

000
001
002
003
004
005

PERFIT: EXPLORING PERSONALIZATION SHIFTS IN REPRESENTATION SPACE OF LLMS

006 **Anonymous authors**
 007 Paper under double-blind review

008
009
010

ABSTRACT

012 Personalization has become a pivotal field of study in contemporary intelligent
 013 systems. While large language models (LLMs) excel at general knowledge tasks,
 014 they often struggle with personalization, i.e., adapting their outputs to individual
 015 user expectations. Existing approaches that steer LLM behavior to meet users'
 016 implicit preferences and behavior patterns, primarily relying on tune-free methods
 017 (e.g., RAG, PAG) or parameter fine-tuning methods (e.g., LoRA), face challenges
 018 in effectively balancing effectiveness and efficiency. Moreover, the mechanisms
 019 underlying personalized preferences remain underexplored. To address these
 020 challenges, we first uncover key patterns of user-specific information embedded in
 021 the representation space. Specifically, we find that (1) personalized information
 022 lies within a low-rank subspace represented by vectors, and (2) these vectors
 023 demonstrate both a collective shift shared across users and a personalized shift
 024 unique to each individual user. Building on these insights, we introduce **PerFit**,
 025 a novel **two-stage solution that directly fine-tunes interventions in the hidden**
 026 **representation space** by addressing both collective and user-specific shifts, thereby
 027 achieving precise steering of LLM with minimal parameter overhead. Experimental
 028 results demonstrate that **PerFit** delivers strong performance across six datasets
 029 while **cutting the number of parameters by an average of 92.3%** compared to
 030 the state-of-the-art method. The code is available at the [anonymous repository](#).

031
032

1 INTRODUCTION

033
034
035
036
037
038
039
040
041
042
043
044

Large language models (LLMs) demonstrate remarkable abilities in text generation and complex reasoning (Radford et al.; Chang et al., 2024; Hu et al., 2024; Zhang et al., 2024d;c; Zhu et al., 2024; Wang et al., 2023; 2024a), thanks to comprehensive pre-training on diverse and large-scale datasets that equip them with broad general knowledge. Nonetheless, their optimization for wide-ranging tasks means they often struggle to adapt to individual user preferences. For instance, different users may expect distinct outputs even when given the same input. Accordingly, integrating user tastes and preferences into LLMs has propelled personalized large language models (PLLMs) to the forefront of research (Liu et al., 2025; Chen, 2023; Zhang et al., 2024e; Liu et al., 2024). In real-world scenarios, user preferences are often implicit, like writing style and tone (Salemi et al., 2023; Tan et al., 2024b; Zhuang et al., 2024). Enabling LLMs to grasp this implicit information and generalize effectively to user queries remains a core research challenge for PLLMs.

045
046
047
048
049
050
051
052
053

Existing techniques can be broadly categorized into **tune-free methods**, such as retrieval-augmented generation (RAG) (Fan et al., 2024) and profile-augmented generation (PAG), and **parameter-efficient fine-tuning methods** (PEFT), like low-rank adaptation (LoRA) (Hu et al., 2021; Yang et al., 2024). Non-tuned methods (Madaan et al., 2022; Salemi et al., 2023; Zhuang et al., 2024) emphasize efficiency and flexibility by leveraging external information or user profiles without modifying model parameters, but often struggle to achieve high personalization and generalization capability, especially when retrieved contexts contain noise that is misaligned with the user's real intent (Shi et al., 2023). In contrast, parameter fine-tuning methods (Tan et al., 2024b;a; Wagner et al., 2024; Qi et al., 2024) update model parameters based on user data, enabling deeper and better personalization. Taking into account both model performance and the protection of user privacy, a prevalent approach is to allocate an individual PEFT module for each user (Tan et al., 2024b;a; Qi et al., 2024; Wagner et al.,

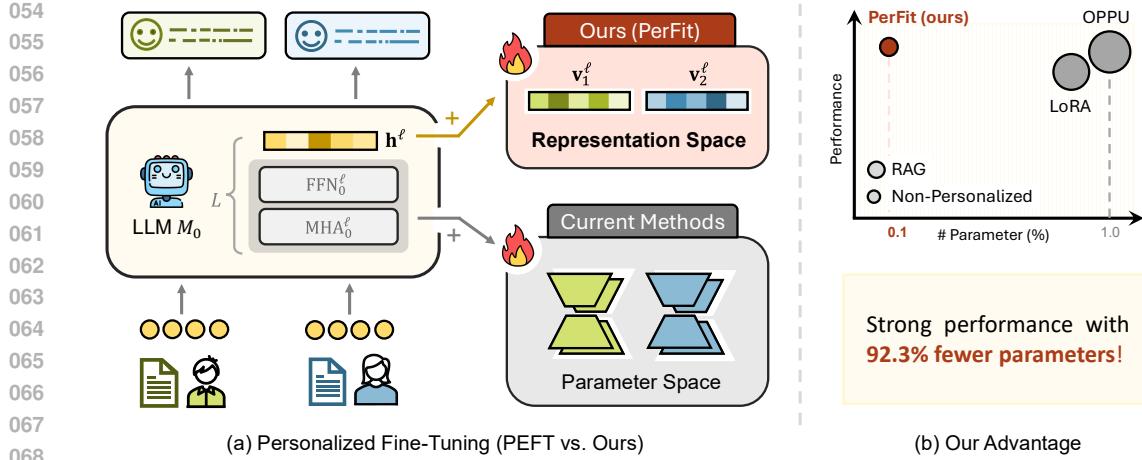


Figure 1: Illustration of our personalized fine-tuning method in representation space PerFit: (a) instead of tuning parameters, PerFit directly fine-tunes the hidden representations, where 🔥 represents fine-tuning with learnable parameters. (b) Experimental results show PerFit similarly strong performance on six datasets while reducing parameters by 92.3% on average compared to OPPU (Tan et al., 2024b).

2024; Gao & Zhang, 2024). LoRA still requires millions of parameters for good performance, though it reduces parameter counts (Wu et al., 2024; Cho et al., 2024; Guo et al., 2024). This leads to high communication costs and limited scalability in edge-cloud setups—where the base LLM runs in the cloud and personalized parameters reside on user devices such as phones (Qi et al., 2024; Wagner et al., 2024) (Appendix A). Therefore, **striking a balance between effectiveness and efficiency** remains a significant challenge for existing methods.

To solve this problem, we take the initial step of investigating how personalized information is captured by LLMs, thereby laying the groundwork for our alternative lightweight fine-tuning solution. This effort is motivated by recent advances in activation engineering (Wang et al., 2024c; Arditi et al.; Turner et al., 2023; Zhang et al., 2024b), which allows precise control of LLM outputs by targeting internal representation interventions related to attributes like harmlessness (Bolukbasi et al., 2016; Park et al.), truthfulness (Li et al., 2023), and humor (Von Rütte et al., 2024). Therefore, the key question we investigate in this paper is:

Does personalized information induce discernible patterns in LLMs' hidden representation space that enable efficient guidance of model behavior?

