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Abstract

Recent neural combinatorial optimization (NCO) methods have shown promising
problem-solving ability without requiring domain-specific expertise. Most existing
NCO methods use training and testing data with a fixed constraint value and lack
research on the effect of constraint tightness on the performance of NCO methods.
This paper takes the capacity-constrained vehicle routing problem (CVRP) as an
example to empirically analyze the NCO performance under different tightness
degrees of the capacity constraint. Our analysis reveals that existing NCO meth-
ods overfit the capacity constraint, and they can only perform satisfactorily on
a small range of the constraint values but poorly on other values. To tackle this
drawback of existing NCO methods, we develop an efficient training scheme that
explicitly considers varying degrees of constraint tightness and propose a multi-
expert module to learn a generally adaptable solving strategy. Experimental results
show that the proposed method can effectively overcome the overfitting issue,
demonstrating superior performance on the CVRP and CVRP with time windows
(CVRPTW) with various constraint tightness degrees. The code is available at
https://github.com/CIAM-Group/Rethinking_Constraint_Tightness.

1 Introduction

The vehicle routing problem (VRP) is an important category of combinatorial optimization problems
and is encountered in many real-world applications, including transportation [1]], navigation [2],
and robotics [3]]. Due to the NP-hard nature [4], it is prohibitively expensive to obtain exact VRP
solutions. Traditional methods typically employ problem-specific heuristic algorithms, which require
extensive domain-specific expertise. As an alternative, neural combinatorial optimization (NCO)
methods have received widespread attention recently [SHS]. These methods can automatically learn
problem-solving strategies from data using neural networks. Some advanced NCO methods can even
obtain near-optimal VRP solutions without the need for expert knowledge [9H17].

VRP instances are typically defined with some numeric constraints. For example, the solution of
a capacity-constrained VRP (CVRP) should meet the capacity constraint of each vehicle, and the
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Table 1: Comparison results of three representative NCO models on CVRP100 instances with in-
domain capacity value (C=50) and out-of-domain capacity values (C={10,500}). “Gap” quantifies
the percentage difference between a method’s solution and the ground truth provided by the heuristic
solver HGS [21]. “Expansion" measures the ratio of the increase in the gap relative to the in-domain
baseline (C=50).

| In-Domain | Out-Of-Domain

| =50 | C=10 | C=500

| Gap | Gap | Expansion | Gap | Expansion
POMO 3.66% 20.26% 5.54x 34.12% 9.32x
LEHD 4.22% 36.56% 8.66x 6.82% 1.62x
BQ 3.25% 18.02% 5.54x 8.16% 2.51x

solution of a CVRP with time windows (CVRPTW) should visit each customer in its admissible
time windows. Existing NCO methods usually train their model on problem instances with fixed
numeric constraint settings. For example, the AM [18], POMO [9]], BQ [19], and LEHD [20] train
and test their models on CVRP instances with 100 customers (CVRP100), assuming a fixed vehicle
capacity of 50 and an average customer demand of 5. In this case, the capacity C=50 corresponds
to a constraint of relatively moderate tightness. However, when dealing with CVRP100 instances
with some extreme constraints (e.g., C=10 as a tight constraint and C=500 as a loose constraint), the
performance of these NCO models significantly degenerated, as illustrated in Section 3]

Current NCO research has been deluded by the seemingly promising results obtained on instances
with certain specific tightness, lacking a comprehensive study of how constraint tightness affects
model performance. To fill this gap, this paper takes CVRP as an example and performs an empirical
analysis of the NCO performance under different capacity constraint tightness. We evaluate three
recently proposed NCO methods (i.e., POMO, LEHD, and BQ) that are trained using CVRP instances
with fixed customer demands but different capacity values, and the results are presented in Table[T]
As can be seen from the table, when the CVRP has extremely tight or loose capacity constraints
(C=10 and 500), the optimality gaps of the NCO methods deteriorate by at least 5.5x and 1.6x,
demonstrating severe performance degradation. We believe that these NCO models overfit the
training instances with a specific capacity tightness, i.e., C=50, and thus exhibit limited generalization
ability across instances with other capacity values. In this paper, we reveal the reasons behind the
performance degradation by leveraging the problem similarity between CVRP and two other VRP
variants, i.e., the traveling salesman problem (TSP) and the open vehicle routing problem (OVRP).
More details are provided in Section [4.1]

Beyond that, this paper presents a simple yet effective training scheme to enhance the performance
of existing NCO models on instances of varying constraint tightness degrees. The training scheme
enables models to learn a policy that is effective across a wide range of changing constraint tightness.
To further enhance adaptability, we propose a multi-expert module to augment neural architectures
of NCO models, in which each expert specializes in distinct ranges of constraint tightness degrees.
Experiments on CVRP and CVRPTW validate the effectiveness of our method across instances with
varying tightness degrees.

Our contribution can be summarized as follows:

* We revisit the training setting of existing NCO models and find that models trained under
these settings may overfit certain specific constraint tightness. They suffer from severe
performance degradation when applied to VRP instances with out-of-domain tightness
degrees.

* We propose a simple yet efficient training scheme that enables the NCO model to be efficient
on a broad spectrum of constraint tightness degrees. Moreover, we propose a multi-expert
module to enable the NCO model to learn a more effective policy for coping with diverse
constraint tightness degrees.

* Through extensive experiments on CVRP and CVRPTW, we validate the effectiveness and
robustness of our method in solving instances with constraint tightness ranging from tight to
extremely loose. The ablation results demonstrate that the proposed training scheme and
multi-expert module are efficient in enhancing existing NCO models.



Table 2: Performance of recent advanced NCO models on CVRP100 instances with different
capacities. The lowest optimality gap of each model across all datasets is in bold.

CVRP100

C=10 C=50 | C=100 | C=200 | C=300 | C=400 | C=500 | Varying Capacities

Gap Gap Gap Gap Gap Gap Gap Avg. Gap
HGS [21] | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
AM [18] 45.16% | 7.66% | 12.85% | 21.63% | 26.26% | 25.35% | 27.23% 23.76%
POMO [9] 20.26% | 3.66% | 11.17% | 22.45% | 29.56% | 30.80% | 34.12% 21.72%
MDAM [22] 747% | 5.38% | 12.47% | 21.13% | 24.31% | 22.55% | 23.91% 16.75%
BQ [19] 18.02% | 3.25% | 3.48% | 4.53% | 6.53% | 6.54% | 8.16% 7.22%
LEHD [20] 36.56% | 422% | 4.87% | 418% | 5.78% | 4.92% | 6.82% 9.62%
ELG [23] 10.44% | 5.24% | 1091% | 18.70% | 22.81% | 21.84% | 24.05% 16.29%
INVIT [24] 17.44% | 7.85% | 11.12% | 14.36% | 15.86% | 12.61% | 13.71% 13.28%
POMO-MTL [25] | 13.62% | 4.50% | 8.20% | 10.40% | 14.12% | 13.44% | 15.57% 11.41%
MVMOoE [26] 10.72% | 5.06% | 10.52% | 17.63% | 21.80% | 21.86% | 16.00% 17.24%

2 Preliminaries

2.1 Problem Definition

A VRP instance S can be defined on a graph G = (V, &), where V denotes the node set and
E = {(vi,v;)|vi,v; € V,v; # v;} denotes the edge set. The nodes from v, to v, represent n
customers, and some VRPs (e.g., CVRP, OVRP) contain a depot vy with V = {v;}?_,. In this work,
we assume an unlimited fleet of homogeneous vehicles starting from and returning to the depot to
serve all customers. This follows the classical VRP formulation used in seminal NCO papers [18), 9]].

The solution of a VRP instance is a tour 7r, which is a permutation of the nodes. Given an objective
function f(-) of solutions, solving the VRP instance is to search for the optimal solution 7* with
minimal objective function value (e.g., Euclidean distance of the tour) under certain problem-specific
constraints (e.g., visiting each node exactly once in solving the traveling salesman problem (TSP)).
Therefore, a VRP can be formulated as follows:

7 = minimize f(m) (1
where (2 is the set of all feasible solutions, with each solution 7 satisfying the problem-specific
constraints. The commonly studied VRPs are elaborated below.

TSP The TSP is defined with n customer nodes. It minimizes the length of a tour starting from an
arbitrary customer, visiting each customer exactly once, and returning to the starting customer.

CVRP The CVRP contains a depot node vy and n customer nodes. Each customer node ¢ has a
demand ¢; to fulfill, and a feasible tour in CVRP is constituted by a set of sub-tours that start and end
at the depot, ensuring the total demand in each sub-tour does not exceed the vehicle capacity. The
objective is to minimize the total distance of the sub-tours while satisfying the capacity constraint.

OVRP OVRP extends CVRP by removing the requirement for vehicles to return to the depot after
servicing customers in each sub-tour. Instead, the vehicles can end their tours at the last served
customers, offering more flexibility in practical vehicle routing.

2.2 VRP Solution Construction

NCO methods primarily employ encoder-decoder neural networks to learn policies for constructing
VRP solutions [[18[9]. Given a VRP instance, the encoder calculates embedding h; for each node
v;. These embeddings {h;}}_, are then utilized by the decoder to incrementally construct a VRP
solution (i.e., a tour) by adding one node at a time to the existing partial solution. Starting from
an empty solution, the decoder iteratively selects one unvisited node at each step, appends it to
the incomplete solution, and marks it as visited. For example, at step ¢, the incomplete solution is
represented as (71, 72, ..., m—1), where 1 denotes the first node added to the solution and ;1
represents the most recently added node. This node-by-node selection process continues until all



nodes are visited, resulting in a complete solution. The encoder-decoder neural networks are often
trained by reinforcement learning [[18, 9} 23] or supervised learning [27, 28, [19].

