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ABSTRACT

We present Deep Compression Autoencoder (DC-AE), a new family of autoen-
coder models for accelerating high-resolution diffusion models. Existing autoen-
coder models have demonstrated impressive results at a moderate spatial compres-
sion ratio (e.g., 8×), but fail to maintain satisfactory reconstruction accuracy for
high spatial compression ratios (e.g., 64×). We address this challenge by introduc-
ing two key techniques: (1) Residual Autoencoding, where we design our models
to learn residuals based on the space-to-channel transformed features to alleviate
the optimization difficulty of high spatial-compression autoencoders; (2) Decou-
pled High-Resolution Adaptation, an efficient decoupled three-phase training
strategy for mitigating the generalization penalty of high spatial-compression au-
toencoders. With these designs, we improve the autoencoder’s spatial compres-
sion ratio up to 128 while maintaining the reconstruction quality. Applying our
DC-AE to latent diffusion models, we achieve significant speedup without accu-
racy drop. For example, on ImageNet 512 × 512, our DC-AE provides 19.1×
inference speedup and 17.9× training speedup on H100 GPU for UViT-H while
achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder.
Our code and models will be released upon publication.

1 INTRODUCTION

Latent diffusion models (Rombach et al., 2022) have emerged as a leading framework and demon-
strated great success in image synthesis (Labs, 2024; Esser et al., 2024). It employs an autoencoder
model to project the images to the latent space to reduce the training and inference costs of diffusion
models. For example, the predominantly adopted solution in current latent diffusion models (Rom-
bach et al., 2022; Labs, 2024; Esser et al., 2024; Chen et al., 2024b;a) is to use an autoencoder with
a spatial compression ratio of 8 (denoted as f8), which converts images of spatial size H ×W to la-
tent features of spatial size H

8 × W
8 . This spatial compression ratio is satisfactory for low-resolution

image synthesis (e.g., 256×256). However, for high-resolution image synthesis (e.g., 1024×1024),
further increasing the spatial compression ratio is critical, especially for diffusion transformer mod-
els (Peebles & Xie, 2023; Bao et al., 2023) that have quadratic computational complexity to the
number of tokens.

The current common practice for further reducing the spatial size is downsampling on the diffusion
model side. For example, in diffusion transformer models (Peebles & Xie, 2023; Bao et al., 2023),
this is achieved by using a patch embedding layer with patch size p that compresses the latent
features to H

8p ×
W
8p tokens. In contrast, little effort has been made on the autoencoder side. The main

bottleneck hindering the employment of high spatial-compression autoencoders is the reconstruction
accuracy drop. For example, Figure 2 (a) shows the reconstruction results of SD-VAE (Rombach
et al., 2022) on ImageNet 256 × 256 with different spatial compression ratios. We can see that the
rFID (reconstruction FID) degrades from 0.90 to 28.3 if switching from f8 to f64.

This work presents Deep Compression Autoencoder (DC-AE), a new family of high spatial-
compression autoencoders for efficient high-resolution image synthesis. By analyzing the un-
derlying source of the accuracy degradation between high spatial-compression and low spatial-
compression autoencoders, we find high spatial-compression autoencoders are more difficult to op-
timize (Section 3.1) and suffer from the generalization penalty across resolutions (Figure 3 b). To
this end, we introduce two key techniques to address these two challenges. First, we propose Resid-
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Figure 1: DC-AE accelerates diffusion models by increasing autoencoder’s spatial compression
ratio.
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Figure 2: (a) Image Reconstruction Results on ImageNet 256×256. f denotes the spatial compres-
sion ratio. When the spatial compression ratio increases, SD-VAE has a significant reconstruction
accuracy drop (higher rFID) while DC-AE does not have this issue. (b) ImageNet 512×512 Image
Generation Results on UViT-S with Various Autoencoders. p denotes the patch size. Shifting the
token compression task to the autoencoder enables the diffusion model to focus more on the denois-
ing task, leading to better FID. (c) Comparison to SD-VAE-f8 on ImageNet 512×512 with UViT
Variants. DC-AE-f64p1 provides 19.1× higher inference throughput and 0.54 better ImageNet FID
than SD-VAE-f8p2 on UViT-H.

ual Autoencoding (Figure 4) to alleviate the optimization difficulty of high spatial-compression
autoencoders. It introduces extra non-parametric shortcuts to the autoencoder model to let the neu-
ral network modules learn residuals based on the space-to-channel operation. Second, we propose
Decoupled High-Resolution Adaptation (Figure 6) to tackle the other challenge. It introduces
a high-resolution latent adaptation phase and a low-resolution local refinement phase to avoid the
generalization penalty while maintaining a low training cost.

With these techniques, we increase the spatial compression ratio of autoencoders to 32, 64, and
128 while maintaining good reconstruction accuracy (Table 2). The diffusion models can fully
focus on the denoising task with our DC-AE taking over the whole token compression task, which
delivers better image generation results than prior approaches (Table 3). For example, replacing SD-
VAE-f8 with our DC-AE-f64, we achieve 17.9× higher H100 training throughput and 19.1× higher
H100 inference throughput on UViT-H (Bao et al., 2023) while improving the ImageNet 512× 512
FID from 3.55 to 3.01. Our pre-trained models and code will be released upon publication. We
summarize our contributions as follows:
• We analyze the challenges of increasing the spatial compression ratio of autoencoders and provide

insights into how to address these challenges.

• We propose Residual Autoencoding and Decoupled High-Resolution Adaptation that effectively
improve the reconstruction accuracy of high spatial-compression autoencoders, making their re-
construction accuracy feasible for use in latent diffusion models.

• We build DC-AE, a new family of autoencoder models based on our techniques. DC-AE de-
livers significant training and inference speedup for latent diffusion models compared with prior
autoencoder models.

