
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SuperBPE: Space Travel for Language Models

Abstract

The assumption across nearly all language model
(LM) tokenization schemes is that tokens should
be subwords, i.e., contained within word bound-
aries. Despite providing a seemingly reasonable
inductive bias, we question whether this com-
mon practice limits the potential of modern LMs.
Whitespace is not a reliable delimiter of mean-
ing, as evidenced by multi-word expressions (e.g.,
by the way), cross-lingual variation in the num-
ber of words needed to express a concept (e.g.,
spacesuit helmet in German is raumanzughelm),
and languages that do not use whitespace at all
(e.g., Chinese). To explore the potential of tok-
enization beyond subwords, we introduce a “su-
perword” tokenizer, SuperBPE, that incorporates
a simple pretokenization curriculum into the byte-
pair encoding (BPE) algorithm to first learn sub-
words and then superwords that bridge whites-
pace. This modification dramatically improves
encoding efficiency: when limiting vocabulary
size to 200k, SuperBPE encodes a fixed piece of
text with up to 33% fewer tokens on average than
BPE. In experiments, we pretrain 8B transformer
LMs from scratch while fixing model size, vo-
cabulary size, and train compute, varying only
the algorithm for learning the vocabulary. Our
model trained with SuperBPE achieves an average
+4.0% absolute improvement over the BPE base-
line across 30 downstream tasks (including +8.2%
on MMLU), while simultaneously requiring 27%
less compute at inference time. In analysis, we
find that SuperBPE produces segmentations of
text that are more uniform in per-token difficulty,
perhaps because SuperBPE tokens often capture
common multi-word expressions that function se-
mantically as a single unit. In sum, SuperBPE
offers a straightforward and local modification
to tokenization that improves both encoding ef-
ficiency and downstream performance, yielding
better LMs overall.

1. Introduction
Tokenizers are the lens through which language models
(LMs) view data: they segment a stream of bytes into a
sequence of tokens in the LM vocabulary. In the era of trans-
former LMs, tokenization is done at the level of subwords,
meaning that tokens consist of parts of words (including
complete words), but they cannot bridge whitespace. Intu-
itively, subword tokens capture meaningful and composable
semantic units.

Although seemingly reasonable, is this common practice a
good one? Whitespace is an unreliable delimiter of mean-
ing (Martin, 2017); many groups of words (e.g., a lot of
or search engine) function semantically as single units,
and English speakers store thousands of such multi-word
expressions in their mental lexicon (Church, 2011; Contr-
eras Kallens & Christiansen, 2022). Cross-lingually, there
is considerable variation in whether a given meaning is
conveyed by a single word or several words. At the ex-
treme, languages such as Chinese and Japanese do not use
whitespace at all, and tokens in these languages can span
multiple words or even entire sentences (e.g., the tokenizers
of GPT-4O [OpenAI, 2024] or DEEPSEEKV3 [DeepSeek-
AI, 2025]), but this has seemingly not hindered LMs from
performing well on these languages. In fact, including multi-
word tokens promises to be beneficial in many ways: it may
shorten token sequences, lowering the costs of LM training
and inference, and offer representational advantages by seg-
menting text into more semantically cohesive units (Salehi
et al., 2015; Otani et al., 2020; Hofmann et al., 2021).

In this work, we introduce a superword tokenization algo-
rithm that produces a vocabulary of both subword and “su-
perword” tokens, which we use to describe tokens bridging
more than one word. Our method, SuperBPE, introduces
a pretokenization curriculum to the popular byte-pair en-
coding (BPE) algorithm (Sennrich et al., 2016): whitespace
pretokenization is initially used to enforce learning of sub-
word tokens only (as done in conventional BPE), but it is
disabled in a second stage, where the tokenizer transitions to
learning superword tokens. Notably, SuperBPE tokenizers
scale much better with vocabulary size: BPE quickly hits a
point of diminishing returns and begins adding increasingly
rare subwords to the vocabulary, while SuperBPE contin-
ues to discover common word sequences to treat as single
tokens and improve encoding efficiency (see Figure 1).

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

SuperBPE: Space Travel for Language Models

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
Vocabulary size

2

3

4

5

6

By
te

s
pe

r t
ok

en
 (

)

BPE
BPE w/o pretok
SuperBPE
BPE upper bound

Figure 1: SuperBPE tokenizers encode text much more efficiently than BPE, and this advantage grows with larger
vocabulary size. Encoding efficiency (y-axis) is measured in bytes-per-token, the number of bytes encoded per token
over a large corpus. In the 40 bytes of text shown on the top of this figure, SuperBPE uses 7 tokens while BPE uses 13,
so the methods’ efficiencies are 40/7 = 5.7 and 40/13 = 3.1 bytes-per-token, respectively. In the graph, the encoding
efficiency of BPE plateaus early because it exhausts the valuable whitespace-delimited words in the training data. In fact,
it is bounded above by the gray dotted line, which shows the maximum achievable encoding efficiency with BPE if every
whitespace-delimited word were in the vocabulary. In contrast, SuperBPE has dramatically better encoding efficiency that
continues to improve with increased vocabulary size, as it can continue to add common word sequences to treat as tokens in
the vocabulary. The different gradient lines show different transition points from learning subword to superword tokens,
which always yields an immediate improvement. SuperBPE also encodes text more efficiently than a naive variant of BPE
that does not use whitespace pretokenization at all.

In our experiments, we pretrain English LMs at 8B scale
from scratch. When fixing the model size, vocabulary size,
and training compute—varying only the algorithm for learn-
ing the vocabulary—we find that models trained with Su-
perBPE tokenizers consistently and significantly improve
over counterparts trained with a BPE tokenizer while also
being 27% to 33% more efficient at inference time. Our
best SuperBPE model achieves an average improvement
of +4.0% over 30 downstream tasks, including +8.2% on
MMLU, and wins on 25 of the 30 individual tasks (Table 1).

In analysis, we find that SuperBPE tokenizers produce seg-
mentations that are more evenly distributed in difficulty.
This makes sense from a qualitative linguistic analysis: Su-
perBPE tokens often correspond to multi-word expressions
in English, i.e., word sequences that function as a single se-
mantic unit (see Table 3 for examples). For instance, many
prepositional phrases (e.g., by accident or in the long run)
are essentially fixed and require memorization. The indi-

vidual words in these expressions have very little possible
variation in context, leading to very low-loss predictions
under BPE models.

SuperBPE is a straightforward and local modification to
tokenization, requiring no changes to the model architecture,
training framework, or decoding strategy. Under the same
training setup, SuperBPE provides a remarkable boost in
both encoding efficiency and performance, yielding better
language models overall.

2. SuperBPE
We first explain the standard byte-pair encoding (BPE; Sen-
nrich et al., 2016) tokenization algorithm (§2.1), and then
introduce SuperBPE, which extends BPE to superwords
(§2.2).

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

SuperBPE: Space Travel for Language Models

2.1. Background on BPE

BPE is a tokenization algorithm that greedily learns a sub-
word vocabulary given training data.1 The algorithm takes
a sample of text and a target vocabulary size T as input.2

The first step of BPE is pretokenization, which splits the
text into chunks that limit the extent of tokenization; merges
cannot bridge these chunks, so the final learned tokens are
parts of these chunks. Canonically, pretokenization in BPE
consists of splitting on whitespace so that common word
sequences do not become a single token. This made sense
given the historical context of (Sennrich et al., 2016), which
aimed to improve word-level tokenization by segmenting
words into morphologically meaningful subwords.

After pretokenization, the iterative learning algorithm be-
gins. Training text is first split into bytes; the starting vocab-
ulary is the set of all bytes. Then, the frequencies of all pairs
of neighboring tokens are recorded, and the most frequent
pair is merged into a single, new token at every position in
the text where it occurs. The newly merged token is added
to the vocabulary. For instance, if the merge is (t, he), then
all instances of the token sequence [t, he] will be replaced
with the, which is added to the vocabulary. The token pair
frequencies are then updated, and the next most frequent
pair is again merged into a new token. This continues until
the vocabulary reaches the target size T .

2.2. SuperBPE tokenization

SuperBPE introduces a simple intervention in the pretok-
enization step, separating tokenizer training into two dis-
crete phases, wherein the tokenizer (1) first learns subwords
(by using pretokenization to prevent merges across whites-
pace) and then (2) learns superwords (by lifting this restric-
tion). Stage 1 is equivalent to regular BPE training and
continues up to a certain vocabulary size t, which we call
the transition point (t < T). In stage 2, tokenizer training
resumes from the vocabulary learned thus far, but this time
whitespace pretokenization is skipped. As a result, token
pairs that bridge whitespace are considered, enabling super-
words to be added to the vocabulary. Intuitively, we intend
for our tokenizer to first learn base units of semantic mean-
ing, then combine these units into common sequences for
a much more efficient vocabulary. Note that t = T corre-
sponds to BPE, and t = 0 corresponds to a naive revision of
BPE that foregoes whitespace pretokenization at any point
in training.

We note that training tokenizers requires more system mem-

1The algorithm originated in 1994 in the field of data compres-
sion (Gage, 1994).

2Note that although the creation of a tokenizer is referred to
as “learning,” there are no parameters involved in the case of BPE,
and the algorithm is completely deterministic given the data.

20k 60k 100k 140k 180k
Transition point for 200K vocab size

6.1

6.2

6.3

6.4

6.5

6.6

By
te

s
pe

r t
ok

en
 (

)

Figure 2: Encoding efficiency varies smoothly with the
choice of transition point t in SuperBPE’s pretokenization
curriculum.

ory and CPU time when done without whitespace preto-
kenization (as in stage 2 of SuperBPE). This is because
the training data is typically represented by a dictionary
of “words” along with their counts. With whitespace preto-
kenization, the “words” are whitespace-separated chunks
(e.g., common words) stored once along with a large count,
conferring substantial savings in memory. Without whites-
pace pretokenization, the “words” are extremely long (e.g.,
entire training documents), leading to minimal deduplica-
tion of the text and excessively large dictionaries. Fortu-
nately, tokenizer training must be done only once; in our
experiments, SuperBPE tokenizers train in a few hours on
100 CPUs, a negligible cost compared to LLM pretraining.

2.3. Encoding efficiency

A tokenizer’s encoding efficiency can be measured in bytes-
per-token, i.e., how many UTF-8 bytes are encoded, on
average, in each token over a large corpus of text (see cal-
culation in Figure 1). We train a series of tokenizers on a
10 GB subset of data from OLMO 2’s pretraining corpus and
evaluate encoding efficiency on a held-out subset.

Shown in Figure 1, SuperBPE scales much better with vo-
cabulary size than does BPE. BPE quickly plateaus around
a vocabulary size of ∼50K, achieving 4.45 bytes-per-token
at a vocabulary size of 200k. In fact, even with infinite vo-
cabulary size (namely, if every whitespace-delimited word
were in the vocabulary), BPE cannot exceed 4.68 bytes-per-
token, i.e., the average word length in the held-out subset.
SuperBPE exceeds this upper bound with a mere ∼12k vo-
cabulary size and reaches 5.55 bytes-per-token at 50K and
6.63 at 200k.

