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SuperBPE: Space Travel for Language Models

Abstract

The assumption across nearly all language model
(LM) tokenization schemes is that tokens should
be subwords, i.e., contained within word bound-
aries. Despite providing a seemingly reasonable
inductive bias, we question whether this com-
mon practice limits the potential of modern LMs.
Whitespace is not a reliable delimiter of mean-
ing, as evidenced by multi-word expressions (e.g.,
by the way), cross-lingual variation in the num-
ber of words needed to express a concept (e.g.,
spacesuit helmet in German is raumanzughelm),
and languages that do not use whitespace at all
(e.g., Chinese). To explore the potential of tok-
enization beyond subwords, we introduce a “su-
perword” tokenizer, SuperBPE, that incorporates
a simple pretokenization curriculum into the byte-
pair encoding (BPE) algorithm to first learn sub-
words and then superwords that bridge whites-
pace. This modification dramatically improves
encoding efficiency: when limiting vocabulary
size to 200k, SuperBPE encodes a fixed piece of
text with up to 33% fewer tokens on average than
BPE. In experiments, we pretrain 8B transformer
LMs from scratch while fixing model size, vo-
cabulary size, and train compute, varying only
the algorithm for learning the vocabulary. Our
model trained with SuperBPE achieves an average
+4.0% absolute improvement over the BPE base-
line across 30 downstream tasks (including +8.2%
on MMLU), while simultaneously requiring 27%
less compute at inference time. In analysis, we
find that SuperBPE produces segmentations of
text that are more uniform in per-token difficulty,
perhaps because SuperBPE tokens often capture
common multi-word expressions that function se-
mantically as a single unit. In sum, SuperBPE
offers a straightforward and local modification
to tokenization that improves both encoding ef-
ficiency and downstream performance, yielding
better LMs overall.

1. Introduction
Tokenizers are the lens through which language models
(LMs) view data: they segment a stream of bytes into a
sequence of tokens in the LM vocabulary. In the era of trans-
former LMs, tokenization is done at the level of subwords,
meaning that tokens consist of parts of words (including
complete words), but they cannot bridge whitespace. Intu-
itively, subword tokens capture meaningful and composable
semantic units.

Although seemingly reasonable, is this common practice a
good one? Whitespace is an unreliable delimiter of mean-
ing (Martin, 2017); many groups of words (e.g., a lot of
or search engine) function semantically as single units,
and English speakers store thousands of such multi-word
expressions in their mental lexicon (Church, 2011; Contr-
eras Kallens & Christiansen, 2022). Cross-lingually, there
is considerable variation in whether a given meaning is
conveyed by a single word or several words. At the ex-
treme, languages such as Chinese and Japanese do not use
whitespace at all, and tokens in these languages can span
multiple words or even entire sentences (e.g., the tokenizers
of GPT-4O [OpenAI, 2024] or DEEPSEEKV3 [DeepSeek-
AI, 2025]), but this has seemingly not hindered LMs from
performing well on these languages. In fact, including multi-
word tokens promises to be beneficial in many ways: it may
shorten token sequences, lowering the costs of LM training
and inference, and offer representational advantages by seg-
menting text into more semantically cohesive units (Salehi
et al., 2015; Otani et al., 2020; Hofmann et al., 2021).

In this work, we introduce a superword tokenization algo-
rithm that produces a vocabulary of both subword and “su-
perword” tokens, which we use to describe tokens bridging
more than one word. Our method, SuperBPE, introduces
a pretokenization curriculum to the popular byte-pair en-
coding (BPE) algorithm (Sennrich et al., 2016): whitespace
pretokenization is initially used to enforce learning of sub-
word tokens only (as done in conventional BPE), but it is
disabled in a second stage, where the tokenizer transitions to
learning superword tokens. Notably, SuperBPE tokenizers
scale much better with vocabulary size: BPE quickly hits a
point of diminishing returns and begins adding increasingly
rare subwords to the vocabulary, while SuperBPE contin-
ues to discover common word sequences to treat as single
tokens and improve encoding efficiency (see Figure 1).
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Figure 1: SuperBPE tokenizers encode text much more efficiently than BPE, and this advantage grows with larger
vocabulary size. Encoding efficiency (y-axis) is measured in bytes-per-token, the number of bytes encoded per token
over a large corpus. In the 40 bytes of text shown on the top of this figure, SuperBPE uses 7 tokens while BPE uses 13,
so the methods’ efficiencies are 40/7 = 5.7 and 40/13 = 3.1 bytes-per-token, respectively. In the graph, the encoding
efficiency of BPE plateaus early because it exhausts the valuable whitespace-delimited words in the training data. In fact,
it is bounded above by the gray dotted line, which shows the maximum achievable encoding efficiency with BPE if every
whitespace-delimited word were in the vocabulary. In contrast, SuperBPE has dramatically better encoding efficiency that
continues to improve with increased vocabulary size, as it can continue to add common word sequences to treat as tokens in
the vocabulary. The different gradient lines show different transition points from learning subword to superword tokens,
which always yields an immediate improvement. SuperBPE also encodes text more efficiently than a naive variant of BPE
that does not use whitespace pretokenization at all.

In our experiments, we pretrain English LMs at 8B scale
from scratch. When fixing the model size, vocabulary size,
and training compute—varying only the algorithm for learn-
ing the vocabulary—we find that models trained with Su-
perBPE tokenizers consistently and significantly improve
over counterparts trained with a BPE tokenizer while also
being 27% to 33% more efficient at inference time. Our
best SuperBPE model achieves an average improvement
of +4.0% over 30 downstream tasks, including +8.2% on
MMLU, and wins on 25 of the 30 individual tasks (Table 1).

In analysis, we find that SuperBPE tokenizers produce seg-
mentations that are more evenly distributed in difficulty.
This makes sense from a qualitative linguistic analysis: Su-
perBPE tokens often correspond to multi-word expressions
in English, i.e., word sequences that function as a single se-
mantic unit (see Table 3 for examples). For instance, many
prepositional phrases (e.g., by accident or in the long run)
are essentially fixed and require memorization. The indi-

vidual words in these expressions have very little possible
variation in context, leading to very low-loss predictions
under BPE models.

SuperBPE is a straightforward and local modification to
tokenization, requiring no changes to the model architecture,
training framework, or decoding strategy. Under the same
training setup, SuperBPE provides a remarkable boost in
both encoding efficiency and performance, yielding better
language models overall.