2 RELATED WORK

Autoencoder for Diffusion Models. Training and evaluating diffusion models directly in high-
resolution pixel space results in prohibitive computational costs. To address this issue, Rombach
et al. (2022) proposes latent diffusion models that operate in a compressed latent space produced
by pretrained autoencoders. The proposed autoencoder with 8× spatial compression ratio and 4
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Figure 3: (a) High spatial-compression autoencoders are more difficult to optimize. Even with the
same latent shape and stronger learning capacity, it still cannot match the f8 autoencoder’s rFID. (b)
High spatial-compression autoencoders suffer from significant reconstruction accuracy drops when
generalizing from low-resolution to high-resolution.

latent channels has been widely adopted in subsequent works (Peebles & Xie, 2023; Bao et al.,
2023). Since then, follow-up works mainly focus on enhancing the reconstruction accuracy of the f8
autoencoder by increasing the number of latent channels (Esser et al., 2024; Dai et al., 2023; Labs,
2024). Additionally, to improve the reconstruction quality, especially for image editing tasks, Zhu
et al. (2023) leverages a heavier decoder and incorporates task-specific priors. In contrast to prior
works, our work focuses on an orthogonal direction, increasing the spatial compression ratio of the
autoencoders (e.g., f64). To the best of our knowledge, our work is the first study in this critical but
underexplored direction.

Diffusion Model Acceleration. Diffusion models have been widely used for image generation
and showed impressive results (Labs, 2024; Esser et al., 2024). However, diffusion models are
computationally intensive, motivating many works to accelerate diffusion models. One representa-
tive strategy is reducing the number of inference sampling steps by training-free few-step samplers
(Song et al., 2021; Lu et al., 2022a;b; Zheng et al., 2023; Zhang & Chen, 2023; Zhang et al., 2023;
Zhao et al., 2024b; Shih et al., 2024; Tang et al., 2024) or distilling-based methods (Meng et al.,
2023; Salimans & Ho, 2022; Yin et al., 2024b;a; Song et al., 2023; Luo et al., 2023; Liu et al.,
2023). Another representative strategy is model compression by leveraging sparsity (Li et al., 2022;
Ma et al., 2024) or quantization (He et al., 2024; Fang et al., 2024; Li et al., 2023; Zhao et al.,
2024a). Designing efficient diffusion model architectures (Li et al., 2024c; Liu et al., 2024; Cai
et al., 2024) or inference systems (Li et al., 2024b; Wang et al., 2024) is also an effective approach
for boosting efficiency. In addition, improving the data quality (Chen et al., 2024b;a) can boost the
training efficiency of diffusion models.

All these techniques focus on the diffusion model while the autoencoder remains the same. Our
work opens up a new direction for accelerating diffusion models, which can benefit both training
and inference.

3 METHOD

In this section, we first analyze why existing high spatial-compression autoencoders (e.g., SD-VAE-
f64) fail to match the accuracy of low spatial-compression autoencoders (e.g., SD-VAE-f8). Then
we introduce our Deep Compression Autoencoder (DC-AE) with Residual Autoencoding and De-
coupled High-Resolution Adaptation to close the accuracy gap. Finally, we discuss the applications
of our DC-AE to latent diffusion models.

3.1 MOTIVATION

We conduct ablation study experiments to get insights into the underlying source of the accuracy
gap between high spatial-compression and low spatial-compression autoencoders. Specifically, we
consider three settings with gradually increased spatial compression ratio, from f8 to f64.

Each time the spatial compression ratio increases, we stack additional encoder and decoder stages
upon the current autoencoder model. In this way, high spatial-compression autoencoders contain
low spatial-compression autoencoders as sub-networks and thus have higher learning capacity.

3
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Figure 4: Illustration of Residual Autoencoding. It adds non-parametric shortcuts to let the neural
network modules learn residuals based on the space-to-channel operation.

Additionally, we increase the latent channel number to maintain the same total latent size across dif-
ferent settings. We can then convert the latent to a higher spatial compression ratio one by applying
a space-to-channel operation (Shi et al., 2016): H ×W × C → H

p × W
p × p2C.

We summarize the results in Figure 3 (a, gray dash line). Even with the same total latent size
and stronger learning capacity, we still observe degraded reconstruction accuracy when the spatial
compression ratio increases. It demonstrates that the added encoder and decoder stages (consisting
of multiple SD-VAE building blocks) work worse than a simple space-to-channel operation.

Based on this finding, we conjecture the accuracy gap comes from the model learning process:
while we have good local optimums in the parameter space, the optimization difficulty hinders high
spatial-compression autoencoders from reaching such local optimums.

3.2 DEEP COMPRESSION AUTOENCODER

Residual Autoencoding. Motivated by the analysis, we introduce Residual Autoencoding to ad-
dress the accuracy gap. The general idea is depicted in Figure 4. The core difference from the
conventional design is that we explicitly let neural network modules learn the downsample residu-
als based on the space-to-channel operation to alleviate the optimization difficulty. Different from
ResNet (He et al., 2016), the residual here is not identity mapping, but space-to-channel mapping.