2.3 Definition of Constraint Tightness

For CVRP, the “constraint tightness” is directly represented by the vehicle capacity value, C. A tight
constraint corresponds to a low capacity value (e.g., C = 10 in our paper). In this scenario, each
vehicle can only serve a very limited number of customers, forcing the solution to be composed of
many short sub-tours. A loose constraint corresponds to a high capacity value (e.g., C' = 500). Here,
the capacity is so large that it is barely a limiting factor, allowing a single vehicle to serve many or
all customers. This makes the problem characteristics approach those of the Traveling Salesman
Problem (TSP). Therefore, in the context of CVRP, constraint tightness is inversely proportional to
the vehicle capacity C.

We also provide a more general definition of constraint tightness independent of the problem features,
such as capacity, with details presented in Appendix [J]

3 NCO Performance on CVRP with Different Constraint Tightnesses

To investigate the impact of different constraint tightnesses on model performance, in this section, we
conduct an empirical study of advanced NCO models on CVRP instances with different constraint
tightnesses.

3.1 Experiment Details

Dataset Following the data generator in prior works [[18} 9], we generate seven test datasets, each
comprising 10,000 CVRP100 instances. Customer demands are drawn uniformly from {1,...,9},
so the average customer demand is 5. Vehicle capacities for these datasets are set to 10, 50, 100, 200,
300, 400, and 500, respectively. C=500 represents a loose constraint that is expected to allow a single
vehicle to feasibly serve all customers in a single route, while C=10 represents the tight constraint
that allows a vehicle to serve only two customers on average. All node coordinates are uniformly
sampled within a unit square, so these datasets differ solely in capacity values.

NCO Methods We comprehensively collect different NCO methods for solving CVRP, including
POMO [9]], BQ [19]], LEHD [20], INViT [24]], ELG [23]], MVMOoE [26], AM [18], MDAM [22],
POMO-MTL [25]. We adopt their provided pre-trained models, trained on CVRP100 with C=50, for
the following evaluation.

Metrics & Inference We evaluate the optimality gap (Gap) across all methods and datasets, which
quantifies the percentage difference between a method’s solution and the ground truth (generated by
the HGS solver [21]). All evaluated NCO methods use the greedy search for inference to present
their basic problem-solving ability.

3.2 Results and Observations

The experimental results are shown in Table [2 We observe that all NCO methods achieve low
optimality gaps on test instances with the same constraint tightness (e.g., C=50) as the training
instances. However, their performance drops significantly on instances with unseen loose or tight
constraints. For example, the optimality gap of BQ model on the dataset with C=50 is 3.25%, but
the gap on the dataset with C=10 drastically expands to 18.02%. POMO also shows a similar trend,
with the gap on the dataset with C=50 being 3.66%, and expanding to 34.12% on the dataset with
C=500. Overall, compared to the test dataset with the same capacity value as the training set, all
evaluated NCO models exhibit at least a 1.7 x increase in the average optimality gap (i.e., INViT has
an average gap of 13.28%, which is 1.7 larger than 7.85% on the dataset with C=50) when tested
on the datasets with different capacities. These results indicate that current NCO models generally
overfit to the trained constraint tightness, which causes the learned strategies to be poorly applied to
instances with other constraint tightnesses, ultimately significantly degrading their performance.
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Figure 1: Impact of Capacity on Prob- Figure 2: Performance of different NCO meth-
lem Similarity. The CVRP100 solu- ods on CVRP100 instances with extreme con-
tion closely resembles the OVRP solu- straint tightness degrees (i.e., C=10/500). *-
tion when capacity is very small (e.g., OVRP", “-TSP", and “~-CVRP" indicate that
C=10) and becomes equivalent to the the methods are specifically designed to solve
TSP solution when capacity is extremely ~OVRP, TSP, and CVRP instances, respectively.
large (e.g., C=500). We systematically A smaller optimality gap indicates better perfor-
quantify the problem similarity in Ap- mance.

pendix[C|

4 Methodology

In this section, we analyze the limitations of current NCO models from the perspective of constraint
tightness. To address the performance degradation led by the constraint tightness, we propose two
effective modifications to NCO models in terms of the training protocol and neural architecture.
These modifications aim to enable the model to learn strategies that can adapt to varying degrees of
constraint tightness, thereby improving the performance of NCO models in solving more general
VRPs.

4.1 Limitations of NCO Methods

As observed in Section [3] NCO models generally fail to retain good performance under varying
constraint tightnesses.

When the constraint tightness changes drastically, the optimal solution structure of CVRP undergoes
significant transformations, indicating that the problem requires fundamentally different solving
strategies. As shown in Fig. [T} under the tight capacity constraint C=10, where the capacity is capped
at twice the average customer demand, each sub-tour in the CVRP solution can only serve a limited
number of customers (e.g., two or three). In this case, CVRP solutions exhibit structural similarities
to OVRP solutions under identical capacity constraints, as sub-tours in their solutions only visit very
few customers. That is, when vehicle capacity is severely limited, the problem-solving strategy for
CVRP becomes similar to that of OVRP (except that returning to the depot is neglected). Conversely,
under loose capacity constraints (e.g., C=500, approaching total customer demand), the vehicles can
serve all customers in a few or even a single sub-tour. The solution structure of CVRP resembles
that of TSP in this situation. Therefore, TSP-oriented solving strategies could work well for solving
CVRP instances with large capacities.

We conduct experiments to validate our conjecture. Specifically, we employ the POMO model
specialized for solving OVRP100 instances with C=10 (denoted as POMO-OVRP) to solve CVRP100
instances (with C=10). Also, we employ the POMO model specialized for TSP (denoted as POMO-
TSP) to solve CVRP100 instances (with C=500). For comparison, we test several representative
NCO methods, including POMO, INViT, LEHD, and BQ, on CVRP100 instances with C=10 and
C=500. These models are trained on CVRP100 instances with C=50. The results are shown in
Figure[2] We observe that under small capacity, POMO-OVRP outperforms all CVRP models. For
example, POMO-OVRP achieves an optimality gap of 1.9%, which is much lower than INVIT’s
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Figure 3: Model structure featuring a multi-expert module. The model adopts a light encoder
and heavy decoder architecture, incorporating an effective multi-expert module within the decoder.
The multi-expert module consists of a gate mechanism and m expert layers. The gate mechanism
selects instances within specific ranges of constraint tightness to their corresponding expert layer for
processing. Each expert layer processes the node embeddings from the L stacked attention layers and
generates probability distributions for node selection during solution construction.

17.44%. Conversely, for CVRP instances with C=500, the POMO-TSP model with a gap of 2.5%
demonstrates superiority over specialized NCO models for CVRP (e.g., LEHD with a gap of 6.8%).

The results corroborate our conjecture that solving strategies for CVRP under different capacities
(C={10,50,500}) differ significantly. The NCO models trained on CVRP instances with C=50 cannot
be effectively applied to instances with different capacity values, thereby exhibiting significant
performance degradation.

4.2 Training with Varying Constraint Tightness

In order to address the overfitting issue of existing NCO methods to enable the model to learn
effective problem-solving strategies across different degrees of constraint tightness, we propose a
straightforward yet effective training scheme, which explicitly exposes the model to the full range
of constraint tightnesses. Specifically, let C,,;, and C,,4, denote the minimum and maximum
constraint tightness degrees in the target domain (e.g., vehicle capacities in VRPs). During training,
the constraint tightness degrees are uniformly sampled from [Ciyir, Cinaz) for each training instance.
By continuously changing the constraint tightness of the training data, the NCO model is able to
learn to adjust its decision-making strategy in response to varying problem domains, improving its
robustness in solving general VRP instances.

In addition, we attempt to assign all instances in a training batch the identical tightness degree,
randomly sampled from [C)in, Cinaz]. This batch-level tightness assignment, compared to the above
instance-level assignment, leads to inferior model performance. A more detailed discussion with
experiments can be found in Appendix [E]

4.3 Multi-Expert Module

When training models to handle instances with varying constraint tightness degrees, inconsistencies in
problem characteristics may create conflicting optimization directions, leading to suboptimal learning
outcomes. To address this challenge, we propose integrating a multi-expert module into existing NCO
models, fostering a more general and effective routing strategy across a broader range of constraint
tightnesses.

Given the outstanding performance of the Lightweight Encoder-Heavy Decoder (LEHD) model [19,
20l], we adopt it as the backbone model to exemplify the implementation of the multi-expert module.
In general, LEHD uses L stacked attention layers in the decoder to construct a VRP solution step by
step. As shown in Fig. (3| we integrate the multi-expert module after the stacked attention layers in
the decoder of LEHD. The multi-expert module consists of an instance-level gate mechanism G(-)
and m expert layers {E1, Eo, -+, E,, }.



Table 3: Comparison results between our model and the existing best model in each dataset. Gaps on
C=10, C=50/100, and C=200 to 500 come from MDAM, BQ, and LEHD, respectively.