Surprisingly, SuperBPE is also more efficient than BPE
with whitespace pretokenization completely disabled. Since
BPE is a greedy algorithm, completely disabling whitespace
pretokenization may cause it to make highly suboptimal
choices early on. In particular, tokens in this setting often
consist of the end of the previous word and start of the

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

SuperBPE: Space Travel for Language Models

Category Task BPE SuperBPE ∆

Knowledge ARC-Easy (MC) 46.6 67.1 +20.5∗∗

ARC-Challenge (MC) 35.1 50.6 +15.5∗∗

Jeopardy (EM) 42.1 41.8 −0.3

MMLU (MC) 36.5 44.7 +8.2∗∗

OpenbookQA (MC) 33.2 54.4 +21.2∗∗

TriviaQA (EM) 60.6 61.3 +0.7

WikidataQA (EM) 69.7 70.9 +1.2∗

Math Arithmetic (EM) 54.8 59.3 +4.5∗∗

& Reasoning GSM8K (EM) 6.4 6.7 +0.3

LSAT-AR (MC) 21.3 23.0 +1.7

Operators (EM) 35.5 33.6 −1.9

Repeat-Copy-Logic (EM) 3.1 6.2 +3.1

Coding HumanEval (pass@10) 15.9 13.4 −2.5

MBPP (pass@10) 27.5 28.3 +0.8

Reading BoolQ (MC) 59.7 64.6 +4.9∗∗

Comprehension CoQA (EM) 12.6 13.2 +0.6

DROP (EM) 31.3 31.4 +0.1

HotpotQA (EM) 53.5 55.2 +1.7∗

SQuAD (EM) 75.1 75.8 +0.7

Commonsense CommonsenseQA (MC) 33.5 53.8 +20.3∗∗

COPA (MC) 77.0 85.8 +8.8∗∗

PIQA (MC) 55.2 59.8 +4.6∗

Winograd (MC) 50.4 53.1 +2.7

Winogrande (MC) 47.3 52.6 +5.3∗

Language HellaSwag (MC) 29.7 33.7 +4.0∗∗

Understanding LAMBADA (EM) 77.0 70.6 −6.4∗∗

Language Identification (EM) 8.8 9.0 +0.2

String CS Algorithms (EM) 46.1 48.6 +2.5

Manipulation CUTE (EM) 31.3 32.6 +1.3

Dyck-Languages (EM) 15.9 14.2 −1.7

Average 39.8 43.8 +4.0

Table 1: Performance of BPE and SuperBPE models (with transition point t = 180k) on 30 downstream tasks. The
two models are fixed in model parameters (8B), vocabulary size (200k), and training FLOPs (corresponding to ∼330B
tokens), differing only in their algorithm for learning the vocabulary. The SuperBPE model outperforms the baseline on 25
of 30 tasks and requires 27% less compute at inference time. See Figure 3 for the moving task average during pretraining
and §A.5 for further evaluation details. ∗p < 0.05, ∗∗p < 0.005 under a McNemar test.

next word, as opposed to sequences of complete words. By
keeping whitespace pretokenization on at the beginning,
we can avoid suboptimal choices while still obtaining a
tokenizer with superwords.

Figure 2 shows how SuperBPE’s encoding efficiency de-
pends on the choice of transition point t. The relationship
is smooth, with t = 80k achieving the best encoding effi-
ciency. However, we will see in our experiments that the
optimal tokenizer for LM pretraining is not necessarily the
most encoding-efficient.

3. Experiments
In our main experiments, we pretrain models from scratch
while fixing the total training FLOPs and vocabulary size,
changing only the algorithm for learning the vocabulary.

3.1. Setup

We first pretrain 8B models with BPE and SuperBPE to-
kenizers. We use the OLMO2 7B (OLMo et al., 2024)
training configuration,3 including the model architecture,
training hyperparameters, and pretraining corpus, but reduce
the total number of training steps to correspond to ∼330B
tokens (compared to 4T). Following prior work (Pagnoni
et al., 2024), we also fix the effective context size (measured
in bytes) for each model. This prevents SuperBPE models
from gaining an advantage by seeing more textual context
for the same next-token prediction (Xiong et al., 2024).
Since more efficient models have a shorter context length in
tokens, the training steps are adjusted accordingly to match

3OLMO2 7B has 7.30B parameters, while our 8B BPE and
SuperBPE models have 8.12B parameters due to their increased
vocabulary size.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

SuperBPE: Space Travel for Language Models

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Train FLOPs 1e22

25

30

35

40

45
Av

g
Ta

sk
 P

er
fo

rm
an

ce
 (

)

BPE 8B
SuperBPE 8B (t = 80K)
SuperBPE 8B (t = 160K)
SuperBPE 8B (t = 180K)
SuperBPE 11B (t = 180K)

Figure 3: Average task performance on 30 downstream
tasks, evaluated at every 5000 steps in model pretraining.
We see that SuperBPE models consistently outperform the
baseline that uses a BPE tokenizer. All compared models
share the same vocabulary size and train budget; t denotes
the transition point in SuperBPE’s pretokenization curricu-
lum.

the total train FLOPs at the end of training.4 Note that in this
setting, a same-sized SuperBPE model uses fewer inference
FLOPs than the BPE model.

We fix the vocabulary size of all tokenizers to 200,000 (in
the same ballpark as, e.g., GEMMA at 250k [Google, 2024],
GPT-4O at 200k, and LLAMA3 at 130k [Meta, 2024]).5

We consider three transition points for SuperBPE: t = 80k,
which has the best encoding efficiency, and two later transi-
tions, t = 160k and t = 180k. All tokenizers are trained on
the same 10 GB subset of OLMO2’s pretraining mix. §A.1
provides further details about tokenizer training.

We also train a slightly larger 11B SuperBPE model with
t = 180k, which approximately matches the 8B BPE base-
line in total bytes of training data seen as well as both train
and inference compute. See Table 2 for exact specifications
for all runs.

3.2. Results on downstream tasks

We evaluate SuperBPE on 30 benchmarks covering knowl-
edge, math & reasoning, coding, reading comprehension,
common sense, language understanding, and string manip-
ulation. The full evaluation suite is shown in Table 1 and
evaluation details are in §A.5.

4In practice, models using our more efficient tokenizers could
shift some or all of the “saved” context FLOPs to longer effective
contexts instead of more training steps.

5For 8B models, a 200k vocabulary size is close to the rec-
ommendation of (Tao et al., 2024) based on primarily English
data. We fix the vocabulary size to simplify comparisons between
models.

Figure 3 shows the task average during pretraining. All Su-
perBPE models substantially outperform the BPE baseline
at the end of training. The strongest 8B SuperBPE model,
which has transition point t = 180k (the latest one we con-
sider), outperforms the baseline by 4.0% on average and
wins on 25 of 30 individual tasks. Table 1 shows the per-task
performance for this model (see §A.5 for results for the other
models). The largest gains are on multiple choice tasks;
when considering these alone, the performance improve-
ment grows to +9.7%. The only task on which SuperBPE
loses in a statistically significant way is LAMBADA; here,
we observe that SuperBPE is actually ahead for the majority
of training checkpoints, but accuracy dips at the end from
75.8% to 70.6% (see Figure 11).

Notably, while the choice of transition point affects the
performance of the resulting model, all reasonable choices
are significantly stronger than the baseline. When using
the most encoding-efficient transition point, i.e., t = 80k,
we see a +3.1% task improvement over BPE and inference
compute reduced by 35%. Later transition points empiri-
cally cede some gains in encoding efficiency in exchange
for further improvements in performance.6

4. Analysis
4.1. Language modeling

Following prior work (Biderman et al., 2023; Xue et al.,
2022; Yu et al., 2023; Wang et al., 2024), we evaluate lan-
guage modeling performance using bits-per-byte (BPB),
which normalizes the loss by the tokenizer’s encoding ef-
ficiency to fairly compare models with different tokeniz-
ers. This is necessary because longer tokens, on aver-
age, contain more information and therefore are more dif-
ficult to predict. Bits-per-byte is defined as BPB(x) =
LCE(x)/(ln(2) ·nbytes), where nbytes is the length of the text
in bytes and LCE(x) is the sum of the cross-entropy loss
over the entire text.7 We find that BPE 8B, SuperBPE 8B
(t = 180k), and SuperBPE 11B attain 0.7465, 0.7482, and
0.7445 BPB, respectively, at the end of training. Although
these numbers do not differ appreciably, the ranking of mod-
els according to BPB and downstream task performance are
not consistent.

6This finding adds to the ongoing debate about the relationship
between tokenization compression and LM performance (Gallé,
2019; Goldman et al., 2024; Schmidt et al., 2024), providing further
evidence that higher compression does not necessarily improve
performance.

7Bits-per-byte of different models are considered comparable
because total cross-entropy loss is a universal quantity representing
the number of additional bits required to reconstruct the text given
the model. This quantity is normalized by the number of bytes for
easier interpretation.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

SuperBPE: Space Travel for Language Models

BPE 8B SuperBPE 8B SuperBPE 11B
SuperBPE transition point t = 80k t = 160k t = 180k t = 180k

Parameter count (billion) 8.12 8.12 8.12 8.12 11.30
Train steps 76,543 118,419 112,722 107,982 77,525

Average context length (bytes) 18,262 18,272 18,263 18,268 18,268
Vocabulary size 200k 200k 200k 200k 200k
Context length (tokens) 4,096 2,756 2,884 3,000 3,000
Encoding efficiency (bytes/token) 4.46 6.63 6.33 6.09 6.09

Train compute (1021 FLOPs) 17.2 17.2 17.2 17.2 17.2
Inference compute (109 FLOPs/byte) 3.75 2.42 2.54 2.65 3.75

Table 2: Training setup for the models we compare. We fix the vocabulary size and effective context size (measured
in bytes) for each model and adjust the total number of training steps accordingly so that each model has the same total
train budget (in FLOPs). The 8B SuperBPE models match the 8B BPE model in train compute but use less inference
compute; the 11B SuperBPE model matches the 8B baseline in both train and inference compute. Numbers fixed across
model settings are highlighted in the same color.

0 2 4 6 8
Per-Token Bits-per-Byte

10 5

10 4

10 3

10 2

10 1

100

101

De
ns

ity

BPE
SuperBPE

Figure 4: Histogram of per-token losses for both models
from Table 1, measured over a large corpus of text. We
observe that the SuperBPE model is a more consistent per-
former, making fewer predictions with very high or very
low loss.

4.2. Loss distribution analysis

Why does the SuperBPE 8B model achieve slightly higher
normalized language modeling loss (§4.1) than the baseline
BPE model despite outperforming it on a wide variety of
downstream tasks (§3.2)? To investigate this, we plot the
distribution of per-token BPB8 for both models on data
sampled from the pretraining data mixture in Figure 4.

Although the BPE and SuperBPE models have very similar
BPB on average, we see that loss is distributed very differ-
ently over the training data. Compared to the baseline, the
SuperBPE model makes fewer predictions with either very
high or very low loss.

8The per-token BPB is the per-token loss (in bits) divided by
the average encoding efficiency.

