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Abstract
Maximizing a single submodular set function sub-
ject to a cardinality constraint is a well-studied
and central topic in combinatorial optimization.
However, finding a set that maximizes multiple
functions at the same time is much less under-
stood, even though it is a formulation which natu-
rally occurs in robust maximization or problems
with fairness considerations such as fair influence
maximization or fair allocation. In this work, we
consider the problem of maximizing the mini-
mum over many submodular functions, which is
known as multiobjective submodular maximiza-
tion. All known polynomial-time approximation
algorithms either obtain a weak approximation
guarantee or rely on the evaluation of the multi-
linear extension. The latter is expensive to evalu-
ate and renders such algorithms impractical. We
bridge this gap and introduce the first scalable and
practical algorithm that obtains the best-known ap-
proximation guarantee. We furthermore introduce
a novel application fair centrality maximization
and show how it can be addressed via multiob-
jective submodular maximization. In our exper-
imental evaluation, we show that our algorithm
outperforms known algorithms in terms of objec-
tive value and running time.

1. Introduction
Due to the natural diminishing returns property, maximiz-
ing submodular functions is a central task in various fields
such as optimization, machine learning, and economics (Fu-
jishige, 2005; Nemhauser et al., 1978). In submodular maxi-
mization subject to a cardinality constraint the task is to find
a set S of size |S| ≤ B for some budget B such that a sub-
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modular objective f(S) is maximized. Applications range
from welfare maximization to experimental design and vi-
ral marketing via influence maximization (Bilmes, 2022;
Kempe et al., 2003; Krause & Guestrin, 2007). Maximizing
a single monotone submodular function is well understood,
and the greedy algorithm is practically efficient and obtains
the best possible polynomial-time approximation guarantee
of 1− 1

e ≈ 0.63 (Nemhauser & Wolsey, 1978). Moreover,
so-called lazy evaluations make the greedy algorithm highly
scalable (Minoux, 2005).

Another line of work studies the task where k different sub-
modular objectives have to be simultaneously maximized,
which is called multiobjective submodular maximization.
This is also important for many applications. For instance,
in robust experimental design, the goal is to maximize a sub-
modular function fθ, which depends on an a-priori unknown
parameter θ (Krause et al., 2008). One seeks to find a set
that maximizes fθ simultaneously for all valid parameters θ.
Recently, many applications in artificial intelligence con-
sider the max-min fairness objective, which often naturally
falls into the multiobjective scenario. One such example is
fair influence maximization, where the goal is to maximize
the influence among all groups (Tsang et al., 2019).

Even though applications for the multiobjective setting are
numerous and relevant, solving the problem with theoretical
guarantees still presents challenges for current algorithms.
Indeed, the prior work can be split into two categories of
approximation algorithms: First, there are algorithms that
cannot recover the (1− 1

e )-approximation, but are discrete
and efficient in practice. The best approximation ratio for
such an algorithm is (1− 1

e )2 ≈ 0.40 (Udwani, 2018). Sec-
ond, there are algorithms that (almost) recover the (1− 1

e )-
approximation guarantee (Chekuri et al., 2010; Udwani,
2018), but solve a continuous relaxation of the problem
based on the multilinear extension, which is known to be
impractical (Bai et al., 2018; Chen & Kuhnle, 2024; Buch-
binder & Feldman, 2024). These algorithms do not scale
to larger problem instances, as the ones necessitated by the
mentioned applications.

This is where our work comes in: We introduce an algo-
rithm that (almost) achieves the (1− 1

e )-approximation, but
does not relax the problem to the continuous setting and
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is therefore efficient in practice. This settles an open ques-
tion of Udwani (2018), showing that there is a practically
efficient algorithm that obtains best possible approximation
ratio. Our main contributions are the following:

1. We introduce a novel algorithm for multiobjective
submodular maximization. Our algorithm (almost)
achieves the best possible approximation ratio of 1− 1

e .
Our algorithm is vastly more efficient than algorithms
with comparable guarantees, which rely on a contin-
uous relaxation and a rounding procedure. Our al-
gorithm, instead, achieves its guarantee via a novel
concentration argument.

2. Furthermore, we show how multiplicative weights up-
dates (MWU) can further reduce the number of func-
tion evaluations, which also yields an analogue to the
lazy greedy algorithm for the multiobjective problem.

3. We introduce a novel application fair centrality maxi-
mization, as a generalization of the well-studied task
of centrality maximization with fairness consideration,
and show how it can be formulated as a large-scale
multiobjective submodular maximization.

4. We experimentally verify that our algorithm outper-
forms previous methods in terms of objective value and
running time. The practical efficiency of our method
allows us to be the first to solve large-scale instances
while retaining quality of solutions.

2. Related Work
Nemhauser et al. (1978) showed that the greedy algorithm
achieves a (1− 1

e )-approximation for cardinality-constrained
monotone submodular maximization. This is tight, unless
P = NP (Feige, 1998). More algorithms for this and re-
lated settings exist (Calinescu et al., 2011; Badanidiyuru &
Vondrák, 2014; Mirzasoleiman et al., 2015).

Krause et al. (2008) introduced the multiobjective submod-
ular maximization problem in the context of robust exper-
imental design. They provided a bi-criteria algorithm and
showed that the problem becomes inapproximable in the
regime where B ≤ k. Chen et al. (2017) also proved that
computing a (1− 1

e )-approximate solution for the problem is
NP-hard. When surveying approximation algorithms for the
problem, we distinguish between two types of algorithms.

The first type uses a continuous relaxation of the submod-
ular set functions f : 2V → R to F : [0, 1]V → R, which
is called the multilinear extension. After obtaining a con-
tinuous solution via techniques from convex optimization,
the solution is then rounded to output a single set. Such
approaches have the benefit that they (almost) offer the best
possible approximation ratio of 1 − 1

e . However, evaluat-
ing the multilinear extension is costly and impractical for

even moderately sized problems, as we can generally only
approximate the relaxation via sampling. In their seminal
work, Chekuri et al. (2010) introduced the oblivious round-
ing scheme Swap Rounding and showed how this leads to an
algorithm for the multiobjective problem even subject to a
matroid constraint. Later, Udwani (2018) introduced a more
efficient algorithm for cardinality constraints. Tsang et al.
(2019) gave an algorithm that finds a continuous solution via
Frank-Wolfe, and they showed that the multilinear extension
can be evaluated efficiently for influence maximization.

The second type of algorithm avoids evaluation of the
multilinear extension and only operates on discrete solu-
tions. Udwani (2018) also introduced an efficient (1− 1

e )2-
approximation algorithm via MWU. The algorithm main-
tains a vector of weights y ∈ ∆C , where C is the index set
of multiple submodular functions and ∆C is the probabil-
ity simplex over C, and uses a subroutine that solves the
problem of maximizing the combined submodular function∑
c∈C ycfc(S). The weights are then updated based on the

individual values achieved for each objective. However,
combining the solutions created in each iteration introduces
an additional factor of 1− 1

e into the approximation guaran-
tee, which is the reason that this algorithm does not retain
the guarantee of continuous algorithms. Orlin et al. (2018)
devised a combinatorial algorithm that almost achieves the
(1− 1

e )-approximation, but only for the case when k ≤ 2.

Other efficient algorithms use the greedy paradigm, but do
not obtain constant-factor approximation guarantees. The
aforementioned bi-criteria algorithm by Krause et al. (2008)
maximizes a modified objective function, but may violate
the budget constraint in order to meet its approximation guar-
antee. Later Chen et al. (2017), Wilder (2018), and Anari
et al. (2019) also gave bi-criteria approximation algorithms.

Instead of maximizing the minimum of multiple objectives,
Soma & Yoshida (2017) considered regret ratio minimiza-
tion where the goal is to find a collection of subsets (rather
than a single subset) that approximate the Pareto optimal
set to the multiple objectives. They designed algorithms
for the problem which were improved by Feng & Qian
(2021) and Wang et al. (2023). Malherbe & Scaman (2022)
considered an objective based on quantile maximization.
Recently, Wang et al. (2024) introduced the problem of
maximizing the average of objectives subject to multiple
constraints ensuring the value of each objective. Fazzone
et al. (2024) studied a more general problem and extended
the algorithm of Krause et al. (2008) to obtain a sequence
of approximately Pareto optimal solutions.