We conduct exploratory experiments to uncover personalized information encoded in the hidden representation space, named δ -vectors (Section 3), revealing **two key observations**. (1) The δ -vectors can be effectively represented within a low-dimensional orthogonal subspace (**Observation 1**). This suggests learning a **low-rank subspace** to get interventions representing user information in the representation space. (2) Vectors for all users in the low-rank subspace exhibit a clear **collective shift**, characterized by a common direction of deviation. Based on the collective shift, the vectors subsequently disperse towards multiple directions for different users (**Observation 2**). This suggests a two-stage approach to learn the collective and personalized shifts, respectively.

The intriguing findings inspire our personalized fine-tuning approach, which directly fine-tunes LLMs in the low-rank hidden representation subspace rather than model parameters, named PerFit. Specifically, we first train the collective shift using data from all users, and then, based on this, learn the personalized shifts for each user. To the best of our knowledge, **this is the first work to fine-tune LLMs in representation space tailored to personalized LLM tasks**. The learned collective shift, combined with the personalized shift, is directly added to the model's hidden representation space as an intervention to steer the model's output toward fulfilling individual users' personalized requirements. Experimental results demonstrate that PerFit delivers strong performance across six personalization datasets while **cutting the number of parameters by an average of 92.3%** compared to the LoRA-based methods.

108

2 PRELIMINARY

109

2.1 PROBLEM STATEMENT

110 Let $\mathcal{U} = \{u_i\}_{i=1}^N$ be a set of N users. Each user u_i is associated with a set of input queries
 111 $\mathcal{Q}_i = \{q_j^{(i)}\}_{j=1}^{n_i}$ and corresponding desired outputs $\mathcal{Y}_i = \{y_j^{(i)}\}_{j=1}^{n_i}$, which implies the user's
 112 personalized preferences and expectations. Here, n_i denotes the number of queries for user u_i . The
 113 base (i.e., non-personalized) LLM, denoted by M_0 , generates generic outputs $\hat{y}_j^0 := M_0(q_j^{(i)})$ for any
 114 input query $q_j^{(i)} \in \mathcal{Q}_i$. Suppose Θ_0 denotes the base model parameters and Θ_i denotes the parameters
 115 for user u_i , and the personalized parameters increment as $\Delta\Theta_i := \Theta_i \setminus \Theta_0$.

116 **Our objective** is to adapt M_0 into personalized models M_i for each user u_i such that for every $q_j^{(i)}$,
 117 the personalized output $\hat{y}_j^{(i)} = M_i(q_j^{(i)})$ closely matches the desired output $y_j^{(i)}$ **while minimizing**
 118 **parameter overhead** $|\Delta\Theta_i|$. Formally, this can be expressed as minimizing the aggregate loss:

$$119 \min_{\{M_i\}_{i=1}^N} \sum_{i=1}^N \sum_{j=1}^{M_i} \mathcal{L}(M_i(q_j^{(i)}), y_j^{(i)}),$$

120 where $\mathcal{L}(\cdot, \cdot)$ measures the discrepancy between model output and user target. This formulation
 121 encapsulates personalized fine-tuning of the base LLM to PLLM.

122

2.2 HIDDEN STATE REPRESENTATIONS AND ACTIVATION STEERING

123 **Hidden State Representation.** Our work concentrates on decoder-only transformer architectures
 124 (Liu et al., 2018). For the base model M_0 , each layer $\ell \in L$ comprises the multi-head
 125 attention and feed-forward modules MHA_0^ℓ and FFN_0^ℓ . Thus, the model can be expressed as:
 126 $M_0 = \bigcirc_{\ell \in L} (\text{FFN}_0^\ell \circ \text{MHA}_0^\ell)$, \bigcirc denotes the composition of functions applied in sequence. The
 127 parameter set Θ_0 is partitioned accordingly: $\Theta_0 = \bigcup_{\ell \in L} (\Theta_0^{\text{MHA}^\ell} \cup \Theta_0^{\text{FFN}^\ell})$, where \bigcup denotes the
 128 union of sets. The layer ℓ of the base model M_0 updates the hidden state $\mathbf{h}_t^\ell \in \mathbb{R}^d$ of the token t as
 129 follows:

$$130 \mathbf{h}_t^{\ell+1} = \mathbf{h}_t^\ell + \text{FFN}_0^\ell(\mathbf{h}_t^\ell + \text{MHA}_0^\ell(\mathbf{h}_{1:t}^\ell)),$$

131 where MHA_0^ℓ attends causally over tokens 1 through t , d is the hidden dimension.

132 **Activation Steering.** Recent studies have explored how certain features are linearly represented
 133 in model hidden representation space utilizing activation steering (Tigges et al., 2023; Zhang et al.,
 134 2024b; Ardit et al.), such as harmlessness (Bolukbasi et al., 2016; Park et al.), truthfulness (Li
 135 et al., 2023), and humor (Von Rütte et al., 2024). These feature directions serve as effective causal
 136 mechanisms, enabling precise control over model behavior and outputs via simple linear interventions.
 137 Activation steering adds an intervention (i.e., vector) $\mathbf{v}^\ell \in \mathbb{R}^d$ to the hidden state at layer ℓ , modifying
 138 the model's behavior: $\tilde{\mathbf{h}}_t^\ell = \mathbf{h}_t^\ell + \mathbf{v}^\ell$. The next layer uses $\tilde{\mathbf{h}}_t^\ell$ instead of \mathbf{h}_t^ℓ : $\mathbf{h}_t^{\ell+1} = \tilde{\mathbf{h}}_t^\ell + \text{FFN}^\ell(\tilde{\mathbf{h}}_t^\ell +$
 139 $\text{MHA}^\ell(\tilde{\mathbf{h}}_{1:t}^\ell))$. This can be applied at any layer(s) to steer the model's output.

140

3 UNCOVERING PERSONALIZATION IN REPRESENTATION SPACE

141 Building on the insights of activation steering (Section 2.2), in this section, we aim to investigate
 142 whether patterns related to personalized information exist within the hidden representation space.
 143 If so, we can develop methods that leverage these patterns to guide personalization directly in
 144 representation space, achieving a better balance between effectiveness and parameter efficiency.