Low-loss tokens. We find that the reduction in low-loss
tokens is attributable to a small set of extremely common
words that the BPE model can easily predict, but are not
available to SuperBPE as they are merged into larger su-
perword tokens. For instance, the tokens the, of, and
to (the three most common words in the corpus) appear an

order of magnitude more often under BPE than SuperBPE
in the same corpus of text. When excluding these three to-
ken types alone, the BPB ranking reverses, with SuperBPE
achieving 0.02 lower BPB than BPE.

The reduction in low-loss tokens also makes sense from
a qualitative linguistic analysis of SuperBPE tokens. In
Table 3, we show the most common POS tags among su-
perword tokens in SuperBPE along with random examples
for each tag. The tokens often capture common multi-word
expressions (by accident, of course, for a living) that func-
tion as a single semantic unit (Schneider et al., 2014). As an
example, prepositions (IN) figure prominently in superword
tokens (e.g., depend on, distinction between) and require
lexeme-specific memorization. The individual words in
these fixed expressions are often semantically vacuous and
have little possible variation in context, so they are easy to
predict once memorized.

High-loss tokens. On the other hand, the much thinner tail
of very high-loss tokens shows that, in the worst case, the
SuperBPE model consistently puts more probability mass on
the correct token. On average, we expect models to suffer
high loss on tokens that are difficult to predict. This may
explain why SuperBPE can outperform BPE on downstream
tasks but have higher average BPB: the tokens scored in task
evaluations tend to be among the hardest to predict. This is
consistent with prior findings that models generally continue
to improve in downstream tasks even as their overall loss
plateaus due to improving on a narrow and difficult slice of
the distribution (Liu et al., 2023).

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

SuperBPE: Space Travel for Language Models

POS tag # Example Tokens

NN, IN 906 case of, hint of, availability of, emphasis on, distinction between
VB, DT 566 reached a, discovered the, identify the, becomes a, issued a
DT, NN 498 this month, no idea, the earth, the maximum, this stuff
IN, NN 406 on top, by accident, in effect, for lunch, in front
IN, DT 379 on the, without a, alongside the, for each

IN, DT, NN 333 for a living, by the way, into the future, in the midst
NN, IN, DT 270 position of the, component of the, review of the, example of this
IN, DT, JJ 145 like any other, with each other, for a short, of the entire
VB, IN, DT 121 worked as a, based on the, combined with the, turned into a

IN, DT, NN, IN 33 at the time of, in the presence of, in the middle of, in a way that
,, CC, PRP, VB 20 , and it was, , but I think, , but I have, , but I am
IN, DT, JJ, NN 18 in the long run, on the other hand, for the first time, in the same way

Table 3: The most common POS tags for tokens of 2, 3, and 4 words in SuperBPE, along with random example tokens
for each tag. NN = noun, IN = preposition, VB = verb, DT = determiner, CC = conjunction, JJ = adjective, and PRP =
pronoun.

4.3. Scaling

To characterize the scaling behavior of SuperBPE, we also
perform experiments at smaller scales.9 We train baseline
models at 680M and 1.9B and scale the base number of
training tokens proportionately to the number of parameters.
We also perform runs at 0.5×, 2×, and 4× the base num-
ber of tokens to observe the trend with respect to training
duration. Then, we train two SuperBPE models that match
the training budget of each baseline BPE model, one that
matches the baseline in parameter count (analogous to Su-
perBPE 8B) and a larger model that matches in both train
and inference compute (analogous to SuperBPE 11B). We
focus on the t = 180k tokenizer to reduce complexity.

We plot BPB at the end of training for each run in Figure 5.
In the under-trained regime, both SuperBPE models achieve
lower BPB than the baseline. In the over-trained regime,
the ranking from worst to best is SuperBPE (matching pa-
rameter count), BPE, and SuperBPE (matching inference
compute). Additionally, the separation between the models
increases with further over-training. We provide additional
results and comments on scaling in §B.3.

5. Related Work
Tokenization beyond subwords Prior work has explored
processing text at multiple levels of granularity (Lai et al.,
2021; Zhang et al., 2021) or creating multi-word tokens
through frequency-based identification of n-grams (Gee
et al., 2023; Kumar & Thawani, 2022). However, these
were explored in limited experimental contexts (mainly for
machine translation) and had mixed effectiveness. Naively
disabling pretokenization in BPE has been found to severely

9For scaling, we focus on BPB since our downstream eval-
uations are too noisy for our small models to make meaningful
comparisons.

1020 2 × 1020 3 × 10204 × 1020 6 × 1020

Train FLOPS

0.92

0.94

0.96

0.98

1.00

Bi
ts

 p
er

 B
yt

e

BPE 680M
SuperBPE 680M
SuperBPE 912M

(a) 680M model size

10216 × 1020 2 × 1021

Train FLOPS

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Bi
ts

 p
er

 B
yt

e

BPE 1.9B
SuperBPE 1.9B
SuperBPE 2.5B

(b) 1.9B model size

Figure 5: Scaling results for 680M and 1.9B baseline
model sizes. Compared to the BPE baseline, SuperBPE
with matching parameter count achieves lower BPB in
the under-trained regime, while SuperBPE with matching
inference compute achieves lower BPB than the baseline
at every model size and every training budget tested. Note
that BPB comparisons between BPE and SuperBPE models
do not track downstream task accuracy due to differences in
how BPE and SuperBPE models distribute loss over tokens
(§4.2).

degrade model performance (Dagan et al., 2024; Schmidt
et al., 2024; Kudo, 2018), although this approach may be
more promising for unigram tokenization (Kudo & Richard-
son, 2018), as adopted by JURASSIC (Lieber et al., 2021)
and BLOOMBERGGPT (Wu et al., 2023). In concurrent
work, (Huang et al., 2025) disentangle input and output
vocabularies, expanding only the former to include n-gram
tokens. Their method requires significant modifications
of the LM input component and considers fixed length of
n-grams.

Multi-token prediction Multi-token prediction (MTP)
equips LMs with some extra parameters to predict multi-
ple tokens in a single time step (Qi et al., 2020; Gloeckle
et al., 2024) and was recently adopted by DEEPSEEK-V3,
which discarded the MTP module at inference-time. MTP’s

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

SuperBPE: Space Travel for Language Models

effectiveness corroborates that LMs are capable of predict-
ing more than one subword in a forward pass. However,
these approaches fix the number of tokens predicted in each
time step and require modifications to the architecture and
training objective. We note that the benefits of MTP and
superword tokens may be orthogonal.

Tokenizer-free language modeling Some works have ex-
plored the possibility of completely removing tokenization
from LMs and directly modeling text as a sequence of bytes
(Clark et al., 2022; Xue et al., 2022; Wang et al., 2024).
To overcome the increased compute requirement due to
expanded sequence lengths, alternative architectures have
been proposed that either segment bytes into fixed-length
patches (Tay et al., 2022; Yu et al., 2023) or dynamically
predict patch boundaries with sub-modules (Nawrot et al.,
2023; Pagnoni et al., 2024; Ahia et al., 2024), increasing
model complexity.

6. Conclusion
Although tokenization lies at the foundation of language
modeling, acting as the lens through which models view
text, the algorithms in use have remained largely unchanged
over the past decade. SuperBPE builds on the observa-
tion that tokens need not be limited to subwords, extending
the BPE algorithm to superword tokens. When replacing
subword BPE tokenizers with SuperBPE tokenizers in pre-
training, we find that language models perform better over
a large suite of downstream tasks, while also being sub-
stantially more efficient at inference time. These benefits
are achieved without modifying the underlying model ar-
chitecture, making SuperBPE a compelling alternative to
BPE that seamlessly integrates with modern language model
ecosystems.

References
Ahia, O., Kumar, S., Gonen, H., Kasai, J., Mortensen, D.,

Smith, N., and Tsvetkov, Y. Do all languages cost the
same? tokenization in the era of commercial language
models. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 9904–9923,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
614. URL https://aclanthology.org/2023.
emnlp-main.614.

Ahia, O., Kumar, S., Gonen, H., Hofmann, V., Limisiewicz,
T., Tsvetkov, Y., and Smith, N. A. MAGNET: Improving
the multilingual fairness of language models with adap-
tive gradient-based tokenization. In The Thirty-eighth
Annual Conference on Neural Information Processing

Systems, 2024. URL https://openreview.net/
forum?id=1e3MOwHSIX.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and
Sutton, C. Program synthesis with large language mod-
els, 2021. URL https://arxiv.org/abs/2108.
07732.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H.,
O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., Skowron, A., Sutawika, L.,
and van der Wal, O. Pythia: A suite for analyzing large
language models across training and scaling, 2023. URL
https://arxiv.org/abs/2304.01373.

BIG-bench. Beyond the imitation game: Quantifying and ex-
trapolating the capabilities of language models. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?
id=uyTL5Bvosj.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J.
Large language models in machine translation. In Eisner,
J. (ed.), Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), pp. 858–867, Prague, Czech Republic, June
2007. Association for Computational Linguistics. URL
https://aclanthology.org/D07-1090/.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. 2020.

Chen, A., Gudipati, P., Longpre, S., Ling, X., and Singh, S.
Evaluating entity disambiguation and the role of popular-
ity in retrieval-based NLP. In Zong, C., Xia, F., Li, W.,
and Navigli, R. (eds.), Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
4472–4485, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.acl-long.
345. URL https://aclanthology.org/2021.
acl-long.345.

8

https://aclanthology.org/2023.emnlp-main.614
https://aclanthology.org/2023.emnlp-main.614
https://openreview.net/forum?id=1e3MOwHSIX
https://openreview.net/forum?id=1e3MOwHSIX
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2304.01373
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://aclanthology.org/D07-1090/
https://aclanthology.org/2021.acl-long.345
https://aclanthology.org/2021.acl-long.345

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

SuperBPE: Space Travel for Language Models

Church, K. How many multiword expressions do peo-
ple know? In Proceedings of the Workshop on Mul-
tiword Expressions: From Parsing and Generation to
the Real World, pp. 137–144, Portland, Oregon, USA,
2011. Association for Computational Linguistics. URL
https://aclanthology.org/W11-0823/.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Burstein, J., Do-
ran, C., and Solorio, T. (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.
2924–2936, Minneapolis, Minnesota, June 2019. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
N19-1300. URL https://aclanthology.org/
N19-1300.

Clark, J. H., Garrette, D., Turc, I., and Wieting, J. Canine:
Pre-training an efficient tokenization-free encoder for
language representation. Transactions of the Association
for Computational Linguistics, 10:73–91, 2022. doi: 10.
1162/tacl a 00448. URL https://aclanthology.
org/2022.tacl-1.5.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal,
A., Schoenick, C., and Tafjord, O. Think you have
solved question answering? try arc, the ai2 reasoning
challenge, 2018. URL https://arxiv.org/abs/
1803.05457.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Contreras Kallens, P. and Christiansen, M. H. Models of
language and multiword expressions. Frontiers in Artifi-
cial Intelligence, 5, 2022. doi: 10.3389/frai.2022.781962.
URL https://www.frontiersin.org/
journals/artificial-intelligence/
articles/10.3389/frai.2022.781962.

Dagan, G., Synnaeve, G., and Rozière, B. Getting the
most out of your tokenizer for pre-training and do-
main adaptation. In Proceedings of the 41st Inter-
national Conference on Machine Learning, ICML’24.
JMLR.org, 2024. URL https://dl.acm.org/
doi/10.5555/3692070.3692457.