CVRP100
C=10 | C=50 | C=100 | C=200 | C=300 | C=400 | C=500 | Varying Capacities
Gap Gap Gap Gap Gap Gap Gap Avg. Gap
Existing Best | 7.47% | 3.25% | 3.48% | 4.18% | 5.78% | 4.92% | 6.82% | 5.13%
Ours | 1.54% | 3.82% | 3.67% | 1.49% | 0.87% | 0.75% | 0.87% | 1.86%

Given an instance with constraint tightness C, we denote its node embedding matrix after the L

stacked attention layers as H; = {hEL)}ie Nt, where N, ¢ represents the number of unvisited nodes
at the ¢-th step during solution construction. With C}, and H; as inputs, the multi-expert module
generates the node selection probability matrix P;, which can be formulated as

P, =MEM(H,,Cy) = > G(Cy)Ei(Hy). ©)
=1

Gate Mechanism Given an instance, the gate mechanism assigns the node embedding matrix H;
to the appropriate expert layer based on the constraint tightness C. Specifically, the i-th expert layer

(¢ € {1,2,--- ,m}) processes instances with constraint tightnesses in the interval [(i — 1)8,if],

Wn;m"‘ Therefore, the gate mechanism can be formulated as a one-hot vector

G(Cy) = {(1) if (i — 1) < C, — Couin < i,

where § =

3

otherwise.

Expert Layer Each expert layer transforms the node embedding matrix H; into the probability
matrix for node selection. To enhance the adaptability to varying constraint tightness, each expert
layer comprises m. stacked attention layers (see Appendix [B.T|for details) before the probability
prediction. The calculation process within the i-th expert layer can be formulated as:

Ht(l) = AttnLayer; 1 (Hy),

4
Ht(me) = AttnLayer; . (Ht(mefl)), @

P, = Softmax(W; H™) + b,),
where W; and b; are learnable parameters. Different expert layers are specialized in processing

different constraint tightnesses, corresponding to more effective VRP strategies within one single
NCO model.

S Experiment

In this section, we first evaluate the effectiveness of our method across varying degrees of constraint
tightness. Next, we conduct ablation studies on the key components of the proposed method. Finally,
we validate the versatility of our method by applying it to CVRPTW.

Dataset&Baseline We reuse the seven test datasets from Section to evaluate models. We
evaluate the NCO methods mentioned in Section [3.1] as baselines. To make our results more
significant, we consistently compare the best NCO model for each dataset.

Model Setting&Training We utilize the LEHD model [20,[19] as the backbone to demonstrate
the effectiveness of the proposed method. The embedding dimension is set to d = 192, the hidden
dimension of the feed-forward layer is set to 512, the query dimension q is set to 16, and the head
number in multi-head attention is set to 12. The decoder includes L = 6 stacked attention layers and
a multi-expert module with m = 3 expert layers, each containing m. = 3 layers. Following [20]], we
use supervised learning to train the model. The training dataset comprises one million CVRP100
instances and their corresponding labeled solutions. Each training instance has a random capacity
drawn from {10, 11, - -- , 500}, and the labeled solutions are generated using HGS [21]] solver. The
Adam optimizer [29] is utilized for training the models, with an initial learning rate of le-4 and a
decay rate of 0.9 per epoch. We train the model for 40 epochs, with the batch size set to 512.



Metrics&Inference For comparative analysis, we evaluate the metric of optimality gap (Gap) across
all methods and datasets, as done in Section All models use the greedy search for inference.
The inference time that quantifies a method’s computational efficiency is shown in Appendix [A] All
experiments, including training and testing, are executed on a single NVIDIA GeForce RTX 3090
GPU with 24GB of memory.

5.1 Comparison Results

The experimental results are presented in Table [3] which demonstrate that our method outperforms
state-of-the-art NCO methods overall. Specifically, our method achieves an average gap of 1.86%,
significantly lower than existing NCO models’ average best gap of 3.71%. While our method exhibits
marginally inferior performance compared to the baselines at C=50 and 100, it outperforms all
competing methods in other scenarios (C=10, C=200, and above). Notably, for instances with C=300
to C=500, our method maintains an optimality gap below 1%. These results highlight the effectiveness
of our method in solving problems across varying degrees of constraint tightness.

Table 4: Effects of Varying Constraint Tightness training (VCT) and Multi-Expert Module (MEM).
The Base Model is only trained on instances with C=50 and without MEM.

CVRP100
C=10 C=50 | C=100 | C=200 | C=300 | C=400 | C=500 | Varying Capacities
Gap ‘ Gap ‘ Gap ‘ Gap ‘ Gap ‘ Gap ‘ Gap ‘ Avg. Gap
Base Model 45.64% | 3.72% | 4.21% | 3.62% | 5.61% | 5.36% | 7.29% 10.78%
Base Model+MEM 37.03% | 3.28% | 4.41% | 2.90% | 4.56% | 4.39% | 6.11% 8.95%
Base Model+VCT 1.88% | 451% | 4.69% | 2.25% | 1.28% | 1.03% | 1.25% 2.41%
Base Model+VCT+MEM | 1.54% | 3.82% | 3.67% | 1.49% | 0.87% | 0.75% | 0.87% 1.86%

Table 5: Results on CVRPTW instances with different degrees of time windows constraint tightness.

CVRPTW100
a=02|a=05|a=10]a=15]a=20]| a=25| a=3.0 | Varying Time Windows
Gap Gap Gap Gap Gap Gap Gap Avg. Gap
POMO 14.95% | 13.11% | 11.39% | 16.40% | 21.62% | 27.34% | 33.56% 19.58%
POMO+VCT 9.80% | 12.22% | 12.37% | 14.11% | 13.73% | 12.40% | 11.23% 12.14%
POMO+VCT+MEM | 9.13% | 11.57% | 11.91% | 13.30% | 13.24% | 11.58% | 10.37% 11.58%

5.2 Ablation Study

We conduct an ablation study to evaluate the contributions of two key components: 1) varying
constraint tightness training (VCT) and 2) the multi-expert module (MEM). We compare three training
configurations: the model trained on CVRP100 instances with fixed capacity (C=50) 1) without
MEM and 2) with MEM; 3) the model trained on instances with capacities C' ~ Unif([10, 500])
and without MEM; 4) the model trained on instances with capacities C' ~ Unif([10, 500]) and with
MEM. We maintain a consistent training data budget across all experimental settings. Results of
these models on the test sets are presented in Table

From these results, we can observe that while adding only the MEM reduces the average gap from
10.78% to 8.95%, providing a modest benefit, varying constraint tightness training leads to significant
improvements in the model’s problem-solving ability on 5 out of 7 datasets, reducing the average
gap from 10.78% to 2.41%. However, this approach causes a slight performance degradation on the
datasets with C=50 and C=100. The reason may be that the different constraint tightness degrees
create conflicting optimization directions, leading to suboptimal learning outcomes. When the
multi-expert module is incorporated, the model achieves consistent performance gains across all
datasets, reducing the average gap by 23% (from 2.41% to 1.86%). These results demonstrate
that while varying constraint tightness training enhances cross-constraint-tightness generalization,
the integration of the multi-expert module further strengthens this capability, enabling more robust
adaptation to problem instances with varying constraint tightness.



6 Versatility

To demonstrate that our proposed method is applicable to other routing problems, we validate it
on CVRPTW instances with varying degrees of time window constraint tightness. We provide the
CVRPTW definition and introduce a coefficient « to quantify the tightness of the time window
constraint coefficient in Appendix

We apply our proposed method to the classic POMO model to solve CVRPTW instances with varying
degrees of time window constraint tightness. The hyperparameter settings of the POMO model follow
the description in its original literature [9]]. We train the model for 1,000 epochs using reinforcement
learning, with each epoch containing 10,000 samples and a batch size of 64. For training under
different constraint tightness degrees, the tightness coefficient for the time window constraints is
set to & ~ Uniform(0.0, 3.0), where « — 0.0, @« = 1.0, and @ = 3.0 denote the extremely tight,
moderate, and loose constraints, respectively. For the multi-expert module incorporated into POMO,
the i-th expert layer is specialized in solving instances with time window tightness in the range
[(i — 1), i]. Implementation details for the multi-expert module can be found in Appendix [G] We train
three POMO models separately: 1) the original POMO model trained with the instances of default
time window constraint (i.e., o = 1.0), 2) the model with varying constraint tightness training, and 3)
the model with varying constraint tightness training and the multi-expert module. These models use
greedy search for inference and are evaluated on datasets with tightness coefficients ranging from
a = 0.2 to o = 3.0. The experimental results are presented in Table 3]

From the experimental results, we observe that when alpha changes from 1.0 to 0.2/3.0, the optimality
gap of the original POMO model increases from 11.39% to 14.95% and 33.56%, respectively. The
introduction of varying constraint tightness training improves the model’s performance in all cases
except for « = 1.0. The augmentation of the multi-expert module further enhances the model
performance across all degrees of constraint tightness. These results indicate that in CVRPTW, the
NCO method also has the overfitting issue and exhibits significant performance degradation when the
constraint tightness changes drastically, and the proposed method can effectively tackle the limitation,
enhancing the NCO model for VRP with varying domains of time windows.

7 Related Work

7.1 NCO on VRPs with Fixed Constraint Tightness

NCO methods primarily learn construction heuristics to arrange input nodes into feasible solutions.
The pioneering Ptr-Net [27] introduces a Recurrent Neural Network (RNN)-based architecture to
solve TSP through supervised learning. In contrast, Bello et al. [30] employs reinforcement learning
to eliminate dependency on labeled solutions. Subsequent work by Nazari et al. [31] extends this
framework to solve CVRP. A significant advancement comes with the Attention Model [[18], which
adopts the Transformer architecture [32]] to achieve state-of-the-art performance across various VRPs
with up to 100 nodes. This inspires numerous AM-based enhancements [9, [33| 22} [34-37] that
narrow the performance gap with classical heuristic solvers. However, these methods share a critical
limitation: they are typically trained on VRP instances with fixed constraint tightness. For example,
models trained on CVRP100 instances typically adopt a fixed capacity of C=50 [9} 38} [19, 20, 24,
26, 25, 123]]. This training paradigm may overfit the NCO models on training instances with certain
specific constraint tightness, restricting their adaptability to other cases. As a result, these models
suffer severe performance degradation when applied to instances with out-of-domain constraint
tightness. Our work systematically investigates the underlying causes of this limitation and provides
new insights to tackle it.