In practice, this is implemented by adding extra non-parametric shortcuts on the encoder’s down-
sample blocks and decoder’s upsample blocks (Figure 4 b, left). Specifically, for the downsample
block, the non-parametric shortcut is a space-to-channel operation followed by a non-parametric
channel averaging operation to match the channel number. For example, assuming the downsample
block’s input feature map shape is H ×W × C and its output feature map shape is H

2 × W
2 × 2C,

then the added shortcut is

H ×W × C
space-to-channel−−−−−−−−→ H

2
× W

2
× 4C

split into two groups−−−−−−−−−→ [
H

2
× W

2
× 2C,

H

2
× W

2
× 2C]

average−−−→ H

2
× W

2
× 2C.︸ ︷︷ ︸

channel averaging

Accordingly, for the upsample block, the non-parametric shortcut is a channel-to-space operation
followed by a non-parametric channel duplicating operation

H

2
× W

2
× 2C

channel-to-space−−−−−−−−→ H ×W × C

2
duplicate−−−−→ [H ×W × C

2
, H ×W × C

2
]

concat−−−→ H ×W × C.︸ ︷︷ ︸
channel duplicating

In addition to the downsample and upsample blocks, we also change the middle stage design fol-
lowing the same principle (Figure 4 b, right).
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Figure 5: Autoencoder already learns to reconstruct content and semantics without GAN loss, while
GAN loss improves local details and removes local artifacts. We replace the GAN loss full training
with lightweight local refinement training which achieves the same goal and has lower training cost.
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Figure 6: Illustration of Decoupled High-Resolution Adaptation.

Figure 3 (a) shows the comparison with and without our Residual Autoencoding on ImageNet 256×
256. We can see that Residual Autoencoding effectively improves the reconstruction accuracy of
high spatial-compression autoencoders.

Decoupled High-Resolution Adaptation. Residual Autoencoding alone can address the accuracy
gap when handling low-resolution images. However, when extending it to high-resolution images,
we find it not sufficient. Due to the large cost of high-resolution training, the common practice for
high-resolution diffusion models is directly using autoencoders trained on low-resolution images
(e.g., 256 × 256) (Chen et al., 2024b;a). This strategy works well for low spatial-compression
autoencoders. However, high spatial-compression autoencoders suffer from a significant accuracy
drop. For example, in Figure 3 (b), we can see that f64 autoencoder’s rFID degrades from 0.50 to
7.40 when generalizing from 256 × 256 to 1024 × 1024. In contrast, the f8 autoencoder’s rFID
improves from 0.51 to 0.19 under the same setting. Additionally, we also find this issue more
severe when using a higher spatial compression ratio. In this work, we refer to this phenomenon as
the generalization penalty of high spatial-compression autoencoders. A straightforward solution to
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ImageNet 512×512 (Class-Conditional)

Diffusion Model Autoencoder Patch Size #Tokens FID (w/o CFG) ↓ FID (w/ CFG) ↓
SD-VAE-f8 8 64 125.08 95.93

SD-VAE-f16 4 64 115.32 88.06
SD-VAE-f32 2 64 107.33 76.57UViT-S [1]

DC-AE-f64 1 64 67.30 35.96

Table 1: Ablation Study on Patch Size and Autoencoder’s Spatial Compression Ratio.

address this issue is conducting training on high-resolution images. However, it suffers from a large
training cost and unstable high-resolution GAN loss training.

We introduce Decoupled High-Resolution Adaptation to tackle this challenge. Figure 6 demon-
strates the detailed training pipeline. Compared with the conventional single-phase training strategy
(Rombach et al., 2022), our Decoupled High-Resolution Adaptation has two key differences.

First, we decouple the GAN loss training from the full model training and introduce a dedicated
local refinement phase for the GAN loss training. In the local refinement phase (Figure 6, phase
3), we only tune the head layers of the decoder while freezing all the other layers. The intuition
of this design is based on the finding that the reconstruction loss alone is sufficient for learning to
reconstruct the content and semantics. Meanwhile, the GAN loss mainly improves local details and
removes local artifacts (Figure 5). Achieving the same goal of local refinement, only tuning the
decoder’s head layers has a lower training cost and delivers better accuracy than the full training.

Moreover, the decoupling prevents the GAN loss training from changing the latent space. This ap-
proach enables us to conduct the local refinement phase on low-resolution images without worrying
about the generalization penalty. This further reduces the training cost of phase 3 and avoids the
highly unstable high-resolution GAN loss training.

Second, we introduce an additional high-resolution latent adaptation phase (Figure 6, phase 2) that
tunes the middle layers (i.e., encoder’s head layers and decoder’s input layers) to adapt the latent
space for alleviating the generalization penalty. In our experiments, we find only tuning middle
layers is sufficient for addressing this issue (Figure 3 b) while having a lower training cost than
high-resolution full training (memory cost: 153.98 GB → 67.81 GB)1.

3.3 APPLICATION TO LATENT DIFFUSION MODELS

Applying our DC-AE to latent diffusion models is straightforward. The only hyperparameter to
change is the patch size (Peebles & Xie, 2023). For diffusion transformer models (Peebles & Xie,
2023; Bao et al., 2023), increasing the patch size p is the common approach for reducing the number
of tokens. It is equivalent to first applying the space-to-channel operation to reduce the spatial size
of the given latent by p× and then using the transformer model with a patch size of 1.

Since combining a low spatial-compression autoencoder (e.g., f8) with the space-to-channel oper-
ation can also achieve a high spatial compression ratio, a natural question is how it compares with
directly reaching the target spatial compression ratio with DC-AE.

We conduct ablation study experiments and summarize the results in Table 1. We can see that
directly reaching the target spatial compression ratio with the autoencoder gives the best results
among all settings. In addition, we also find that shifting the spatial compression ratio from the
diffusion model to the autoencoder consistently leads to better FID.