DeepSeek-AI. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S.,
and Gardner, M. DROP: A reading comprehension

benchmark requiring discrete reasoning over paragraphs.
In Burstein, J., Doran, C., and Solorio, T. (eds.), Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 2368–2378, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1246. URL https:
//aclanthology.org/N19-1246.

Edman, L., Schmid, H., and Fraser, A. CUTE: Mea-
suring LLMs’ understanding of their tokens. In Al-
Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 3017–3026, Miami,
Florida, USA, November 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
177. URL https://aclanthology.org/2024.
emnlp-main.177.

Gage, P. A new algorithm for data compression. The C Users
Journal archive, 12:23–38, 1994. URL https://api.
semanticscholar.org/CorpusID:59804030.

Gallé, M. Investigating the effectiveness of BPE: The power
of shorter sequences. In Inui, K., Jiang, J., Ng, V., and
Wan, X. (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 1375–1381,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1141.
URL https://aclanthology.org/D19-1141.

Gee, L., Rigutini, L., Ernandes, M., and Zugarini, A.
Multi-word tokenization for sequence compression. In
Wang, M. and Zitouni, I. (eds.), Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing: Industry Track, pp. 612–621, Singa-
pore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-industry.
58. URL https://aclanthology.org/2023.
emnlp-industry.58.

Gloeckle, F., Idrissi, B. Y., Roziere, B., Lopez-Paz, D., and
Synnaeve, G. Better & faster large language models
via multi-token prediction. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=pEWAcejiU2.

Goldman, O., Caciularu, A., Eyal, M., Cao, K., Szpek-
tor, I., and Tsarfaty, R. Unpacking tokenization:
Evaluating text compression and its correlation with
model performance. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Findings of the Association
for Computational Linguistics: ACL 2024, pp. 2274–
2286, Bangkok, Thailand, August 2024. Association

9

https://aclanthology.org/W11-0823/
https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
https://aclanthology.org/2022.tacl-1.5
https://aclanthology.org/2022.tacl-1.5
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.781962
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.781962
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.781962
https://dl.acm.org/doi/10.5555/3692070.3692457
https://dl.acm.org/doi/10.5555/3692070.3692457
https://arxiv.org/abs/2412.19437
https://aclanthology.org/N19-1246
https://aclanthology.org/N19-1246
https://aclanthology.org/2024.emnlp-main.177
https://aclanthology.org/2024.emnlp-main.177
https://api.semanticscholar.org/CorpusID:59804030
https://api.semanticscholar.org/CorpusID:59804030
https://aclanthology.org/D19-1141
https://aclanthology.org/2023.emnlp-industry.58
https://aclanthology.org/2023.emnlp-industry.58
https://openreview.net/forum?id=pEWAcejiU2
https://openreview.net/forum?id=pEWAcejiU2

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

SuperBPE: Space Travel for Language Models

for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.134. URL https://aclanthology.
org/2024.findings-acl.134.

Google. Gemma: Open models based on gemini research
and technology, 2024.

Hayase, J., Liu, A., Choi, Y., Oh, S., and Smith, N. A.
Data mixture inference: What do BPE tokenizers reveal
about their training data? In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=EHXyeImux0.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=d7KBjmI3GmQ.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., et al. Training compute-
optimal large language models. In Proceedings of the
36th International Conference on Neural Information
Processing Systems, pp. 30016–30030, 2022.

Hofmann, V., Pierrehumbert, J., and Schütze, H. Su-
perbizarre is not superb: Derivational morphology im-
proves BERT’s interpretation of complex words. In
Zong, C., Xia, F., Li, W., and Navigli, R. (eds.), Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pp. 3594–3608, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.279. URL https:
//aclanthology.org/2021.acl-long.279.

Huang, H., Zhu, D., Wu, B., Zeng, Y., Wang, Y., Min, Q.,
and Zhou, X. Over-tokenized transformer: Vocabulary is
generally worth scaling, 2025. URL https://arxiv.
org/abs/2501.16975.

Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. Trivi-
aQA: A large scale distantly supervised challenge dataset
for reading comprehension. In Barzilay, R. and Kan,
M.-Y. (eds.), Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver,
Canada, July 2017. Association for Computational Lin-
guistics. doi: 10.18653/v1/P17-1147. URL https:
//aclanthology.org/P17-1147.

Kaplan, G., Oren, M., Reif, Y., and Schwartz, R. From
tokens to words: On the inner lexicon of LLMs. In
The Thirteenth International Conference on Learning

Representations, 2025. URL https://openreview.
net/forum?id=328vch6tRs.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kavumba, P., Inoue, N., Heinzerling, B., Singh, K., Reis-
ert, P., and Inui, K. When choosing plausible alterna-
tives, clever hans can be clever. In Ostermann, S., Zhang,
S., Roth, M., and Clark, P. (eds.), Proceedings of the
First Workshop on Commonsense Inference in Natural
Language Processing, pp. 33–42, Hong Kong, China,
November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-6004. URL https:
//aclanthology.org/D19-6004.

Kudo, T. Sentencepiece experiments. https:
//github.com/google/sentencepiece/
blob/master/doc/experiments.md, 2018.

Kudo, T. and Richardson, J. SentencePiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. In Blanco, E.
and Lu, W. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 66–71, Brussels,
Belgium, November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012.

Kumar, D. and Thawani, A. BPE beyond word bound-
ary: How NOT to use multi word expressions in neural
machine translation. In Tafreshi, S., Sedoc, J., Rogers,
A., Drozd, A., Rumshisky, A., and Akula, A. (eds.),
Proceedings of the Third Workshop on Insights from
Negative Results in NLP, pp. 172–179, Dublin, Ireland,
May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.insights-1.24. URL https:
//aclanthology.org/2022.insights-1.24.

Lad, V., Gurnee, W., and Tegmark, M. The remarkable
robustness of llms: Stages of inference?, 2024. URL
https://arxiv.org/abs/2406.19384.

Lai, Y., Liu, Y., Feng, Y., Huang, S., and Zhao, D. Lattice-
BERT: Leveraging multi-granularity representations in
Chinese pre-trained language models. In Toutanova, K.,
Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Belt-
agy, I., Bethard, S., Cotterell, R., Chakraborty, T., and
Zhou, Y. (eds.), Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pp. 1716–1731, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.

10

https://aclanthology.org/2024.findings-acl.134
https://aclanthology.org/2024.findings-acl.134
https://openreview.net/forum?id=EHXyeImux0
https://openreview.net/forum?id=EHXyeImux0
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://aclanthology.org/2021.acl-long.279
https://aclanthology.org/2021.acl-long.279
https://arxiv.org/abs/2501.16975
https://arxiv.org/abs/2501.16975
https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://openreview.net/forum?id=328vch6tRs
https://openreview.net/forum?id=328vch6tRs
https://aclanthology.org/D19-6004
https://aclanthology.org/D19-6004
https://github.com/google/sentencepiece/blob/master/doc/experiments.md
https://github.com/google/sentencepiece/blob/master/doc/experiments.md
https://github.com/google/sentencepiece/blob/master/doc/experiments.md
https://aclanthology.org/D18-2012
https://aclanthology.org/2022.insights-1.24
https://aclanthology.org/2022.insights-1.24
https://arxiv.org/abs/2406.19384

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

SuperBPE: Space Travel for Language Models

naacl-main.137. URL https://aclanthology.
org/2021.naacl-main.137.

Land, S. A short introduction to pre-
tokenization weirdness, 2024. URL https:
//tokencontributions.substack.com/p/
a-short-introduction-to-pre-tokenization.

Land, S. and Bartolo, M. Fishing for magikarp: Auto-
matically detecting under-trained tokens in large lan-
guage models. In Al-Onaizan, Y., Bansal, M., and
Chen, Y.-N. (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pp. 11631–11646, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.emnlp-main.649. URL https://
aclanthology.org/2024.emnlp-main.649.

Levesque, H. J., Davis, E., and Morgenstern, L. The wino-
grad schema challenge. In Proceedings of the Thirteenth
International Conference on Principles of Knowledge
Representation and Reasoning, pp. 552–561. AAAI Press,
2012.

Li, J., Fang, A., Smyrnis, G., Ivgi, M., Jordan, M., Gadre,
S., Bansal, H., Guha, E., Keh, S., Arora, K., Garg, S.,
Xin, R., Muennighoff, N., Heckel, R., Mercat, J., Chen,
M., Gururangan, S., Wortsman, M., Albalak, A., Bitton,
Y., Nezhurina, M., Abbas, A., Hsieh, C.-Y., Ghosh, D.,
Gardner, J., Kilian, M., Zhang, H., Shao, R., Pratt, S.,
Sanyal, S., Ilharco, G., Daras, G., Marathe, K., Gokaslan,
A., Zhang, J., Chandu, K., Nguyen, T., Vasiljevic, I.,
Kakade, S., Song, S., Sanghavi, S., Faghri, F., Oh, S.,
Zettlemoyer, L., Lo, K., El-Nouby, A., Pouransari, H.,
Toshev, A., Wang, S., Groeneveld, D., Soldaini, L., Koh,
P. W., Jitsev, J., Kollar, T., Dimakis, A. G., Carmon,
Y., Dave, A., Schmidt, L., and Shankar, V. Datacomp-
lm: In search of the next generation of training sets for
language models, 2024. URL https://arxiv.org/
abs/2406.11794.

Lieber, O., Sharir, O., Lenz, B., and Shoham,
Y. Jurassic-1: Technical details and evalua-
tion, 2021. URL https://uploads-ssl.
webflow.com/60fd4503684b466578c0d307/
61138924626a6981ee09caf6_jurassic_
tech_paper.pdf.

Liu, H., Xie, S. M., Li, Z., and Ma, T. Same pre-training
loss, better downstream: Implicit bias matters for lan-
guage models. In Krause, A., Brunskill, E., Cho, K.,
Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 22188–22214. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/liu23ao.html.

Liu, J., Min, S., Zettlemoyer, L., Choi, Y., and Hajishirzi, H.
Infini-gram: Scaling unbounded n-gram language models
to a trillion tokens. In First Conference on Language
Modeling, 2024. URL https://openreview.net/
forum?id=u2vAyMeLMm.

Lundberg, S. The art of prompt design: Prompt
boundaries and token healing, 2023. URL https:
//medium.com/towards-data-science/
the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38.

Martin, H. The indeterminacy of word segmentation
and the nature of morphology and syntax. Folia
Linguistica, 51(s1000):31–80, 2017. doi: doi:10.
1515/flin-2017-1005. URL https://doi.org/10.
1515/flin-2017-1005.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y.
Locating and editing factual associations in gpt.
In Koyejo, S., Mohamed, S., Agarwal, A., Bel-
grave, D., Cho, K., and Oh, A. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 35, pp. 17359–17372. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.
pdf.

Meta. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Mielke, S. J., Alyafeai, Z., Salesky, E., Raffel, C., Dey, M.,
Gallé, M., Raja, A., Si, C., Lee, W. Y., Sagot, B., and
Tan, S. Between words and characters: A brief history of
open-vocabulary modeling and tokenization in nlp, 2021.
URL https://arxiv.org/abs/2112.10508.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset for
open book question answering. In Riloff, E., Chiang,
D., Hockenmaier, J., and Tsujii, J. (eds.), Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2381–2391, Brussels, Belgium,
October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1260. URL https:
//aclanthology.org/D18-1260.