145

3.1 EXTRACTING PERSONALIZATION VECTORS

146 Following the analysis paradigm of activation engineering (Arditi et al.), for each user $u_i \in \mathcal{U}$, given
 147 their original query set $\mathcal{Q}_i^{\text{orig}}$, we enhance each query by incorporating the most relevant personalized

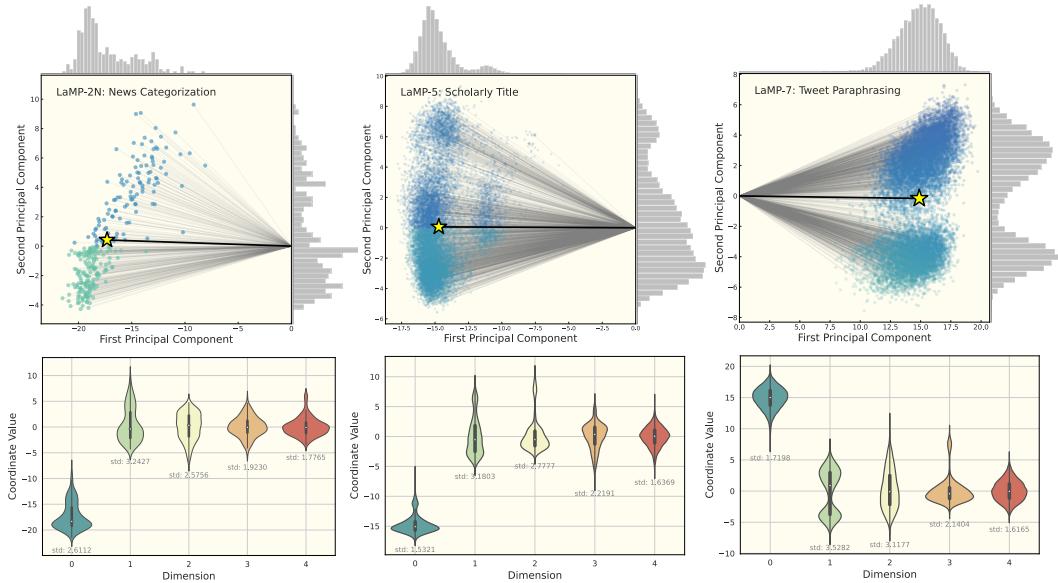


Figure 2: (1) The first row depicts the low-rank vector representations projected onto the first two principal components, with mean vectors indicated by yellow stars, demonstrating directional bias in the reduced-dimensional space. (2) The second row comprises violin plots of the coordinate value distributions across the first five feature dimensions. Here, the zeroth dimension shows a significant mean shift from zero, indicating a shared directional bias (i.e., collective shift) among users, whereas the remaining dimensions have means near zero with relatively large standard deviations, reflecting individual user variability (i.e., personalized shifts).

information. The resulting personalization-enhanced query set is denoted as $\mathcal{Q}_i^{\text{per}}$. At layer ℓ , let $\mathbf{h}_t^{(\ell)}(q) \in \mathbb{R}^d$ be the hidden state (residual stream activation) corresponding to the last token t of the input query q . The mean residual representations for the original and personalized inputs are defined as $\mathbf{m}_i^{(\ell)} = \frac{1}{|\mathcal{Q}_i^{\text{orig}}|} \sum_{q \in \mathcal{Q}_i^{\text{orig}}} \mathbf{h}_t^{(\ell)}(q)$, $\mathbf{n}_i^{(\ell)} = \frac{1}{|\mathcal{Q}_i^{\text{per}}|} \sum_{q \in \mathcal{Q}_i^{\text{per}}} \mathbf{h}_t^{(\ell)}(q)$. The *difference-in-means* (Belrose, 2024) personalization vector at the layer ℓ is then $\mathbf{v}_i^{(\ell)} = \mathbf{n}_i^{(\ell)} - \mathbf{m}_i^{(\ell)}$, which captures the principal change in the model’s internal representation induced by personalized information of user i .

Note that personalized information, unlike clear-cut traits such as harmlessness or helpfulness that can be manipulated via a single vector, is inherently more complex and diverse. Therefore, we consider each user a special personality and analyze all users together to capture both collective and personalized aspects. The collection of $\mathbf{v}_i^{(\ell)}$ for all users $i \in \mathcal{U}$ is called **δ -vectors** in this paper for simplicity. More details are shown in Appendix B.1.

3.2 OBSERVATIONS

Based on the δ -vectors, which isolate the personalized information of all users, we proceed to uncover the underlying personalization patterns. Below are the key observations.

Observation 1 (Low-rank Subspace). *The δ -vectors can be effectively represented within a low-dimensional orthogonal subspace, significantly reducing the original feature space dimensionality.*

We performed singular value decomposition (SVD) (Stewart, 1993) on the obtained δ -vectors to determine the intrinsic rank required to represent them with minimal loss of information. Table 1 reveals that the effective rank is significantly lower than the full dimensionality of the feature matrix, accounting for approximately 0.073% of the original dimensions. This observation suggests that the δ -vectors vectors lie predominantly within a low-dimensional orthogonal subspace, suggesting substantial redundancy in the high-dimensional representations.

Observation 2 (Collective and Personalized Shifts). *The δ -vectors exhibit a collective shift, accompanied by personalized shifts reflecting individual variability.*

We further plotted the mean and standard deviation of each dimension within the low-rank subspace based on the SVD. As shown in Figure 2, there is a significant shift with small variance in the low-rank subspace, indicating a collective shift across all vectors.

4 METHODOLOGY: PERFIT

These findings have practical implications: understanding and isolating personalized representations enables the development of more efficient, lightweight fine-tuning methods with reduced computational demand. Leveraging the observations, the personalized method `PerFit` is proposed to **directly fine-tune the representation low-rank subspace and the intervention vector**, rather than the model parameters. Inspired by the representation fine-tuning paradigm (Wu et al., 2024), we propose a novel two-stage formulation specifically designed to achieve the personalization goal ¹.

PerFit — Personalized Fine-Tuning in Representation Space [Algorithm 1]

$$\Phi_{\text{PerFit}}(\mathbf{h}) = (\phi_{\Delta\Theta^{(2)}} \circ \phi_{\Delta\Theta^{(1)}})(\mathbf{h}), \quad (1)$$

where for $s = 1, 2$,

$$\phi_{\Delta\Theta^{(s)}} : \mathbb{R}^d \rightarrow \mathbb{R}^d, \quad \phi_{\Delta\Theta^{(s)}}(\mathbf{x}) := \mathbf{x} + \underbrace{\mathbf{R}^{(s)\top}(\mathbf{W}^{(s)}\mathbf{x} + \mathbf{b}^{(s)} - \mathbf{R}^{(s)}\mathbf{x})}_{\text{intervention vector } \mathbf{v}^{(s)}}. \quad (2)$$

Here, $\mathbf{h}, \mathbf{x} \in \mathbb{R}^d$ and \circ is the functional composition, and $\Delta\Theta^{(s)} = (\mathbf{R}^{(s)}, \mathbf{W}^{(s)}, \mathbf{b}^{(s)})$ are trainable parameter sets with $\mathbf{R}^{(s)}, \mathbf{W}^{(s)} \in \mathbb{R}^{r_s \times d}$, $\mathbf{b}^{(s)} \in \mathbb{R}^{r_s}$, where, $r_s \ll d$, $\mathbf{R}^{(s)}$ is a row-wise orthogonal matrix satisfying $\mathbf{R}^{(s)}(\mathbf{R}^{(s)})^\top = \mathbf{I}_{r_s}$.

Intuitive Explanation. `PerFit` is designed to align with our key observations (Figure 3).