4 EXPERIMENTS

4.1 SETUPS

Implementation Details. We use a mixture of datasets to train autoencoders (baselines and
DC-AE), containing ImageNet (Deng et al., 2009), SAM (Kirillov et al., 2023), MapillaryVistas
(Neuhold et al., 2017), and FFHQ (Karras et al., 2019). For ImageNet experiments, we exclusively

1Assuming the input resolution is 1024× 1024 and the batch size is 12.
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ImageNet 256×256 Latent Shape Autoencoder rFID ↓ PSNR ↑ SSIM ↑ LPIPS ↓

f32c32 8×8×32 SD-VAE [36] 2.64 22.13 0.59 0.117
DC-AE 0.69 23.85 0.66 0.082

f64c128 4×4×128 SD-VAE [36] 26.65 18.07 0.41 0.283
DC-AE 0.81 23.60 0.65 0.087

ImageNet 512×512 Latent Shape Autoencoder rFID ↓ PSNR ↑ SSIM ↑ LPIPS ↓

f64c128 8×8×128 SD-VAE [36] 16.84 19.49 0.48 0.282
DC-AE 0.22 26.15 0.71 0.080

f128c512 4×4×512 SD-VAE [36] 100.74 15.90 0.40 0.531
DC-AE 0.23 25.73 0.70 0.084

FFHQ 1024×1024 Latent Shape Autoencoder rFID ↓ PSNR ↑ SSIM ↑ LPIPS ↓

f64c128 16×16×128 SD-VAE [36] 6.62 24.55 0.68 0.237
DC-AE 0.23 31.04 0.83 0.061

f128c512 8×8×512 SD-VAE [36] 179.71 18.11 0.63 0.585
DC-AE 0.41 31.18 0.83 0.062

MapillaryVistas 2048×2048 Latent Shape Autoencoder rFID ↓ PSNR ↑ SSIM ↑ LPIPS ↓

f64c128 32×32×128 SD-VAE [36] 7.55 22.37 0.68 0.262
DC-AE 0.36 29.57 0.84 0.075

f128c512 16×16×512 SD-VAE [36] 152.09 17.82 0.67 0.594
DC-AE 0.38 29.70 0.84 0.074

Table 2: Image Reconstruction Results.

use the ImageNet training split to train autoencoders and diffusion models. The model architecture
is similar to SD-VAE (Rombach et al., 2022) except for our new designs discussed in Section 3.2.
In addition, we use the original autoencoders instead of the variational autoencoders for our models,
as they perform the same in our experiments and the original autoencoders are simpler. We also
replace transformer blocks with EfficientViT blocks (Cai et al., 2023) to make autoencoders more
friendly for handling high-resolution images while maintaining similar accuracy.

For image generation experiments, we apply autoencoders to diffusion transformer models including
DiT (Peebles & Xie, 2023) and UViT (Bao et al., 2023). We follow the same training settings as
the original papers. We consider three settings with different resolutions, including ImageNet (Deng
et al., 2009) for 512× 512 generation, FFHQ (Karras et al., 2019) and MJHQ (Li et al., 2024a) for
1024× 1024 generation, and MapillaryVistas (Neuhold et al., 2017) for 2048× 2048 generation.

Efficiency Profiling. We profile the training and inference throughput on the H100 GPU with
PyTorch and TensorRT respectively. The latency is measured on the 3090 GPU with batch size 2.
The training memory is profiled using PyTorch, assuming a batch size of 256. We use fp16 for all
cases. For simplicity, we assume the number of sampling steps is 1.

4.2 IMAGE COMPRESSION AND RECONSTRUCTION

Table 2 summarizes the results of DC-AE and SD-VAE (Rombach et al., 2022) under various settings
(f represents the spatial compression ratio and c denotes the number of latent channels). DC-AE
provides significant reconstruction accuracy improvements than SD-VAE for all cases. For example,
on ImageNet 512× 512, DC-AE improves the rFID from 16.84 to 0.22 for the f64c128 autoencoder
and 100.74 to 0.23 for the f128c512 autoencoder.

In addition to the quantitative results, Figure 7 shows image reconstruction samples produced by
SD-VAE and DC-AE. Reconstructed images by DC-AE demonstrate a better visual quality than
SD-VAE’s reconstructed images. In particular, for the f64 and f128 autoencoders, DC-AE still
maintains a good visual quality for small texts and human faces.
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Diffusion Patch Throughput (image/s) ↑ Latency Memory FID ↓
Model Autoencoder Size Training Inference (ms) ↓ (GB) ↓ w/o CFG w/ CFG

SD3-VAE-f8 [8] 2 352 2984/T 3.8T 13.8 164.34 143.82
Flux-VAE-f8 [18] 2 352 2984/T 3.8T 13.8 106.07 84.73

SDXL-VAE-f8 [35] 2 352 2991/T 3.8T 13.8 51.03 26.38
Asym-VAE-f8 [53] 2 352 2991/T 3.8T 13.8 51.96 24.57

SD-VAE-f8 [36] 2 352 2991/T 3.8T 13.8 51.96 24.57
SD-VAE-f16 [36] 2 1550 12881/T 1.3T 4.0 76.86 44.22
SD-VAE-f32 [36] 1 1551 12883/T 1.3T 4.0 70.23 38.63

DC-AE-f32 1 1553 12850/T 1.3T 4.0 46.12 18.08
DC-AE-f64 1 6295 53774/T 0.7T 1.5 67.30 35.96

UViT-S [1]

DC-AE-f64† 1 6295 53774/T 0.7T 1.5 61.84 30.63

Flux-VAE-f8 [18] 2 54 416/T 31.7T 56.3 27.35 8.72

Asym-VAE-f8 [53] 2 54 424/T 31.7T 56.2 11.55 2.95
SD-VAE-f8 [36] 2 54 424/T 31.7T 56.2 12.03 3.04DiT-XL [34]

DC-AE-f32 1 241 2016/T 7.8T 20.9 9.56 2.84

Flux-VAE-f8 [18] 2 55 349/T 30.4T 54.2 30.91 12.63

Asym-VAE-f8 [53] 2 55 351/T 30.3T 54.1 11.36 3.51
SD-VAE-f8 [36] 2 55 351/T 30.3T 54.1 11.04 3.55

DC-AE-f32 1 247 1622/T 8.2T 18.6 9.83 2.53
DC-AE-f64 1 984 6706/T 3.5T 10.6 13.96 3.01

UViT-H [1]

DC-AE-f64† 1 984 6706/T 3.5T 10.6 12.26 2.66

17.9× 19.1× -0.54

Table 3: Class-Conditional Image Generation Results on ImageNet 512×512. † represents the
model is trained for 4× training iterations (i.e., 500K → 2,000K iterations). ‘T’ denotes the diffusion
sampling steps.