Nawrot, P., Chorowski, J., Lancucki, A., and Ponti, E. M.
Efficient transformers with dynamic token pooling. In
Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 6403–6417, Toronto, Canada, July 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.353. URL https://aclanthology.
org/2023.acl-long.353.

11

https://aclanthology.org/2021.naacl-main.137
https://aclanthology.org/2021.naacl-main.137
https://tokencontributions.substack.com/p/a-short-introduction-to-pre-tokenization
https://tokencontributions.substack.com/p/a-short-introduction-to-pre-tokenization
https://tokencontributions.substack.com/p/a-short-introduction-to-pre-tokenization
https://aclanthology.org/2024.emnlp-main.649
https://aclanthology.org/2024.emnlp-main.649
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://proceedings.mlr.press/v202/liu23ao.html
https://proceedings.mlr.press/v202/liu23ao.html
https://openreview.net/forum?id=u2vAyMeLMm
https://openreview.net/forum?id=u2vAyMeLMm
https://medium.com/towards-data-science/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://medium.com/towards-data-science/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://medium.com/towards-data-science/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://doi.org/10.1515/flin-2017-1005
https://doi.org/10.1515/flin-2017-1005
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2112.10508
https://aclanthology.org/D18-1260
https://aclanthology.org/D18-1260
https://aclanthology.org/2023.acl-long.353
https://aclanthology.org/2023.acl-long.353

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

SuperBPE: Space Travel for Language Models

Nogueira, R., Jiang, Z., and Lin, J. Investigating the limita-
tions of transformers with simple arithmetic tasks, 2021.
URL https://arxiv.org/abs/2102.13019.

OLMo, T., Walsh, P., Soldaini, L., Groeneveld, D., Lo, K.,
Arora, S., Bhagia, A., Gu, Y., Huang, S., Jordan, M.,
Lambert, N., Schwenk, D., Tafjord, O., Anderson, T.,
Atkinson, D., Brahman, F., Clark, C., Dasigi, P., Dziri,
N., Guerquin, M., Ivison, H., Koh, P. W., Liu, J., Malik,
S., Merrill, W., Miranda, L. J. V., Morrison, J., Murray,
T., Nam, C., Pyatkin, V., Rangapur, A., Schmitz, M.,
Skjonsberg, S., Wadden, D., Wilhelm, C., Wilson, M.,
Zettlemoyer, L., Farhadi, A., Smith, N. A., and Hajishirzi,
H. 2 olmo 2 furious, 2024. URL https://arxiv.
org/abs/2501.00656.

OpenAI. Hello GPT-4o, 2024. URL https://openai.
com/index/hello-gpt-4o/.

Otani, N., Ozaki, S., Zhao, X., Li, Y., St Johns, M., and
Levin, L. Pre-tokenization of multi-word expressions in
cross-lingual word embeddings. In Webber, B., Cohn,
T., He, Y., and Liu, Y. (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 4451–4464, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.360. URL https://
aclanthology.org/2020.emnlp-main.360.

Pagnoni, A., Pasunuru, R., Rodriguez, P., Nguyen, J.,
Muller, B., Li, M., Zhou, C., Yu, L., Weston, J., Zettle-
moyer, L., Ghosh, G., Lewis, M., Holtzman, A., and
Iyer, S. Byte latent transformer: Patches scale bet-
ter than tokens, 2024. URL https://arxiv.org/
abs/2412.09871.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, N. Q.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The LAMBADA dataset: Word pre-
diction requiring a broad discourse context. In Erk,
K. and Smith, N. A. (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1525–1534,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1144. URL
https://aclanthology.org/P16-1144.

Petty, J., van Steenkiste, S., Sha, F., Dasgupta, I., Garrette,
D., and Linzen, T. The impact of depth and width on
transformer language model generalization. 2023.

Phan, B., Havasi, M., Muckley, M., and Ullrich, K. Under-
standing and mitigating tokenization bias in language
models, 2024. URL https://arxiv.org/abs/
2406.16829.

Provilkov, I., Emelianenko, D., and Voita, E. BPE-dropout:
Simple and effective subword regularization. In Juraf-
sky, D., Chai, J., Schluter, N., and Tetreault, J. (eds.),
Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 1882–1892, On-
line, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.170. URL https:
//aclanthology.org/2020.acl-main.170.

Qi, W., Yan, Y., Gong, Y., Liu, D., Duan, N., Chen,
J., Zhang, R., and Zhou, M. ProphetNet: Pre-
dicting future n-gram for sequence-to-SequencePre-
training. In Cohn, T., He, Y., and Liu, Y.
(eds.), Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pp. 2401–2410, On-
line, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
217. URL https://aclanthology.org/2020.
findings-emnlp.217.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multi-
task learners. 2019. URL https://cdn.openai.
com/better-language-models/language_
models_are_unsupervised_multitask_
learners.pdf.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
In Su, J., Duh, K., and Carreras, X. (eds.), Proceed-
ings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, Austin,
Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https:
//aclanthology.org/D16-1264.

Reddy, S., Chen, D., and Manning, C. D. CoQA: A
conversational question answering challenge. Transac-
tions of the Association for Computational Linguistics,
7:249–266, 2019. doi: 10.1162/tacl a 00266. URL
https://aclanthology.org/Q19-1016.

Ribeiro, M. T. A guidance language for control-
ling large language models, 2023. URL https:
//github.com/guidance-ai/guidance?
tab=readme-ov-file#text-not-tokens.

Roemmele, M., Bejan, C. A., and Gordon, A. S. Choice
of plausible alternatives: An evaluation of commonsense
causal reasoning. In Proceedings of the Association for
the Advancement of Artificial Intelligence (AAAI) Spring
Symposium, 2011.

Rumbelow, J. and Watkins, M. Solid-
goldmagikarp (plus, prompt generation),
2023. URL https://www.lesswrong.

12

https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://aclanthology.org/2020.emnlp-main.360
https://aclanthology.org/2020.emnlp-main.360
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.09871
https://aclanthology.org/P16-1144
https://arxiv.org/abs/2406.16829
https://arxiv.org/abs/2406.16829
https://aclanthology.org/2020.acl-main.170
https://aclanthology.org/2020.acl-main.170
https://aclanthology.org/2020.findings-emnlp.217
https://aclanthology.org/2020.findings-emnlp.217
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://aclanthology.org/Q19-1016
https://github.com/guidance-ai/guidance?tab=readme-ov-file#text-not-tokens
https://github.com/guidance-ai/guidance?tab=readme-ov-file#text-not-tokens
https://github.com/guidance-ai/guidance?tab=readme-ov-file#text-not-tokens
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

SuperBPE: Space Travel for Language Models

com/posts/aPeJE8bSo6rAFoLqg/
solidgoldmagikarp-plus-prompt-generation.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi,
Y. Winogrande: an adversarial winograd schema chal-
lenge at scale. Commun. ACM, 64(9):99–106, August
2021. ISSN 0001-0782. URL https://doi.org/
10.1145/3474381.

Salehi, B., Cook, P., and Baldwin, T. A word embedding
approach to predicting the compositionality of multiword
expressions. In Mihalcea, R., Chai, J., and Sarkar, A.
(eds.), Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 977–
983, Denver, Colorado, 2015. Association for Compu-
tational Linguistics. doi: 10.3115/v1/N15-1099. URL
https://aclanthology.org/N15-1099/.

Schmidt, C. W., Reddy, V., Zhang, H., Alameddine, A.,
Uzan, O., Pinter, Y., and Tanner, C. Tokenization is
more than compression. In Al-Onaizan, Y., Bansal, M.,
and Chen, Y.-N. (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 678–702, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.emnlp-main.40. URL https:
//aclanthology.org/2024.emnlp-main.40.

Schneider, N., Onuffer, S., Kazour, N., Danchik, E., Mor-
dowanec, M. T., Conrad, H., and Smith, N. A. Compre-
hensive annotation of multiword expressions in a social
web corpus. In Calzolari, N., Choukri, K., Declerck,
T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A.,
Odijk, J., and Piperidis, S. (eds.), Proceedings of the
Ninth International Conference on Language Resources
and Evaluation (LREC‘14), pp. 455–461, Reykjavik, Ice-
land, May 2014. European Language Resources Associa-
tion (ELRA). URL https://aclanthology.org/
L14-1433/.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Erk,
K. and Smith, N. A. (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162.

Sims, A., Lu, C., Kaleb, K., Foerster, J. N., and Teh,
Y. W. Stochastok: Improving fine-grained subword
understanding in LLMs. In ICLR 2025 Workshop on
Building Trust in Language Models and Applications,
2025. URL https://openreview.net/forum?
id=PZnDZdkGsE.

Singh, A. K. and Strouse, D. Tokenization counts: the
impact of tokenization on arithmetic in frontier llms, 2024.
URL https://arxiv.org/abs/2402.14903.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Talmor, A., Herzig, J., Lourie, N., and Berant, J. Com-
monsenseQA: A question answering challenge targeting
commonsense knowledge. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4149–4158, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1421. URL
https://aclanthology.org/N19-1421.

Tao, C., Liu, Q., Dou, L., Muennighoff, N., Wan, Z., Luo,
P., Lin, M., and Wong, N. Scaling laws with vocabu-
lary: Larger models deserve larger vocabularies. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Tay, Y., Dehghani, M., Rao, J., Fedus, W., Abnar, S.,
Chung, H. W., Narang, S., Yogatama, D., Vaswani, A.,
and Metzler, D. Scale efficiently: Insights from pre-
training and fine-tuning transformers. arXiv preprint
arXiv:2109.10686, 2021.

Tay, Y., Tran, V. Q., Ruder, S., Gupta, J., Chung, H. W.,
Bahri, D., Qin, Z., Baumgartner, S., Yu, C., and Metzler,
D. Charformer: Fast character transformers via gradient-
based subword tokenization. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=JtBRnrlOEFN.

Thawani, A., Pujara, J., Ilievski, F., and Szekely, P.
Representing numbers in NLP: a survey and a vision.
In Toutanova, K., Rumshisky, A., Zettlemoyer, L.,
Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell,
R., Chakraborty, T., and Zhou, Y. (eds.), Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pp. 644–656, Online,
June 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.53. URL https:
//aclanthology.org/2021.naacl-main.53.

Velayuthan, M. and Sarveswaran, K. Egalitarian language
representation in language models: It all begins with to-
kenizers. In Rambow, O., Wanner, L., Apidianaki, M.,
Al-Khalifa, H., Eugenio, B. D., and Schockaert, S. (eds.),
Proceedings of the 31st International Conference on Com-
putational Linguistics, pp. 5987–5996, Abu Dhabi, UAE,

13

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://aclanthology.org/N15-1099/
https://aclanthology.org/2024.emnlp-main.40
https://aclanthology.org/2024.emnlp-main.40
https://aclanthology.org/L14-1433/
https://aclanthology.org/L14-1433/
https://aclanthology.org/P16-1162
https://openreview.net/forum?id=PZnDZdkGsE
https://openreview.net/forum?id=PZnDZdkGsE
https://arxiv.org/abs/2402.14903
https://aclanthology.org/N19-1421
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://aclanthology.org/2021.naacl-main.53
https://aclanthology.org/2021.naacl-main.53

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

SuperBPE: Space Travel for Language Models

January 2025. Association for Computational Linguis-
tics. URL https://aclanthology.org/2025.
coling-main.400/.