7.2 NCO on VRPs with Varying Constraint Tightness

Recent efforts have attempted to incorporate capacity variations during training [39} 40]. Among
them, Manchanda et al. [39] apply meta-learning [41] to train models on CVRP instances with a
few certain capacities C' € {10, 30,40}, while Zhou et al. [40] focus on the instance-level large-
scale generalization considering different capacities. While these approaches demonstrate improved
generalization compared to fixed-capacity training, they exhibit two key shortcomings. First, they
lack a comprehensive study of how constraint tightness affects model performance and an in-depth
analysis of the cause. Second, they fail to account for extreme scenarios (e.g., C=500), which



may lead to model performance deterioration when solving instances with extremely small or large
capacities. Our work revisits these challenges through a systematic analysis of constraint tightness
impacts, providing methods to tackle different tightnesses of general VRP constraints (i.e., vehicle
capacity and time window).

8 Conclusion, Limitation, and Future Work

Conclusion In this work, we revisit the training setting of existing NCO models and empirically
reveal that models trained under this setting may overfit instances of specific constraint tightness,
thereby suffering from severe performance degradation when applied to instances with out-of-domain
tightness degrees. To overcome the limitation, we propose a varying constraint tightness training
scheme and a multi-expert module. Extensive experiments on CVRP and CVRPTW validate the
effectiveness and robustness of our method in solving instances with constraint tightness ranging
from extremely tight to extremely loose. In future work, we plan to apply the proposed method to
other NCO models to further explore its generality.

Limitation and Future Work While our model demonstrates strong generalization performance
across varying degrees of constraint tightness, it is currently trained using a uniform sampling strategy,
where the constraint tightness degrees of training instances are uniformly sampled. A promising
direction is to develop an adaptive sampling strategy for further performance enhancement across
the entire constraint tightness spectrum. Another important future direction involves extending our
method to other COPs, such as scheduling, planning, and bin packing.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: We have introduced the scope in both the abstract and introduction, and
summarized the contributions in the introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitation and future works in Section[8]
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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used reliably to provide closed captions for online lectures because it fails to handle
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Answer: [NA]
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Justification: The paper is mainly based on experiments.
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
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All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided detailed implementation details and experiment settings in
Section|G|and Section 5] respectively, to ensure reproducibility.
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We have released the code, the link to which is shown in the abstract.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment settings are detailed in Section [3]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Neural combinatorial optimization (NCO) methods typically operate deter-
ministically and report the mean objective value or the gap to the optimal (or best-known)
solution as key performance metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The Experiments compute resources are detailed in Section 3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper fully conforms to the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The proposed learning-based method for solving VRPs is not anticipated to
have any specific negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
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feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work does not release such data or models that have a high risk for misuse.
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have included the licenses of baseline solvers and datasets in Section [Pl
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The datasets utilized in this paper are either sourced from prior research
or generated using methodologies established in earlier studies, all of which have been
appropriately cited.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: In this paper, we study neural methods for solving TSP and CVRP without the
need of crowdsourcing or research with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Inference Time Between Different Methods

We have recorded the inference times for all baseline models as well as HGS, and present them
alongside their average optimality gaps in Table[6} For the NCO models, the reported times represent
the total duration required to solve a standard test set of 10,000 CVRP100 instances on a single
NVIDIA RTX 3090 GPU. It is important to note that HGS runs on a single CPU, and its reported
inference time is not directly comparable to the GPU-accelerated times of the learning-based methods.

The results highlight that our proposed method achieves an effective balance between solution quality
and computational efficiency. Compared to the baseline model LEHD, our method’s inference time is
approximately 2.1x longer (57.6s vs. 27.0s). However, this modest computational increase yields a
substantial 5.2x reduction in the average optimality gap (from 9.62% to 1.86%). Furthermore, when
compared to other recent methods like BQ and INVIT, our model is not only more accurate but also
faster. For example, our method reduces the optimality gap by over 3.8x compared to BQ (1.86% vs.
7.22%) while being nearly twice as fast (57.6s vs. 109.8s).

Table 6: Total Inference time for solving 10,000 CVRP100 instances. The average inference time
(Avg. Time) quantifies a method’s average computational efficiency on each dataset (consisting of
10,000 instances).

CVRP100

Avg. Gap Avg. Time
HGS 0.00 % 4.5h
AM 23.74% 2.0s
POMO 21.72% 3.0s
MDAM 16.75% 26.8s
BQ 7.22% 1.8m
LEHD 9.62% 27.0s
ELG 16.29% 9.5s
INViT 13.28% 2.6m
POMO-MTL | 11.41% 3.0s
MVMoE 17.24% 12.6s
Ours-CVRP | 1.86% 57.6s

B Detailed Formulation of Attention Layer

B.1 Attention Layer

The attention layer [32] is widely used in the neural VRP solver. It comprises a multi-head attention
(MHA) block and a node-wise feed-forward (FF) block. Each block incorporates the residual
connection [42] and normalization (Norm) [43] operations. Given X (-1 € R**? and Y(¢-1) ¢
R™*4 as the inputs to the ¢-th attention layer, the output X (*) is calculated as

X = Norm(MHA(X(e—l))y(f—l)) +X(£_1))7

N . (5
X® = Norm(FF(X) + X).
For simplicity, the entire process can be represented by
X = AttnLayer(X 1, y (=), (©6)
For readability, we omit the (¢) and (¢ — 1) in the following context.
B.2 Multi-head Attention
We first describe the single-head attention function as follows:
XWo(YWg)T
Attn(X,Y") = softmax (W) YWy, @)

where X € R"*? and Y € R™*? are the input matrices, and Wgq € R Wi € RXE Ty, €
R¥*dv are learnable parameters.
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The multi-head attention sublayer applies the single-head attention function in Equation (7)) for h
times in parallel with independent parameters:

MHA(X,Y) = Concat(heady, ..., head, )W,

8
head; = Attn;(X,Y), ®
where for each of Attn;(X,Y), d, = d, = d/h. W© € R?*4 is a learnable matrix.
B.3 Feed-Forward Layer
FF(X) = max(O, XWy + bl)Wg + bs, )

where W, € R?*475 by € R+ and Wy € R%7 X4 by € R? are learnable parameters.

C Quantification of Problem Similarity

To measure how the similarity of two COPs under different constraint tightness, we propose a
problem similarity metric. Intuitively, the similarity between two COPs increases as the difference
between their objective values—calculated by applying each problem’s optimal solution to the other’s
constraints—diminishes. Therefore, given two COPs (Problem A and B), we formally define the
problem similarity as:

Objp Obja ' (10)

A — B Transferability B— A Transferability

Similarity(4, B) = (1

where Obja and Objp are the objective values of the optimal solutions for Problems A and B
under their original constraints. Objp(A) represents the objective value of Problem A’s solution
adapted to Problem B’s constraints, and Obj 4 (B) is defined analogously. The first term quantifies
the transferability of Problem A’s solution to Problem B, while the second term measures the reverse.
High similarity requires both terms to be large.

Problem Similarity between CVRP and OVRP/TSP To validate Equation we compute
similarities between three problem classes: TSP, CVRP, and OVRP. We vary the capacity constraint
tightness for CVRP instances (CVRP100 dataset) by setting capacities to C' = 10, 50, 400, 500,
ranging from tight to loose. We use the classical solver HGS [21]], LKH3 [44]], and Concorde [45]
to solve the dataset under CVRP, OVRP, and TSP constraints, separately, with results presented in
Table

From these results, we observe two key trends: 1) When capacity is small (e.g., C' = 10), CVRP and
OVRP show strong similarity (97.5%) but weak similarity to TSP (25.5%). 2) As capacity increases
(e.g., C = 500), CVRP’s similarity to OVRP drops to 74.1%, while its similarity to TSP rises sharply
to 98.2%. This aligns with the observations from Section[4.1] as relaxed capacity constraints make
CVRP resemble TSP (a single route with no capacity limits), whereas tight constraints emphasize the
routing structure shared with OVRP.

Table 7: Problem similarity analysis across capacity constraints. Transferring rules: OVRP—CVRP
adds return trips to the depot; CVRP—TSP removes capacity constraints, and TSP—CVRP reintro-
duces them. We detail solution transformation in Appendix

CVRP100

C10 | C50 | C400 | €500
OVRP cost 30.88 | 9.84 | 749 | 7.49
CVRP cost 59.77 | 1555 | 8.04 | 7.87
TSP cost 7.80 | 7.80 | 7.80 | 7.80
OVRP—CVRP cost 60.67 | 1725 | 9.78 | 9.74
CVRP—OVRP cost 3118 | 1133 | 7.76 | 7.70
TSP—CVRP cost 7047 | 1791 | 878 | 7.98
CVRP—TSP cost 13.17 | 1068 | 796 | 7.83
Similarity CVRP-OVRP | 97.5% | 75.6% | 75.5% | 74.1%
Similarity CVRP-TSP | 25.5% | 53.5% | 88.9% | 98.2%
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Table 8: Analysis of problem similarity between CVRP and CVRPTW under varying time window
constraint tightness degrees.