FFHQ 1024×1024 (Unconditional) & MJHQ 1024×1024 (Class-Conditional)

Diffusion Patch Throughput (image/s) ↑ Latency Memory FFHQ FID ↓ MJHQ FID ↓
Model Autoencoder Size Training Inference (ms) ↓ (GB) ↓ w/o CFG w/o CFG w/ CFG

SD3-VAE-f8 [8] 2 83 814/T 14.2T 41.4 46.28 109.43 103.02
Flux-VAE-f8 [18] 2 83 814/T 14.2T 41.4 59.15 143.16 139.06

SDXL-VAE-f8 [35] 2 84 833/T 14.1T 41.2 16.82 49.00 39.21
Asym-VAE-f8 [53] 2 84 833/T 14.1T 41.2 17.12 48.25 38.36

2 84 833/T 14.1T 41.2 16.98 48.05 38.19SD-VAE-f8 [36] 4 470 5566/T 2.5T 10.7 23.81 60.94 51.29

DC-AE-f32 1 475 5575/T 2.5T 10.7 13.65 34.35 27.20

DiT-S [34]

DC-AE-f64 1 2085 25259/T 1.0T 3.1 26.88 61.30 53.38

MapillaryVistas 2048×2048 (Unconditional)

Diffusion Patch Throughput (image/s) ↑ Latency Memory MapillaryVistas FID ↓
Model Autoencoder Size Training Inference (ms) ↓ (GB) ↓ w/o CFG

SD-VAE-f8 [36] 4 84 810/T 14.3T 41.4 69.50
DiT-S [34] DC-AE-f64 1 459 5435/T 2.6T 11.0 59.55

Table 4: 1024×1024 and 2048×2048 Image Generation Results.

4.3 LATENT DIFFUSION MODELS

We compare DC-AE with the widely used SD-VAE-f8 autoencoder (Rombach et al., 2022) on vari-
ous diffusion transformer models. For DC-AE, we always use a patch size of 1 (denoted as p1). For
SD-VAE-f8, we follow the common setting and use a patch size of 2 or 4 (denoted as p2, p4). The
results are summarized in Table 3, Table 4, and Table 5.
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Diffusion Patch Throughput (image/s) ↑ Latency Memory MJHQ 512×512
Model Autoencoder Size Training Inference (ms) ↓ (GB) ↓ FID ↓ CLIP Score ↑

SD-VAE-f8 [36] 2 43 312/T 37.1T 60.45 6.3 26.36PIXART-α [5] DC-AE-f32 1 173 1251/T 10.4T 23.77 6.1 26.41

Table 5: Text-to-Image Generation Results.

f32 f64 f128
SD
-V
AE

DC
-A
E

O
rig
in
al

O
rig
in
al

SD
-V
AE

DC
-A
E

Figure 7: Autoencoder Image Reconstruction Samples. We select representative images to visual-
ize the reconstruction results. The images are reconstructed at resolution 1024×1024. The samples
are cropped for better visualization of details like human faces and small texts.

ImageNet 512×512. As shown in Table 3, DC-AE-f32p1 consistently delivers better FID than
SD-VAE-f8p2 on all diffusion transformer models. In addition, it has 4× fewer tokens than SD-
VAE-f8p2, leading to 4.5× higher H100 training throughput and 4.8× higher H100 inference
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Prompt: a cyberpunk cat with a neon sign that says “DC-AE” Prompt: Chinese architecture, ancient style,mountain, bird, 
lotus, pond, big tree, 4K Unity, octane rendering.

Prompt: Serene lakeside during autumn with trees displaying a 
palette of fiery colors.

Prompt: A blue jay standing on a large basket of rainbow 
macarons.

Prompt: A close up of a helmet on a person, digital art, inspired 
by Han Gan, cloisonnism, female, victorian armor, ultramarine, 
best of behance, anton fadeev 8 k, fined detail, sci-fi character, 
elegant armor, fantasy art behance

Prompt: Beautiful scene

ImageNet 269: timber wolf, grey wolf, gray wolf, Canis lupus ImageNet 538: dome ImageNet 140: red-backed sandpiper, dunlin, Erolia alpina

Figure 8: We show selected samples generated by the diffusion models using our DC-AE.

throughput for DiT-XL. We also observe that larger diffusion transformer models seem to benefit
more from our DC-AE. For example, DC-AE-f64p1 has a worse FID than SD-VAE-f8p2 on UViT-S
but a better FID on UViT-H. We conjecture it is because DC-AE-f64 has a larger latent channel
number than SD-VAE-f8, thus needing more model capacity (Esser et al., 2024).

1024×1024 and 2048×2048 Image Generation. Apart from ImageNet 512×512, we also test
our models for higher-resolution image generation. As shown in Table 4, we have a similar finding
where DC-AE-f32p1 achieves better FID than SD-VAE-f8p2 for all cases.

Text-to-Image Generation. Table 5 reports our text-to-image generation results on PIXART-α
(Chen et al., 2024b). All models are trained for 100K iterations from scratch. Similar to prior
cases, we observe DC-AE-f32p1 provides a better FID and a better CLIP Score than SD-VAE-
f8p2. Figure 8 demonstrates samples generated by the diffusion models with our DC-AE, showing
the capacity to synthesize high-quality images while being significantly more efficient than prior
models.