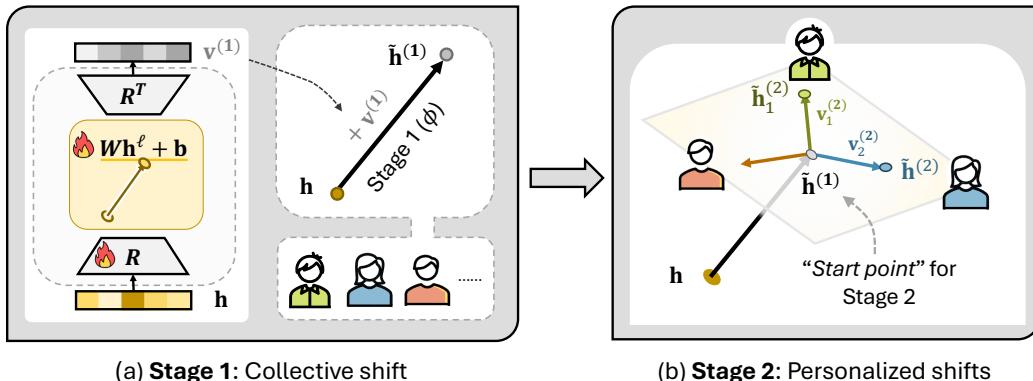


Figure 3: Illustration of two-stage personalized fine-tuning `PerFit`. (a) The first stage tunes on all users to obtain the collective shift. (b) The second-stage intervention vector is learned from the intervened representation of stage 1 and fine-tuned individually for each user.

¹For simplicity, we remove the layer index ℓ in the notation.

- 270 • \mathbf{R} is an orthogonal matrix that projects vectors from a high-dimensional space onto a low-
 271 dimensional subspace, consistent with the **low-rank subspace observation** ([Observation 1](#)).
 272 Its transpose, \mathbf{R}^\top , performs the inverse mapping by projecting vectors from the low-
 273 dimensional subspace back to the original high-dimensional space. The intervention vector
 274 \mathbf{v} corresponds to the δ -vectors, and the model directly learns these vectors during training.
 275
- 276 • Two-stage fine-tuning functions $\phi_{\Delta\Theta^{(2)}} \circ \phi_{\Delta\Theta^{(1)}}$ are designed based on [Observation 2](#) that
 277 $\Delta\Theta^{(1)}$ is tuned by all users' data \mathcal{U} to get the **collective shift** for the first stage. Then, we
 278 fine-tune $\Delta\Theta_i^{(2)}$ for each user $u_i \in \mathcal{U}$ to get the **personalized shifts**. More explanations and
 279 analysis are shown in [Appendix C](#).

280 In addition to the intuitive design guided by our observations, we theoretically show that LoRA-based
 281 methods, due to structural constraints of the framework, **cannot in general achieve the desired**
 282 **formulation** of collective and personalized representation shifts. (Details are in [Appendix C.3](#)).

284 5 EXPERIMENTS

286 We conduct extensive experiments to evaluate our proposed **PerFit** method across six diverse tasks
 287 from the LaMP benchmark. Our evaluation mainly focuses on the following three research questions:
 288 **RQ1.** How does **PerFit** perform compared to state-of-the-art personalized approaches in terms
 289 of both effectiveness and efficiency? ([Section 5.2](#)) **RQ2.** To what extent does **PerFit** improve
 290 computational and memory efficiency while maintaining competitive performance? ([Section 5.3](#))
 291 **RQ3.** How does our two-stage training approach contribute to the model's performance, and what
 292 is the impact of each stage? ([Section 5.4](#)) Beyond the primary research questions, we further
 293 examine several supplementary aspects of our method, such as stability, extended ablation studies,
 294 and performance in cold-start scenarios ([Appendix E](#)).

295 5.1 EXPERIMENTAL SETUP

297 This section outlines the experimental settings for evaluating our proposed **PerFit** method. We
 298 describe the datasets, baseline models, and key implementation parameters used in our evaluation.
 299 For additional setup details, please refer to the corresponding subsections in [Appendix D](#).

301 **Datasets.** We conduct experiments on six diverse tasks from the LaMP benchmark ([Salemi et al.,](#)
 302 [2024b](#)): three classification tasks (News Categorization, Movie Tagging, Product Rating) and three
 303 generation tasks (News Headline Generation, Scholarly Title Generation, Tweet Paraphrasing).
 304 Following established practices ([Tan et al., 2024b](#)), data from approximately 100 users with the most
 305 extensive interaction histories for each task constitute our test set, while the remaining data is used
 306 for training the base (i.e., non-personalized) LLM. Details are provided in [Appendix D.1](#).

307 **Baselines.** **PerFit** is compared against a range of baselines, all implemented using Llama2-7B
 308 as the base model. These include *Non-Tuned Methods*: **Non-Personalized**, Profile Augmented
 309 Generation (**PAG**) ([Richardson et al., 2023](#)), Retrieval Augmented Generation (**RAG**) ([Salemi et al.,](#)
 310 [2024b](#)) (with $k \in \{1, 2, 4\}$ retrieved documents), and **StyleVector** ([Zhang et al., 2025](#)); and *Tuned*
 311 *Methods*: Collective LoRA ([Hu et al., 2021](#)) (**LoRA-C**), Personalized LoRA (**LoRA-P**), **LoFiT** ([Yin](#)
 312 [et al., 2024](#)), **OPPU** ([Tan et al., 2024b](#)). Details of each baseline are available in [Appendix D.3](#). The
 313 implementation details are in [Appendix D.4](#) and full specifics on hyperparameters in [Appendix D.5](#).

314 5.2 MAIN RESULTS (RQ1)

316 We evaluate **PerFit** against state-of-the-art personalized approaches across six diverse tasks from
 317 the LaMP benchmark. The results are presented in Tables 2 and 3, which demonstrate the effectiveness
 318 of our method in both personalized classification and generation scenarios².

319 **Personalized Classification Tasks.** On classification tasks, **PerFit** achieves superior performance
 320 across all metrics. For LaMP-2N, our method attains the highest accuracy of 81.8%, surpassing OPPU
 321 by 0.8 percentage points. In LaMP-2M, **PerFit** achieves the best results with 63.0% accuracy and

323 ²TLE (Time Limit Exceeded) indicates that the method ran much longer than other methods on some large
 324 datasets, making it impractical to report the results in a reasonable time frame.

324
 325 Table 2: Results on classification tasks. We report Accuracy (Acc) and F1 Score (F1) for LaMP-2N
 326 and LaMP-2M, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for LaMP-3. For
 327 PerFit, we show the parameter percentage relative to the total model and the parameter reduction
 328 compared to OPPU. Blue and red numbers represent **Stage-1** and **Stage-2** parameters, respectively.
 329

330 Method	331 News Categorization (LaMP-2N)		332 Movie Tagging (LaMP-2M)		333 Product Rating (LaMP-3)	
	334 Acc \uparrow	335 F1 \uparrow	336 Acc \uparrow	337 F1 \uparrow	338 MAE \downarrow	339 RMSE \downarrow
LoRA-C	0.787	0.538	0.478	0.425	0.223	0.491
LoRA-P	0.591	0.397	0.528	0.383	0.183	0.502
LoFiT	0.758	0.525	0.566	0.440	TLE	TLE
OPPU	0.810	0.589	0.600	0.493	0.179	0.443
Ours (PerFit)	0.818	0.586	0.630	0.518	0.179	0.443
- Param. Percentage \downarrow (%)	0.0058	0.0117	0.0078	0.0010	0.0117	0.0015
- Param. Reduction \uparrow (%)	93.75	81.25	91.67	98.44	87.50	97.66