2. SuperBPE
We first explain the standard byte-pair encoding (BPE; Sen-
nrich et al., 2016) tokenization algorithm (§2.1), and then
introduce SuperBPE, which extends BPE to superwords
(§2.2).
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SuperBPE: Space Travel for Language Models

2.1. Background on BPE

BPE is a tokenization algorithm that greedily learns a sub-
word vocabulary given training data.1 The algorithm takes
a sample of text and a target vocabulary size T as input.2

The first step of BPE is pretokenization, which splits the
text into chunks that limit the extent of tokenization; merges
cannot bridge these chunks, so the final learned tokens are
parts of these chunks. Canonically, pretokenization in BPE
consists of splitting on whitespace so that common word
sequences do not become a single token. This made sense
given the historical context of (Sennrich et al., 2016), which
aimed to improve word-level tokenization by segmenting
words into morphologically meaningful subwords.

After pretokenization, the iterative learning algorithm be-
gins. Training text is first split into bytes; the starting vocab-
ulary is the set of all bytes. Then, the frequencies of all pairs
of neighboring tokens are recorded, and the most frequent
pair is merged into a single, new token at every position in
the text where it occurs. The newly merged token is added
to the vocabulary. For instance, if the merge is (t, he), then
all instances of the token sequence [t, he] will be replaced
with the, which is added to the vocabulary. The token pair
frequencies are then updated, and the next most frequent
pair is again merged into a new token. This continues until
the vocabulary reaches the target size T .

2.2. SuperBPE tokenization

SuperBPE introduces a simple intervention in the pretok-
enization step, separating tokenizer training into two dis-
crete phases, wherein the tokenizer (1) first learns subwords
(by using pretokenization to prevent merges across whites-
pace) and then (2) learns superwords (by lifting this restric-
tion). Stage 1 is equivalent to regular BPE training and
continues up to a certain vocabulary size t, which we call
the transition point (t < T ). In stage 2, tokenizer training
resumes from the vocabulary learned thus far, but this time
whitespace pretokenization is skipped. As a result, token
pairs that bridge whitespace are considered, enabling super-
words to be added to the vocabulary. Intuitively, we intend
for our tokenizer to first learn base units of semantic mean-
ing, then combine these units into common sequences for
a much more efficient vocabulary. Note that t = T corre-
sponds to BPE, and t = 0 corresponds to a naive revision of
BPE that foregoes whitespace pretokenization at any point
in training.

We note that training tokenizers requires more system mem-

1The algorithm originated in 1994 in the field of data compres-
sion (Gage, 1994).

2Note that although the creation of a tokenizer is referred to
as “learning,” there are no parameters involved in the case of BPE,
and the algorithm is completely deterministic given the data.
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Figure 2: Encoding efficiency varies smoothly with the
choice of transition point t in SuperBPE’s pretokenization
curriculum.

ory and CPU time when done without whitespace preto-
kenization (as in stage 2 of SuperBPE). This is because
the training data is typically represented by a dictionary
of “words” along with their counts. With whitespace preto-
kenization, the “words” are whitespace-separated chunks
(e.g., common words) stored once along with a large count,
conferring substantial savings in memory. Without whites-
pace pretokenization, the “words” are extremely long (e.g.,
entire training documents), leading to minimal deduplica-
tion of the text and excessively large dictionaries. Fortu-
nately, tokenizer training must be done only once; in our
experiments, SuperBPE tokenizers train in a few hours on
100 CPUs, a negligible cost compared to LLM pretraining.

2.3. Encoding efficiency

A tokenizer’s encoding efficiency can be measured in bytes-
per-token, i.e., how many UTF-8 bytes are encoded, on
average, in each token over a large corpus of text (see cal-
culation in Figure 1). We train a series of tokenizers on a
10 GB subset of data from OLMO 2’s pretraining corpus and
evaluate encoding efficiency on a held-out subset.

Shown in Figure 1, SuperBPE scales much better with vo-
cabulary size than does BPE. BPE quickly plateaus around
a vocabulary size of ∼50K, achieving 4.45 bytes-per-token
at a vocabulary size of 200k. In fact, even with infinite vo-
cabulary size (namely, if every whitespace-delimited word
were in the vocabulary), BPE cannot exceed 4.68 bytes-per-
token, i.e., the average word length in the held-out subset.
SuperBPE exceeds this upper bound with a mere ∼12k vo-
cabulary size and reaches 5.55 bytes-per-token at 50K and
6.63 at 200k.

Surprisingly, SuperBPE is also more efficient than BPE
with whitespace pretokenization completely disabled. Since
BPE is a greedy algorithm, completely disabling whitespace
pretokenization may cause it to make highly suboptimal
choices early on. In particular, tokens in this setting often
consist of the end of the previous word and start of the
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Category Task BPE SuperBPE ∆

Knowledge ARC-Easy (MC) 46.6 67.1 +20.5∗∗

ARC-Challenge (MC) 35.1 50.6 +15.5∗∗

Jeopardy (EM) 42.1 41.8 −0.3

MMLU (MC) 36.5 44.7 +8.2∗∗

OpenbookQA (MC) 33.2 54.4 +21.2∗∗

TriviaQA (EM) 60.6 61.3 +0.7

WikidataQA (EM) 69.7 70.9 +1.2∗

Math Arithmetic (EM) 54.8 59.3 +4.5∗∗

& Reasoning GSM8K (EM) 6.4 6.7 +0.3

LSAT-AR (MC) 21.3 23.0 +1.7

Operators (EM) 35.5 33.6 −1.9

Repeat-Copy-Logic (EM) 3.1 6.2 +3.1

Coding HumanEval (pass@10) 15.9 13.4 −2.5

MBPP (pass@10) 27.5 28.3 +0.8

Reading BoolQ (MC) 59.7 64.6 +4.9∗∗

Comprehension CoQA (EM) 12.6 13.2 +0.6

DROP (EM) 31.3 31.4 +0.1

HotpotQA (EM) 53.5 55.2 +1.7∗

SQuAD (EM) 75.1 75.8 +0.7

Commonsense CommonsenseQA (MC) 33.5 53.8 +20.3∗∗

COPA (MC) 77.0 85.8 +8.8∗∗

PIQA (MC) 55.2 59.8 +4.6∗

Winograd (MC) 50.4 53.1 +2.7

Winogrande (MC) 47.3 52.6 +5.3∗

Language HellaSwag (MC) 29.7 33.7 +4.0∗∗

Understanding LAMBADA (EM) 77.0 70.6 −6.4∗∗

Language Identification (EM) 8.8 9.0 +0.2

String CS Algorithms (EM) 46.1 48.6 +2.5

Manipulation CUTE (EM) 31.3 32.6 +1.3

Dyck-Languages (EM) 15.9 14.2 −1.7

Average 39.8 43.8 +4.0

Table 1: Performance of BPE and SuperBPE models (with transition point t = 180k) on 30 downstream tasks. The
two models are fixed in model parameters (8B), vocabulary size (200k), and training FLOPs (corresponding to ∼330B
tokens), differing only in their algorithm for learning the vocabulary. The SuperBPE model outperforms the baseline on 25
of 30 tasks and requires 27% less compute at inference time. See Figure 3 for the moving task average during pretraining
and §A.5 for further evaluation details. ∗p < 0.05, ∗∗p < 0.005 under a McNemar test.

next word, as opposed to sequences of complete words. By
keeping whitespace pretokenization on at the beginning,
we can avoid suboptimal choices while still obtaining a
tokenizer with superwords.