5 CONCLUSION

We accelerate high-resolution diffusion models by designing deep compression autoencoders to
reduce the number of tokens. We proposed two techniques: residual autoencoding and decoupled
high-resolution adaptation to address the challenges brought by the high compression ratio. The
resulting new autoencoder model family DC-AE demonstrated satisfactory reconstruction accuracy
with a spatial compression ratio of up to 128. DC-AE also demonstrated significant training and
inference efficiency improvements when applied to latent diffusion models.
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A ADDITIONAL SAMPLES

In Figure 14 and 15, we provide additional image reconstruction samples produced by SD-VAE
and DC-AE. Reconstructed images by DC-AE demonstrate better visual qualities than SD-VAE’s
reconstructed images, especially for the f64 and f128 autoencoders. Some samples are cropped for
better visualization of details like human faces and small texts.

In Figure 16 and Figure 17, we show randomly generated samples on ImageNet 512×512 and
MJHQ-30K 512×512 by the diffusion models using our DC-AE.

B DIFFUSION SAMPLING HYPERPARAMETERS

For the DiT models, we use the DDPM (Ho et al., 2020) sampler from the DiT (Peebles & Xie,
2023) codebase with 250 sampling steps and a guidance scale of 1.3.

For the UViT models, we use the DPMSolver (Lu et al., 2022a) sampler with 30 sampling steps and
a guidance scale of 1.5.

Table 1-1

10 20 30 40 50

steps 10 20 30 40 50
SD-VAE-f8 + DiT-XL 6.61 3.19 2.85 2.74 2.7
DC-AE-f32 + DiT-XL 5.2 2.95 2.73 2.67 2.64
SD-VAE-f8 + UViT-H 3.9 3.6 3.51 3.48 3.51
DC-AE-f64 \dag + UViT-H 2.91 2.72 2.54 2.54 2.62

2

5

8

10 20 30 40 50

SD-VAE-f8p2 + DiT-XL
DC-AE-f32p1 + DiT-XL

2

3

4

10 20 30 40 50

SD-VAE-f8p2 + UViT-H
DC-AE-f64p1† + UViT-H

FI
D ↓
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Figure 9: Ablation Study on Diffusion Sampling Hyperparameters. We use the DPMSolver sam-
pler for both DiT-XL and UViT-H. DC-AE provides significant speedup over the baseline models
while maintaining the generation performance under different diffusion sampling hyperparameters.

C ABLATION STUDY EXPERIMENTS ON DC-AE

ImageNet 512×512 Latent Shape Autoencoder rFID ↓ PSNR ↑ SSIM ↑ LPIPS ↓

f64c128 8×8×128
SD-VAE [36] 16.84 19.49 0.48 0.282

SD-VAE [36] w/ DHRA 5.54 21.13 0.54 0.228
DC-AE 0.22 26.15 0.71 0.080

Table 6: Ablation Study Experiments on DC-AE. ‘DHRA’ represents the decoupled high-
resolution adaptation.

Table 6 reports ablation study results on DC-AE. We can see that both residual autoencoding and
decoupled high-resolution adaptation contribute significantly to DC-AE’s superior performances in
high spatial-compression settings.

D LATENT SCALING AND SHIFTING FACTORS

Following the common practice (Rombach et al., 2022; Peebles & Xie, 2023; Bao et al., 2023; Esser
et al., 2024; Labs, 2024; Chen et al., 2024b;a), we normalize the latent space of our autoencoders
to apply to latent diffusion models. Given a dataset, we compute the root mean square of the latent
features and use its multiplicative inverse as the scaling factor for our autoencoders. We do not use
the shifting factor for our autoencoders.

E DC-AE ARCHITECTURE AND TRAINING DETAILS

We present the detailed architecture of DC-AE encoder and decoder stages in Figure 10 to comple-
ment Figure 4 (b).
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Figure 10: Detailed Architecture of DC-AE Encoder and Decoder Stages.

We use the AdamW optimizer (Loshchilov, 2017) for all training phases. In phase 1 (low-resolution
full training), we use a constant learning rate of 6.4e-5 with a weight decay of 0.1, and AdamW betas
of (0.9, 0.999). We use L1 loss and LPIPS loss (Zhang et al., 2018). In phase 2 (high-resolution
latent adaptation), we use a constant learning rate of 1.6e-5, a weight decay of 0.001, and AdamW
betas of (0.9, 0.999). We use the same loss as phase 1. In phase 3 (low-resolution local refinement),
we use a constant learning rate of 5.4e-5, and AdamW betas of (0.5, 0.9). We use L1 loss, LPIPS
loss (Zhang et al., 2018), and PatchGAN loss (Isola et al., 2017).

F INVESTIGATIONS ON THE GENERALIZATION GAP

Table 7 demonstrates additional investigations on the generalization gap of high spatial-compression
autoencoders. Training with image crops leads to worse results than training with downscale images
in our case. Training with 50% downscale images and 50% image crops can improve the rFID from
7.4 to 2.7. It shows that this strategy can partially address the generalization gap. However, this
strategy is still inferior to our decoupled high-resolution adaptation.

Method Downscale Crop 50% Downscale, 50% Crop Decoupled High-Resolution Adaptation

rFID ↓ 7.40 8.32 2.70 0.18

Table 7: Investigations on the Generalization Gap.

G ABLATION STUDY ON TRAINING DIFFERENT NUMBERS OF LAYERS

Figure 11 presents the ablation study on training different numbers of layers in phase 2 (high-
resolution latent adaptation) and phase 3 (low-resolution local refinement).