Related to the multiobjective problem, submodular maxi-
mization has also been studied with fairness and diversity
considerations for the output subset. In this context, each
element is associated with a categorical attribute such as
race or gender, and the output is required to ensure that
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no particular attribute value is under- or over-represented.
This problem has actively been studied in both the offline
setting (Celis et al., 2018; El Halabi et al., 2024; Tang &
Yuan, 2023; Yuan & Tang, 2023) and the streaming set-
ting (El Halabi et al., 2020; 2023; Wang et al., 2021; Cui
et al., 2024).

3. Problem Definition
We now formally define the notion of submodularity and the
problem we consider in this work. A set function on a finite
universe V is a function f : 2V → R on all subsets of V . A
set function f is said to be monotone if f(S) ≤ f(T ) for all
sets S ⊆ T ⊆ V . For sets S ⊆ V and T ⊆ V , we define the
marginal gain of T over S as f(T | S) = f(S ∪T )−f(S).
If T consists of a single element v, we simply write f(v | S)
instead of f({v} | S). A set function is called submodular
if it has diminishing returns, i.e., for all sets S ⊆ T ⊆ V
and elements v ∈ V holds that

f(v | S) ≥ f(v | T ).

Maximization of submodular functions is well-understood.
We consider (multiplicative) approximation ratios, so we
assume throughout that submodular functions are nonnega-
tive.

In our work, we are interested in a generalization of this
objective where we consider multiple submodular functions
over the same universe. The goal is to find a set that maxi-
mizes all functions at the same time:
Problem 3.1 (Multiobjective Submodular Maximization).
Let C be a finite set, which we refer to as the set of colors,
and define k = |C|. We are given a universe V and mono-
tone and submodular set functions fc : 2V → R≥0 for each
c ∈ C, all on the same universe V . Given a budget B, we
are asked to find a set S ⊆ V of size |S| ≤ B maximizing
the least value among all colors, which is minc∈C fc(S).

In our work, we are concerned with the case when the bud-
get is large compared to the number of colors, i.e., B ≥ k,
as this avoids the regime where the problem becomes inap-
proximable (Krause et al., 2008). Submodular maximization
(i.e., the special case of a single color) is known to be NP-
hard as it generalizes the maximum coverage problem. For
the latter, no polynomial-time algorithm with an approxi-
mation ratio better than 1− 1

e is known. At the same time,
the greedy algorithm provably achieves this approximation
ratio for any submodular function (Nemhauser et al., 1978).
Multiobjective submodular maximization (i.e., the general
case of multiple colors) is a harder problem, but we aim
for (almost) the same approximation guarantee. As in the
prior work, our goal is to design an algorithm that provably
obtains an approximation ratio of 1− 1

e − ε with probability
1− δ for any pair of ε, δ > 0. Both values show up in the

Algorithm 1: Greedy for Problem 3.1
Input: Monotone and submodular set functions

fc : 2V → R≥0 for c ∈ C, budget B, and the
optimal value OPT

1 S(0) ← ∅;
2 for i = 1, 2, . . . , B do
3 Let x(i) ∈ ∆V be a solution to the problem:
4 Find x ∈ ∆V such that for all c ∈ C holds∑

v∈V
xvfc(v | S(i−1)) ≥ 1

B

(
OPT− fc(S(i−1))

)
;

(1)5

6 Sample v(i) ∼ x(i);
7 Update S(i) ← S(i−1) ∪ {v(i)};
8 return S(B).

running time of our algorithm and in a necessary condition
on the budget B.

Further Notation. We use OPT for the optimal solution
OPT = arg maxS⊆V :|S|≤B minc∈C fc(S) of the multiob-
jective submodular maximization (Problem 3.1). Abusing
notation, we also use OPT to denote the optimal value, i.e.,
we write OPT = minc∈C fc(OPT). Given a finite set X ,
we denote the set of probability distributions over X as the
simplex ∆X = {x ∈ [0, 1]X :

∑
v∈X xv = 1}. We will

use this to denote probability distributions over the set of
colors ∆C or the universe ∆V .

4. Our Algorithm
We sketch the central component of our algorithm for multi-
objective submodular maximization (Problem 3.1) in Algo-
rithm 1. Note that this is merely to illustrate and motivate
our core ideas, and we also provide an implementable ver-
sion as Algorithm 2. Before delving into the analysis of
our approximation guarantee, we want to motivate our algo-
rithm design. For now, we assume that we know the optimal
value OPT; an assumption that we will later remove.

As in the greedy paradigm, we construct a solution S(i)

over 1 ≤ i ≤ B iterations and in each iteration, we
identify a good element v(i) to add. For the case of sub-
modular maximization (i.e., the special case of a single
color), using the element with maximum marginal gain
v∗ = arg maxv∈V f(v | S(i−1)) is sufficient to obtain the
(1− 1

e )-approximation. However, the analysis reveals that it
is not necessarily required to add the element of maximum
marginal gain. Indeed, adding any element v ∈ V whose
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marginal gain satisfies the inequality

f(v | S(i−1)) ≥ 1

B

(
OPT− f(S(i−1))

)
(2)

is sufficient. Intuitively, adding an element with a marginal
gain that is high enough compared to the distance to op-
timality is sufficient, and it is easy to show that v∗ also
satisfies Inequality (2). Transferring this to the case of mul-
tiple colors is not straightforward as there is not necessarily
a single element that satisfies Inequality (2) simultaneously
for all colors c ∈ C. Instead, we show that we can satisfy
(2) in expectation with a probability distribution x(i) ∈ ∆V

which is exactly what we require for (1) in the description of
Algorithm 1. As of now, it is unclear that such a probability
distribution exists, but show this in the following lemma:
Lemma 4.1. In each iteration of Algorithm 1, there is a
solution x(i) ∈ ∆V that satisfies Inequality (1).

Proof. Fix an iteration 1 ≤ i ≤ B. Let x∗ ∈ [0, 1]V be
such that x∗v = 1

B if v ∈ OPT and x∗v = 0 otherwise. Note
that x∗ satisfies Inequality (1) for all c ∈ C since∑

v∈V
x∗vfc(v | S(i−1))

=
1

B

∑
v∈OPT

fc(v | S(i−1))

≥ 1

B
fc(OPT | S(i−1)) (submodularity)

≥ 1

B

(
fc(OPT)− fc(S(i−1))

)
(monotonicity)

≥ 1

B

(
OPT− fc(S(i−1))

)
.

Even though we know that a solution x(i) exists in each
iteration, we still need to argue that we can find it efficiently.
To this end, we rewrite the problem of finding x(i) satisfying
Inequality (1) as an LP. Introducing an objective into the LP
even allows us to remove the dependence on OPT:

LP(S(i−1)): max. ξ (3)

s.t. ∀c ∈ C :
∑
v∈V

xv

(
Bfc(v | S(i−1))+fc(S

(i−1))
)
≥ ξ,∑

v∈V
xv = 1,

∀v ∈ V : xv ≥ 0.

Note that the equivalence with (1) follows immediately by
rearranging terms in the first constraint using the second
constraint

∑
v∈V xv = 1 and replacing ξ with OPT. It is

thus guaranteed by Lemma 4.1 that the optimal value ξ∗ of
the LP satisfies ξ∗ ≥ OPT.