Figure 2 shows how SuperBPE’s encoding efficiency de-
pends on the choice of transition point t. The relationship
is smooth, with t = 80k achieving the best encoding effi-
ciency. However, we will see in our experiments that the
optimal tokenizer for LM pretraining is not necessarily the
most encoding-efficient.

3. Experiments
In our main experiments, we pretrain models from scratch
while fixing the total training FLOPs and vocabulary size,
changing only the algorithm for learning the vocabulary.

3.1. Setup

We first pretrain 8B models with BPE and SuperBPE to-
kenizers. We use the OLMO2 7B (OLMo et al., 2024)
training configuration,3 including the model architecture,
training hyperparameters, and pretraining corpus, but reduce
the total number of training steps to correspond to ∼330B
tokens (compared to 4T). Following prior work (Pagnoni
et al., 2024), we also fix the effective context size (measured
in bytes) for each model. This prevents SuperBPE models
from gaining an advantage by seeing more textual context
for the same next-token prediction (Xiong et al., 2024).
Since more efficient models have a shorter context length in
tokens, the training steps are adjusted accordingly to match

3OLMO2 7B has 7.30B parameters, while our 8B BPE and
SuperBPE models have 8.12B parameters due to their increased
vocabulary size.
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Figure 3: Average task performance on 30 downstream
tasks, evaluated at every 5000 steps in model pretraining.
We see that SuperBPE models consistently outperform the
baseline that uses a BPE tokenizer. All compared models
share the same vocabulary size and train budget; t denotes
the transition point in SuperBPE’s pretokenization curricu-
lum.

the total train FLOPs at the end of training.4 Note that in this
setting, a same-sized SuperBPE model uses fewer inference
FLOPs than the BPE model.

We fix the vocabulary size of all tokenizers to 200,000 (in
the same ballpark as, e.g., GEMMA at 250k [Google, 2024],
GPT-4O at 200k, and LLAMA3 at 130k [Meta, 2024]).5

We consider three transition points for SuperBPE: t = 80k,
which has the best encoding efficiency, and two later transi-
tions, t = 160k and t = 180k. All tokenizers are trained on
the same 10 GB subset of OLMO2’s pretraining mix. §A.1
provides further details about tokenizer training.

We also train a slightly larger 11B SuperBPE model with
t = 180k, which approximately matches the 8B BPE base-
line in total bytes of training data seen as well as both train
and inference compute. See Table 2 for exact specifications
for all runs.

3.2. Results on downstream tasks

We evaluate SuperBPE on 30 benchmarks covering knowl-
edge, math & reasoning, coding, reading comprehension,
common sense, language understanding, and string manip-
ulation. The full evaluation suite is shown in Table 1 and
evaluation details are in §A.5.

4In practice, models using our more efficient tokenizers could
shift some or all of the “saved” context FLOPs to longer effective
contexts instead of more training steps.

5For 8B models, a 200k vocabulary size is close to the rec-
ommendation of (Tao et al., 2024) based on primarily English
data. We fix the vocabulary size to simplify comparisons between
models.

Figure 3 shows the task average during pretraining. All Su-
perBPE models substantially outperform the BPE baseline
at the end of training. The strongest 8B SuperBPE model,
which has transition point t = 180k (the latest one we con-
sider), outperforms the baseline by 4.0% on average and
wins on 25 of 30 individual tasks. Table 1 shows the per-task
performance for this model (see §A.5 for results for the other
models). The largest gains are on multiple choice tasks;
when considering these alone, the performance improve-
ment grows to +9.7%. The only task on which SuperBPE
loses in a statistically significant way is LAMBADA; here,
we observe that SuperBPE is actually ahead for the majority
of training checkpoints, but accuracy dips at the end from
75.8% to 70.6% (see Figure 11).

Notably, while the choice of transition point affects the
performance of the resulting model, all reasonable choices
are significantly stronger than the baseline. When using
the most encoding-efficient transition point, i.e., t = 80k,
we see a +3.1% task improvement over BPE and inference
compute reduced by 35%. Later transition points empiri-
cally cede some gains in encoding efficiency in exchange
for further improvements in performance.6

4. Analysis
4.1. Language modeling

Following prior work (Biderman et al., 2023; Xue et al.,
2022; Yu et al., 2023; Wang et al., 2024), we evaluate lan-
guage modeling performance using bits-per-byte (BPB),
which normalizes the loss by the tokenizer’s encoding ef-
ficiency to fairly compare models with different tokeniz-
ers. This is necessary because longer tokens, on aver-
age, contain more information and therefore are more dif-
ficult to predict. Bits-per-byte is defined as BPB(x) =
LCE(x)/(ln(2) ·nbytes), where nbytes is the length of the text
in bytes and LCE(x) is the sum of the cross-entropy loss
over the entire text.7 We find that BPE 8B, SuperBPE 8B
(t = 180k), and SuperBPE 11B attain 0.7465, 0.7482, and
0.7445 BPB, respectively, at the end of training. Although
these numbers do not differ appreciably, the ranking of mod-
els according to BPB and downstream task performance are
not consistent.

6This finding adds to the ongoing debate about the relationship
between tokenization compression and LM performance (Gallé,
2019; Goldman et al., 2024; Schmidt et al., 2024), providing further
evidence that higher compression does not necessarily improve
performance.

7Bits-per-byte of different models are considered comparable
because total cross-entropy loss is a universal quantity representing
the number of additional bits required to reconstruct the text given
the model. This quantity is normalized by the number of bytes for
easier interpretation.
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BPE 8B SuperBPE 8B SuperBPE 11B
SuperBPE transition point t = 80k t = 160k t = 180k t = 180k

Parameter count (billion) 8.12 8.12 8.12 8.12 11.30
Train steps 76,543 118,419 112,722 107,982 77,525

Average context length (bytes) 18,262 18,272 18,263 18,268 18,268
Vocabulary size 200k 200k 200k 200k 200k
Context length (tokens) 4,096 2,756 2,884 3,000 3,000
Encoding efficiency (bytes/token) 4.46 6.63 6.33 6.09 6.09

Train compute (1021 FLOPs) 17.2 17.2 17.2 17.2 17.2
Inference compute (109 FLOPs/byte) 3.75 2.42 2.54 2.65 3.75

Table 2: Training setup for the models we compare. We fix the vocabulary size and effective context size (measured
in bytes) for each model and adjust the total number of training steps accordingly so that each model has the same total
train budget (in FLOPs). The 8B SuperBPE models match the 8B BPE model in train compute but use less inference
compute; the 11B SuperBPE model matches the 8B baseline in both train and inference compute. Numbers fixed across
model settings are highlighted in the same color.
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Figure 4: Histogram of per-token losses for both models
from Table 1, measured over a large corpus of text. We
observe that the SuperBPE model is a more consistent per-
former, making fewer predictions with very high or very
low loss.

