2

σ2 T

We demonstrate that our main result on feature distortion holds for clipped Langevin diffusion, reinforcing
our paper’s key insight. Here, our approximation technique is essential, as the stochastic analysis of Langevin
diffusion with nonlinear & nonconvex coefficients would be extremely challenging without it.
Theorem F.5 (Random initialization causes feature distortion). If Assumption 3.1 and Assumption 3.2
hold, and the linear head is randomly initialized by v0 ∼ N (0, βIh×h), then with probability 1 − 2−h, ∀β >
0, ∃j ∈ [h], ∆t > 0 such that during the time interval (0, ∆t), DP-FFT distorts wj reducing its alignment with
the data cluster. The cosine similarity between wj and the data cluster mean x̄c(j) decreases monotonically:

∂

∂t
cos
(
wj , x̄c(j)

) ∣∣∣∣
t

< 0, ∀t ∈ (0, ∆t) (240)

Proof of Theorem F.5. The per-sample gradient for the i-th data point (before clipping) is

∇(v,W )ℓi =
[

∇vℓi

vec(∇W ℓi)

]
=


yiℓirelu(W ⊤xi)

yiℓiv1relu′(w⊤
1 xi)xi

yiℓiv2relu′(w⊤
2 xi)xi

...
yiℓivhrelu′(w⊤

h xi)xi

 = yiℓi


relu(W ⊤xi)

v1relu′(w⊤
1 xi)xi

v2relu′(w⊤
2 xi)xi

...
vhrelu′(w⊤

h xi)xi

 (241)

where the vec(·) operator is defined as an operation that converts a tensor to a vector (Magnus & Neudecker,
1999, Chapter 2.4). We use vec(·) to collect the gradients of v and W into one vector. Then we can write
the clipped per-sample gradient for the i-th data point as:

clipC(∇(v,W )ℓi) = min
(

1,
C

∥∇(v,W )ℓi∥2

)
· yiℓi


relu(W ⊤xi)

v1relu′(w⊤
1 xi)xi

v2relu′(w⊤
2 xi)xi

...
vhrelu′(w⊤

h xi)xi

 . (242)

Therefore, the dynamics of the parameter wj for any j ∈ [h] under gradient clipping is,

∂wj

∂t
= min

(
1,

C

∥∇(v,W )ℓi∥2

)
· yiℓi · vjrelu′(w⊤

j xi)xi (243)

Note that the clipping operation only multiplies the gradient with a normalization term min
(

1, C
∥∇(v,W )ℓi∥2

)
.

As a result, it does not change the signs of the gradient entries. Then we are ready to analyze the cosine
similarity between wj and the mean data direction:

∂

∂t
cos(wj , x̄c(j)) =

2(w⊤
j x̄c(j))

∥wj∥2
2

[
∥wj∥2

2x̄⊤
c(j)

∂wj

∂t
− x̄⊤

c(j)wjw⊤
j

∂wj

∂t

]
(244)
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=
2(w⊤

j x̄c(j))
∥wj∥2

2

[
∥wj∥2

2x̄c(j) − (x̄⊤
c(j)wj)wj

]⊤ ∂wj

∂t
(245)

//by Assumption 3.2 (246)

sign
(

∂

∂t
cos(wj , x̄c(j))

)
=sign

([
∥wj∥2

2x̄c(j) − (x̄⊤
c(j)wj)wj

]⊤ ∂wj

∂t

)
(247)

//the clipping operation perserves the sign (248)

=sign
(

vj(∥wj∥2
2 − (x̄⊤

c(j)wj)2)
)

(249)

=sign(vj) (250)

Since we initialize v ∼ N (0, βIh×h), with probability 1 − 2−h, there exists j such that vj < 0 at t = 0 =⇒
∂
∂t cos(wj , x̄c(j)) < 0 at t = 0. By the continuity of the approximated Langevin diffusion, there exists ∆t > 0
such that for any t ∈ (0, ∆t),

∂

∂t
cos(wj , x̄c(j)) < 0. (251)

We establish that a unique and strong solution exists for the clipped Langevin diffusion. This result is par-
ticularly noteworthy because it bypasses the standard regularity assumptions typically required in existence
proofs for stochastic differential equations (Mao, 1997; Øksendal, 2014). Standard conditions demand that
both the drift and diffusion coefficients exhibit linear growth in their parameters and are Lipschitz contin-
uous. However, such assumptions are often impractical for the loss functions prevalent in modern machine
learning. Additionally, deep learning architectures frequently introduce non-differentiability (as seen in the
discontinuities of ReLU activation functions, for instance). In response, we propose relaxed regularity criteria
to address these challenges.
Theorem F.6 (Criteria of unique strong solution for SDE with irregular drift (Veretennikov, 1981, Theorem
1)). Consider the following stochastic differential equation:

dxt = a(xt, t)dt + b(xt, t)dXt (252)

where

• Xt denotes the standard Wiener process.