Now, operating over continuous solutions x(i) is impracti-
cal as it involves relaxing the submodular functions. On

Algorithm 2: LP Greedy with Independent Repetitions
Input: Monotone and submodular set functions

fc : 2V → R≥0 for c ∈ C, budget B, failure
probability δ

1 Sbest ← ∅;
2 for t = 1, 2, . . . , dlog(2/δ)e do
3 S(0) ← ∅;
4 for i = 1, 2, . . . , B do
5 Let x(i) ∈ ∆V be a solution to LP(S(i−1)) ;
6 Sample v(i) ∼ x(i);
7 Update S(i) ← S(i−1) ∪ {v(i)} ;

8 if minc∈C fc(S
(B)) ≥ minc∈C fc(Sbest) then

9 Sbest ← S(B) ;

10 return Sbest.

the contrary, we are able to avoid continuous solutions as
we discretize immediately by sampling a random element
v(i) ∈ V according to x(i) and adding it to our solution. The
technical part of our analysis is concerned with showing that
this leads to a solution of high value for all colors c ∈ C,
with sufficiently high probability. However, intuitively this
is clear: Assume we have constructed a partial solution S(i)

that has low value for a specific color c ∈ C. This means
that the gap to optimality OPT− fc(S(i−1)) is larger for c
than for other colors, so the solution x(i−1) ∈ ∆V will put
more mass on elements v ∈ V that satisfy (1) for the color
c. This makes it more likely that fc(S(i)) will be larger, and
overall that all colors have high value, given that the budget
is sufficiently large.

Finally, we need to amplify the success probability of our
algorithm, which we do via independent repetitions of Al-
gorithm 1. We detail our complete approach in Algorithm 2,
which also no longer requires knowledge of OPT.

Adding random elements has been considered in prior works
on submodular maximization such as in the algorithm of
Buchbinder et al. (2014) for non-monotone submodular
maximization, where the randomness helps to avoiding bad
elements. However, our algorithm and sampling is carefully
designed to solve the multiobjective problem: We choose
our sampling probabilities to enforce progress across all
colors simultaneously, which can be understood as a discrete
version of the continuous approach of Chekuri et al. (2010).

4.1. Analysis Outline

We now state the approximation guarantee of Algorithm 1.
This guarantee only holds if the optimal value OPT is suffi-
ciently large, but we will show in Section 4.2 how to convert
this into a guarantee that depends on the ratio of the budget
B and the number of colors k = |C| via a pre-processing

4



An Asymptotically Optimal Approximation Algorithm for Multiobjective Submodular Maximization at Scale

step. To bound the running time and the number of function
evaluations of our algorithm, we will show in Section 4.3
how to use MWU to solve the LP efficiently. We defer some
of our proofs to Appendix A.

Theorem 4.2. If OPT ≥ 4
ε2M log(2k) where the maxi-

mum marginal gain is M = maxc∈C maxv∈V fc(v | ∅),
then Algorithm 2 outputs a solution S such that

min
c∈C

fc(S) ≥
(

1− 1

e
− ε
)

OPT

with probability at least 1− δ.

To prove the theorem, we begin with the basic observation
that in each iteration, we add an element to the solution that
for each c ∈ C is good in expectation.

Lemma 4.3. In each iteration i of Algorithm 1 and for each
color c ∈ C,

E[fc(v
(i) | S(i−1)) | S(i−1)] ≥ 1

B

(
OPT− fc(S(i−1))

)
.

In expectation, we recover the greedy guarantee:

Lemma 4.4. Algorithm 1 outputs a solution S such that for
each c ∈ C,

E[fc(S)] ≥
(

1− 1

e

)
OPT.

The problem is that this is only in expectation, but we have
to satisfy it for all colors c ∈ C simultaneously. To this end,
we show how to use concentration results for martingales.

To motivate our analysis further we explain how this gener-
alizes an easier problem that is better understood: Imagine
that in each iteration i, we obtain x(i) = x∗ as defined in
the proof of Lemma 4.1 as a solution to (1). Since this so-
lution does not change over the iterations, our algorithm is
equivalent to throwing B balls (one ball per iteration) into
B bins (one bin per element of OPT). It is known that the
resulting number of non-empty bins is 1− 1

e in expectation.
In fact, we have shown a stronger statement in Lemma 4.4,
i.e., that this even holds for functions that are submodular
over the non-empty bins. Our analysis thus takes inspiration
from concentration results for this balls-into-bins problem
to obtain concentration. In particular, we use a form of
Azuma’s inequality due to Kuszmaul & Qi (2021):

Theorem 4.5 (Corollary 16 in Kuszmaul & Qi (2021)). Sup-
pose that Alice constructs a sequence of random variables
X1, . . . , XB , with Xi ∈ [0,M ], M > 0, using the follow-
ing iterative process. Once the outcomes of X1, . . . , Xi−1

are determined, Alice then selects the probability distribu-
tion Di from which Xi will be drawn; Xi is then drawn
from distribution Di. Alice is an adaptive adversary in that
she can adapt Di to the outcomes of X1, . . . , Xi−1. The

only constraint on Alice is that
∑B
i=1 E[Xi | Di] ≥ µ, that

is, the sum of the means of the probability distributions
D1, . . . ,DB must be at least µ. If X =

∑B
i=1Xi, then for

any ε > 0,

Pr[X ≤ (1− ε)µ] ≤ exp

(
− ε

2µ

2M

)
.

We use this to argue for concentration around (the lower
bound on) the expectation, which was (1− 1

e )OPT:

Lemma 4.6. Let S be the output of Algorithm 1. For each
c ∈ C, it holds that

Pr

[
fc(S) ≤

(
1− 1

e
− ε
)

OPT

]
≤ exp

(
−ε

2OPT

4Mc

)
where Mc = maxv∈V fc(v | ∅).

Proof. Fix c ∈ C. In the context of Theorem 4.5, we
use Xi = fc(v

(i) | S(i−1)) and the distribution Di over
values fc(v(i) | S(i−1)) where v(i) ∼ x(i). As such, M =
maxc∈CMc is also the maximum marginal value. Note
that the random process is exactly as in Algorithm 1: In
each iteration, we select a (possibly adversarial) solution
x(i) to (1) which determines the distribution Di. It remains
to argue that

∑B
i=1 E[Xi | Di] ≥ µ for µ = (1 − 1

e )OPT.
However, we have just shown this in Lemma 4.4:

B∑
i=1

E[Xi | Di] = E

[
B∑
i=1

fc(v
(i) | S(i−1))

]

= E[fc(S
(B))] ≥

(
1− 1

e

)
OPT = µ.

Applying Theorem 4.5 now yields

Pr[fc(S) ≤ (1− ε)µ] ≤ exp

(
− ε2µ

2Mc

)
.

Noticing that
(
1− 1

e − ε
)

OPT ≤ (1− ε)µ and 1− 1
e >

1
2 ,

we have the lemma.

With the concentration for each color in hand, we are now
ready to prove Theorem 4.2:

Proof of Theorem 4.2. Recall that we defined the maximum
gain as M = maxc∈CMc = maxc∈C maxv∈V fc(v | ∅).
Assuming OPT ≥ 4

ε2M log(2k), we have by Lemma 4.6
for each c ∈ C that

Pr

[
fc(S) ≤

(
1− 1

e
− ε
)

OPT

]
≤ exp

(
−ε

2OPT

4M

)
≤ 1

2k
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and by a union bound over the k (dependent) colors, we
obtain that the result holds for all c ∈ C with probability
≥ 1

2 . We repeat the algorithm r = dlog(1/δ)e times and
output the best solution. Since repetitions are independent,
the probability that none of the dlog(1/δ)e solutions is a
(1− 1

e − ε)-approximation is 2−r ≤ e− log(1/δ) = δ.

4.2. Removing the Condition on OPT

We can push the condition on OPT into a condition on the
relation of the budget B to the number of colors k = |C|,
which we state in Theorem 4.8. As do all (1 − 1

e − ε)-
approximation algorithms for Problem 3.1, we also require
the budget to be large. Recall that this avoids the regime
where the problem becomes inapproximable (Krause et al.,
2008) and is natural for many of the applications we men-
tioned in the introduction. Our condition is slightly less
restrictive compared to the prior work, and we provide a
detailed comparison at the end of this section.

The key is a pre-processing step where we eliminate ele-
ments v ∈ V whose value fc(v | ∅) is large compared to
OPT for any color c ∈ C, as such elements impair the
concentration. We find such elements and add them to a par-
tial solution T . Afterwards, some colors may have reached
OPT. However, we now only consider the colors

C̃ = {c ∈ C : fc(T ) < OPT}

which have not yet reached OPT. Our pre-processing guar-
antees that marginal gains for colors c ∈ C̃ on top of the
partial solution T are small compared to OPT, and are
thus not problematic for Algorithm 2. This is similar to the
pre-processing step described by Udwani (2018), but our
pre-processing does not require knowledge of OPT. We
defer the full description of the pre-processing routine to
Algorithm 3 in Appendix A.2, along with all proofs.