4.2. Loss distribution analysis

Why does the SuperBPE 8B model achieve slightly higher
normalized language modeling loss (§4.1) than the baseline
BPE model despite outperforming it on a wide variety of
downstream tasks (§3.2)? To investigate this, we plot the
distribution of per-token BPB8 for both models on data
sampled from the pretraining data mixture in Figure 4.

Although the BPE and SuperBPE models have very similar
BPB on average, we see that loss is distributed very differ-
ently over the training data. Compared to the baseline, the
SuperBPE model makes fewer predictions with either very
high or very low loss.

8The per-token BPB is the per-token loss (in bits) divided by
the average encoding efficiency.

Low-loss tokens. We find that the reduction in low-loss
tokens is attributable to a small set of extremely common
words that the BPE model can easily predict, but are not
available to SuperBPE as they are merged into larger su-
perword tokens. For instance, the tokens the, of, and
to (the three most common words in the corpus) appear an

order of magnitude more often under BPE than SuperBPE
in the same corpus of text. When excluding these three to-
ken types alone, the BPB ranking reverses, with SuperBPE
achieving 0.02 lower BPB than BPE.

The reduction in low-loss tokens also makes sense from
a qualitative linguistic analysis of SuperBPE tokens. In
Table 3, we show the most common POS tags among su-
perword tokens in SuperBPE along with random examples
for each tag. The tokens often capture common multi-word
expressions (by accident, of course, for a living) that func-
tion as a single semantic unit (Schneider et al., 2014). As an
example, prepositions (IN) figure prominently in superword
tokens (e.g., depend on, distinction between) and require
lexeme-specific memorization. The individual words in
these fixed expressions are often semantically vacuous and
have little possible variation in context, so they are easy to
predict once memorized.

High-loss tokens. On the other hand, the much thinner tail
of very high-loss tokens shows that, in the worst case, the
SuperBPE model consistently puts more probability mass on
the correct token. On average, we expect models to suffer
high loss on tokens that are difficult to predict. This may
explain why SuperBPE can outperform BPE on downstream
tasks but have higher average BPB: the tokens scored in task
evaluations tend to be among the hardest to predict. This is
consistent with prior findings that models generally continue
to improve in downstream tasks even as their overall loss
plateaus due to improving on a narrow and difficult slice of
the distribution (Liu et al., 2023).
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POS tag # Example Tokens

NN, IN 906 case of, hint of, availability of, emphasis on, distinction between
VB, DT 566 reached a, discovered the, identify the, becomes a, issued a
DT, NN 498 this month, no idea, the earth, the maximum, this stuff
IN, NN 406 on top, by accident, in effect, for lunch, in front
IN, DT 379 on the, without a, alongside the, for each

IN, DT, NN 333 for a living, by the way, into the future, in the midst
NN, IN, DT 270 position of the, component of the, review of the, example of this
IN, DT, JJ 145 like any other, with each other, for a short, of the entire
VB, IN, DT 121 worked as a, based on the, combined with the, turned into a

IN, DT, NN, IN 33 at the time of, in the presence of, in the middle of, in a way that
,, CC, PRP, VB 20 , and it was, , but I think, , but I have, , but I am
IN, DT, JJ, NN 18 in the long run, on the other hand, for the first time, in the same way

Table 3: The most common POS tags for tokens of 2, 3, and 4 words in SuperBPE, along with random example tokens
for each tag. NN = noun, IN = preposition, VB = verb, DT = determiner, CC = conjunction, JJ = adjective, and PRP =
pronoun.

4.3. Scaling

To characterize the scaling behavior of SuperBPE, we also
perform experiments at smaller scales.9 We train baseline
models at 680M and 1.9B and scale the base number of
training tokens proportionately to the number of parameters.
We also perform runs at 0.5×, 2×, and 4× the base num-
ber of tokens to observe the trend with respect to training
duration. Then, we train two SuperBPE models that match
the training budget of each baseline BPE model, one that
matches the baseline in parameter count (analogous to Su-
perBPE 8B) and a larger model that matches in both train
and inference compute (analogous to SuperBPE 11B). We
focus on the t = 180k tokenizer to reduce complexity.

We plot BPB at the end of training for each run in Figure 5.
In the under-trained regime, both SuperBPE models achieve
lower BPB than the baseline. In the over-trained regime,
the ranking from worst to best is SuperBPE (matching pa-
rameter count), BPE, and SuperBPE (matching inference
compute). Additionally, the separation between the models
increases with further over-training. We provide additional
results and comments on scaling in §B.3.

5. Related Work
Tokenization beyond subwords Prior work has explored
processing text at multiple levels of granularity (Lai et al.,
2021; Zhang et al., 2021) or creating multi-word tokens
through frequency-based identification of n-grams (Gee
et al., 2023; Kumar & Thawani, 2022). However, these
were explored in limited experimental contexts (mainly for
machine translation) and had mixed effectiveness. Naively
disabling pretokenization in BPE has been found to severely

9For scaling, we focus on BPB since our downstream eval-
uations are too noisy for our small models to make meaningful
comparisons.
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Figure 5: Scaling results for 680M and 1.9B baseline
model sizes. Compared to the BPE baseline, SuperBPE
with matching parameter count achieves lower BPB in
the under-trained regime, while SuperBPE with matching
inference compute achieves lower BPB than the baseline
at every model size and every training budget tested. Note
that BPB comparisons between BPE and SuperBPE models
do not track downstream task accuracy due to differences in
how BPE and SuperBPE models distribute loss over tokens
(§4.2).

degrade model performance (Dagan et al., 2024; Schmidt
et al., 2024; Kudo, 2018), although this approach may be
more promising for unigram tokenization (Kudo & Richard-
son, 2018), as adopted by JURASSIC (Lieber et al., 2021)
and BLOOMBERGGPT (Wu et al., 2023). In concurrent
work, (Huang et al., 2025) disentangle input and output
vocabularies, expanding only the former to include n-gram
tokens. Their method requires significant modifications
of the LM input component and considers fixed length of
n-grams.