Veluri, B., Chan, J., Itani, M., Chen, T., Yoshioka, T., and
Gollakota, S. Real-time target sound extraction. In
ICASSP, pp. 1–5, 2023. URL https://doi.org/
10.1109/ICASSP49357.2023.10094573.

Vieira, T., LeBrun, B., Giulianelli, M., Gastaldi, J. L.,
DuSell, B., Terilla, J., O’Donnell, T. J., and Cotterell,
R. From language models over tokens to language mod-
els over characters. arXiv preprint arXiv:2412.03719,
2024.

Wang, J., Gangavarapu, T., Yan, J. N., and Rush,
A. M. Mambabyte: Token-free selective state space
model. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?
id=X1xNsuKssb.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger,
S., Drame, M., Lhoest, Q., and Rush, A. Transform-
ers: State-of-the-art natural language processing. In Liu,
Q. and Schlangen, D. (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M.,
Gehrmann, S., Kambadur, P., Rosenberg, D., and Mann,
G. Bloomberggpt: A large language model for fi-
nance, 2023. URL https://arxiv.org/abs/
2303.17564.

Xiong, Y., Chen, X., Ye, X., Chen, H., Lin, Z., Lian, H., Su,
Z., Niu, J., and Ding, G. Temporal scaling law for large
language models, 2024. URL https://arxiv.org/
abs/2404.17785.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang,
S., Kale, M., Roberts, A., and Raffel, C. ByT5: To-
wards a token-free future with pre-trained byte-to-byte
models. Transactions of the Association for Com-
putational Linguistics, 10:291–306, 2022. doi: 10.
1162/tacl a 00461. URL https://aclanthology.
org/2022.tacl-1.17.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W.,
Salakhutdinov, R., and Manning, C. D. HotpotQA: A
dataset for diverse, explainable multi-hop question an-
swering. In Riloff, E., Chiang, D., Hockenmaier, J.,

and Tsujii, J. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 2369–2380, Brussels, Belgium, October-
November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1259. URL https:
//aclanthology.org/D18-1259.

Yu, L., Simig, D., Flaherty, C., Aghajanyan, A., Zettlemoyer,
L., and Lewis, M. MEGABYTE: Predicting million-byte
sequences with multiscale transformers. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=JTmO2V9Xpz.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. HellaSwag: Can a machine really finish your sen-
tence? In Korhonen, A., Traum, D., and Màrquez,
L. (eds.), Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 4791–
4800, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1472. URL
https://aclanthology.org/P19-1472.

Zhang, X., Li, P., and Li, H. AMBERT: A pre-trained lan-
guage model with multi-grained tokenization. In Zong,
C., Xia, F., Li, W., and Navigli, R. (eds.), Findings of the
Association for Computational Linguistics: ACL-IJCNLP
2021, pp. 421–435, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
findings-acl.37. URL https://aclanthology.
org/2021.findings-acl.37.

Zhong, W., Wang, S., Tang, D., Xu, Z., Guo, D., Chen,
Y., Wang, J., Yin, J., Zhou, M., and Duan, N. Ana-
lytical reasoning of text. In Carpuat, M., de Marneffe,
M.-C., and Meza Ruiz, I. V. (eds.), Findings of the Asso-
ciation for Computational Linguistics: NAACL 2022, pp.
2306–2319, Seattle, United States, July 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
findings-naacl.177. URL https://aclanthology.
org/2022.findings-naacl.177.

Zhong, W., Cui, R., Guo, Y., Liang, Y., Lu, S., Wang,
Y., Saied, A., Chen, W., and Duan, N. AGIEval:
A human-centric benchmark for evaluating foundation
models. In Duh, K., Gomez, H., and Bethard, S.
(eds.), Findings of the Association for Computational
Linguistics: NAACL 2024, pp. 2299–2314, Mexico
City, Mexico, June 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.findings-naacl.
149. URL https://aclanthology.org/2024.
findings-naacl.149.

14

https://aclanthology.org/2025.coling-main.400/
https://aclanthology.org/2025.coling-main.400/
https://doi.org/10.1109/ICASSP49357.2023.10094573
https://doi.org/10.1109/ICASSP49357.2023.10094573
https://openreview.net/forum?id=X1xNsuKssb
https://openreview.net/forum?id=X1xNsuKssb
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/2303.17564
https://arxiv.org/abs/2303.17564
https://arxiv.org/abs/2404.17785
https://arxiv.org/abs/2404.17785
https://aclanthology.org/2022.tacl-1.17
https://aclanthology.org/2022.tacl-1.17
https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259
https://openreview.net/forum?id=JTmO2V9Xpz
https://openreview.net/forum?id=JTmO2V9Xpz
https://aclanthology.org/P19-1472
https://aclanthology.org/2021.findings-acl.37
https://aclanthology.org/2021.findings-acl.37
https://aclanthology.org/2022.findings-naacl.177
https://aclanthology.org/2022.findings-naacl.177
https://aclanthology.org/2024.findings-naacl.149
https://aclanthology.org/2024.findings-naacl.149

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

SuperBPE: Space Travel for Language Models

A. Experimental setup details
A.1. Tokenizer training

We use the HuggingFace tokenizers (Wolf et al., 2020)
library for tokenizer training.

A.1.1. TOKENIZER TRAINING DATA

We produce the tokenizer training data by sampling docu-
ments uniformly at random from the OLMO2 stage 2 pre-
training data, referred to as olmo-mix. We use a 10 GB
subset because early experiments showed that data beyond
even ∼10 MB does not make a difference in the resulting
tokenizer’s encoding efficiency.

We found that olmo-mix had several extremely long doc-
uments, with the longest 1% of documents making up 15%
of the data. In particular, a full academic paper (specifi-
cally Veluri et al., 2023) is duplicated 2,224 times back-
to-back inside one document (as delimited by special EOS
tokens). Because our tokenizers are trained on small sets
of data, these extremely long documents can take up a
large proportion of the data, resulting in unusual tokens
like chunk-based processing. To circumvent pos-
sible data duplication issues, we truncate the longest 1%
of documents in the tokenizer training data to the 99% per-
centile of document lengths. As future practitioners train
SuperBPE tokenizers, we encourage especial attention to
deduplication, which may have an outsized impact on Su-
perBPE tokenizers.

A.1.2. LIMIT ON THE SIZE OF SUPERWORD TOKENS

Even after truncating the longest 1% of documents, we
found that SuperBPE tokenizers can still have extremely
long tokens consisting of highly duplicated boilerplate text
such as the Project Gutenberg license or common internet
phrases such as You are commenting using your.
This issue is already present in BPE tokenizers trained on
Chinese, which contain sentence-long tokens clearly taken
from pornographic content. For instance, tokens in GPT-
4O’s tokenizer include最新高清无码 = latest HD uncen-
sored and娱乐网址 = entertainment website. To prevent
concerns about the tokenizer directly revealing parts of the
training data (Hayase et al., 2024), we enforce an upper
bound of 4 words in our tokens. Empirically, we found that
this had no measurable impact on the encoding efficiency
of the tokenizers or the resulting trained LMs.

A.1.3. PRETOKENIZATION RULES

We implement whitespace pretokenization with the default
regex string from tokenizers which was adopted by
the GPT-2 tokenizer.

?\p{L}+| ?[ˆ\s\p{L}\p{N}]+|\s+(?!\S)|\s+

Note that the original GPT-2 pretokenization regex string
also splits on contractions, e.g., splitting I’m into [I, ’m].
Since this choice is not universal among commercial tok-
enizers and is not related to whitespace pretokenization (and
furthermore creates plenty of undesirable edge cases [Land,
2024]), we do not include this rule.

Independently of whitespace pretokenization (i.e., for both
BPE and SuperBPE tokenizers), we follow recent conven-
tion (as introduced by GPT-3.5 and borrowed by LLAMA3,
OLMO2) and pretokenize digits into blocks of 3. We make
one modification, by grouping digits into 3 from the right
rather than from the left, so that, e.g., 1000 would be pre-
tokenized as [1, 000] instead of [100, 0]. This choice
was recently found to yield improved performance on math
benchmarks, even when applied solely at inference time
(Singh & Strouse, 2024). Digit pretokenization is enforced
with the following regex.

(?=(\d{3})+(?!\d))

A.1.4. SPECIAL CASING OF COLON

In order to make our tokenizer compatible with the common
question-answering format where the prompt ends with a
colon and the continuation is expected to start with a space,
we “special-case” colon by preventing the algorithm from
learning any tokens that contain “: ” as a substring. Without
this fix, common question/answer prompts might produce
distorted distributions over completions. Please see §C.3
for further discussion. This affects the resulting tokenizer
minimally in terms of the learned vocabulary.

A.2. Scaling model configurations

When matching inference compute, the goal is to match the
average flops per byte of generated text between two models
with different tokenizers. To do so, we scale the model
up to cancel the effect of longer tokens, which requires
precise control over the model’s size. To produce a model
config with an arbitrary inference compute cost, we first
represent the inference flops per token as a polynomial in
terms of the model dimension, MLP hidden dimension, and
number of layers. Conveniently, once the model dimension
and number of layers are chosen, the flops are affine in the
MLP hidden dimension, so we can easily solve for the MLP
hidden dimension that gets us closest to the desired budget.
We fix the head dimension to that of the base model.

To find the best config overall, we grid search over the
hidden dimension (which must remain a multiple of the
head dimension) and number of layers, solving for the MLP
hidden dimension at each step. We choose the config which
expands the transformer by the most uniform factors. This is
measured by taking the ratios of the current parameters with
the base config’s parameters, applying the logarithm, and

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

SuperBPE: Space Travel for Language Models

taking the standard deviation. While prior work has explored
the best way to scale transformer models (Tay et al., 2021;
Petty et al., 2023), we believe that scaling all parameters
uniformly is reasonable since we are only increasing the
model size by a small amount.

We present the exact model hyperparameters for all model
sizes used in our experiments in Table 4.

680M 910M 1.9B 2.5B 8B 11B

Parameter count 678.2M 912.5M 1.893B 2.536B 8.115B 11.30B
Model dimension 1024 1,216 2,048 2,304 4,096 4,608
MLP hidden dimension 8,192 9,728 16,384 18,432 22,016 24,704
Head dimension 64 64 128 128 128 128
Number of heads 16 19 16 18 32 36
Number of layers 16 18 16 19 32 37
Vocabulary size 20,0005 20,0005 20,0005 20,0005 20,0005 20,0005

Table 4: Model parameters for all model sizes. Model
sizes 910M, 2.5B, and 11B are scaled versions of 680M,
1.9B, and 8B respectively. All other parameters match those
of OLMO 300M (from the OLMO model ladder) for sizes
680M and 910M, OLMO 1B for sizes 1.9B and 2.5B, or
OLMO2 7B for sizes 8B and 11B, respectively. Maximum
sequence length values for various tokenizers are listed in
Table 2.