We then run Algorithm 2 with a reduced budget B − |T |
on functions f̃c(A) = fc(A ∪ T ), which ensures by sub-
modularity that marginal gains are small for the modified
instance. The technical difficulty is to show that reducing
the budget does not result in a big decrease of the optimum,
which is non-trivial for multiple objectives. We provide the
following novel result:

Lemma 4.7. Let ÕPTb = maxS⊆V :|S|≤b minc∈C̃ f̃c(S)

for b ≥ 0. Let γ > 0 be such that f̃c(v | ∅) ≤ γÕPTB for
all v ∈ V and c ∈ C̃. Then, for B̃ ≤ B,

ÕPTB̃ ≥

(
1−

√
3γ
B

B̃
log k

)
B̃

B
ÕPTB .

Note that prior work uses similar results but over the contin-
uous space, which makes our result more challenging. Let
S̃ be the solution of Algorithm 2 to the modified instance.
We have the following guarantee on the combined solution:

Theorem 4.8. If B ≥ 108 k
ε3 log k then

min
c∈C

fc(T ∪ S̃) ≥
(

1− 1

e
− ε
)

OPT

with probability at least 1− δ.

Comparison with prior work. We compare our condi-
tion B = Ω( kε3 log k) of Theorem 4.8 with conditions on
the budget of prior work. Udwani (2018) requires that
ε ≤ 1

10 log k for an approximation ratio of 1− 1
e − ε−

k
Bε3 −

( logB
B )1/2. In order to achieve an approximation ratio of

1 − 1
e − ε, his algorithm requires that B = Ω( kε4 ). The

algorithm of Tsang et al. (2019) provides a similar approxi-
mation that is also dominated by the term k

Bε3 . Since they
have to use the same choice of ε, their algorithm has the
same condition on B. The condition on ε in both works
requires 1

ε ≥ 10 log k, which means that our condition for
Theorem 4.8 is never more restrictive, while our condition
is strictly less restrictive in its dependence on ε.

4.3. MWU and Lazy Evaluations

Algorithm 2 may still be impractical. First, solving the
LP may be expensive and second, we need to evaluate all
marginal gains in each iteration. The latter is also a problem
appearing in the greedy algorithm for a single color and we
there resort to lazy evaluations. It turns out that we can solve
both efficiency problems via multiplicative weights updates
(MWU) (Arora et al., 2012). In particular, we show that
solving the LP approximately via a few rounds of MWU is
sufficient, and we even transfer lazy evaluations to multiple
colors. We note that MWU have been used in the context
of multiobjective submodular maximization, but to solve a
continuous relaxation of the problem (Chekuri et al., 2015).

We detail this in Algorithm 4 in Appendix A.3. We cru-
cially use that solving LP(S) admits a formulation as a
two-player game: The first player selects a probability dis-
tribution y ∈ ∆C over the colors, and the second player
responds with the element v ∈ V which maximizes the
convex combination

∑
c∈C yc`c(v) where `c(v) is a loss

(or rather, a gain) given as `c(v) = Bfc(v | S) + fc(S).
Finding the best response thus entails a search over all ele-
ments v ∈ V , and we show how to transfer the concept of
lazy evaluations to the multiobjective problem in order to
reduce the number of function evaluations in practice. Fur-
thermore, two-player games can be solved efficiently using
few rounds of MWUs (Arora et al., 2012). The complication
is to bound the number of rounds, and we do so by appealing
to the structure of our problem. This allows us to bound the
overall running time of our algorithm. Note that we first run
the pre-processing described in Algorithm 3, and then apply
Algorithm 2 where we solve the LP approximately using
MWU as described in Algorithm 4.
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Theorem 4.9. Our algorithm for multiobjective submodu-
lar maximization runs in time O(nB3 1

ε2 k log(k) log(1/δ))
and requires O(nBk log(1/δ)) function evaluations.

We also defer this proof to Appendix A.3. We compare
this with the (1 − 1

e − ε)-approximation algorithm of Ud-
wani (2018), which has a similar condition on B but needs
Õ(kn8) function evaluations. The faster ((1 − 1

e )2 − ε)-
approximation algorithm requires Õ(n 1

ε3 ) function eval-
uations by repeatedly solving submodular maximization
problems using a nearly-linear time algorithm developed by
Mirzasoleiman et al. (2015). Furthermore, the (1− 1

e − ε)-
approximation algorithm of Tsang et al. (2019) needs
Õ(kB

2

ε + B4

ε5 ) evaluations of the multilinear extension and
its gradient, and needs O(nB

2

ε2 + kB2

ε + B3

ε2 ) additional
time. Note that the evaluation of the multilinear extension
is generally not tractable and usually estimated via sam-
pling (Salem et al., 2024). Only special structure of the
submodular functions allows for more efficient evaluations.

5. Fair Centrality Maximization
We now introduce our novel application which furthers the
applicability of algorithms for multiobjective submodular
maximization. Centrality measures, quantifying the impor-
tance of nodes or edges in a network, play a key role in
network analysis (Das et al., 2018). In many real-world sce-
narios, we want to optimize the centrality score of a target
node by intervening in the structure of the network (e.g., by
adding or removing edges around the node). In particular,
centrality maximization is a well-studied task, where given
a directed graph G = (V,A), a target node v ∈ V , and a
budget B ∈ Z>0, we are asked to insert at most B edges
heading to v that maximize the centrality score of v (see e.g.,
(Bergamini et al., 2018; Crescenzi et al., 2016; D’Angelo
et al., 2019; Ishakian et al., 2012; Medya et al., 2018)).

Among existing centrality measures, the harmonic centrality
is one of the most well-established (Boldi & Vigna, 2014).
The harmonic centrality score of v ∈ V is defined as

hG(v) =
∑

u∈V \{v}

1

dG(u, v)

where dG(u, v) is the shortest-path distance from u to v on
G. Intuitively, the score quantifies the importance of nodes
based on the level of reachability from the other nodes.
Boldi & Vigna (2014) showed that unlike previously known
centrality measures, the harmonic centrality satisfies all
the desirable axioms, namely the size axiom, density ax-
iom, and score monotonicity axiom. Recently, Murai &
Yoshida (2019) theoretically and empirically demonstrated
that among well-known centrality measures, the harmonic
centrality is most stable and thus reliable against the struc-
tural uncertainty of networks.

In many real-world networks, nodes are not uniform but var-
ied in terms of attributes. Examples include social networks,
where nodes have sensitive attributes such as race, gender,
religion, or even political opinions. Suppose that we have
a network in which each node has a categorical attribute
such as race or gender. Centrality maximization without any
consideration of the variation of node attributes may lead
to undesirable outcomes. Indeed, as the objective function,
i.e., the centrality measure employed, does not take into ac-
count the variation of node attributes, it cannot distinguish
between parts of centrality scores of the target node corre-
sponding to nodes with different attribute values. Therefore,
even if the centrality score of the target node is maximized,
the node might still not be sufficiently visible to nodes with
some specific attribute value. This is problematic, for in-
stance, in the case where we use centrality maximization to
improve the visibility of public health agency’s accounts in
social media platform. Such accounts should be sufficiently
visible even to minority users.

We therefore study centrality maximization with fairness
considerations, taking into account the variation of node
attributes. To this end, we introduce a novel centrality
measure, which we refer to as the fair harmonic central-
ity. This measure is a generalization of the aforementioned
harmonic centrality, which contributes to finding a fair so-
lution in terms of node attributes. Let now C be a set of
colors, i.e., attribute values. Let ` : V → C be a mapping
that assigns each node to a color. For each c ∈ C, define
Vc = {v ∈ V | `(v) = c}. We define the fair harmonic cen-
trality based on the maximin fairness (Rahmattalabi et al.,
2019) as follows:

hmin
G (v) = min

c∈C

1

|Vc \ {v}|
∑

u∈Vc\{v}

1

dG(u, v)
. (4)

This represents the minimum value among all parts of the
harmonic centrality score of v corresponding to nodes with
different colors, normalized by their populations. Clearly,
the above is a generalization of the original harmonic cen-
trality. Based on this measure, we formulate:
Problem 5.1 (Fair Centrality Maximization). Given a di-
rected graph G = (V,A), a mapping ` : V → C, a target
node v ∈ V , and a budget B ∈ Z>0, we are asked to find
F ⊆ {u ∈ V | (u, v) /∈ A} × {v} with |F | ≤ B that
maximizes hmin

(V,A∪F )(v).