Multi-token prediction Multi-token prediction (MTP)
equips LMs with some extra parameters to predict multi-
ple tokens in a single time step (Qi et al., 2020; Gloeckle
et al., 2024) and was recently adopted by DEEPSEEK-V3,
which discarded the MTP module at inference-time. MTP’s
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effectiveness corroborates that LMs are capable of predict-
ing more than one subword in a forward pass. However,
these approaches fix the number of tokens predicted in each
time step and require modifications to the architecture and
training objective. We note that the benefits of MTP and
superword tokens may be orthogonal.

Tokenizer-free language modeling Some works have ex-
plored the possibility of completely removing tokenization
from LMs and directly modeling text as a sequence of bytes
(Clark et al., 2022; Xue et al., 2022; Wang et al., 2024).
To overcome the increased compute requirement due to
expanded sequence lengths, alternative architectures have
been proposed that either segment bytes into fixed-length
patches (Tay et al., 2022; Yu et al., 2023) or dynamically
predict patch boundaries with sub-modules (Nawrot et al.,
2023; Pagnoni et al., 2024; Ahia et al., 2024), increasing
model complexity.

6. Conclusion
Although tokenization lies at the foundation of language
modeling, acting as the lens through which models view
text, the algorithms in use have remained largely unchanged
over the past decade. SuperBPE builds on the observa-
tion that tokens need not be limited to subwords, extending
the BPE algorithm to superword tokens. When replacing
subword BPE tokenizers with SuperBPE tokenizers in pre-
training, we find that language models perform better over
a large suite of downstream tasks, while also being sub-
stantially more efficient at inference time. These benefits
are achieved without modifying the underlying model ar-
chitecture, making SuperBPE a compelling alternative to
BPE that seamlessly integrates with modern language model
ecosystems.
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A. Experimental setup details
A.1. Tokenizer training

We use the HuggingFace tokenizers (Wolf et al., 2020)
library for tokenizer training.

A.1.1. TOKENIZER TRAINING DATA

We produce the tokenizer training data by sampling docu-
ments uniformly at random from the OLMO2 stage 2 pre-
training data, referred to as olmo-mix. We use a 10 GB
subset because early experiments showed that data beyond
even ∼10 MB does not make a difference in the resulting
tokenizer’s encoding efficiency.

We found that olmo-mix had several extremely long doc-
uments, with the longest 1% of documents making up 15%
of the data. In particular, a full academic paper (specifi-
cally Veluri et al., 2023) is duplicated 2,224 times back-
to-back inside one document (as delimited by special EOS
tokens). Because our tokenizers are trained on small sets
of data, these extremely long documents can take up a
large proportion of the data, resulting in unusual tokens
like chunk-based processing. To circumvent pos-
sible data duplication issues, we truncate the longest 1%
of documents in the tokenizer training data to the 99% per-
centile of document lengths. As future practitioners train
SuperBPE tokenizers, we encourage especial attention to
deduplication, which may have an outsized impact on Su-
perBPE tokenizers.

A.1.2. LIMIT ON THE SIZE OF SUPERWORD TOKENS

Even after truncating the longest 1% of documents, we
found that SuperBPE tokenizers can still have extremely
long tokens consisting of highly duplicated boilerplate text
such as the Project Gutenberg license or common internet
phrases such as You are commenting using your.
This issue is already present in BPE tokenizers trained on
Chinese, which contain sentence-long tokens clearly taken
from pornographic content. For instance, tokens in GPT-
4O’s tokenizer include最新高清无码 = latest HD uncen-
sored and娱乐网址 = entertainment website. To prevent
concerns about the tokenizer directly revealing parts of the
training data (Hayase et al., 2024), we enforce an upper
bound of 4 words in our tokens. Empirically, we found that
this had no measurable impact on the encoding efficiency
of the tokenizers or the resulting trained LMs.

A.1.3. PRETOKENIZATION RULES

We implement whitespace pretokenization with the default
regex string from tokenizers which was adopted by
the GPT-2 tokenizer.

?\p{L}+| ?[ˆ\s\p{L}\p{N}]+|\s+(?!\S)|\s+

Note that the original GPT-2 pretokenization regex string
also splits on contractions, e.g., splitting I’m into [I, ’m].
Since this choice is not universal among commercial tok-
enizers and is not related to whitespace pretokenization (and
furthermore creates plenty of undesirable edge cases [Land,
2024]), we do not include this rule.

Independently of whitespace pretokenization (i.e., for both
BPE and SuperBPE tokenizers), we follow recent conven-
tion (as introduced by GPT-3.5 and borrowed by LLAMA3,
OLMO2) and pretokenize digits into blocks of 3. We make
one modification, by grouping digits into 3 from the right
rather than from the left, so that, e.g., 1000 would be pre-
tokenized as [1, 000] instead of [100, 0]. This choice
was recently found to yield improved performance on math
benchmarks, even when applied solely at inference time
(Singh & Strouse, 2024). Digit pretokenization is enforced
with the following regex.

(?=(\d{3})+(?!\d))

A.1.4. SPECIAL CASING OF COLON

In order to make our tokenizer compatible with the common
question-answering format where the prompt ends with a
colon and the continuation is expected to start with a space,
we “special-case” colon by preventing the algorithm from
learning any tokens that contain “: ” as a substring. Without
this fix, common question/answer prompts might produce
distorted distributions over completions. Please see §C.3
for further discussion. This affects the resulting tokenizer
minimally in terms of the learned vocabulary.

A.2. Scaling model configurations

When matching inference compute, the goal is to match the
average flops per byte of generated text between two models
with different tokenizers. To do so, we scale the model
up to cancel the effect of longer tokens, which requires
precise control over the model’s size. To produce a model
config with an arbitrary inference compute cost, we first
represent the inference flops per token as a polynomial in
terms of the model dimension, MLP hidden dimension, and
number of layers. Conveniently, once the model dimension
and number of layers are chosen, the flops are affine in the
MLP hidden dimension, so we can easily solve for the MLP
hidden dimension that gets us closest to the desired budget.
We fix the head dimension to that of the base model.

To find the best config overall, we grid search over the
hidden dimension (which must remain a multiple of the
head dimension) and number of layers, solving for the MLP
hidden dimension at each step. We choose the config which
expands the transformer by the most uniform factors. This is
measured by taking the ratios of the current parameters with
the base config’s parameters, applying the logarithm, and
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taking the standard deviation. While prior work has explored
the best way to scale transformer models (Tay et al., 2021;
Petty et al., 2023), we believe that scaling all parameters
uniformly is reasonable since we are only increasing the
model size by a small amount.

We present the exact model hyperparameters for all model
sizes used in our experiments in Table 4.