340 Table 3: Results on generation tasks. We report ROUGE-1 (R-1) and ROUGE-L (R-L) metrics for
 341 LaMP-4, LaMP-5, and LaMP-7 tasks. The table compares both *Non-Tuned Methods* and *Tuned*
 342 *Methods* to demonstrate the effectiveness of different personalization approaches. For PerFit, we
 343 show the parameter percentage relative to the total model size and the parameter reduction compared
 344 to OPPU. Blue and red numbers represent **Stage-1** and **Stage-2** parameters respectively.
 345

346 Method	347 News Headline Gen. (LaMP-4)		348 Scholarly Title Gen. (LaMP-5)		349 Tweet Paraphrasing (LaMP-7)	
	350 R-1 \uparrow	351 R-L \uparrow	352 R-1 \uparrow	353 R-L \uparrow	354 R-1 \uparrow	355 R-L \uparrow
<i>Non-Tuned Methods</i>						
Non-Personalized	0.030	0.029	0.145	0.118	0.126	0.123
PAG	0.098	0.082	0.149	0.121	0.135	0.124
RAG (k=1)	0.101	0.085	0.152	0.122	0.149	0.140
RAG (k=2)	0.106	0.088	0.167	0.132	0.136	0.130
RAG (k=4)	0.110	0.092	0.169	0.135	0.164	0.157
StyleVector	0.104	0.086	0.156	0.125	0.132	0.127
<i>Tuned Methods</i>						
LoRA-C	0.186	0.167	0.476	0.415	0.527	0.474
LoRA-P	0.120	0.108	0.489	0.435	0.398	0.333
LoFiT	0.199	0.179	TLE	TLE	0.272	0.256
OPPU	0.191	0.171	0.519	0.442	0.539	0.483
Ours (PerFit)	0.207	0.186	0.521	0.451	0.525	0.472
- Param. Percentage \downarrow (%)	0.0117	0.0015	0.0039	0.0010	0.0078	0.0039
- Param. Reduction \uparrow (%)	87.50	97.66	95.83	98.44	91.67	93.75

362 51.8% F1 score, demonstrating substantial improvements over baselines. For LaMP-3, PerFit
 363 achieves comparable performance to OPPU with an MAE of 0.179 and RMSE of 0.443, while
 364 utilizing significantly fewer parameters.
 365

366 **Personalized Generation Tasks.** In generation tasks, PerFit demonstrates consistent improve-
 367 ments over existing approaches. For LaMP-4, our method achieves the highest ROUGE-1 score
 368 of 20.7% and ROUGE-L score of 18.6%, outperforming both *Non-tuned* and *Tuned* baselines. On
 369 LaMP-5, PerFit achieves the best performance with a ROUGE-1 score of 52.1% and ROUGE-L
 370 score of 45.1%. While OPPU achieves marginally better performance on LaMP-7, our method
 371 maintains competitive results while utilizing significantly fewer parameters.
 372

373 5.3 EFFICIENCY ANALYSIS (RQ2)

374 We conduct a detailed analysis of parameter efficiency based on the results in the main tables.
 375 As shown in Tables 2 and 3, our PerFit method consistently achieves state-of-the-art or highly
 376 competitive performance while dramatically reducing the number of trainable parameters. Specifically,
 377 in the first stage, PerFit requires only 0.0058% to 0.0117% of the total model parameters for
 classification tasks, and 0.0039% to 0.0117% for generation tasks. In the second stage, it uses an

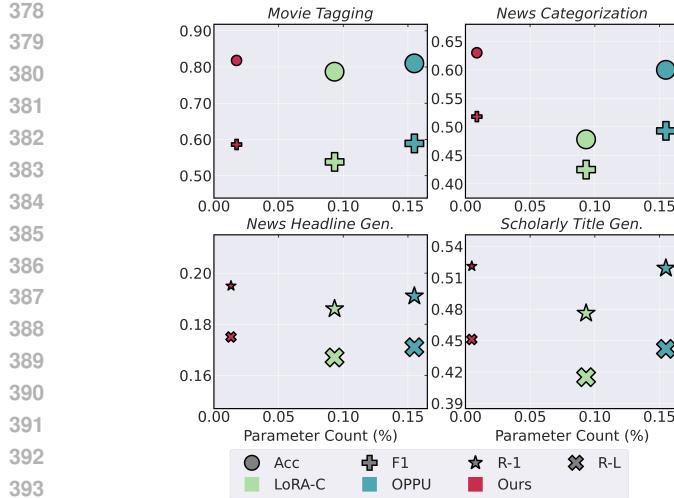


Figure 4: Performance versus parameter count on four datasets. Marker size reflects the relative training time³.

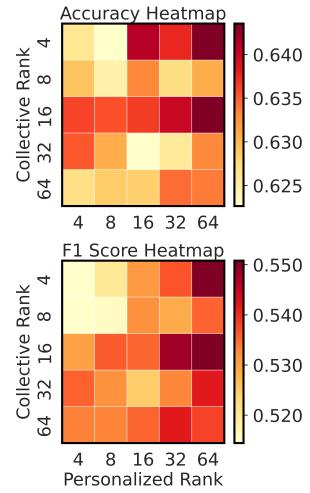


Figure 5: Impact of Collective and Personalized Rank on Movie Tagging Performance.

even smaller proportion of **0.0010%** to **0.0015%** for classification tasks and **0.0010%** to **0.0039%** for generation tasks. This two-stage design achieves a remarkable parameter reduction of **81.25%** to **98.44%** compared to strong baselines such as OPPU. This substantial reduction highlights the efficiency of our approach in both memory and computational cost. The accompanying Figure 4 provides a visual summary of these findings, plotting model performance against the proportion of trainable parameters for four representative datasets. Notably, PerFit not only reduces parameter count but also achieves a **17.0%** to **35.8%** reduction in training time compared to existing fine-tuning baselines. This demonstrates that our method achieves parameter and runtime efficiency without sacrificing performance, offering a practical and scalable solution for personalized LLM adaptation.

5.4 ABLATION STUDY (RQ3)

To validate our two-stage design and low-rank subspace intervention, we conduct an ablation study across diverse tasks (Table 4). Using only Stage-1 (collective shift learning) results in 2.6%-16.4% accuracy drops, confirming the importance of personalized adaptation in Stage-2. When training only Stage-2, both Ours@Stage-2 (C+P) and Ours@Stage-2 (P) configurations show limited performance without Stage-1’s collective information. However, the higher rank configuration (C+P) still outperforms Ours@Stage-2 (P), demonstrating that increased rank helps capture more dimensions of user-specific information, though with diminishing returns. This aligns with Observation 1, suggesting that essential personalized information lies within a lower rank subspace.