This is a special case of the multiobjective submodular max-
imization (Problem 3.1), since every term in the minimum
in (4) is submodular in F , as in the original harmonic cen-
trality (Crescenzi et al., 2016). Existing algorithms for mul-
tiobjective submodular maximization either offer weak theo-
retical guarantees or rely on the multilinear extension of the
objective function; however, the evaluating the latter is com-
putationally expensive when considering our fair centrality
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maximization problem for large-scale networks. With our al-
gorithm, we are the first to solve multiobjective submodular
maximization on this scale with the strongest guarantee.

6. Experimental Evaluation
We evaluate our algorithm, natural greedy baselines, and
other prior work on synthetic and real-world instances for
max-k-cover, fair centrality maximization, and fair influence
maximization. We run our experiments in Python 3 on a
ThinkPad X1 Carbon with an Intel Core i7-1165G7 CPU
and 16GB of RAM. Our code is publicly available.1

6.1. Algorithms

We use our algorithm and several baseline algorithms with
and without theoretical guarantees. For baselines that re-
quire an estimate OPT′ to the optimal value, we use an
outer loop that performs a binary search for OPT′. Note
that our algorithm does not require such an estimate.

LP Greedy. We use our Algorithm 2 with 20 repetitions of
the outer loop to boost the success probability, and solve
LP (3) using Gurobi Optimizer 11.0.1 (Gurobi Optimization,
LLC, 2024). We facilitate lazy evaluations differently from
the MWU described in Algorithm 4: In each iteration i, we
solve LP(S(i−1)), but using the upper bounds gc(v) in place
of the real marginal gains. Whenever the solution x ∈ ∆V

to the LP places mass xv > 0 on an element v ∈ V , we
evaluate and update gc(v) = fc(v | S(i−1)). We then solve
the LP again and repeat this until the real marginal gains
of all elements v ∈ V with xv > 0 are evaluated. We omit
the pre-processing described in Algorithm 3. Algorithm 2
may act overly conservative in its selection to preserve the
approximation ratio for difficult instances. We thus modify
the left-hand-side of the first constraint of LP (3) to be∑

v∈V
xv

(
Bfc(v | S(i−1)) + φfc(S

(i−1))
)

where φ > 1 is a factor that controls the greediness of our
algorithm: For larger φ, our algorithm prefers to increase the
color that currently has the least value, instead of picking a
distribution x that leads to a balanced increase. Throughout,
we use a factor φ = 10. We include an ablation study for
the number of repetitions of the outer loop and the factor φ.

Greedy heuristics. We use two greedy heuristics. First,
we use the heuristic described by Udwani (2018) (GREEDY
ROUND ROBIN): In 1 ≤ i ≤ B iterations, we add one
element after another to the solution S(i−1). We select the
i-th element as v(i) = arg maxv∈V fc∗(v | S(i−1)) where
c∗ = i mod k. We use another greedy heuristic (GREEDY
MINIMUM), where c∗ = arg minc∈C fc(S

(i−1)).

1https://github.com/285714/multiobjective
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Figure 1. Multiobjective submodular maximization for max-k-
cover. We use k = 20 Kronecker graphs on n = 64 nodes. We
show the function value (left) and the number of evaluations (right).
We report mean and standard deviation over 5 random instances.

Saturate. We use the bi-criteria algorithm SATURATE
due to Krause et al. (2008) as a heuristic with fixed bud-
get. The algorithm uses a guess OPT′ to the optimal
value and optimizes greedily over the submodular function
fSATURATE(S) =

∑
c∈C min{fc(S),OPT′}.

Udwani’s MWU. We use the efficient (1 − 1
e )2-

approximation described by Udwani (2018) (UDWANI
MWU). We follow his implementation details and also omit
the pre-processing. We use 100 iterations with a step size of
η = 0.1 ·OPT′. We use the lazy greedy implementation to
solve the inner maximization problem.

Continuous Frank-Wolfe for influence maximization.
We use the algorithm of Tsang et al. (2019) and their imple-
mentation. The algorithm relies on the fast evaluation of the
multilinear extension for fair influence maximization, and
thus we use it only for fair influence maximization.

6.2. Max-k-Cover

First, we replicate the setup of Udwani (2018) for max-
k-cover instances: Here, we generate k random synthetic
graphs {Gc = (V,Ec)}c∈C on a fixed vertex set V . The
cover size of U ⊆ V on graph Gc is fc(U) = |NGc

(U)|
where NGc(U) = {{u, v} ∈ Ec : u ∈ U or v ∈ U}. We
use k = 20 stochastic Kronecker graphs on n = 64 nodes
which reflect real-world networks and are detailed in Ud-
wani (2018) and Leskovec et al. (2010). Our results are in
Figure 1 and we include further experiments on other graphs
in Appendix B.1. This shows that we achieve the highest
objective with fewer function evaluations than other algo-
rithms, particularly compared with UDWANI MWU which
is the only other algorithm with theoretical guarantees.

6.3. Fair Centrality Maximization

We use Amazon co-purchasing networks used by Anagnos-
topoulos et al. (2020) and Miyauchi et al. (2023) along with
the color attributes which represent product categories to ob-
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Figure 2. Fair centrality maximization on the Amazon co-
purchasing graph Arts, Crafts & Sewing with n = 5051 nodes and
k = 2 colors.
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Figure 3. Fair influence maximization on a simulated Antelope
Valley network of n=500 nodes on attribute ethnicity with k=5.

tain instances for our fair centrality maximization problem
as defined in Section 5. The networks are available online
(tsourakakis-lab, 2024) and contain large graphs of up to
10 380 nodes and 53 680 edges. We select an arbitrary target
node among the nodes with median degree. Figure 2 shows
results for a single network called Arts, Crafts & Sewing
and we include results for other networks in Appendix B.2.
Throughout, our algorithm achieves the highest objective
value with fewer function evaluations than UDWANI MWU
and SATURATE, which are the strongest competitors. This
is mainly because, compared to these two algorithms, our
method does not require a binary search to determine a good
guess to the optimal value.

6.4. Fair Influence Maximization

Finally, we replicate the setup of Tsang et al. (2019) for
their influence maximization objective, where the diffu-
sion follows the independent cascade model (Kempe et al.,
2003). They define an instance for multiobjective sub-
modular maximization via the colored influence fc(S) =

1
|Vc|E[number of nodes with color c that S activates]. We
use their simulated Antelope Valley networks on n = 500
nodes which can be colored according to different node
attributes. As in Tsang et al. (2019), we use 1 000 samples
to approximate the influence. Figure 3 shows results for
the attribute ethnicity, where we outperform the prior work
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Figure 4. We run Algorithm 2 on a max-k-cover instance of k =
20 Erdős-Rényi random graphs on n = 64 nodes with p = 0.1.
For the left plot, we vary the number of repetitions while using
φ = 10. For the right plot, we vary the factor φ while using 20
repetitions. We report mean and standard deviation over 5 runs.

especially for large budgets. We omit UDWANI MWU as it
exceeds 10 minutes per run. The algorithm of Tsang et al.
(2019) uses special evaluation oracles for the gradient of the
influence which do not correspond to function evaluations,
so we report the running time instead. Recall that their algo-
rithm is specialized to influence maximization, for which we
can evaluate the multilinear extension efficiently. Our algo-
rithm applies to any multiobjective instance. Appendix B.3
contains results for further attributes, which includes one
instance where the heuristic SATURATE outperforms our
algorithm for a small budget. Results for the remaining
graphs in Tsang et al. (2019) are similar, so we omit them.