680M 910M 1.9B 2.5B 8B 11B

Parameter count 678.2M 912.5M 1.893B 2.536B 8.115B 11.30B
Model dimension 1024 1,216 2,048 2,304 4,096 4,608
MLP hidden dimension 8,192 9,728 16,384 18,432 22,016 24,704
Head dimension 64 64 128 128 128 128
Number of heads 16 19 16 18 32 36
Number of layers 16 18 16 19 32 37
Vocabulary size 20,0005 20,0005 20,0005 20,0005 20,0005 20,0005

Table 4: Model parameters for all model sizes. Model
sizes 910M, 2.5B, and 11B are scaled versions of 680M,
1.9B, and 8B respectively. All other parameters match those
of OLMO 300M (from the OLMO model ladder) for sizes
680M and 910M, OLMO 1B for sizes 1.9B and 2.5B, or
OLMO2 7B for sizes 8B and 11B, respectively. Maximum
sequence length values for various tokenizers are listed in
Table 2.

A.3. POS analysis

[TODO]AL

A.4. Compute used for model training

All models were pretrained on 32 8×H100 nodes.

A.5. Evaluation Suite

Our evaluation suite builds on DataComp-LM’s core eval-
uation of 22 tasks (Li et al., 2024), which was found to
provide low-variance signal of learning. We add 8 more
popular tasks (e.g., MMLU, GSM8K) while also covering
string manipulation tasks (e.g., CUTE), which are known to
be challenging for LMs due to their tokenizers.

All evaluations are based on decoding from the model and
scoring the generation by either comparing it to the ground
truth or evaluating its functional correctness (in the case of
coding tasks). For multiple choice (MC) tasks, we check
whether the predicted answer choice is an exact match (EM)
to the target (we observe that effectively 100% of model
generations are valid answer choices, especially for later
checkpoints). For open-ended tasks, we check whether the
generated output contains the ground truth answer exactly,
and for coding tasks, we report pass@10.

We provide 5 in-context examples for all tasks, except for

CoQA, which naturally contains in-context examples in the
conversational context, and the coding tasks (HumanEval
and MBPP), which are evaluated zero-shot following prior
work. We use a maximum of 5,000 examples from each
dataset, though some datasets contain much fewer examples.
BB below stands for BIG-Bench.

ARC consists of 4-way MC questions from grades 3–9 sci-
ence exams. It contains two splits, ARC-Easy, which require
knowledge of basic science, and ARC-Challenge, which re-
quire some procedural reasoning (Clark et al., 2018).

Arithmetic contains simple arithmetic problems (Brown
et al., 2020).10 We use the 2da, 2dm, and 2ds splits for
addition, multiplication, and division of (up to) 2-digit num-
bers.

BoolQ contains naturally occurring yes/no questions
paired with passages that provide an answer (Clark et al.,
2019).

CommonsenseQA contains 5-way MC questions that re-
quire commonsense knowledge to answer (Talmor et al.,
2019).

COPA contains two-way MC questions about cause and
effect (Roemmele et al., 2011; Kavumba et al., 2019).

CoQA consists of passages with a series of conversational
questions about the passage (Reddy et al., 2019). Each
question requires the prior conversational context, due to
possible coreference across questions. Because these con-
textual questions naturally serve as in-context examples, we
do not provide additional in-context examples.

BB CS Algorithms consists of two subtasks, determining
whether a given series of parentheses is balanced and identi-
fying the longest common subsequence in two letter strings
(BIG-bench, 2023).

CUTE contains questions that require the model to un-
derstand and manipulate spelling, such as replacing all in-
stances of a particular letter in a word with another letter
(Edman et al., 2024).

DROP contains questions about passages, potentially re-
quiring reasoning over multiple pieces of information in the
passage (Dua et al., 2019).

BB Dyck Languages consists of a sequence of parenthe-
ses and requires the model to predict the correct sequence

10https://huggingface.co/datasets/
EleutherAI/arithmetic
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of closing parentheses so that the entire sequence is well-
balanced.

GSM8K contains grade school math word problems that
require between 2 and 8 steps to solve. In the in-context
examples, we provide the answer passage that contains in-
termediate steps with calculator annotations removed. The
model is expected to provide the final numerical answer
after four hashtags (####) that delimit the reasoning and
final answer (Cobbe et al., 2021).

HellaSwag contains 4-way MC questions which ask for
the most natural continuation given the context (Zellers
et al., 2019).

HotpotQA contains questions along with a corresponding
passage from Wikipedia containing the answer (Yang et al.,
2018).

HumanEval contains programming problems where the
model is tasked with completing a Python function given its
docstring (Chen et al., 2021). We use “\nclass,” “\ndef,”
“\n#,” “\nif,” as stop tokens. Following the original pa-
per, we sample 20 continuations with top p = 0.95 and
temperature = 0.8. Models are allowed to generate for a
maximum of 128 new tokens. The functional correctness
of generations is automatically evaluated using test cases.
We use the 20 generation to make an unbiased estimate of
the pass@10 rate, i.e., how likely at least one of 10 sampled
solutions for a problem is correct.

Jeopardy contains open-ended questions from the “Jeop-
ardy!” quiz show.11

Lambada contains narratives without the last word, which
is inferrable given the context (Paperno et al., 2016). This
task requires models to attend to the full narrative instead of
only the local context.

BB Language Identification contains sentences in differ-
ent languages, and the task is to choose the language of the
sentence from a long list of options.

LSAT-AR contains MC questions that evaluate the ana-
lytical reasoning (AR) ability of LMs (Zhong et al., 2022;
2024). Test questions are drawn from the Law School Ad-
mission Test (LSAT) from 1991 to 2016.

MBPP contains Python programming problems where the
model is given a description of the desired function and a

11https://www.kaggle.com/datasets/tunguz/
200000-jeopardy-questions

series of unit tests. We use the same evaluation setup as
HumanEval.

MMLU contains 4-way MC questions covering 57 differ-
ent domains, covering both world knowledge and problem-
solving abilities (Hendrycks et al., 2021). Note that we
report a straight average over the 5000-example sample,
rather than a macro-average over subjects.

OpenbookQA contains 4-way MC questions that require
multi-step reasoning and commonsense knowledge (Mi-
haylov et al., 2018).

BB Operators contains questions where the model is
given a function definition and asked to compute the output
of that function given a particular input.

PIQA contains MC questions that require physical com-
monsense reasoning (Bisk et al., 2020).

BB Repeat-Copy-Logic contains instructions that ask the
model to produce a particular string (Austin et al., 2021).

SQuAD contains passages paired with questions about
the passage (Rajpurkar et al., 2016). The answer is always a
span from the passage.

TriviaQA contains open-ended questions about world
knowledge (Joshi et al., 2017).

BB WikidataQA require models to complete factual state-
ments with the correct continuation.

Winograd contains binary MC questions where the model
is given a context and asked to determine which entity a
pronoun refers to, between two options (Levesque et al.,
2012). Correctly answer the question requires commonsense
knowledge and contextual reasoning.