5.5 HYPERPARAMETER ANALYSIS

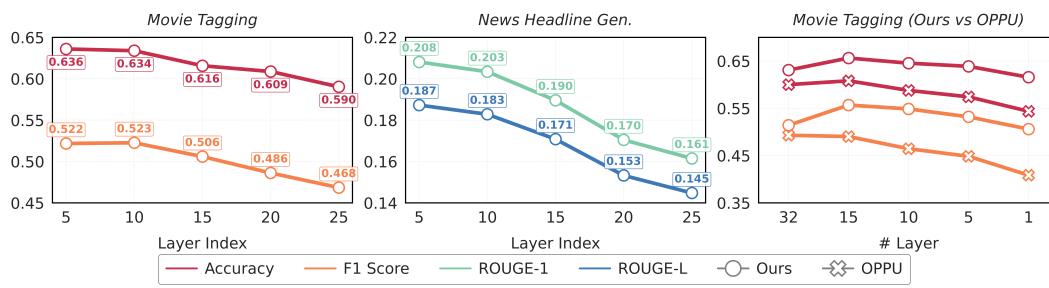
Layer-wise Intervention. Figure 6 (left and middle) presents the results of intervening at a single layer for both *Movie Tagging* and *News Headline Gen.* tasks. We observe a clear trend: as the intervention layer moves from lower (earlier) to higher (later) layers, the overall performance—across all metrics—steadily declines. This finding is particularly intriguing when contrasted with prior work in knowledge editing (KE), where middle layers are typically used for learning and storing new knowledge (Meng et al., 2022). In our case, however, intervening at earlier layers yields better results. We hypothesize that this difference arises because our method’s first stage must absorb and encode a large amount of user-specific information.

³Larger markers indicate longer training times. Note that these training times refer to the first stage of training and are provided for reference only, as they are influenced by various factors including dataset size and hardware specifications. The size primarily serve to illustrate the relative time relationships between different methods.

³@Stage-2 degenerates into a one-stage model, equivalent to the ReFT model detailed in Appendix D.3

432 Table 4: Ablation results across diverse tasks, evaluating the impact of different training stages and
 433 configurations. Here, **C** refers to the collective (Stage-1) rank, and **P** refers to the personalized
 434 (Stage-2) rank, as defined in Table 9 (*LRank* and *ULRank*, respectively). **Ours@Stage-2 (C+P)**
 435 denotes the configuration where the rank is set to the sum of both stages’ ranks (*LRank* + *ULRank*),
 436 while **Ours@Stage-2 (P)** uses only the personalized rank (*ULRank*). *ref.* *LoRA-P* represents the
 437 reference values using LoRA-P.

Method	News Categorization		Movie Tagging		News Headline		Tweet Paraphrasing	
	Acc \uparrow	F1 \uparrow	Acc \uparrow	F1 \uparrow	R-1 \uparrow	R-L \uparrow	R-1 \uparrow	R-L \uparrow
Ours	0.818	0.586	0.630	0.518	0.207	0.186	0.525	0.472
@Stage-1	0.792	0.529	0.466	0.415	0.189	0.169	0.493	0.450
@Stage-2 (C+P)	0.803	0.604	0.620	0.496	0.194	0.175	0.483	0.438
@Stage-2 (P)	0.801	0.594	0.599	0.473	0.190	0.171	0.478	0.433
<i>ref.</i> LoRA-P	0.591	0.397	0.528	0.383	0.120	0.108	0.398	0.333



446 Figure 6: Layer-wise and cumulative intervention analysis. **Left & Middle:** Performance metrics
 447 (Acc, F1, R-1, R-L) versus single intervention layer position for Movie Tagging and News Headline
 448 Generation tasks. **Right:** Performance on Movie Tagging versus number of intervention layers⁴.
 449

450 **Cumulative Intervention.** As shown in the right panel of Figure 6, increasing the number of
 451 intervention layers generally leads to improved performance on the *Movie Tagging* task. This
 452 suggests that leveraging more layers allows the model to better capture and utilize personalized
 453 information. However, we observe that when interventions are applied to as many as all layers,
 454 performance unexpectedly drops. This indicates that editing too many layers may introduce negative
 455 side effects, possibly due to interference or redundancy among the interventions at different layers.

456 **Collective vs. Personalized Rank.** Figure 5 presents a heatmap analysis of the impact of collective
 457 (Stage-1) and personalized (Stage-2) rank on *Movie Tagging* performance, measured by both accuracy
 458 and F1 score. Overall, we observe that increasing either the collective rank or the personalized rank
 459 generally leads to improved performance. However, the effect of the personalized rank appears to be
 460 more pronounced: even when the collective rank is low, a sufficiently high personalized rank can
 461 achieve near-optimal results.

6 CONCLUSIONS AND FUTURE WORK

462 By uncovering fundamental patterns in user-specific information—including shared collective and
 463 unique personalized shifts—our work introduces a novel two-stage method that fine-tunes interventions
 464 directly in the hidden representation space. Extensive experiments across six diverse tasks show
 465 that this approach achieves efficient personalization with significantly reduced parameter overhead
 466 while maintaining strong performance. This work paves the way for scalable, effective personalization
 467 in intelligent systems and reveals insights into user-specific information in LLMs. Future work could
 468 explore finer-grained personalization styles, such as community-level and group-level relationships,
 469 and investigate applications in more diverse scenarios like personalized memory.

470 ⁴The layers are selected symmetrically around layer 15, with the spacing between layers determined as (#
 471 Model Layers / # Intervened Layer).

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
496
497
498
Personalized Large Language Models (LLMs) hold great promise for enhancing human-computer
interaction and information access by enabling tailored communication and adaptive learning ex-
periences. Their deployment also faces ethical and societal considerations. Personalization may
inadvertently encode sensitive user information, posing privacy and security risks. It can also amplify
biases in training data, reinforce filter bubbles or echo chambers, and increase susceptibility to
personalized misinformation and manipulation, thereby threatening user autonomy. To mitigate these
risks, we emphasize the need for robust privacy-preserving mechanisms, systematic bias detection
and mitigation, and transparent user controls. Establishing clear ethical guidelines and fostering
collaboration among researchers, ethicists, and policymakers will be essential to ensure that personal-
ized LLMs are developed and applied responsibly, maximizing societal benefits while minimizing
potential harms.499
500
REPRODUCIBILITY STATEMENT501
502
503
504
505
506
507
508
To ensure the reproducibility of our work, we provide comprehensive details across multiple compo-
nents of our submission. An overview of our experimental setup is presented in [Section 5.1](#), while a
detailed description is provided in [Appendix D](#), including dataset descriptions in [Appendix D.1](#), base-
line configurations in [Appendix D.3](#), and argument specifics in [Appendix D.5](#). Specifically, dataset
information and preprocessing steps are detailed in [Appendix D.1](#). We use standard benchmark
datasets OPPU with publicly available data splits following established protocols ([Tan et al., 2024b](#)).
Source code implementing our method is made publicly available through our anonymous repository
link provided in the abstract.509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES

542 Andy Ardit, Oscar Balcells Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and
 543 Neel Nanda. Refusal in language models is mediated by a single direction. In *The Thirty-eighth*
 544 *Annual Conference on Neural Information Processing Systems*.

545 Nora Belrose. Diff-in-means concept editing is worst-case optimal: Explaining a result by sam marks
 546 and max tegmark, 2023. URL <https://blog.eleuther.ai/diff-in-means>, 2024.