6.5. Ablation Study

Figure 4 provides an ablation study for the number of rep-
etitions and the factor φ which makes the algorithm act
less conservatively. We use a simple synthetic instance of
Erdős-Rényi random graphs for the max-k-cover problem.
Our results show that after 20 repetitions, our algorithm has
surpassed the objective value of SATURATE and more rep-
etitions do only contribute to a slight increase in objective
value. The right plot shows that a factor of approximately
φ ∈ [5, 15] results in the highest objective value.

7. Conclusion
We introduce the first scalable algorithm for multiobjec-
tive submodular maximization that achieves a (1− 1

e − ε)-
approximation ratio. Going beyond fair centrality maxi-
mization and influence maximization, many problems in
fairness naturally admit formulations as multiobjective prob-
lems. The high scalability and theoretical guarantees of our
algorithm make it a well-suited option to address such prob-
lems. Further, we avoided the common methodology of op-
timizing in the continuous space and rounding the resulting
solution. Our novel techniques may lead to improvements
in areas even beyond the multiobjective problem.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
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A. Omitted Details and Proofs
A.1. Missing Proofs from Section 4.1

Lemma 4.3. In each iteration i of Algorithm 1 and for each color c ∈ C,

E[fc(v
(i) | S(i−1)) | S(i−1)] ≥ 1

B

(
OPT− fc(S(i−1))

)
.

Proof. This follows directly by our algorithm design and the definition of expectation:

E[fc(v
(i) | S(i−1)) | S(i−1)] =

∑
v∈V

Pr[v(i) = v | S(i−1)]fc(v | S(i−1))

=
∑
v∈V

x(i)
v fc(v | S(i−1))

≥ 1

B

(
OPT− fc(S(i−1))

)
.

Lemma 4.4. Algorithm 1 outputs a solution S such that for each c ∈ C,

E[fc(S)] ≥
(

1− 1

e

)
OPT.

Proof. We do the unrolling as in the standard greedy analysis, but in expectation over the result of Lemma 4.3. That is,
Lemma 4.3 is equivalent to

E[fc(S
(i))−OPT + OPT− fc(S(i−1)) | S(i−1)] ≥ 1

B

(
OPT− fc(S(i−1))

)
⇐⇒ E[OPT− fc(S(i)) | S(i−1)] ≤

(
1− 1

B

)(
OPT− fc(S(i−1))

)
.

Now, unrolling this yields

E[OPT− fc(S(B))] = ES(B−1)

[
Ev(B) [OPT− fc(S(B)) | S(B−1)]

]
≤
(

1− 1

B

)
ES(B−1)

[
OPT− fc(S(B−1))

]
≤ · · ·

≤
(

1− 1

B

)B
OPT

≤ 1

e
OPT,

which is equivalent to E[fc(S
(B))] ≥ (1− 1

e )OPT.

A.2. Details about Removing the Condition on OPT

Before going into the analysis of Algorithm 3 we want to again motivate our algorithm design. Instances can violate the
condition OPT ≥ 4

ε2M log(2k) only in two ways. First, if the budget is small, it may happen that the optimum solution is
not much larger than M . For instance, in the extreme case in which B = 1, we also have OPT = M and necessarily violate
the condition for OPT. Second, even if we have a large budget, the optimum solution value may still not be much larger
than M due to submodularity, even for a single color. However, we will show that the latter case is not an issue, and we only
require a sufficiently large budget. This rests on the fact that cases in which M is large compared to OPT, there are only
few elements with large marginal gain. We can find those elements in a pre-processing step and add them to our solution
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Algorithm 3: Pre-Processing for Algorithm 2

Input: Monotone and submodular set functions fc : 2V → R for c ∈ C and per-color budget B′

1 T ← ∅;
2 for c ∈ C do
3 for i = 1, 2, . . . , B′ do
4 Let v = arg maxv∈V fc(v | T ) ;
5 Update T ← T ∪ {v} ;

6 return T .

before running Algorithm 2. The remaining elements can only have low marginal gain, which then allows us to obtain a
better concentration.

Recall that C̃ = {c ∈ C : fc(T ) < OPT} where T is the output of Algorithm 3. Recall also that we define a modified
instance where f̃c(A) = fc(A ∪ T ) for all c ∈ C̃ and A ⊆ V .

Lemma A.1. Algorithm 3 outputs a set T of size |T | ≤ kB′. Furthermore, f̃c(v | ∅) ≤ OPT
B′ for all c ∈ C̃ and v ∈ V .

Proof. By the definition of Algorithm 3, we add at most B′ elements per color, meaning the set T has size at most kB′. To
show the second claim, let now c ∈ C̃ and v ∈ V be any element. If c ∈ T then f̃c(v | ∅) = fc(v | T ) = 0 and we are done.
We may thus assume that we did not add c to T . For the proof, let us now denote with Tc the elements that are added to T
for color c, and let T (i)

c denote Tc at the end of iteration i. Since we did not add v to Tc, the greedy selection implies that
fc(v | T ) ≤ fc(v | T (i−1)) ≤ fc(v(i) | T (i−1)) for all 1 ≤ i ≤ B′. Hence,

fc(v | T ) ≤ 1

B′

B′∑
i=1

fc(v
(i) | T (i−1)) =

1

B′
fc(T

(B′) | T (0)) ≤ 1

B′
fc(T ) ≤ 1

B′
OPT

where the penultimate inequality is by submodularity, and the last inequality due to c ∈ C̃.

In the end, we want to show that T ∪ S̃ attains a good fraction of the optimum solution. Clearly, Lemma A.1 shows that we
can effectively reduce the maximum singleton marginal gain which is sufficient to improve the concentration in Theorem 4.2.
However, Algorithm 1 now runs with a reduced budget B̃ < B. We thus need to show that even with a reduced budget, we
can still get a good fraction of OPT as long as B̃ is sufficiently large.

Lemma 4.7. Let ÕPTb = maxS⊆V :|S|≤b minc∈C̃ f̃c(S) for b ≥ 0. Let γ > 0 be such that f̃c(v | ∅) ≤ γÕPTB for all
v ∈ V and c ∈ C̃. Then, for B̃ ≤ B,

ÕPTB̃ ≥

(
1−

√
3γ
B

B̃
log k

)
B̃

B
ÕPTB .

Proof. We use a probabilistic argument. As before, we abuse notation and use ÕPTb to denote both the optimum solution
and its value. Let x∗ ∈ {0, 1}V be such that x∗v = 1 if v ∈ ÕPTB and x∗v = 0 otherwise. We define x̃ = (1− B̃

B )x ∈ [0, 1]V

as a similar vector but with a reduced budget. Let F̃c : [0, 1]V → R be the multilinear extension of f̃c for each c ∈ C̃. Since
x∗ ∈ {0, 1}V we have f̃c(ÕPTB) = F̃c(x

∗). As argued in Lemma 3 of Udwani’s work (Udwani, 2018), we have

F̃c(x̃) ≥ B̃

B
F̃c(x

∗) =
B̃

B
f̃c(ÕPTB), (5)

which is due to Jensen’s inequality and since the multilinear extension is concave in positive direction. We now use swap
rounding (Chekuri et al., 2010) to obtain a set S̃ ⊆ V from x̃ of size |S̃| = B̃. Importantly, swap rounding is an oblivious
rounding scheme, meaning it does not evaluate f̃c. As such, we do not create a rounded solution specific to f̃c, but the

14
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guarantee on the rounded solution holds for all c ∈ C̃. We have the following guarantee (Chekuri et al., 2010) for a rounded
solution S̃, for all δ > 0,

Pr[f̃c(S̃) ≤ (1− δ)F̃c(x̃)] ≤ exp

(
− F̃c(x̃)δ2

2Mc

)
≤ exp

(
− B̃f̃c(ÕPTB)δ2

2BγÕPTB

)
≤ exp

(
− δ

2B̃

2γB

)
. (6)

For the second inequality, we used that Mc = maxv∈V f̃c(v | ∅) ≤ γÕPTB and Inequality (5). For the last inequality,
we used that f̃c(ÕPTB) ≥ ÕPTB . We need that the RHS of Inequality (6) is less than 1/k to guarantee that the rounded
solution exceeds F̃c(x̃) for all c ∈ C̃. In particular, we choose

δ =

√
3γ
B

B̃
log k =⇒ exp

(
− δ

2B̃

2γB

)
<

1

k
.