Winogrande contain questions with the same schema as
Winograd, but increases both the scale and difficulty of the
dataset (Sakaguchi et al., 2021).

B. Additional Results
B.1. Task evaluation

We report the individual task performance of BPE and all
SuperBPE models in Table 5 (this an expansion of Table 1).
We also show a subset of task-specific performance curves
during pretraining in Figure 11.
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Category Task BPE 8B SuperBPE 8B SuperBPE 11B
t = 80k t = 160k t = 180k

Knowledge ARC-Easy (MC) 46.6 60.8 63.6 67.1 60.6
ARC-Challenge (MC) 35.1 46.4 43.9 50.6 43.9
Jeopardy (EM) 42.1 40.2 41.8 41.8 42.2
MMLU (MC) 36.5 41.9 42.6 44.7 41.0
OpenbookQA (MC) 33.2 49.8 49.4 54.4 46.4
TriviaQA (EM) 60.6 59.7 61.9 61.3 62.3
WikidataQA (EM) 69.7 68.2 69.5 70.9 70.9

Math Arithmetic (EM) 54.8 63.2 58.6 59.3 56.9
& Reasoning GSM8K (EM) 6.4 6.9 6.7 6.7 7.4

LSAT-AR (MC) 21.3 23.9 24.3 23.0 20.9
Operators (EM) 35.5 32.2 35.5 33.6 37.9
Repeat-Copy-Logic (EM) 3.1 6.2 6.2 6.2 3.1

Coding HumanEval (pass@10) 15.9 15.0 14.4 13.4 15.9
MBPP (pass@10) 27.5 25.3 28.4 28.3 29.4

Reading BoolQ (MC) 59.7 65.2 62.3 64.6 64.7
Comprehension CoQA (EM) 12.6 12.8 12.5 13.2 13.1

DROP (EM) 31.3 28.6 32.8 31.4 33.1
HotpotQA (EM) 53.5 52.5 54.7 55.2 54.6
SQuAD (EM) 75.1 74.3 76.2 75.8 77.2

Commonsense CommonsenseQA (MC) 33.5 50.0 52.3 53.8 50.5
COPA (MC) 77.0 86.6 87.6 85.8 97.0
PIQA (MC) 55.2 57.7 61.8 59.8 59.2
Winograd (MC) 50.4 52.5 55.2 53.1 52.3
Winogrande (MC) 47.3 51.2 51.6 52.6 50.2

Language HellaSwag (MC) 29.7 31.2 30.3 33.7 36.6
Understanding LAMBADA (EM) 77.0 72.8 75.1 70.6 75.8

Language Identification (EM) 8.8 10.2 9.7 9.0 10.1

String CS Algorithms (EM) 46.1 47.3 42.6 48.6 49.1
Manipulation CUTE (EM) 31.3 32.2 32.8 32.6 35.7

Dyck-Languages (EM) 15.9 23.2 18.8 14.2 16.7

Average 39.8 42.9 43.4 43.8 43.8

Table 5: Performance of BPE and SuperBPE models on
30 downstream tasks. This is an expansion of Table 1 with
more models.

B.2. BPB evaluation

See Figure 6 for the bits-per-byte during pretraining of all
models we compare.

B.3. Additional scaling experiments

Our tokenizer has several interesting interactions with LM
scaling, purely due to its increased efficiency. For the pur-
pose of this section, let α denote the ratio of our tokenizer’s
efficiency to the efficiency of a normal BPE tokenizer. (For
example, we have α ≈ 1.49 for our most efficient tok-
enizer.)

The primary advantage of a more efficient tokenizer is a
reduction of the context length (in tokens) for the same
effective context length (in bytes). All other things being
equal, this gives:

1. A 1/α2 reduction in attention compute.

2. A 1/α reduction in non-attention compute.

3. A 1/α reduction in activation memory during training
and KV-cache size during inference.
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Figure 6: Bits-per-byte of BPE and SuperBPE mod-
els during pretraining. The BPE 8B, SuperBPE 8B
(t = 180k), and SuperBPE 11B attain 0.7465, 0.7482, and
0.7445 BPB respectively at the end of training.

Thus, if the context length is short, the total compute savings
will be close to 1/α. For longer contexts, the compute
savings may approach 1/α2. Given a fixed training budget,
there are two natural ways to convert these savings into
improved performance.

B.3.1. MATCHING MODEL PARAMETER COUNT

In many applications of language models, such as deploy-
ment to consumer or edge devices, it is crucial to keep the
model’s size under control. In this regime, we will assume
the model size fixed. This directly grants the aforemen-
tioned benefits, and we will turn to increasing the number
of training steps to match the training budget.

Since the amount of text seen per step is remains the same
due to the fixed effective context length, a more efficient to-
kenizer allows the model to see more text during training for
the same budget. This may lead to improved performance
on downstream tasks since the model is more likely to have
seen relevant training examples during training. Addition-
ally, although the model is the same size, it requires less
compute and memory at inference time to perform the same
tasks. In some settings, these gains can be used to amplify
inference-time scaling (Snell et al., 2024), leading to further
potential gains.

B.3.2. MATCHING INFERENCE COMPUTE

In other applications of language models, model size is less
critical compared to inference compute. In these situations,
it may be more desirable to scale the model size up to absorb
the extra compute.

Changing the model size has a strong impact on scaling.
Depending on the context length, we may scale the model
by a factor of anywhere between α and α2 in order to match
inference compute. Since each training step involves 1/α
as many tokens, the ratio of tokens to model parameters
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Figure 7: Results for scaling both model parameters and
train tokens proportionally. [check →]AL Compared to
the BPE baseline, we consider a SuperBPE model that
matches parameter count and a SuperBPE model that
matches inference compute. Here we see the spread be-
tween the three settings decreases with scale. [We need to
add more to this caption, e.g., the T/P ratio for the blue
and pink lines and the T/B ratio for the blue and green
lines.]AL

per step may be reduced by as much as 1/α3. Prior work
on LM scaling (Hoffmann et al., 2022; Kaplan et al., 2020)
reports diminishing gains once the ratio of the numbers of
train tokens and model parameters becomes too large. An α
times more efficient tokenizer allows us to train for up to α3

times longer while maintaining the same token/parameter
ratio and without increasing inference compute, delaying
the regime of diminishing gains.

B.3.3. EXPERIMENTS

We train 680M and 1.9B sized BPE models on various
numbers of tokens—ranging from ≈ 20 to ≈ 80 tokens
per parameter—to establish a baseline scaling trend. We
then train two models with SuperBPE tokenizers for each
baseline model: one with matching parameter count and
one with matching inference compute cost.