Table 1

speed (step time, 
second)

memory (GB) PSNR SSIM

0.518 10 27.6 0.753
0.534 11.22 27.64 0.754
0.574 15.54 27.69 0.756
0.632 23.54 27.72 0.757
0.918 52.54 27.64 0.757
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Table 1-1

speed (step time, 
second)

memory (GB) rFID

0.362 8.53 1.285
0.441 16.47 0.807
0.575 24.4 0.233
0.617 28.92 0.234
0.654 31.39 0.231
0.666 32.07 0.23
0.917 52.54 0.3
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Figure 11: Ablation Study on Training Different Numbers of Layers in Phase 2 (Left) and
Phase 3 (Right).
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H LOSS LANDSCAPE COMPARISON

Figure 12 demonstrates the loss landscape comparison between DC-AE and SD-VAE. We can see
that DC-AE’s loss landscape is flatter than SD-VAE’s, indicating that it is easier for DC-AE to reach
low-loss regions than SD-VAE.

SD-VAE DC-AE

 1

Figure 12: Loss Landscape Comparison. DC-AE’s loss landscape is flatter than SD-VAE’s, indi-
cating that it is easier for DC-AE to reach low-loss regions.

I ADDITIONAL IMAGE RECONSTRUCTION RESULTS

Table 8 reports the reconstruction results under the low spatial-compression ratio setting. DC-AE
delivers slightly better results than SD-VAE under this setting.

ImageNet 256×256 Latent Shape Autoencoder rFID ↓ PSNR ↑ SSIM ↑ LPIPS ↓

f8c4 32×32×4 SD-VAE [36] 0.63 24.99 0.71 0.063
DC-AE 0.46 25.46 0.73 0.057

Table 8: Image Reconstruction Results under the Low Spatial-Compression Ratio Setting.

J IMAGE GENERATION RESULTS WITH OTHER EVALUATION METRICS

Table 9 presents a comprehensive evaluation of different diffusion models and autoencoders on Im-
ageNet 512×512. The evaluation metrics include FID (Martin et al., 2017), inception score (IS)
(Salimans et al., 2016), precision, recall (Kynkäänniemi et al., 2019), and CMMD (Jayasumana
et al., 2024). Our DC-AE consistently delivers significant efficiency improvements while maintain-
ing the generation performance under different evaluation metrics.

K MODEL SCALING RESULTS

Table 2-1

DC-AE-f64p1 DC-AE-f64p1 
2000k

DC-AE-f32p1 SD-VAE-f8p2 FLUX-f8p2

UViT-S 0.044 67.30 0.044 61.84 0.044 46.12 0.044 51.96 0.044 106.07

UViT-H 0.501 13.96 0.501 12.26 0.501 9.83 0.501 11.04 0.501 30.91

UViT-2B 1.600 7.78 1.600 6.50 1.600 8.13 1.600 9.73 1.600

1
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Figure 13: Model Scaling Results on ImageNet 512×512 (UViT-S to UViT-2B). DC-AE-f64
benefits more from scaling up than SD-VAE-f8.
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Diffusion Patch Inference FID ↓ Inception Score ↑ Precision ↑ Recall ↑ CMMD ↓
Model Autoencoder Size Throughput w/o CFG w/ CFG w/o CFG w/ CFG w/o CFG w/ CFG w/o CFG w/ CFG w/o CFG w/ CFG

SD3-VAE-f8 [8] 2 2984/T 164.34 143.82 6.07 7.53 0.06 0.09 0.31 0.39 3.13 2.94
Flux-VAE-f8 [18] 2 2984/T 106.07 84.73 13.39 17.71 0.28 0.37 0.39 0.42 1.90 1.67

SDXL-VAE-f8 [35] 2 2991/T 51.03 26.38 27.58 56.72 0.57 0.74 0.58 0.50 1.35 1.05
Asym-VAE-f8 [53] 2 2991/T 52.68 25.14 30.22 65.27 0.58 0.74 0.62 0.51 1.09 0.80

SD-VAE-f8 [36] 2 2991/T 51.96 24.57 30.37 65.73 0.57 0.74 0.64 0.52 1.23 0.91
SD-VAE-f16 [36] 2 12881/T 76.86 44.22 21.38 43.35 0.43 0.62 0.60 0.55 1.83 1.46
SD-VAE-f32 [36] 1 12883/T 70.23 38.63 23.07 47.72 0.46 0.64 0.58 0.56 1.71 1.36

DC-AE-f32 1 12850/T 46.12 18.08 34.82 84.73 0.59 0.76 0.66 0.56 1.00 0.70
DC-AE-f64 1 53774/T 67.30 35.96 24.55 52.86 0.44 0.64 0.60 0.56 1.44 1.14

UViT-S [1]

DC-AE-f64† 1 53774/T 61.84 30.63 27.28 61.76 0.47 0.67 0.63 0.56 1.35 1.04

Flux-VAE-f8 [18] 2 416/T 27.35 8.72 53.09 130.20 0.68 0.83 0.61 0.48 0.54 0.30

Asym-VAE-f8 [53] 2 424/T 11.39 2.97 108.70 241.10 0.75 0.83 0.65 0.53 0.37 0.20
SD-VAE-f8 [36] 2 424/T 12.03 3.04 105.25 240.82 0.75 0.84 0.64 0.54 0.43 0.25DiT-XL [34]

DC-AE-f32 1 2016/T 9.56 2.84 117.49 226.98 0.75 0.82 0.64 0.55 0.34 0.22

Flux-VAE-f8 [18] 2 349/T 30.91 12.63 56.72 127.93 0.64 0.76 0.59 0.49 0.50 0.31

Asym-VAE-f8 [53] 2 351/T 11.36 3.51 124.24 249.21 0.75 0.82 0.61 0.53 0.32 0.20
SD-VAE-f8 [36] 2 351/T 11.04 3.55 125.08 250.66 0.75 0.82 0.61 0.53 0.39 0.26

DC-AE-f32 1 1622/T 9.83 2.53 121.91 255.07 0.76 0.83 0.65 0.54 0.34 0.20
DC-AE-f64 1 6706/T 13.96 3.01 99.20 229.16 0.73 0.83 0.64 0.53 0.50 0.31