547 Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is
 548 to computer programmer as woman is to homemaker? debiasing word embeddings. *Advances in*
 549 *neural information processing systems*, 29, 2016.

550 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
 551 Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM*
 552 *transactions on intelligent systems and technology*, 15(3):1–45, 2024.

553 Junyi Chen. A survey on large language models for personalized and explainable recommendations.
 554 *arXiv preprint arXiv:2311.12338*, 2023.

555 Ruizhe Chen, Xiaotian Zhang, Meng Luo, Wenhao Chai, and Zuozhu Liu. Pad: Personalized
 556 alignment of llms at decoding-time. *arXiv:2410.04070*, 2024.

557 Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous lora for federated
 558 fine-tuning of on-device foundation models. In *Proceedings of the 2024 Conference on Empirical*
 559 *Methods in Natural Language Processing*, pp. 12903–12913, 2024.

560 Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
 561 Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In
 562 *Proc. of KDD*, 2024.

563 Chao Gao and Sai Qian Zhang. Dlora: Distributed parameter-efficient fine-tuning solution for large
 564 language model. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 565 13703–13714, 2024.

566 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 567 key-value memories. In *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 568 *Language Processing*, pp. 5484–5495, 2021.

569 Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selective
 570 aggregation for low-rank adaptation in federated learning. *arXiv preprint arXiv:2410.01463*, 2024.

571 Jerry Zhi-Yang He, Sashrika Pandey, Mariah L Schrum, and Anca Dragan. Cos: Enhancing personal-
 572 ization and mitigating bias with context steering. *arXiv:2405.01768*, 2024.

573 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 574 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv:2106.09685*, 2021.

575 Minda Hu, Licheng Zong, Hongru Wang, Jingyan Zhou, Jingjing Li, Yichen Gao, Kam-Fai Wong,
 576 Yu Li, and Irwin King. SeRTS: Self-rewarding tree search for biomedical retrieval-augmented
 577 generation. In *Proc. of EMNLP Findings*, 2024.

578 Yixin Ji, Yang Xiang, Juntao Li, Qingrong Xia, Zi Ye, Xinyu Duan, Zhefeng Wang, Kehai Chen, and
 579 Min Zhang. Adaptive feature-based low-rank compression of large language models via bayesian
 580 optimization. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 581 4152–4168, 2024.

582 Xiaoyu Kong, Jiancan Wu, An Zhang, Leheng Sheng, Hui Lin, Xiang Wang, and Xiangnan He.
 583 Customizing language models with instance-wise lora for sequential recommendation. In *Proc. of*
 584 *NeurIPS*, 2024.

585 Allison Lau, Younwoo Choi, Vahid Balazadeh, Keertana Chidambaram, Vasilis Syrgkanis, and
 586 Rahul G Krishnan. Personalized adaptation via in-context preference learning. *arXiv:2410.14001*,
 587 2024.

588

594 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 595 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information
 596 Processing Systems*, 36:41451–41530, 2023.

597

598 Jiahong Liu, Zexuan Qiu, Zhongyang Li, Quanyu Dai, Jieming Zhu, Minda Hu, Menglin Yang, and
 599 Irwin King. A survey of personalized large language models: Progress and future directions. *arXiv
 600 preprint arXiv:2502.11528*, 2025.

601 Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
 602 Shazeer. Generating wikipedia by summarizing long sequences. *arXiv preprint arXiv:1801.10198*,
 603 2018.

604

605 Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming Wu. ONCE: boosting content-based rec-
 606 ommendation with both open- and closed-source large language models. In *Proc. of WSDM*,
 607 2024.

608 Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memory-assisted prompt editing to
 609 improve gpt-3 after deployment. In *Proc. of EMNLP*, 2022.

610

611 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 612 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.

613 Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
 614 of large language models. In *Forty-first International Conference on Machine Learning*.

615

616 Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, and Natasha Jaques. Personalizing re-
 617 enforcement learning from human feedback with variational preference learning. *arXiv:2408.10075*,
 618 2024.

619 Jiaxing Qi, Zhongzhi Luan, Shaohan Huang, Carol Fung, Hailong Yang, and Depei Qian. Fdlora:
 620 Personalized federated learning of large language model via dual lora tuning. *arXiv:2406.07925*,
 621 2024.

622

623 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 624 understanding by generative pre-training.

625

626 Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
 627 Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by interpo-
 628 lating weights fine-tuned on diverse rewards. *Proc. of NeurIPS*, 2024.

629

630 Chris Richardson, Yao Zhang, Kellen Gillespie, Sudipta Kar, Arshdeep Singh, Zeynab Raeisy,
 631 Omar Zia Khan, and Abhinav Sethy. Integrating summarization and retrieval for enhanced
 632 personalization via large language models. *arXiv:2310.20081*, 2023.

633

634 Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. Lamp: When large
 635 language models meet personalization. *arXiv:2304.11406*, 2023.

636

637 Alireza Salemi, Surya Kallumadi, and Hamed Zamani. Optimization methods for personalizing large
 638 language models through retrieval augmentation. In *Proc. of SIGIR*, 2024a.

639

640 Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. LaMP: When Large
 641 Language Models Meet Personalization, June 2024b. URL <http://arxiv.org/abs/2304.11406>.
 642 arXiv:2304.11406.

643

644 Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
 645 Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
 646 *International Conference on Machine Learning*, pp. 31210–31227. PMLR, 2023.

647

648 Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hannaneh Hajishirzi, Noah A Smith, and Simon S
 649 Du. Decoding-time language model alignment with multiple objectives. *arXiv:2406.18853*, 2024.

650

651 Oscar Skean, Md Rifat Arefin, Yann LeCun, and Ravid Shwartz-Ziv. Does representation matter?
 652 exploring intermediate layers in large language models. *arXiv preprint arXiv:2412.09563*, 2024.

648 Xinyuan Song, Keyu Wang, PengXiang Li, Lu Yin, and Shiwei Liu. Demystifying the roles of llm
 649 layers in retrieval, knowledge, and reasoning. *arXiv preprint arXiv:2510.02091*, 2025.
 650

651 Gilbert W Stewart. On the early history of the singular value decomposition. *SIAM review*, 35(4):
 652 551–566, 1993.

653 Zhaoxuan Tan, Zheyuan Liu, and Meng Jiang. Personalized pieces: Efficient personalized large
 654 language models through collaborative efforts. *arXiv:2406.10471*, 2024a.
 655

656 Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democratizing
 657 Large Language Models via Personalized Parameter-Efficient Fine-tuning, October 2024b. URL
 658 <http://arxiv.org/abs/2402.04401>. arXiv:2402.04401.

659 Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
 660 sentiment in large language models. *arXiv preprint arXiv:2310.15154*, 2023.
 661

662 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini,
 663 and Monte MacDiarmid. Steering language models with activation engineering. *arXiv preprint*
 664 *arXiv:2308.10248*, 2023.

665 Dimitri Von Rütte, Sotiris Anagnostidis, Gregor Bachmann, and Thomas Hofmann. A language
 666 model’s guide through latent space. In *International Conference on Machine Learning*, pp. 49655–
 667 49687. PMLR, 2024.