CVRP100
a=| 02 | 10 | 30 | 50
CVRP cost 15.51 | 1551 | 15.51 | 1551
CVRPTW cost 3377 | 2442 | 1581 | 1555
CVRP—CVRPTW cost 50.69 | 38.89 | 18.89 | 16.08
CVRPTW—CVRP cost 2442 | 2124 | 15.80 | 1555

Similarity CVRP-CVRPTW | 9.9% | 25.7% | 79.0% | 96.3%

Problem Similarity between CVRP and CVRPTW To validate the versatility of Equation
we employ it to quantify the similarity between CVRPTW and CVRP across varying time window
constraint tightness degrees. Using the classic heuristic solver HGS [21], we solve CVRP100
instances with vehicle capacity C' = 50, incorporating time window constraints with tightness
coefficients « € {0.2,1.0,3.0,5.0}. The results in Table [8|demonstrate a clear trend: under tight
constraints (i,e., & = 0.2), the similarity drops to 9.9%, with CVRPTW solution costs 2.18 times
higher than those of CVRP. In contrast, loose constraints (i,e., « = 5.0) yield 96.3% similarity and
approximate solution costs. This trend occurs because tight time windows force vehicles to return to
the depot frequently after serving only a few customers, resulting in elongated sub-tous. In contrast,
under loose time window constraints, vehicles can serve multiple customers before returning, shifting
the dominant constraint to capacity, and aligning the behavior more closely with standard CVRP.

D Details for Solution Transformation

D.1 CVRP-TSP
We transform the solutions of CVRP and TSP into each other in the following handcrafted manner.

* Converting CVRP Solution to TSP Solution

1. Path Segmentation Phase: We disconnect the edges linking each sub-tour with the
depot in the CVRP solution, forming independent path segments. For each isolated
node (such as the depot), a virtual path segment consisting of two identical points is
constructed.

2. Path Reconstruction Phase: We gradually merge path segments using a greedy
strategy. Initially, a random path segment is selected. Then we calculate the length
of the selected path between its endpoints and those of the remaining path segments
using four connection methods (head-head, head-tail, tail-head, tail-tail) and choose
the connection combination with the shortest distance to merge. We iteratively execute
this process until all path segments are merged into a single path, and finally close the
path into a loop by connecting its ends.

* Converting TSP Solution to CVRP Solution Let the depot be any node in the path. The
conversion process starts traversing from the starting point of the TSP path, dynamically
maintaining the cumulative demand value. When adding the next node would cause the total
demand to exceed the vehicle capacity, perform the following operations:

1. Insert a depot node after the current node.

2. Reset the cumulative demand value to zero.

3. Start visiting the next node from the depot again.

This process continues until the TSP path is fully traversed, ultimately forming a CVRP
solution that complies with the capacity constraints.

D.2 CVRP-OVRP
We transform the solutions of CVRP and OVRP into each other in the following handcrafted manner.

¢ Converting CVRP Solution to OVRP Solution For each sub-tour in the CVRP solution,
we first identify the two edges directly connected to the depot, corresponding to the vehicle’s
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departure path (first edge) and return path (last edge), respectively. We then calculate the
Euclidean distances of these two connecting edges and mark the longer one as the final
return path. By removing this return path, the closed-loop sub-tour is converted into an open
sub-tour, forming a solution that conforms to the characteristics of OVRP.

* Converting OVRP Solution to CVRP Solution For each open sub-tour in the OVRP
solution, the edge between the end customer node and the depot node is connected, forming
a solution that complies with the closed-loop constraints of CVRP.

D.3 CVRP-CVRPTW

* Converting CVRP Solution to CVRPTW Solution

First, we decompose the solution into independent sub-tours. For example, the solution
0-1-2-0-3-4-0 is decomposed into sub-paths [0,1,2,0] and [0,3,4,0], where each sub-tour
starts and ends exclusively at the depot.

Second, we perform the time window-based path splitting for each sub-tour:

1. Sequential calculation: Starting from the depot, for each node, we calculate: 1) the
arrival time (departure time from the previous node + travel time), 2) the service start
time (the maximum value between the arrival time and the node’s earliest service time),
and 3) the service end time (service start time + service duration).

2. Violation detection: If a node’s arrival time exceeds its latest service time, or the
return time to the depot exceeds the depot’s operating deadline, a new depot node is
immediately inserted before this node, splitting the path into two sub-tours.

3. Tterative correction: Repeat the above verification for newly generated sub-tours until
all sub-tours satisfy the time window constraints.

Third, the path direction optimization is performed. We perform bidirectional time window-
based path splitting for each sub-tour: Calculate the total travel distance of split sub-tours
by performing the time window-based path splitting on the sub-tour for both the forward
and reverse directions, separately. And finally choose the sub-tour with the shorter distance.

Finally, we collect all the split sub-tours to form a complete CVRPTW solution.
* Converting CVRPTW solution to CVRP Solution

1. Merge optimization phase: First, we calculate the merge savings value [46] for all
sub-tour pairs (the difference between the sum of the distances traveled separately by
the two paths and the distance traveled by the merged path) in the CVRPTW solution
and establish a priority queue in descending order of savings value. we then sequentially
select the top sub-tour pairs from the queue for verification, and perform the merge
operation only if the total demand after merging does not exceed the vehicle capacity
and the merged sub-tour length is strictly shortened.

2. we repeat the above operation until no more sub-tours can be merged. In this situation,
all the merged sub-tours form a legal CVRP solution.

E Batch-level vs. Instance-level Strategy for Assigning Constraint Tightness

During model training, the strategy of assigning varying capacities to instances within each batch
significantly impacts training outcomes. We compared two capacity allocation schemes: the batch-
level random capacity, where all instances in a batch share an identical value randomly sampled from
[10, 500] during training, and the instance-level random capacity method, where each instance’s
capacity is independently sampled from the same interval, allowing heterogeneous capacities within
a batch. We train two models under these two settings, with testing results presented in Table 9]

From these results, we observe that the instance-level random capacity strategy consistently outper-
formed the batch-level one across all datasets. We suspect that this superiority arises from differences
in training dynamics: batch-level random capacity causes drastic inter-batch capacity changes, leading
to inconsistent parameter update directions and persistent optimization misalignment that hinders
gradient descent and convergence quality. In contrast, the instance-level random capacity approach
maintains statistically consistent update directions by exposing the model to diverse capacity values
within each batch, resulting in stabilized convergence trajectories.
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Table 9: Batch-level vs. Instance-level random C' for model training.

CVRP100
C10 C50 C100 | C200 | C300 | C400 | C500
Gap Gap Gap Gap Gap Gap Gap
Batch-level random C' 1.99% | 4.66% | 5.02% | 2.46% | 1.06% | 0.89% | 0.94%
Instance-level random C' | 1.54% | 3.82% | 3.67% | 1.49% | 0.87% | 0.75% | 0.87%

F Quantification of Time Window Constraint Tightness for CVRPTW

CVRPTW Following [47-49], we define the CVRPTW as follows. Building upon CVRP,
CVRPTW introduces a time window [e;, [;] for each customer node i, representing the earliest
and latest times at which customer ¢ can be visited. Additionally, each node has a service time s;,
which represents the duration a vehicle must remain at the node upon arrival. The depot has a time
window [eq, lo] but no service time. Each vehicle departs from the depot at time ey and must return
before [y. Let ¢ and j be two consecutive nodes on sub-tour 7, and let b denote the time at which the
vehicle on sub-tour r arrives at node ¢. The departure time from node ¢ is given by b} + s;, and the
arrival time at the next node j is calculated as: b; = max(e;, b] + s; + t;;), where ¢;; is the travel
time from node ¢ to node j, equal to the Euclidean distance between the two points. The calculation
of arrival time indicates that if the vehicle arrives at node j earlier than its start time e;, it must wait
until e; to begin service. If the vehicle arrives at node j later than /;, the sub-tour becomes infeasible.
The objective of CVRPTW is to minimize the total Euclidean distance of all sub-tours.

Time Window Tightness Based on the original time windows, we relax or tighten the time window
for each customer node as follows:

5:Q%ﬁ-u—@,
e; = max(e; + 6, 0) an
I =1—3,

where the original constraints correspond to o = 1.0. This formula indicates that a small coefficient
represents narrow time windows and a large coefficient represents wide ones. The negative start
time will be clipped to zero. In addition, we adjust the service time. Since the service time at each
node is already relatively long, increasing it further could lead to the problem becoming infeasible.
Therefore, we only allow relaxation of the service time, defined as: s} = max(%, s;).

G Implementation Details of Multi-expert Module in POMO

POMO model The POMO model [9] also has an encoder that generates the node embeddings using
the input node features, and a decoder used to convert the node embeddings into the node selection
probabilities.

We denote the node embedding matrix generated by the encoder as H; = {hl(.L) }ien,, where N,
represents the number of unvisited nodes, h; is the embedding vector of the ¢-th unvisited node. The
context vector is h., concating the first and last node embeddings. The original decoder is formulated
as:
h!, = MHA(h., Hy),
(h)TH, (12)

P = (C, - tanh 2Lt
(lan\/d»h)

where (] is a constant.