A.3. POS analysis

[TODO]AL

A.4. Compute used for model training

All models were pretrained on 32 8×H100 nodes.

A.5. Evaluation Suite

Our evaluation suite builds on DataComp-LM’s core eval-
uation of 22 tasks (Li et al., 2024), which was found to
provide low-variance signal of learning. We add 8 more
popular tasks (e.g., MMLU, GSM8K) while also covering
string manipulation tasks (e.g., CUTE), which are known to
be challenging for LMs due to their tokenizers.

All evaluations are based on decoding from the model and
scoring the generation by either comparing it to the ground
truth or evaluating its functional correctness (in the case of
coding tasks). For multiple choice (MC) tasks, we check
whether the predicted answer choice is an exact match (EM)
to the target (we observe that effectively 100% of model
generations are valid answer choices, especially for later
checkpoints). For open-ended tasks, we check whether the
generated output contains the ground truth answer exactly,
and for coding tasks, we report pass@10.

We provide 5 in-context examples for all tasks, except for

CoQA, which naturally contains in-context examples in the
conversational context, and the coding tasks (HumanEval
and MBPP), which are evaluated zero-shot following prior
work. We use a maximum of 5,000 examples from each
dataset, though some datasets contain much fewer examples.
BB below stands for BIG-Bench.

ARC consists of 4-way MC questions from grades 3–9 sci-
ence exams. It contains two splits, ARC-Easy, which require
knowledge of basic science, and ARC-Challenge, which re-
quire some procedural reasoning (Clark et al., 2018).

Arithmetic contains simple arithmetic problems (Brown
et al., 2020).10 We use the 2da, 2dm, and 2ds splits for
addition, multiplication, and division of (up to) 2-digit num-
bers.

BoolQ contains naturally occurring yes/no questions
paired with passages that provide an answer (Clark et al.,
2019).

CommonsenseQA contains 5-way MC questions that re-
quire commonsense knowledge to answer (Talmor et al.,
2019).

COPA contains two-way MC questions about cause and
effect (Roemmele et al., 2011; Kavumba et al., 2019).

CoQA consists of passages with a series of conversational
questions about the passage (Reddy et al., 2019). Each
question requires the prior conversational context, due to
possible coreference across questions. Because these con-
textual questions naturally serve as in-context examples, we
do not provide additional in-context examples.

BB CS Algorithms consists of two subtasks, determining
whether a given series of parentheses is balanced and identi-
fying the longest common subsequence in two letter strings
(BIG-bench, 2023).

CUTE contains questions that require the model to un-
derstand and manipulate spelling, such as replacing all in-
stances of a particular letter in a word with another letter
(Edman et al., 2024).

DROP contains questions about passages, potentially re-
quiring reasoning over multiple pieces of information in the
passage (Dua et al., 2019).

BB Dyck Languages consists of a sequence of parenthe-
ses and requires the model to predict the correct sequence

10https://huggingface.co/datasets/
EleutherAI/arithmetic

16

https://huggingface.co/datasets/EleutherAI/arithmetic
https://huggingface.co/datasets/EleutherAI/arithmetic

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

SuperBPE: Space Travel for Language Models

of closing parentheses so that the entire sequence is well-
balanced.

GSM8K contains grade school math word problems that
require between 2 and 8 steps to solve. In the in-context
examples, we provide the answer passage that contains in-
termediate steps with calculator annotations removed. The
model is expected to provide the final numerical answer
after four hashtags (####) that delimit the reasoning and
final answer (Cobbe et al., 2021).

HellaSwag contains 4-way MC questions which ask for
the most natural continuation given the context (Zellers
et al., 2019).

HotpotQA contains questions along with a corresponding
passage from Wikipedia containing the answer (Yang et al.,
2018).

HumanEval contains programming problems where the
model is tasked with completing a Python function given its
docstring (Chen et al., 2021). We use “\nclass,” “\ndef,”
“\n#,” “\nif,” as stop tokens. Following the original pa-
per, we sample 20 continuations with top p = 0.95 and
temperature = 0.8. Models are allowed to generate for a
maximum of 128 new tokens. The functional correctness
of generations is automatically evaluated using test cases.
We use the 20 generation to make an unbiased estimate of
the pass@10 rate, i.e., how likely at least one of 10 sampled
solutions for a problem is correct.

Jeopardy contains open-ended questions from the “Jeop-
ardy!” quiz show.11

Lambada contains narratives without the last word, which
is inferrable given the context (Paperno et al., 2016). This
task requires models to attend to the full narrative instead of
only the local context.

BB Language Identification contains sentences in differ-
ent languages, and the task is to choose the language of the
sentence from a long list of options.

LSAT-AR contains MC questions that evaluate the ana-
lytical reasoning (AR) ability of LMs (Zhong et al., 2022;
2024). Test questions are drawn from the Law School Ad-
mission Test (LSAT) from 1991 to 2016.

MBPP contains Python programming problems where the
model is given a description of the desired function and a

11https://www.kaggle.com/datasets/tunguz/
200000-jeopardy-questions

series of unit tests. We use the same evaluation setup as
HumanEval.

MMLU contains 4-way MC questions covering 57 differ-
ent domains, covering both world knowledge and problem-
solving abilities (Hendrycks et al., 2021). Note that we
report a straight average over the 5000-example sample,
rather than a macro-average over subjects.

OpenbookQA contains 4-way MC questions that require
multi-step reasoning and commonsense knowledge (Mi-
haylov et al., 2018).

BB Operators contains questions where the model is
given a function definition and asked to compute the output
of that function given a particular input.

PIQA contains MC questions that require physical com-
monsense reasoning (Bisk et al., 2020).

BB Repeat-Copy-Logic contains instructions that ask the
model to produce a particular string (Austin et al., 2021).

SQuAD contains passages paired with questions about
the passage (Rajpurkar et al., 2016). The answer is always a
span from the passage.

TriviaQA contains open-ended questions about world
knowledge (Joshi et al., 2017).

BB WikidataQA require models to complete factual state-
ments with the correct continuation.

Winograd contains binary MC questions where the model
is given a context and asked to determine which entity a
pronoun refers to, between two options (Levesque et al.,
2012). Correctly answer the question requires commonsense
knowledge and contextual reasoning.

Winogrande contain questions with the same schema as
Winograd, but increases both the scale and difficulty of the
dataset (Sakaguchi et al., 2021).

B. Additional Results
B.1. Task evaluation

We report the individual task performance of BPE and all
SuperBPE models in Table 5 (this an expansion of Table 1).
We also show a subset of task-specific performance curves
during pretraining in Figure 11.

17

https://www.kaggle.com/datasets/tunguz/200000-jeopardy-questions
https://www.kaggle.com/datasets/tunguz/200000-jeopardy-questions

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

SuperBPE: Space Travel for Language Models

Category Task BPE 8B SuperBPE 8B SuperBPE 11B
t = 80k t = 160k t = 180k

Knowledge ARC-Easy (MC) 46.6 60.8 63.6 67.1 60.6
ARC-Challenge (MC) 35.1 46.4 43.9 50.6 43.9
Jeopardy (EM) 42.1 40.2 41.8 41.8 42.2
MMLU (MC) 36.5 41.9 42.6 44.7 41.0
OpenbookQA (MC) 33.2 49.8 49.4 54.4 46.4
TriviaQA (EM) 60.6 59.7 61.9 61.3 62.3
WikidataQA (EM) 69.7 68.2 69.5 70.9 70.9

Math Arithmetic (EM) 54.8 63.2 58.6 59.3 56.9
& Reasoning GSM8K (EM) 6.4 6.9 6.7 6.7 7.4

LSAT-AR (MC) 21.3 23.9 24.3 23.0 20.9
Operators (EM) 35.5 32.2 35.5 33.6 37.9
Repeat-Copy-Logic (EM) 3.1 6.2 6.2 6.2 3.1

Coding HumanEval (pass@10) 15.9 15.0 14.4 13.4 15.9
MBPP (pass@10) 27.5 25.3 28.4 28.3 29.4

Reading BoolQ (MC) 59.7 65.2 62.3 64.6 64.7
Comprehension CoQA (EM) 12.6 12.8 12.5 13.2 13.1

DROP (EM) 31.3 28.6 32.8 31.4 33.1
HotpotQA (EM) 53.5 52.5 54.7 55.2 54.6
SQuAD (EM) 75.1 74.3 76.2 75.8 77.2

Commonsense CommonsenseQA (MC) 33.5 50.0 52.3 53.8 50.5
COPA (MC) 77.0 86.6 87.6 85.8 97.0
PIQA (MC) 55.2 57.7 61.8 59.8 59.2
Winograd (MC) 50.4 52.5 55.2 53.1 52.3
Winogrande (MC) 47.3 51.2 51.6 52.6 50.2

Language HellaSwag (MC) 29.7 31.2 30.3 33.7 36.6
Understanding LAMBADA (EM) 77.0 72.8 75.1 70.6 75.8

Language Identification (EM) 8.8 10.2 9.7 9.0 10.1

String CS Algorithms (EM) 46.1 47.3 42.6 48.6 49.1
Manipulation CUTE (EM) 31.3 32.2 32.8 32.6 35.7

Dyck-Languages (EM) 15.9 23.2 18.8 14.2 16.7

Average 39.8 42.9 43.4 43.8 43.8

Table 5: Performance of BPE and SuperBPE models on
30 downstream tasks. This is an expansion of Table 1 with
more models.

B.2. BPB evaluation

See Figure 6 for the bits-per-byte during pretraining of all
models we compare.

B.3. Additional scaling experiments

Our tokenizer has several interesting interactions with LM
scaling, purely due to its increased efficiency. For the pur-
pose of this section, let α denote the ratio of our tokenizer’s
efficiency to the efficiency of a normal BPE tokenizer. (For
example, we have α ≈ 1.49 for our most efficient tok-
enizer.)

The primary advantage of a more efficient tokenizer is a
reduction of the context length (in tokens) for the same
effective context length (in bytes). All other things being
equal, this gives:

1. A 1/α2 reduction in attention compute.

2. A 1/α reduction in non-attention compute.

3. A 1/α reduction in activation memory during training
and KV-cache size during inference.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Train FLOPs 1e22

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Bi
ts

 p
er

 b
yt

e

BPE 8B
SuperBPE 8B (t = 80K)
SuperBPE 8B (t = 160K)
SuperBPE 8B (t = 180K)
SuperBPE 11B (t = 180K)

Figure 6: Bits-per-byte of BPE and SuperBPE mod-
els during pretraining. The BPE 8B, SuperBPE 8B
(t = 180k), and SuperBPE 11B attain 0.7465, 0.7482, and
0.7445 BPB respectively at the end of training.

Thus, if the context length is short, the total compute savings
will be close to 1/α. For longer contexts, the compute
savings may approach 1/α2. Given a fixed training budget,
there are two natural ways to convert these savings into
improved performance.

B.3.1. MATCHING MODEL PARAMETER COUNT

In many applications of language models, such as deploy-
ment to consumer or edge devices, it is crucial to keep the
model’s size under control. In this regime, we will assume
the model size fixed. This directly grants the aforemen-
tioned benefits, and we will turn to increasing the number
of training steps to match the training budget.