By a union bound over all c ∈ C,

Pr
[
there exists a c ∈ C̃ with f̃c(S̃) ≤ (1− δ)F̃c(x̃)

]
< k · 1

k
= 1.

As such, the event that S̃ obtains value f̃c(S̃) ≥ (1 − δ)F̃c(x̃) for all c ∈ C simultaneously has non-zero probability,
meaning that such a set S̃ exists. Let S̃ now be this set. We have for all c ∈ C̃ that

ÕPTB̃ ≥ f̃c(S̃) ≥ (1− δ)F̃c(x̃) ≥ (1− δ) B̃
B

ÕPTB .

We run the pre-processing Algorithm 3 for a value B > 0 which we will specify later in Theorem 4.8. This outputs a set of
colors C̃ ⊆ C and a partial solution T ⊆ V , and we run Algorithm 2 use objective functions defined as f̃c(A) = fc(A ∪ T )
for c ∈ C̃ and the budget B̃ = B − |T |. Since for c ∈ C \ C̃ we have already reached the optimum value, we simply ignore
those colors and do not pass them to Algorithm 2. Algorithm 2 outputs a set S̃ ⊆ V and the final solution of the combined
algorithm is T ∪ S̃.

We can now put everything together to get the guarantee on the combined algorithm that only requires a large budget.

Theorem 4.8. If B ≥ 108 k
ε3 log k then

min
c∈C

fc(T ∪ S̃) ≥
(

1− 1

e
− ε
)

OPT

with probability at least 1− δ.

Proof. We use B = 1
γ where γ = ε2

36 log k for Algorithm 3 which yields a partial solution T and colors C̃ ⊆ C. We show
the theorem statement for all c ∈ C separately. If c 6∈ C̃, we have by monotonicity that

fc(T ∪ S̃) ≥ fc(T ) ≥ OPT.

Let now c ∈ C̃. After the pre-processing, we have by Lemma A.1 that |T | ≤ k
γ so B̃ = B − |T | ≥ B − k

γ and hence, by
Lemma 4.7,

ÕPTB̃ ≥ ÕPTB

(
1− k

Bγ

)(
1−

√
3γ

1

1− k
Bγ

log k

)
. (7)

Now, since B ≥ 3k
εγ we get k

Bγ ≤
ε
3 as well as

3γ
1

1− k
Bγ

log k ≤ 3γ
1

1− ε
3

log k < 4γ log k =
ε2

9
,
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Algorithm 4: Solving the LP with MWU and Lazy Evaluations

Input: Monotone and submodular set functions fc : 2V → R for c ∈ C, partial solution S ⊆ V , upper bounds gc(v) for
all v ∈ V and c ∈ C such that gc(v) ≥ fc(v | S), step size η > 0, and number of iterations T

1 Initialize yc ← 1/|C| for all c ∈ C and xv ← 0 for all v ∈ V ;
2 for t = 1, 2, . . . , T do
3 Let v∗ ← ⊥;
4 for v ∈ V in order decreasing in

∑
c∈C ycgc(v) do

5 if v∗ 6= ⊥ and
∑
c∈C ycgc(v) ≤

∑
c∈C ycgc(v

∗) then
6 break;

7 If not yet computed, evaluate fc(v | S) for all c ∈ C;
8 Update gc(v)← fc(v | S) for all c ∈ C;
9 if v∗ = ⊥ or

∑
c∈C ycgc(v) >

∑
c∈C ycgc(v

∗) then
10 Set v∗ ← v;

11 Update yc ← yc(1− η`c(v∗)) = yc(1− η(Bfc(v
∗ | S) + fc(S)));

12 Normalize yc ← yc/‖y‖1 ;
13 Add xv∗ ← xv∗ + 1

T ;

14 return x and the updated upper bounds gc(v) for all v ∈ V and c ∈ C.

which means we can bound (7) further and obtain

ÕPTB̃ ≥
(

1− 2

3
ε

)
ÕPTB . (8)

Lemma A.1 also says that after pre-processing, the maximum singleton marginal gain is

M̃c = max
v∈V

f̃c(v | ∅) ≤ γOPT ≤ γÕPTB ≤ 2γÕPTB̃ ,

where the last inequality follows from (8). Hence, by Theorem 4.2,

f̃c(S) ≥
(

1− 1

e
− ε

3

)
ÕPTB̃ . (9)

with probability at least 1 − δ. Let us condition on the case that Algorithm 2 was successful and (9) holds. In this case,
putting everything together yields

fc(T ∪ S̃) = f̃c(S̃) (definition of f̃c)

≥
(

1− 1

e
− ε

3

)
ÕPTB̃ (by (9))

≥
(

1− 1

e
− ε

3

)(
1− 2

3
ε

)
ÕPTB (by (8))

≥
(

1− 1

e
− ε
)

ÕPTB

≥
(

1− 1

e
− ε
)

OPT. (monotonicity)

A.3. Missing Details and Proofs from Section 4.3

Let us now describe and motivate the design of Algorithm 4. Imagine a single iteration of Algorithm 1 where we have a
partial solution S = S(i−1). We can formulate the LP (3) as a zero-sum game with a payoff for each element v ∈ V and
each color c ∈ C defined as

`c(v) = Bfc(v | S) + fc(S). (10)
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We write our LP in terms of this payoff:

LP(S) = max
x∈∆V

min
c∈C

{∑
v∈V

xv`c(v)

}
= min
y∈∆C

max
v∈V

{∑
c∈C

yc`c(v)

}

where we are able to exchange minimum and maximum as this presents a zero-sum game (v. Neumann, 1928). We use the
min-max formulation where the first player plays a distribution y ∈ ∆C over colors and the second player responds with the
best response

v∗ = arg max
v∈V

∑
c∈C

yc`c(v) = arg max
v∈V

∑
c∈C

ycfc(v | S)

where the equality is true since fc(S) is constant in v. Since the RHS is just a linear combination of marginal gains, we
can now employ lazy evaluations when finding the maximizer v∗: While maintaining upper bounds gc(v) ≥ fc(v | S) for
all v ∈ V, c ∈ C, it verify that

∑
c∈C ycfc(v | S) ≥

∑
c∈C ycgc(v). Since the solution S we build increases and marginal

gains are decreasing due to submodularity, we use prior marginal gains for gc(v), and update the upper bounds until we can
show optimality of v∗.

Finally, we understand the colors as experts and, treating `(v) = (`c(v))c∈C ∈ RC as a loss vector, we update y via
multiplicative weight updates.

We now want to bound the required number of iterations T . The MWU can only guarantee an approximate solution to the
LP with a distribution x ∈ ∆V , but this is sufficient for our purposes. Indeed, the following holds:

Lemma A.2. Assume that in every iteration 1 ≤ i ≤ B of Algorithm 1, we use an approximate solution x(i) with∑
v∈V

x(i)
v fc(v | S(i)) ≥ 1

B
((1− ε)OPT− fc(S(i)))

for all v ∈ V and S ⊆ V . Then, Algorithm 1 still outputs a solution S such that fc(S) ≥ (1 − 1
e − O(ε))OPT for all

colors c ∈ C, under the same conditions as Theorem 4.2.

Proof. The proof is simple and follows, for example, by replacing OPT by (1− ε)OPT in the proof of Theorem 4.2 and
related lemmas.

We therefore need to show that using sufficiently many iterations, the multiplicative weights update can obtain an approxi-
mation x that satisfies the condition of Lemma A.2.

We use the typical regret guarantee (for example, see Arora et al. (2012)) for MWU, which states that

min
y∈∆C

T∑
t=1

〈`(v(t)), y〉 ≥
T∑
t=1

〈`(v(t)), y(t)〉 − log k

η
− η

T∑
t=1

‖`(v(t))‖2∞ (11)

where y(t) is the weight vector y at the beginning of iteration t, `(v) = (`c(v))c∈C ∈ RC the loss vector as defined in (10),
and v(t) the best response to y(t).