POMO model with Multi-expert Module For POMO, instead of adding the multi-expert module
to the decoder, we add it to the encoder since we empirically find that it works better. The multi-expert
module is generally the same as the one presented in Section
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H Discussion on Multi-expert Modules: Discrete Switching and Continuous
Generalization

Our multi-expert module, in its current form, functions by switching between specialized experts
rather than learning a single, continuously adaptable policy. This is a deliberate design choice
informed by empirical investigation.

The goal of learning a unified policy that generalizes continuously across the entire constraint
spectrum is indeed highly desirable. We explore this direction by implementing a top-K Mixture-of-
Experts (MoE) model with a learnable and soft gating network following MVMOE [1], with K = 2.
This approach replaces the discrete, rule-based switching with a mechanism that learns to assign
weights to different experts, allowing for a weighted combination of their outputs based on the input
features. Due to space limitations. We detail the implementation of the top-K MoE module as follows.

Implementation of Top-K mechanism:
1. Gating Mechanism:

The gating network G is used to select K experts from N experts for each input instance = with a
capacity of C. Firstly, the gating network calculates a gating score vector based on the instance
features x: S(z) € RV:

Next, we adopt the Top-K strategy to select the K experts with the highest scores (in our implemen-
tation, K = 2). Let I(x) be the index set of the K experts with the highest scores. The final gated
weight vector W (z) € RY is obtained by applying the Softmax function to the sparse scores:

W;(z) = {SOftmaX(Si(w)) ifi € I(x),

otherwise.

Here, W;(x) represents the weight assigned to instance z by the i-th expert.
2. Sparse Computation and Output Fusion:

The key advantage of MoE lies in its Conditional Computation feature. For each instance x, only
the K experts selected by the gating network (i.e., F; for ¢ € I(z)) will be activated and perform
the computation. The final output O(z) of the model is the weighted sum of the outputs of these K
experts:

Since for the experts with ¢ ¢ I(z), W;(x) = 0, this summation is actually only performed on the
selected K experts. Thus, while ensuring the model capacity, it significantly saves computational
resources.

3. Load Balancing Auxiliary Loss:

To prevent the gated network from only activating a few "popular" experts while neglecting the
training of other experts, we introduce an auxiliary loss L., to encourage load balancing. This loss
consists of two parts: the importance loss and the load loss, both of which are achieved by minimizing
the square of the coefficient of variation (CV) of the task allocation among experts:

Ly = CV?(Importance) + CV?(Load).
Among them, the "Importance" metric measures the total gating weight that each expert obtains in
the batch data B:

Importance, = Z Wi(z).
zeB

And the "Load" measures the number of times each expert is activated (i.e., selected as the Top-K)
in the batch data B. Let M;(z) be an indicator function, which is 1 when expert 7 is selected and 0
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otherwise:
- (1 ifie I(z),
Load; = Z M;(z), where M;(x) = {0 otherwise.

rEB

The square of the coefficient of variation is defined as:
sd(V) 1\
CVEV)= | —~=>2—) .
V) <mean(V) + e)

Here, V is a vector (such as Importance or Load), and € is a small constant used to prevent division
by zero.

4. Final Training Objective

During the training process, we will weigh and sum the main task loss L4\ and the auxiliary loss
L 4z to form the final optimization objective:

Ltotal = [-:main +a- Laul

Here, « is a hyperparameter used to balance the main task learning and the expert load balancing. In
this way, the model can learn a more generalized strategy to handle VRP problems under different
constraint intensities. We set « to 0.01 following MVMOoE [26]].

We train the model with this Top-K MoE module using the same settings as our proposed
method (detailed in Section 5) and compare it against the discrete switching mechanism ("Switch-
ing"). The models are evaluated on CVRP100 instances with the capacity values C' =
{10, 50, 100, 200, 300, 400, 500}. As shown in Table 3, while the Top-K MoE approach is con-
ceptually appealing, the simpler, discrete switching mechanism achieved superior performance across
most tightness regimes, resulting in a lower overall average gap (Switching: 1.86% vs. Top-K:
2.17%). Given these empirical results, we select the more performant switching mechanism.

Table 10: Comparison of our proposed discrete switching mechanism against a soft, learnable Top-K
MoE gating mechanism on CVRP100 instances.

CVRP100
C=10 | C=50 | C=100 | C=200 | C=300 | C=400 | C=500 | Varying Capacities
Gap Gap Gap Gap Gap Gap Gap Avg. Gap
Top-K MoE | 1.48% | 4.58% | 4.49% | 1.94% | 1.07% | 0.77% | 0.83% | 2.17%
Switching | 1.54% | 3.82% | 3.67% | 1.49% | 0.87% | 0.75% | 0.87% | 1.86%

Furthermore, we would like to emphasize that a primary contribution of this work is the identification
and systematic analysis of the constraint tightness-overfitting problem in existing NCO methods.
While our proposed solution is straightforward, it effectively alleviates this newly highlighted issue.
We believe our findings and methods provide valuable insights that can inspire interesting future
works, including the development of more sophisticated, continuously generalized policies.

I Discussion on Generality: Extending the Constraint Tightness Framework
to More Complex VRP Variants

Our current definitions of "constraint tightness" for capacity and time windows are tailored to
the specific VRP variants studied in the paper. This was a deliberate starting point to thoroughly
investigate a phenomenon we found to be overlooked.

However, capacity and time windows are two of the most fundamental and ubiquitous constraints
in the entire field of vehicle routing. Their presence is standard in a vast array of VRP variants.
Therefore, a method that robustly handles the tightness spectrum of these core constraints already
possesses significant potential for broad applicability.

To empirically test the universality of our framework, we conduct experiments on more complex VRP
variants: the VRP with Backhauls and Time Windows (VRPBTW) and the VRP with Backhauls,
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Duration Limit (L), and Time Windows (VRPBLTW). These problems introduce additional structural
constraints (backhaul and duration limit) on top of the standard capacity and time window constraints.
We apply our proposed method (VCT training and the MEM module) to the time window constraint
in these new, more complex settings, using POMO as the base model. We follow MVMOoE [26] to
configure the settings of additional constraints, backhaul, and duration limit.

The results presented in Table[IT]demonstrate the effectiveness of our approach. From the table, we
can observe that the standard POMO model once again suffers from severe performance degradation
as the time window constraint moves to be either tighter or looser than the standard o« = 1.0. In
contrast, our enhanced model (POMO + our method) significantly mitigates this issue, maintaining
much more stable and superior performance across the entire tightness spectrum.

These results strongly suggest that our framework is not a fragile solution limited to simple problems.
Instead, it can function as a robust and adaptable sub-system. It can be integrated into solvers for
more complex problems to specifically handle the challenge of varying constraint tightness, without
conflicting with the logic required for other constraints. We hope this work brings attention to the
critical issue of constraint tightness in the NCO community and inspires future research to develop
diverse strategies for this challenge across a wider range of combinatorial optimization problems.

Table 11: Performance on Complex VRP Variants (i.e., VRPBTW and VRPBLTW) with Varying
Time Window Tightness

VRPBTW100
alpha=0.2 | alpha=0.5 | alpha=1 | alpha=1.5 | alpha=2 | alpha=2.5 | alpha=3 | Varying Time Windows
Gap Gap Gap Gap Gap Gap Gap Avg. Gap
OR-Tools 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
POMO 18.81% 13.35% 8.46% 12.12% 19.42% | 30.27% | 43.96% 20.91%
POMO + Our Method | 13.23% 11.97% 9.34% 8.67% 9.07% 8.80% 9.11% 10.03%
VRPBLTW100
alpha=0.2 | alpha=0.5 | alpha=1 | alpha=1.5 | alpha=2 | alpha=2.5 | alpha=3 | Varying Time Windows
Gap Gap Gap Gap Gap Gap Gap Avg. Gap
OR-Tools 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
POMO 18.90% 13.32% 8.29% 11.42% 17.06% | 23.73% | 31.16% 17.70%
POMO + Our Method | 13.00% 11.80% 9.09% 8.42% 8.92% 8.45% 8.56 % 9.75%

J Formal Definition of Constraint Tightness

A more rigorous and general definition of "constraint tightness" is important, and a more general
definition that is independent of specific problem features is shown as follows.

We propose to define the "tightness" of a constraint as: the degree of degradation in the objective
value of a solution produced by a reference algorithm due to the introduction of that constraint.

The intuition is that tighter constraints restrict the solution space, forcing a reference algorithm to find
higher-cost solutions. That is, a constraint acts as an impediment to the heuristic algorithm, forcing it
to construct a less direct, more complex solution path. This manifests as a quantifiable increase in the
final objective value. For example, in CVRP, a tight capacity constraint (e.g., C' = 10) necessitates
frequent returns to the depot, resulting in many short, high-cost sub-tours. This contrasts with a loose
constraint (e.g., C' = 500), where the solution structure resembles a single, efficient TSP tour.

In this paper, we use simple, general heuristics like Nearest Neighbor (NN) as reference algorithms.
We avoid using strong solvers to ensure that our definitions are both practically simple and general.
Furthermore, simple heuristics are computationally inexpensive, facilitating an efficient analysis.

1. Formal Definition of Constraint Tightness

We formalize this definition with the following equation. Let P be a combinatorial optimization (CO)
problem instance, with the objective of minimizing the function f(7), where 7 is a solution to the
instance:

* Let P be the instance with a specific constraint &.

* Let Py be the unconstrained baseline, representing the problem with constraint ¢ fully
relaxed.
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* Let P, be the extreme-constraint version, where the constraint ¢ is exceedingly tight, serving
as an upper bound for the solution objective value degradation.