There are a couple interesting ways to visualize these results:
in Figure 5, we hold the model size fixed and increase the
number of training tokens, and in Figure 7, we hold the
ratio of train tokens to model parameters fixed (inference
compute matched will be fixed 0.7 times lower) and vary
both the model size and the number of training tokens. The
general trends observed from these results are that match-
ing inference compute is almost universally the best, while
matching parameter count tends to be worse than the base-
line except in the undertrained regime, where it is better than
the baseline. The differences between the different settings
increases with overtraining, but decreases when scaling both
model size and training tokens at the same time.
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Figure 8: (Left) The number of superword tokens in a Su-
perBPE tokenizer, as a function of the transition point. A
superword token is any token that violates the whitespace
pretokenization rule from Stage 1. With an early transition
point of t = 60K, about 85% of the tokens learned in Stage
2 are superword tokens. For t > 100k, close to 100% of
Stage 2 tokens are superwords. (Right) The distribution of
superword token lengths in terms of number of words, for
t = 180k.

C. Analysis of SuperBPE Tokenizers
C.1. Superword token analysis

How many superword tokens are in SuperBPE tokenizers?
While the second stage of the pretokenization curriculum
allows learning of superword tokens, subword tokens can
still be learned. Shown in Figure 8a, for transition points
t < 80k, the number of superword tokens is relatively steady
around 120k. Past t > 100k, almost all tokens learned in
Stage 2 are superword tokens. Figure 8b shows the number
of whitespace-delimited words in the superword tokens of
SuperBPE with t = 180k.

C.2. Analysis of token frequencies in encoding

We also analyze token frequency statistics under BPE versus
SuperBPE tokenizers. Figure 9a shows the relation between
token rank (in frequency) and frequency. While tokens
in BPE demonstrate a standard Zipfian relation, the slope
of SuperBPE curves have a more shallow slope, meaning
that the rate of decay in token frequency is smaller. The
smaller proportion of tokens with very low counts may
reduce prevalence and severity of glitch tokens (Rumbelow
& Watkins, 2023; Land & Bartolo, 2024).

Figure 9b shows the minimum number of tokens from the
vocabulary needed to cover any given proportion of data. For
BPE, the relation is striking—only 57% of tokens are needed
to encode 99% of the data! The remaining tokens make up
a long tail of infrequent tokens. In contrast, SuperBPE
tokenizers make better use of the vocabulary. For t = 80k
and t = 180k, this statistic is 90% and 70% of tokens,
respectively.
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Figure 9: (Left) Token counts when ordered by frequency.
The rate of decay in token frequency is smaller. (Right)
The minimum number of tokens needed to cover a given
proportion of the data. SuperBPE tokenizers make better
use of the vocabulary, while BPE tokenizers have a long tail
of infrequent tokens.

C.3. Distributional Distortion at the Prompt Boundary

Prior work (Lundberg, 2023; Phan et al., 2024) has shown
that LMs using BPE tokenizers may produce distorted gen-
erations due to the forced partition in tokenization between
a prompt and its completion. This issue stems from the
fact that users typically desire completions conditioned on a
text prompt. The natural approach to obtaining such com-
pletions is to take the prompt, tokenize it with the proper
tokenizer, and then sample a completion of the resulting
token sequence from the LM.

For a simple example of how this can go wrong, consider
a tokenizer with base vocabulary of A and B and a single
merge forming the token AB. Let’s suppose we trained a
model using this tokenizer on the strings “AA”, “AB”, and
“BB” with equal proportions. If we condition on the text
prefix “A”, there are two equally probable continuations:
“A” and “B”. However, A is the only valid completion of the
token prefix A, since the token B never follows the token A
during training. In other words, the prompt-completion pair
(A,B) is canonically tokenized using a token that crosses
the boundary between the prompt and the completion.

While this problem is shared by all BPE tokenizers, it can be
partially mitigated by pretokenization: if the prompt and the
completion are separated during the pretokenization step,
then it is impossible for a token to cross the boundary. This
fix tends to work well for English, where the completion
is typically expected to begin with whitespace, so whites-
pace pretokenization would apply. However, there are many
settings where whitespace pretokenization cannot fix the un-
derlying issue, including natural languages that do not use
whitespace to separate words (like Chinese and Japanese),
programming languages, and constrained generation (Lund-
berg, 2023; Ribeiro, 2023).

Several fixes for this issue have been proposed: at training

time, token merges can be randomly dropped (Provilkov
et al., 2020; Sims et al., 2025; DeepSeek-AI, 2025) to ex-
pose LMs to the internal makeup of tokens; at inference
time, options include token healing (Lundberg, 2023), al-
gorithmic correction (Phan et al., 2024), and enumeration
of all relevant segmentations of the prompt (Vieira et al.,
2024). We leave a detailed comparison of these techniques
to future work.

Additionally, the issue does not apply at all to models that
separate the user’s input from the model’s response using
special tokens, as is typical for chat models.

D. Other Related Work
Please see (Mielke et al., 2021) for a survey of subword
tokenization.

Pretokenization Pretokenization defines how the text is
split in order to prevent certain pairs of tokens from being
merged. GPT-2 (Radford et al., 2019) introduced a regular
expression (regex) which defines the pretokenization pattern.
These regex strings have gained complexity over time; GPT-
3.5 limits the number of digits in numerical tokens to 3,
and allows single punctuation to be merged with the start
of words (presumably to accommodate code, as it allows
.get to be a single token). Prior work has shown that,
for instance, digit pretokenization choices (Nogueira et al.,
2021; Thawani et al., 2021; Singh & Strouse, 2024) can
significantly impact arithmetic performance. It is also likely
that pretokenization affects different languages differently
(Velayuthan & Sarveswaran, 2025; Ahia et al., 2023), due
to natural statistics of the average word length, which acts
as an upper bound on encoding efficiency in that language
under subword tokenization. Nonetheless, the effectiveness
of many pretokenization choices have not been thoroughly
studied.

n-gram language models Our work is loosely related to
n-gram LMs, which incorporate n-gram statistics into the
next-word prediction (Brants et al., 2007; Liu et al., 2024).

Internal representation of semantic units Previous work
has showed that the early layers of the LM may “aggregate”
information over multi-token entities (e.g., [ New, York])
into the last token’s (e.g., York) hidden representation
(Meng et al., 2022; Kaplan et al., 2025; Lad et al., 2024).
This suggests that LMs naturally learn multi-word repre-
sentations, and segmentating text into more semantically
cohesive units at the input level (e.g., having New York
as a single token) may simplify this process.

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

SuperBPE: Space Travel for Language Models

0 25000 50000 75000 100000 125000 150000 175000 200000

Token ID

101

103

105

107

109

C
ou

nt

BPE
SuperBPE (t = 80K)

Figure 10: Token counts when ordered by token ID, which
reflects the order in which tokens were learned in tokenizer
training.
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Figure 11: Performance during pretraining for a subset of tasks in our evaluation suite.
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