Since the amount of text seen per step is remains the same
due to the fixed effective context length, a more efficient to-
kenizer allows the model to see more text during training for
the same budget. This may lead to improved performance
on downstream tasks since the model is more likely to have
seen relevant training examples during training. Addition-
ally, although the model is the same size, it requires less
compute and memory at inference time to perform the same
tasks. In some settings, these gains can be used to amplify
inference-time scaling (Snell et al., 2024), leading to further
potential gains.

B.3.2. MATCHING INFERENCE COMPUTE

In other applications of language models, model size is less
critical compared to inference compute. In these situations,
it may be more desirable to scale the model size up to absorb
the extra compute.

Changing the model size has a strong impact on scaling.
Depending on the context length, we may scale the model
by a factor of anywhere between α and α2 in order to match
inference compute. Since each training step involves 1/α
as many tokens, the ratio of tokens to model parameters

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

SuperBPE: Space Travel for Language Models

1021 1022

Train FLOPS

0.75

0.80

0.85

0.90

0.95
Bi

ts
 p

er
 B

yt
e

BPE
SuperBPE: 1.4x steps
SuperBPE: 1.4x model

Figure 7: Results for scaling both model parameters and
train tokens proportionally. [check →]AL Compared to
the BPE baseline, we consider a SuperBPE model that
matches parameter count and a SuperBPE model that
matches inference compute. Here we see the spread be-
tween the three settings decreases with scale. [We need to
add more to this caption, e.g., the T/P ratio for the blue
and pink lines and the T/B ratio for the blue and green
lines.]AL

per step may be reduced by as much as 1/α3. Prior work
on LM scaling (Hoffmann et al., 2022; Kaplan et al., 2020)
reports diminishing gains once the ratio of the numbers of
train tokens and model parameters becomes too large. An α
times more efficient tokenizer allows us to train for up to α3

times longer while maintaining the same token/parameter
ratio and without increasing inference compute, delaying
the regime of diminishing gains.

B.3.3. EXPERIMENTS

We train 680M and 1.9B sized BPE models on various
numbers of tokens—ranging from ≈ 20 to ≈ 80 tokens
per parameter—to establish a baseline scaling trend. We
then train two models with SuperBPE tokenizers for each
baseline model: one with matching parameter count and
one with matching inference compute cost.

There are a couple interesting ways to visualize these results:
in Figure 5, we hold the model size fixed and increase the
number of training tokens, and in Figure 7, we hold the
ratio of train tokens to model parameters fixed (inference
compute matched will be fixed 0.7 times lower) and vary
both the model size and the number of training tokens. The
general trends observed from these results are that match-
ing inference compute is almost universally the best, while
matching parameter count tends to be worse than the base-
line except in the undertrained regime, where it is better than
the baseline. The differences between the different settings
increases with overtraining, but decreases when scaling both
model size and training tokens at the same time.

20K 40K 60K 80K 100K120K140K160K180K
Transition point

20K

40K

60K

80K

100K

120K

140K

160K

180K

Nu
m

be
r o

f s
up

er
w

or
d

to
ke

ns Max possible

(a) Superword density

1 2 3 4
Number of words in token

0
20K
40K
60K
80K

100K
120K
140K
160K
180K

C
ou

nt

183686

11407 4189 622

(b) Superword length distribu-
tion

Figure 8: (Left) The number of superword tokens in a Su-
perBPE tokenizer, as a function of the transition point. A
superword token is any token that violates the whitespace
pretokenization rule from Stage 1. With an early transition
point of t = 60K, about 85% of the tokens learned in Stage
2 are superword tokens. For t > 100k, close to 100% of
Stage 2 tokens are superwords. (Right) The distribution of
superword token lengths in terms of number of words, for
t = 180k.

C. Analysis of SuperBPE Tokenizers
C.1. Superword token analysis

How many superword tokens are in SuperBPE tokenizers?
While the second stage of the pretokenization curriculum
allows learning of superword tokens, subword tokens can
still be learned. Shown in Figure 8a, for transition points
t < 80k, the number of superword tokens is relatively steady
around 120k. Past t > 100k, almost all tokens learned in
Stage 2 are superword tokens. Figure 8b shows the number
of whitespace-delimited words in the superword tokens of
SuperBPE with t = 180k.

C.2. Analysis of token frequencies in encoding

We also analyze token frequency statistics under BPE versus
SuperBPE tokenizers. Figure 9a shows the relation between
token rank (in frequency) and frequency. While tokens
in BPE demonstrate a standard Zipfian relation, the slope
of SuperBPE curves have a more shallow slope, meaning
that the rate of decay in token frequency is smaller. The
smaller proportion of tokens with very low counts may
reduce prevalence and severity of glitch tokens (Rumbelow
& Watkins, 2023; Land & Bartolo, 2024).

Figure 9b shows the minimum number of tokens from the
vocabulary needed to cover any given proportion of data. For
BPE, the relation is striking—only 57% of tokens are needed
to encode 99% of the data! The remaining tokens make up
a long tail of infrequent tokens. In contrast, SuperBPE
tokenizers make better use of the vocabulary. For t = 80k
and t = 180k, this statistic is 90% and 70% of tokens,
respectively.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

SuperBPE: Space Travel for Language Models

103 104 105

Tokens ordered by freq

103

104

105

106

107

C
ou

nt
s

BPE
SuperBPE
(t = 80K, 160K, 180K)

(a) Token frequency distribution

0.2 0.4 0.6 0.8 1.0
Data coverage

0.0

0.2

0.4

0.6

0.8

1.0

To
ke

ns
 n

ee
de

d

BPE
SuperBPE
(t = 80K, 160K, 180K)

(b) Data covering

Figure 9: (Left) Token counts when ordered by frequency.
The rate of decay in token frequency is smaller. (Right)
The minimum number of tokens needed to cover a given
proportion of the data. SuperBPE tokenizers make better
use of the vocabulary, while BPE tokenizers have a long tail
of infrequent tokens.

C.3. Distributional Distortion at the Prompt Boundary

Prior work (Lundberg, 2023; Phan et al., 2024) has shown
that LMs using BPE tokenizers may produce distorted gen-
erations due to the forced partition in tokenization between
a prompt and its completion. This issue stems from the
fact that users typically desire completions conditioned on a
text prompt. The natural approach to obtaining such com-
pletions is to take the prompt, tokenize it with the proper
tokenizer, and then sample a completion of the resulting
token sequence from the LM.

For a simple example of how this can go wrong, consider
a tokenizer with base vocabulary of A and B and a single
merge forming the token AB. Let’s suppose we trained a
model using this tokenizer on the strings “AA”, “AB”, and
“BB” with equal proportions. If we condition on the text
prefix “A”, there are two equally probable continuations:
“A” and “B”. However, A is the only valid completion of the
token prefix A, since the token B never follows the token A
during training. In other words, the prompt-completion pair
(A,B) is canonically tokenized using a token that crosses
the boundary between the prompt and the completion.

While this problem is shared by all BPE tokenizers, it can be
partially mitigated by pretokenization: if the prompt and the
completion are separated during the pretokenization step,
then it is impossible for a token to cross the boundary. This
fix tends to work well for English, where the completion
is typically expected to begin with whitespace, so whites-
pace pretokenization would apply. However, there are many
settings where whitespace pretokenization cannot fix the un-
derlying issue, including natural languages that do not use
whitespace to separate words (like Chinese and Japanese),
programming languages, and constrained generation (Lund-
berg, 2023; Ribeiro, 2023).

Several fixes for this issue have been proposed: at training

time, token merges can be randomly dropped (Provilkov
et al., 2020; Sims et al., 2025; DeepSeek-AI, 2025) to ex-
pose LMs to the internal makeup of tokens; at inference
time, options include token healing (Lundberg, 2023), al-
gorithmic correction (Phan et al., 2024), and enumeration
of all relevant segmentations of the prompt (Vieira et al.,
2024). We leave a detailed comparison of these techniques
to future work.

Additionally, the issue does not apply at all to models that
separate the user’s input from the model’s response using
special tokens, as is typical for chat models.

D. Other Related Work
Please see (Mielke et al., 2021) for a survey of subword
tokenization.

Pretokenization Pretokenization defines how the text is
split in order to prevent certain pairs of tokens from being
merged. GPT-2 (Radford et al., 2019) introduced a regular
expression (regex) which defines the pretokenization pattern.
These regex strings have gained complexity over time; GPT-
3.5 limits the number of digits in numerical tokens to 3,
and allows single punctuation to be merged with the start
of words (presumably to accommodate code, as it allows
.get to be a single token). Prior work has shown that,
for instance, digit pretokenization choices (Nogueira et al.,
2021; Thawani et al., 2021; Singh & Strouse, 2024) can
significantly impact arithmetic performance. It is also likely
that pretokenization affects different languages differently
(Velayuthan & Sarveswaran, 2025; Ahia et al., 2023), due
to natural statistics of the average word length, which acts
as an upper bound on encoding efficiency in that language
under subword tokenization. Nonetheless, the effectiveness
of many pretokenization choices have not been thoroughly
studied.

n-gram language models Our work is loosely related to
n-gram LMs, which incorporate n-gram statistics into the
next-word prediction (Brants et al., 2007; Liu et al., 2024).

Internal representation of semantic units Previous work
has showed that the early layers of the LM may “aggregate”
information over multi-token entities (e.g., [New, York])
into the last token’s (e.g., York) hidden representation
(Meng et al., 2022; Kaplan et al., 2025; Lad et al., 2024).
This suggests that LMs naturally learn multi-word repre-
sentations, and segmentating text into more semantically
cohesive units at the input level (e.g., having New York
as a single token) may simplify this process.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

SuperBPE: Space Travel for Language Models

0 25000 50000 75000 100000 125000 150000 175000 200000

Token ID

101

103

105

107

109

C
ou

nt

BPE
SuperBPE (t = 80K)

Figure 10: Token counts when ordered by token ID, which
reflects the order in which tokens were learned in tokenizer
training.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

SuperBPE: Space Travel for Language Models

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Train FLOPs 1e22

25

30

35

40

45

Ac
cu

ra
cy

 (
)

MMLU
BPE
SuperBPE (t = 80K)
SuperBPE (t = 160K)
SuperBPE (t = 180K)
SuperBPE (11B, t = 180K)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Train FLOPs 1e22

25

30

35

40

45

50

Ac
cu

ra
cy

 (
)

ARC-Challenge
BPE
SuperBPE (t = 80K)
SuperBPE (t = 160K)
SuperBPE (t = 180K)
SuperBPE (11B, t = 180K)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Train FLOPs 1e22

0

5

10

15

20

25

30

Pa
ss

@
10

 (
)

MBPP

BPE
SuperBPE (t = 80K)
SuperBPE (t = 160K)
SuperBPE (t = 180K)
SuperBPE (11B, t = 180K)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Train FLOPs 1e22

40

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (
)

Lambada

BPE
SuperBPE (t = 80K)
SuperBPE (t = 160K)
SuperBPE (t = 180K)
SuperBPE (11B, t = 180K)

Figure 11: Performance during pretraining for a subset of tasks in our evaluation suite.

22