* Let ‘H be a simple, general deterministic heuristic solving algorithm. It serves as the
reference algorithm.

* The heuristic H can find a feasible solution to the problem P.

» Let f(H(P)) be the objective value of the solution generated by the algorithm # for an
instance P.

* The value of f used to compute tightness refers to the objective value of a feasible solution.

* The range of the function f is strictly greater than 0.

Then, the tightness T'(£) of the constraint £ can be defined as:

7(e, P) = (09U FLE)) — log(f (H (Fy))) )

log(f (M (P1))) —log(f (H (Py)))

Interpretation of the Formula:

* This formula calculates a normalized rate of the objective value degradation caused
by constraint £. The numerator measures the logarithmic increase in the objective value
relative to the unconstrained baseline Py. This is then normalized by the denominator,
which measures the maximum possible logarithmic increase in the objective value from the
"unconstrained" to the "extreme" case.

* The resulting tightness score, T'(£), is a dimensionless value within the range [0,1]. A
score of T'(¢) = 0 signifies a completely "loose" constraint with no negative impact on the
solution. T'(¢) = 1 indicates that the constraint imposes the maximum possible solution
objective value degradation, equivalent to the extreme case.

* Logarithmic Scaling: We observe that objective function values in CO problems can
change sharply as the constraint tightness changes (as shown in the table below). Therefore,
we employ the logarithm to compress this scale, making the tightness metric more stable.

This formula offers several key advantages:

1. Generality: It quantifies tightness by observing the impact of the constraint on the solution
generated by a general heuristic algorithm, rather than relying on problem-specific physical
parameters (such as capacity, time window width, etc.). It is therefore applicable to any
combinatorial optimization problem for which "unconstrained" and "extreme" baseline cases
can be defined.

2. Absolute Quantifiability: It provides a dimensionless scalar value for any given instance,
enabling meaningful tightness comparisons across different instances.

3. Reproducibility: By using the simple, general, and deterministic heuristic (e.g., Nearest
Neighbor) as a reference algorithm, the tightness calculation is fully reproducible and
computationally inexpensive.

While developing this definition, we also considered alternative definitions, such as those based on
solution structure (e.g., number of sub-tours) or constraint features (e.g., capacity values). These
were found to be either too problem-specific or difficult to generalize. We therefore selected defining
tightness via its impact on the objective function value, as mentioned above.

2. Generalization to Different Problems

To demonstrate the versatility of this general definition, we apply it to three CO problems: two VRP
variants (CVRP and CVRPTW) and the classic Knapsack Problem (KP) as follows.

2.1 For CVRP:

* Constrained Instance (F): A standard CVRP instance with a finite vehicle capacity Cqp.

* Unconstrained Baseline (Fp): This baseline is formed by relaxing the capacity value to a
sufficiently large value to serve all customers in a single tour.
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» Extreme Constraint Baseline (P;): This baseline represents the most restrictive scenario,
where constraints are so tight (e.g., capacity is minimal) that each vehicle can serve only
one customer before returning to the depot.

* Reference Algorithm (7): We use a Nearest Neighbor (NN) heuristic adapted for the CVRP.
The algorithm iteratively constructs routes by adding the closest unvisited customer. If
adding a customer would violate the vehicle’s remaining capacity, the current route is
finalized, and a new route begins from the depot.

2.2 For CYRPTW:

* Constrained Instance (F): A standard CVRPTW instance with time window constraints.

* Unconstrained Baseline (F): This baseline is derived by relaxing the time windows to be
infinitely large.

» Extreme Constraint Baseline (P;): Similar to the CVRP case, extremely tight time windows
can force a vehicle to return to the depot after each delivery, resulting in single-customer
routes.

* Reference Algorithm (#): The reference heuristic is an adapted Nearest Neighbor (NN)
algorithm. It extends the CVRP’s NN logic by verifying both capacity and time window
feasibility before appending a customer to a route.

2.3 For the Knapsack Problem (KP):

* Problem Description: Given a set of items, each with a weight and a value randomly sampled
from (0, 1), select which items to include in a knapsack so that the total weight is less than
or equal to a given limit weight capacity C,,. The objective is to maximize the total value
of items in the knapsack. The instances used in this study, denoted as KP200, consist of 200
items.

* Constrained Instance (FP¢): A standard KP instance with a knapsack capacity constraint Cy,.

* Unconstrained Baseline (Fp): This corresponds to a knapsack with infinite capacity. The
optimal solution is trivial: select all items.

» Extreme Constraint Baseline (P;): This occurs when the knapsack capacity is set to the
minimum weight among all available items. Consequently, the only feasible non-empty
solutions involve selecting the single, lightest item.

* Reference Algorithm (#): The reference is a standard greedy algorithm. It sorts items by
their value-to-weight ratio in descending order and sequentially adds them to the knapsack
until no more items can fit within the capacity limit.

3. Experimental Validation

We evaluate the proposed tightness formula across the CVRP, CVRPTW, and KP instances. The
results, summarized in Table 1, reveal a clear and consistent trend: as constraints are relaxed from the
extreme case towards the unconstrained baseline, the calculated Tightness value smoothly transitions
from 1 to 0. For example, in the CVRP instances, increasing the vehicle capacity (Cc,yp) from 10
to 50 and then to 500 causes the tightness to decrease from 0.837 to 0.280 and 0.018, respectively,
bridging the gap between the extreme case (Tightness = 1.0) and the unconstrained TSP (Tightness =
0.0).

These findings confirm that our metric provides a robust and intuitive measure of constraint intensity.
It successfully quantifies the absolute tightness of a single instance while also enabling direct
comparison of relative tightness between different instances.

In addition, we would like to clarify that the analysis in our main paper explores a comprehensive
range of tightness values, i.e., [0.018, 0.837] for CVRP with C' € [10, 500] and [0.072, 0.717] for
CVRPTW with « € [0.2, 3]. This scope is broad enough to reflect the overfitting issue associated
with the NCO model trained on CVRP100 (tightness = 0.280) and CVRPTW (tightness = 0.418).
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Table 12: Tightness Value Calculation Results for Different Problems under Various Degrees of
Constraint Tightness. "Extreme Case" means that the constraint is exceedingly tight, serving as an
upper bound for the solution objective value degradation.

CVRP100
Method Extreme Case C=10 C=50 C=100 C=200 C=300 C=400 C=500 Unlimited C
NN Obj. Value | 103.986 70.684 18.886 13.774 11.329 10.415 10.494 10.146 9.726
Tightness 1.000 0.837 0.280 0.147 0.064 0.029 0.032 0.018 0.000

CVRPTW100
Extreme Case «=0.2 a=0.5 a=1 a=1.5 a=2 a=2.5 a=3 Unlimited

NN Obj. Value | 103.986 64.422 51.709 40473 30.436 25.687 23.043 21.611 19.136

Tightness 1.000 0.717 0587 0443 0274 0.174 0.110 0.072 0.000
| KP200
Extreme Case  C=0.1 C=1 C=2 C=5 C=10 C=25 C=50  Unlimited C
Greedy  Obj. Value 1 0.532 3346 11.217 16.103 25.743 36.477 57.655 81.116 99.865
Tightness 1.000 0.649 0418 0349 0259 0.192 0.105 0.040 0.000

K Additional Experimental Demonstration on the Model’s Overfitting to
Capacity Constraints

Analyzing how the solution structure changes with varying capacity provides more direct and powerful
evidence for our claim that existing models overfit to the capacity constraint on which they are trained.
To provide this justification, we conduct a supplementary analysis focusing on a key aspect of the
solution structure: the average number of vehicles used. We compare the solutions generated by three
representative neural solvers (POMO, BQ, and LEHD), all pre-trained on CVRP100 instances with
C=50, against the (near)-optimal solutions from the classical HGS solver. The evaluation is performed
on datasets with varying capacities (C = 10, 50, 100, 500), each containing 10,000 instances. The
results presented in Table [13[ show the average number of vehicles used by each method and the
percentage gap relative to the HGS baseline.

Table 13: Comparison of average number of vehicles used across different capacities

C=10 C=50 C=100 C=500
Method | Avg. Vehicle Num. ~ Vehicle Num. Gap | Avg. Vehicle Num  Vehicle Num. Gap | Avg. Vehicle Num  Vehicle Num. Gap | Avg. Vehicle Num  Vehicle Num. Gap
HGS | 53.19 0.00% | 10.44 0.00% | 544 0.00% | 1.44 0.00%
POMO 57.18 7.50% 10.66 2.11% 621 14.15% 373 159.03%
BQ 56.84 6.86% 10.62 1.72% 5.61 3.13% 191 32.64%
LEHD 65.43 23.01% 10.95 4.89% 5.86 7.72% 1.94 34.72%

From these results, we can observe that the gap in the average number of vehicles used by the neural
models, relative to the HGS baseline, is minimized at C=50. As the capacity deviates from this training
value, i.e., becoming either tighter (C=10) or looser (C=100, 500), the gap increases substantially. For
example, the gap for LEHD at C=10 and C=500 is 4.7 x and 7.1 x larger, respectively, than its gap at
C=50. This demonstrates that when faced with instances requiring a fundamentally different solution
structure (e.g., =53 vehicles for C=10 or =1 vehicles for C=500), the models fail to adapt. They
generate solutions with a suboptimal number of vehicles, which directly contributes to the higher
overall travel costs reported in our main paper.