• a is a bounded, d-dimensional vector-valued, measurable function.

• b is a bounded, matrix-valued, continuous measurable function of size d × d. b satisfies the following
properties:

– (Uniform elliptic condition): For any x ∈ Rd, v ∈ Rd, t ≥ 0, there exists a constant λ > 0 such
that

vT b(x, t)bT (x, t)v ≥ λvT v (253)

– (Fixed time uniform continuity): For every T > 0 and any t ∈ [0, T ], b(·, t) is uniformly
continuous on any compact metric subspace U ⊂ Rd.

Then a unique strong solution Xt exists for the stochastic differential equation.
Corollary F.7. If the per-sample loss function ℓ has a discontinuity set with Lebesgue measure 0, then the
clipped Langevin diffusion (Equation (226)) has a unique strong solution.
Remark F.8 (Toy-case example of Corollary F.7). Consider a 2-layer ReLU network f parametrized by
v ∈ Rh, W ∈ Rd×h:

f(x) := v⊤relu
(
W ⊤x

)
, (254)
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a singleton training dataset D := {(x0, y0)}:

x0 =


1
0
...
0

 , y0 = 1 (255)

and exponential loss ℓ(y, ŷ) := exp(−yŷ). Then the drift coefficient (e.g. a(xt, t) in Theorem F.6) of the loss
Langevin diffusion is

−clipC (∇ℓ0(y0, f(x0))) = − clipC (∇ℓ0(y0, f(x0))) (256)

= − min
(

1,
C

∥∇(v,W )ℓ0∥2

)
· yiℓi


relu(W ⊤xi)

v1relu′(w⊤
1 xi)xi

v2relu′(w⊤
2 xi)xi

...
vhrelu′(w⊤

h xi)xi

 (257)

The set of all discontinuities of this drift coefficient has Lebesgue measure zero in the parameter space
Rh × Rd×h. This drift coefficient is a measurable function. So we can apply Theorem F.6 in this example.
Theorem F.9 (Exitence of stationary distribution (Cerrai, 2002, Theorem 2.2.1)). Consider the following
stochastic differential equation:

dxt = a(xt)dt + b(xt)dXt (258)
where Xt denotes the standard Wiener process, a is d-dimensional vector-valued continuous function, and b
is a matrix-valued, continuous function of size d × d. If the following conditions hold:

• There exists k ≥ 0 such that
sup

x∈Rd

∥b(x)∥
1 + |x|k

< +∞ (259)

• The function a is locally Lipschitz continuous and there exists m ≥ k such that

sup
x∈Rd

∥a(x)∥
1 + |x|2m+1 < +∞ (260)

• For any p ≥ 1 there exists cp such that for each x, y ∈ Rd

⟨a(x) − a(y), x − y⟩ + p∥b(x) − b(y)∥2
2 ≤ cp∥x − y∥2

2 (261)

• There exist ν, γ > 0, c ∈ R such that for any x, h ∈ Rd

⟨a(x + h) − a(x), h⟩ ≤ −κ|h|2m+2 + c(|x|γ + 1) (262)

Then there exists at least one stationary distribution for the stochastic differential equation.

F.1 Technical results

Lemma F.10 (Gronwall type inequality IV). Let x : [a, b] → R+ be a continuous function that satisfies the
inequality:

x(t) ≤ M +
∫ t

a

Ψ(s)ω(x(s))ds, t ∈ [a, b]

where M ≥ 0, Ψ : [a, b] → R+ is continuous and ω : R+ → R+ is continuous and monotone-increasing. Then
the estimation

x(t) ≤ Φ−1
(

Φ(M) +
∫ t

a

Ψ(s)ds

)
, t ∈ [a, b]

holds, where Φ : R → R is give by
Φ(u) :=

∫ u

u0

1
ω(s)ds, u ∈ R
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Proof of Lemma F.10. This proof is done by Sever Silvestru Dragomir.

We just copy the proof here for completeness.

Denote y(t) as

y(t) :=
∫ t

a

ω(x(s))Ψ(s)ds, t ∈ [a, b]

we have y(a) = 0, and by the recursive integral condition of x, we obtain:

y′(t) =x(t)Ψ(t), t ∈ [a, b]
y′(t) ≤ω(M + y(t))Ψ(t)

1
ω(M + y(t))d(y(t)) ≤Ψ(t)dt

By integration on [a, t], we have(∫ y(t)

0

1
ω(M + s)ds

)
− Φ(M) ≤

∫ t

a

Ψ(s)ds

∫ y(t)

0

1
ω(M + s)ds ≤

∫ t

a

Ψ(s)ds + Φ(M)

that is,

Φ(y(t) + M) ≤
∫ t

a

Ψ(s)ds + Φ(M)

By taking the inverse mapping of Φ on both sides, we finish the proof.
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