Lemma A.3. Using T = 16B2M2 log k
ε2OPT2 and an appropriate choice of η > 0, the solution x ∈ ∆V is such that for all

sets S ⊆ V with |S| ≤ B, ∑
v∈V

xvfc(v | S) ≥ 1

B
((1− ε)OPT− fc(S)) .

Proof. Let y = 1
T

∑T
t=1 y

(t) ∈ ∆C . Note first that

1

T

T∑
t=1

〈`(v(t)), y(t)〉 =
1

T

T∑
t=1

max
v∈V
〈`(v), y(t)〉 ≥ max

v∈V

1

T

T∑
t=1

〈`(v), y(t)〉 = max
v∈V
〈`(v), y〉 ≥ OPT.
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Figure 5. Multiobjective submodular maximization for max-k-cover. We use k = 20 Barabási-Albert graphs on n = 64 nodes. We show
the function value (top) and the number of evaluations (bottom). We report mean and standard deviation over 5 runs.

As such, the regret guarantee (11) implies

min
c∈C

1

T

T∑
t=1

`c(v
(t)) = min

y∈∆C

1

T

T∑
t=1

〈`(v(t)), y〉 ≥ OPT− log k

Tη
− η

T

T∑
t=1

‖`(v(t))‖2∞. (12)

Since `c(v(t)) = Bfc(v | S) + fc(S) ≤ BM + OPT ≤ 2BM it suffices to set

η =
ε

8B2M
≤ εOPT

8B2M2
and T = 16

log kB2

ε2
≥ 16

B2M2 log k

ε2OPT2

so we can further bound (12) by (1− ε)OPT. Therefore, we have for all c ∈ C that

∑
v∈V

xv(Bfc(v | S) + f(S)) =
1

T

T∑
t=1

`c(v
(t)) ≥ (1− ε)OPT =

log k

εηOPT
,

where the equality is by definition of x and the loss `(v). Since x ∈ ∆V , this is equivalent to the statement we wanted to
show, so we are done.

Theorem 4.9. Our algorithm for multiobjective submodular maximization runs in time O(nB3 1
ε2 k log(k) log(1/δ)) and

requires O(nBk log(1/δ)) function evaluations.

Proof. The pre-processing takes time O(kn) since it has at most one function evaluation per color c ∈ C and element
v ∈ V . Algorithm 2 runs through a total of O(B log(1/δ)) iterations: log(2/δ) iterations of the outer loop and B iterations
of the inner loop. To solve the LP in each iteration, we need the marginal gains for all colors c ∈ C and elements v ∈ V ,
which thus requires O(kn) function evaluations. We can solve the LP approximately which, as shown in Lemma A.3,
requires T = O(B2M log k

ε2OPT ) = O(B2 1
ε2 log k) iterations. Each iteration of the multiplicative weights update involves at

most nk function evaluations. Overall, we thus have a running time of O(nB3 1
ε2 k log(k) log(1/δ)) and O(nBk) function

evaluations.

B. Further Experimental Results
B.1. Max-k-Coverage

Figures 5 and 6 show our results for Barabási-Albert and Erdős-Rényi random graphs, respectively. We obtain a preferential-
attachment graph in the Barabási-Albert model by iteratively connecting each node to d = 5 existing nodes, with probability
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Figure 6. Multiobjective submodular maximization for max-k-cover. We use k = 20 Erdős-Rényi graphs on n = 64 nodes. We show the
function value (top) and the number of evaluations (bottom). We report mean and standard deviation over 5 runs.
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Figure 7. Multiobjective submodular maximization for max-k-cover. We use k = 20 Barabási-Albert graphs on n = 64 nodes for
varying d. We show the function value (top) and the number of evaluations (bottom). We report mean and standard deviation over 5 runs.
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Figure 8. Multiobjective submodular maximization for max-k-cover. We use k = 20 Erdős-Rényi graphs on n = 64 nodes for varying p.
We show the function value (top) and the number of evaluations (bottom). We report mean and standard deviation over 5 runs.
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Figure 9. Fair centrality maximization on the Amazon co-purchasing graph Movies & TV with n = 23 nodes and k = 2 colors.
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Figure 10. Fair centrality maximization on the Amazon co-purchasing graph Musical Instruments with n = 46 nodes and k = 2 colors.

proportional to their degrees. We obtain a random graph in the Erdős-Rényi model by including each pair as an edge with
probability 0.1.

Additionally, we create more difficult synthetic instances where the graph properties differ per color. For Erdős-Rényi
random graphs, we create an instance where we use pc = 0.1 + c

50 ∈ [0.1, 0.5] for colors 1 ≤ c ≤ 20 to generate the c-th
graph. For Barabási-Albert graphs, we vary the number of dc = d5 + c

2c for colors 1 ≤ c ≤ 20. Our results in Figures 7 and
8 show that the our algorithm performs better under imbalance compared to heuristics such as SATURATE.

B.2. Fair Centrality Maximization

Figures 9 through 25 show omitted results on Amazon co-purchasing graphs.

B.3. Fair Influence Maximization

Figures 26 through 29 show omitted results on an Antelope Valley network for four remaining attributes.
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Figure 11. Fair centrality maximization on the Amazon co-purchasing graph All Electronics with n = 47 nodes and k = 2 colors.
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Figure 12. Fair centrality maximization on the Amazon co-purchasing graph Computers with n = 59 nodes and k = 2 colors.
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Figure 13. Fair centrality maximization on the Amazon co-purchasing graph Home Audio & Theater with n = 77 nodes and k = 2
colors.
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Figure 14. Fair centrality maximization on the Amazon co-purchasing graph Camera & Photo with n = 202 nodes and k = 2 colors.
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Figure 15. Fair centrality maximization on the Amazon co-purchasing graph Baby with n = 228 nodes and k = 2 colors.
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Figure 16. Fair centrality maximization on the Amazon co-purchasing graph Luxury Beauty with n = 1037 nodes and k = 2 colors.
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Figure 17. Fair centrality maximization on the Amazon co-purchasing graph Pet Supplies with n = 1785 nodes and k = 2 colors.
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Figure 18. Fair centrality maximization on the Amazon co-purchasing graph Industrial & Scientific with n = 2005 nodes and k = 2
colors.
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Figure 19. Fair centrality maximization on the Amazon co-purchasing graph Office Products with n = 2281 nodes and k = 2 colors.
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Figure 20. Fair centrality maximization on the Amazon co-purchasing graph Books with n = 2495 nodes and k = 2 colors.
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Figure 21. Fair centrality maximization on the Amazon co-purchasing graph Home Improvement with n = 2565 nodes and k = 2 colors.
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Figure 22. Fair centrality maximization on the Amazon co-purchasing graph Health & Personal Care with n = 3010 nodes and k = 2
colors.
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Figure 23. Fair centrality maximization on the Amazon co-purchasing graph Sports & Outdoors with n = 3214 nodes and k = 2 colors.
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Figure 24. Fair centrality maximization on the Amazon co-purchasing graph Grocery with n = 6433 nodes and k = 2 colors.

200 400 600 800 1000

Budget B

0.375

0.400

0.425

0.450

0.475

0.500

0.525

V
al

u
e

m
in
c
f c

(S
)

LP Greedy

Greedy Minimum

Greedy Round Robin

Saturate

Udwani MWU

200 400 600 800 1000

Budget B

105

106

107

#
F

u
n

ct
io

n
ev

al
u

at
io

n
s

LP Greedy

Greedy Minimum

Greedy Round Robin

Saturate

Udwani MWU

Figure 25. Fair centrality maximization on the Amazon co-purchasing graph Amazon Home with n = 10378 nodes and k = 2 colors.
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Figure 26. Fair influence maximization on a simulated Antelope Valley network with attribute age on k = 7 colors.
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Figure 27. Fair influence maximization on a simulated Antelope Valley network with attribute gender on k = 2 colors.
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Figure 28. Fair influence maximization on a simulated Antelope Valley network with attribute region on k = 13 colors.
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Figure 29. Fair influence maximization on a simulated Antelope Valley network with attribute status on k = 3 colors.
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