L Explanation and rationality analysis regarding the selection of the
constraint range [C.,;.,, Crnaz

We would like to offer a detailed discussion about how to determine this range in practical applications.
1. Determining the Range in Practical Applications

In practical applications, a direct and effective method is to analyze historical operational data. For
example, a logistics company could derive an empirical range that reflects its specific business
characteristics by statistically analyzing the vehicle capacities and total customer demands from its
past tasks. Our method can be flexibly applied to train a model on any such empirically derived range
[Crnin»> Crmaz] to achieve promising performance for that specific operational context.

2. Principled Rationale for the Range Selection in Our Paper.
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The primary motivation for selecting the range [10, 500] is to comprehensively cover the entire
spectrum of the CVRP100 problem’s characteristics within a controlled experimental environment.
(a) Lower Bound C),;,, = 10: This value is set to simulate a tight constraint scenario. In our
experimental setup, following the seminal works [18} 9], customer demands are uniformly distributed
in {1,...,9}. A vehicle capacity of 10 means a vehicle can serve only two customers on average,
pushing the problem to the brink of feasibility. (b) Upper Bound C,,,, = 500: This value is
set to simulate a loose constraint scenario. For a CVRP100 instance with 100 customers and an
average demand of 5, the total expected demand is 500. When the capacity approaches this value,
the capacity constraint becomes nearly irrelevant. This range ensures that our model is exposed to
the full spectrum of problem structures during training. This is crucial for thoroughly analyzing and
addressing the overfitting issue of NCO models under varying constraints.

3. Representativeness of the Chosen Range on Real-World Benchmarks

To further validate that our chosen range holds practical relevance, we analyze 192 instances from the
classic CVRPLIB benchmarks (A, B, E, F, M, P, and X sets). We find that across these real-world
instances, the number of customers served by a single vehicle in a sub-tour ranges from a minimum
of 2 to a maximum of 27. In our experimental setting, a vehicle can serve between 2 (for C' = 10) and
100 (for C' = 500) customers. This demonstrates that our training setup’s range of possible sub-tour
sizes fully encompasses those observed in these widely used real-world benchmarks. This strong
quantitative evidence shows that our selected range is not only conceptually comprehensive but also
highly representative of real-world application scenarios.

M Analysis of the Computational Cost of the Multi-Expert Module

We record the average inference time and optimality gap for our model with and without the module,
with the results presented in Table 4] below. The results clearly demonstrate that the MEM module
achieves a significant improvement in solution quality at a modest computational cost.

Specifically, incorporating the MEM reduces the average optimality gap from 2.41% to 1.86%, which
constitutes a relative performance improvement of 23%. We acknowledge that this performance gain
is accompanied by a moderate increase in inference time (from 0.67 min to 0.96 min). However, we
believe that this trade-off is highly favorable. In many real-world application scenarios (e.g., logistics
planning and resource scheduling), the economic benefits derived from a higher-quality solution
(e.g., reduced travel distance and vehicle costs) typically far outweigh this one-time computational
expense.

Table 14: Impact of the Multi-Expert Module (MEM) on Performance and Inference Time. Both
models are trained with varying constraint tightness.

CVRP100
Varying Capacities
Avg. Gap Avg. Time
Ours without MEM 2.41% 0.67m
Ours with MEM 1.86% 0.96m

N Impact of Node Demand Distribution on Model Performance

The distribution of node demands is also a critical factor influencing model performance. While we
did consider this factor in our initial experimental design, we made a deliberate choice to isolate a
single variable, vehicle capacity, for our study. This approach allows us to clearly and rigorously
demonstrate the constraint overfitting issue inherent in existing methods.

A heterogeneous demand distribution would likely pose an even greater challenge. We have conducted
an experiment to validate this. We create a new test dataset where customer demands follow a more
realistic heterogeneous distribution: a long-tailed distribution. We choose this distribution because,
in many real-world applications (such as e-commerce and parcel delivery), the majority of customers
have small demands, while only a few have very large demands.
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Specifically, we generate the long-tailed demand distribution as follows: for each possible demand
valued € D = {1,2,3,4,5,6,7,8,9}, its probability of occurrence P(d) is given by the formula
below:

where the hyperparameter d = 1.5 controls the skewness of the distribution. The specific probabilities
for each demand value are shown in Table

Table 15: Probabilities of demand values under a long-tailed distribution.

demand (d) = 1 2 3 4 5 6 7 8 9
Pd) = 0.5092 0.1800 0.098 0.0637 0.0455 0.0346 0.0275 0.0225 0.0189

On this basis, we evaluate the performance of several NCO models across different scenar-
ios. These models are pre-trained on instances with a uniform demand distribution (C=50,
CVRP100). The test scenarios include: (a) Fixed Capacity (C=50): Tested under both uniform
and long-tailed demand distributions. (b) Varying Capacities: Capacity C' is drawn from the set
{10, 50, 100, 200, 300, 400, 500}, also tested under both uniform and long-tailed demand distribu-
tions. For each of these seven capacity values, the corresponding test set comprises 10,000 instances.
The experimental results are shown in Table[I6]

Table 16: Impact of demand distribution on exisiting models’ performance. The bolded Gap indicates
a significant decline in performance of the model when the distribution of demand changes to a
Long-Tailed pattern.

| CVRP100
| C=50 | Varying Capacities
Uniformed Demand | Long-Tailed Demand | Uniformed Demand | Long-Tailed Demand
Method Gap Gap Avg. Gap Avg. Gap
HGS 0.00% 0.00% | 0.00% 0.00%
AM 7.66% 14.10% 23.76% 23.58%
POMO 3.66% 12.16% 21.72% 26.04%
MDAM 5.38% 13.71% 16.75% 19.41%
BQ 3.25% 3.53% 7.22% 7.39%
LEHD 4.22% 4.54% 9.62% 7.98%
ELG 5.24% 11.29% 16.29% 18.92%
INViT 7.85% 12.31% 13.28% 13.87%
POMO-MTL 4.50% 6.93% 11.41% 12.76 %
MVMOoE 5.06% 8.53% 17.24% 19.29%

The results clearly show that under the fixed capacity (C=50) setting, when the demand distribu-
tion shifts from uniform to long-tailed, almost all evaluated NCO models experience a significant
performance degradation. For instance, POMQO’s gap drastically increases from 3.66% to 12.16%.
Under the varying capacities setting, most models also exhibit a trend of performance decline. These
experimental results strongly confirm your assessment: the distribution of customer demands is
indeed a crucial factor affecting the generalization capability of NCO models. The performance of
existing models is substantially compromised under more realistic and challenging heterogeneous
demand distributions.
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O Generalization of the Constraint Overfitting Issue: From VRPs to Other
CO Problems

The overfitting issue with respect to constraint tightness, which we discuss in the context of VRPs,
also manifests in other CO problems. It can be observed in other CO problems, such as the Knapsack
Problem (KP) with its capacity limit, the Bin Packing Problem (BPP) with bin capacities, or the
Job-Shop Scheduling Problem (JSSP) with task completion deadlines.

To provide empirical evidence, we conduct a case study on KP. Following the setup of POMO, we
generated KP200 instances with varying capacities: C' € {2,5,10,25,50}. We then evaluate two
representative models, POMO and BQ, using their publicly available checkpoints that are trained
specifically on KP200 instances with a fixed capacity of C=25. Both models used greedy search for
inference. The results are presented in Table [I'7]

Table 17: Performance of baseline NCO models on KP200 instances with different capacities. The
larger the value is, the better the model performs.

| KP200
C=2 C=5 C=10 C=25 C=50
Method Value Gap Value Gap Value Gap Value Gap Value Gap

OR-Tools | 16.157  0.000% | 25.723 0.000% | 36.467 0.000% | 57.665 0.000% | 81.163 0.000% |

POMO 9.673  40.132% | 23.539 8.488% | 34.428 5.590% | 57.393 0.472% | 79.855 1.611%
BQ 15.653  3.119% | 25.546 0.686% | 36.369 0.269% | 57.611 0.094% | 80.624 0.664%

As shown in the table, the performance of both POMO and BQ degrades significantly as the capacity
C deviates from the training value of 25. For the tight constraint C=2, the POMO model’s gap
explodes to 40.132%, an 85 x increase compared to its performance at C=25. Similarly, the BQ
model’s gap at C=2 is 33 x larger than its gap at C=25. When the constraint becomes looser at C=50,
the performance drop is also evident, with the gaps for POMO and BQ increasing by 3.4x and 7x,
respectively. These experimental results on KP strongly demonstrate that the constraint overfitting
issue also occurs in other CO problems extending beyond VRPs.
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P Licenses

The licenses for the codes used in this work are listed in Table [T8]

Table 18: Licenses for codes used in this work

Resource | Type | Link | License

LKH3 [44] Code | http://webhotel4.ruc.dk/ keld/research/LKH-3/ Available for academic research use
HGS Code | https://github.com/chkwon/PyHygese MIT License

Concorde Code | https:/github.com/jvkersch/pyconcorde BSD 3-Clause License

POMO [9] Code | https://github.com/yd-kwon/POMO MIT License

LEHD Code | https:/github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD | MIT License

BQ Code | https://github.com/naver/bg-nco CC BY-NC-SA 4.0

INVAT [24] Code | https://github.com/Kasumigaoka-Utaha/INViT Available for academic research use
ELG Code | https://github.com/gaocrt/ELG MIT License

POMO-MTL Code | https://github.com/FeiLiu36/MTNCO MIT License

AM [T8] Code | https://github.com/wouterkool/attention-learn-to-route MIT License

MDAM Code | https:/github.com/liangxinedu/MDAM MIT License
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