UViT-H [1]

DC-AE-f64† 1 6706/T 12.26 2.66 109.20 239.82 0.73 0.82 0.67 0.57 0.43 0.27

Flux-VAE-f8 [18] 2 155/T 25.03 10.12 74.04 161.29 0.67 0.78 0.58 0.51 0.38 0.24

Asym-VAE-f8 [53] 2 157/T 9.87 3.62 131.95 258.63 0.76 0.83 0.59 0.52 0.30 0.19
SD-VAE-f8 [36] 2 157/T 9.73 3.57 132.86 260.50 0.76 0.83 0.59 0.52 0.37 0.24

DC-AE-f32 1 665/T 8.13 2.30 135.44 272.73 0.76 0.82 0.66 0.56 0.30 0.17
DC-AE-f64 1 2733/T 7.78 2.47 138.11 280.49 0.77 0.84 0.63 0.54 0.35 0.22

UViT-2B [1]

DC-AE-f64† 1 2733/T 6.50 2.25 152.35 293.45 0.77 0.83 0.65 0.56 0.31 0.19

Table 9: Class-Conditional Image Generation Results on ImageNet 512×512 with More Eval-
uation Metrics. † represents the model is trained for 4× training iterations (i.e., 500K → 2,000K
iterations). ‘T’ denotes the diffusion sampling steps.

In addition to existing UViT models, we scaled the model up to 1.6B parameters, with a depth
of 28, a hidden dimension of 2048, and 32 heads. We denote this model as UViT-2B. Figure 13
demonstrates that DC-AE-f64 benefits more from scaling up than SD-VAE-f8.
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Figure 14: More Autoencoder Image Reconstruction Samples.
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Figure 15: More Autoencoder Image Reconstruction Samples.
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symmetrical, colorful, 4k

Prompt: ultra photorealistic, super ultra hdr quality, full figure, 
National Geographic professional photograph of a Giant 
recycled wooden sculpture of a grizzly bear, sculpture in the 
artistic style of Thomas Dambo, Mandurah estuary backdrop, 

Prompt: Content Highly realistic Neanderthal face integrated 
onto a giant Bigfoot with flint black skin Medium Hyperrealistic 
digital painting Style Realism with a focus on intricate details 
and textures Lighting Soft, diffused natural lighting to enhance 
the facial features, fur texture, and overall form Colors Rich 
earthy tones for the fur, flint black skin tone for the Neanderthal 
face, and subtle variations to convey depth and realism 
Composition Wideangle lens capturing the full figure of the giant 
Bigfoot with a Neanderthal face, standing in a natural 
environment, showcasing the seamless integration of facial 
features, expressive eyes, and distinctive bone structure Create 
a hyperrealistic digital painting depicting a highly realistic 
Neanderthal face integrated onto a giant Bigfoot with flint black 
skin, as if you were seeing it in person. Employ a realism style 
with a focus on intricate details and textures. Use soft, diffused 
natural lighting to enhance the facial features, fur texture, and 
overall form. Choose rich earthy tones for the fur and a flint 
black skin tone for the Neanderthal face, adding subtle 
variations to convey depth and realism. Compose the image 
with a wideangle lens capturing the full figure of the giant Bigfoot 
with a Neanderthal face, standing in a natural environment, 
showcasing the seamless integration of facial features, 
expressive eyes, and distinctive bone structure. 

Prompt: a beautiful and colorful Monstera, dark, hyper realistic, 
highly detailed, intricate, volumetric light, natural 
lighting,cinematic 4k

Prompt: cliver barkers cenobites from hellrazer working in an 
evil snack bar, demonic fast food restaurant, hyper realistic, 
UHD quality, scene from film

Prompt: Hoded facless Hacker PLaying Heavy Metal in 
Keyboards, Hd cinematic lighting, realistic, photorealistic, Real 
hyper realistic, Ultra  hd 8k Lifelike Ultra  Realistic , Shot on a 
Canon EOS 5D Mark IV with a 200mm f 1. 4L IS USM lens 64 
megapixels Zoomed out octane render shading and bokeh 

Prompt: soulful woman in stanning fashinable yellow winter 
dress, hair pinned up, with adorable little baby duck and yellow 
tulips, editorian photography, Vogue, fashion and beauty, love, 
hyperrealistic, hyperdetailed 

Prompt: an angel hiding deep in the dark forest behind the 
bushes, hiding from a drone, full body, in the style of 
renaissance painting, photorealistic, mysterious, cinematic, 4k 

Prompt: a heart shaped kratom leaf is displayed on its own, in 
the style of high resolution, thai art, light white and light emerald, 
realist lifelike accuracy, moche art, rounded, nabis, logo 

Prompt: The Kiss painting of Gustav Klimt in Claud Monet style 
blue white gold

Prompt: Detailed portrait of cute smiling girl, cyberpunk 
futuristic, reflective puffy coat, decorated with hearts, by ismail 
inceoglu dragan bibin hans thoma greg rutkowski alexandros 
pyromallis nekro rene maritte illustrated, perfect face, fine 
details, realistic black and white lineart coloring page

Prompt: stock image popular fig leaf trend. 

Prompt: hurt woman walks down a neighborhood road alone at 
night a car is crashed in a ditch off to the side, wide shot

Prompt: waterfall in a green Forrest Prompt: black and white image, portrait of a tiger, love. A 
National Geographic award winning stock image popular no text 
prompt trend. pinterest contest winner

Prompt: camping sticker white background 

Figure 16: Random 512×512 Text-to-Image Samples. Prompts are randomly drawn from MJHQ-
30K (Li et al., 2024a).
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Figure 17: Random Generated Samples on ImageNet 512×512.
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