668 Nicolas Wagner, Dongyang Fan, and Martin Jaggi. Personalized collaborative fine-tuning for on-
 669 device large language models. *arXiv:2404.09753*, 2024.

670

671 Hongru Wang, Minda Hu, Yang Deng, Rui Wang, Fei Mi, Weichao Wang, Yasheng Wang, Wai-Chung
 672 Kwan, Irwin King, and Kam-Fai Wong. Large language models as source planner for personalized
 673 knowledge-grounded dialogue. *arXiv:2310.08840*, 2023.

674

675 Hongru Wang, Huimin Wang, Lingzhi Wang, Minda Hu, Rui Wang, Boyang Xue, Yongfeng Huang,
 676 and Kam-Fai Wong. Tpe: Towards better compositional reasoning over cognitive tools via
 677 multi-persona collaboration. In *NLPCC*, pp. 281–294. Springer, 2024a.

678

679 Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
 680 editing for large language models: A survey. *ACM Computing Surveys*, 57(3):1–37, 2024b.

681

682 Weixuan Wang, Jingyuan Yang, and Wei Peng. Semantics-adaptive activation intervention for llms
 683 via dynamic steering vectors. *arXiv preprint arXiv:2410.12299*, 2024c.

684

685 Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D. Manning,
 686 and Christopher Potts. ReFT: Representation Finetuning for Language Models, May 2024. URL
 687 <http://arxiv.org/abs/2404.03592>. arXiv:2404.03592 [cs].

688

689 Menglin Yang, Jialin Chen, Yifei Zhang, Jiahong Liu, Jiasheng Zhang, Qiyao Ma, Harshit Verma,
 690 Qianru Zhang, Min Zhou, Irwin King, et al. Low-rank adaptation for foundation models: A
 691 comprehensive review. *arXiv preprint arXiv:2501.00365*, 2024.

692

693 Fangcong Yin, Xi Ye, and Greg Durrett. Lofit: Localized fine-tuning on llm representations. *Advances*
 694 *in Neural Information Processing Systems*, 37:9474–9506, 2024.

695

696 Jinghao Zhang, Yuting Liu, Wenjie Wang, Qiang Liu, Shu Wu, Liang Wang, and Tat-Seng Chua.
 697 Personalized text generation with contrastive activation steering. *arXiv preprint arXiv:2503.05213*,
 698 2025.

699

700 Kai Zhang, Lizhi Qing, Yangyang Kang, and Xiaozhong Liu. Personalized llm response generation
 701 with parameterized memory injection. *arXiv:2404.03565*, 2024a.

702

703 Qi Zhang, Yifei Wang, Jingyi Cui, Xiang Pan, Qi Lei, Stefanie Jegelka, and Yisen Wang. Beyond
 704 interpretability: The gains of feature monosemanticity on model robustness. *arXiv preprint*
 705 *arXiv:2410.21331*, 2024b.

702 Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
703 and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
704 *arXiv:2404.13501*, 2024c.

705 Zeyu Zhang, Quanyu Dai, Luyu Chen, Zeren Jiang, Rui Li, Jieming Zhu, Xu Chen, Yi Xie, Zhenhua
706 Dong, and Ji-Rong Wen. Memsim: A bayesian simulator for evaluating memory of llm-based
707 personal assistants. *arXiv:2409.20163*, 2024d.

708 Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
709 Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language models:
710 A survey. *arXiv preprint arXiv:2411.00027*, 2024e.

711 Jiachen Zhu, Jianghao Lin, Xinyi Dai, Bo Chen, Rong Shan, Jieming Zhu, Ruiming Tang, Yong
712 Yu, and Weinan Zhang. Lifelong personalized low-rank adaptation of large language models for
713 recommendation. *arXiv:2408.03533*, 2024.

714 Yuchen Zhuang, Haotian Sun, Yue Yu, Rushi Qiang, Qifan Wang, Chao Zhang, and Bo Dai. Hydra:
715 Model factorization framework for black-box llm personalization. *arXiv:2406.02888*, 2024.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

mei ka

757

758

APPENDIX CONTENTS

759

760

A Related Work 16

761

B Supplementary Materials for the Analytical Study 16

762

763	B.1 Analytical Study Setup	16
764	B.2 Supplementary Results	17
765	B.3 Validating Personalized Signals: Beyond Input Length Effects	18
766	B.4 Personalized Shifts: A Case Study	19
767	B.5 Low-Rank Patterns: A Layer-Wise Analysis	21
768	B.6 Task-Specific Patterns: A Cross-Task Analysis	22

769

C Supplementary Materials for Methodology 22

770	C.1 Algorithm Pseudocode of <code>PerFit</code>	22
771	C.2 Parameter Efficiency Analysis	23
772	C.3 Two-Stage PEFT vs. <code>PerFit</code>	23

773

D Supplementary Materials for the Experimental Setup 25

774	D.1 Datasets	25
775	D.2 Metrics	25
776	D.3 Baselines	26
777	D.4 Implementation Details	27
778	D.5 Arguments	27
779	D.6 Dataset Descriptions and Prompts	28

780

E Supplementary Experimental Results 28

781	E.1 Performance Stability Analysis	29
782	E.2 More Analysis about Layer-wise Intervention	29
783	E.3 Collective LoRA and Personalized <code>PerFit</code>	30
784	E.4 Backbone Ablation Study	31
785	E.5 Cold-start with Limited Collective Users	31
786	E.6 Transferability of the collective shift across users and tasks	33
787	E.7 Impact of Personalization Interventions on General Capabilities	33

788

F Broader Impacts 34

789

G Use of LLMs 35

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A RELATED WORK
811812 The methods for personalized large language models (PLLMs) can be mainly divided into two types
813 based on whether fine-tuning is involved (Liu et al., 2025): one type is the method that does not
814 require fine-tuning of the large language models (LLMs), and the other type is the method that
815 requires fine-tuning.
816817 **Tune-Free Methods.** Tune-free methods primarily use three approaches: input prompting, vector
818 steering, and logits steering. (1) For input prompting, key approaches include profile-augmented
819 generation (PAG) (Richardson et al., 2023), which uses an instruction-tuned language model to
820 create a textual user profile from the user’s personalized data, and retrieval-augmented generation
821 (RAG) (Salemi et al., 2024a), which enhances responses by retrieving relevant entries from user
822 history. (2) Vector steering, as implemented in StyleVector (Zhang et al., 2025), uses a separate LLM
823 to generate contrastive pairs of personalized and non-personalized responses to modify model behavior.
824 This method depends on pre-constructed contrastive pairs and doesn’t tune model parameters; it
825 has limited understanding of personalization. (3) Logits steering: CoS (He et al., 2024) achieves
826 personalization by summing the logits from two rounds of outputs from the LLM: one round uses a
827 standard prompt, while the other incorporates a user’s explicit context in the prompt. Its main focus
828 differs from our implicit personalization tasks.
829830 *Limitations:* Although tune-free methods are efficient because they use external data sources, their
831 personalization capabilities are limited since they rely on historical information instead of adapting
832 the model’s internal parameters, especially for capturing users’ implicit tastes and style.
833834 **Fine-Tuning Methods.** The one PEFT per user paradigm trains a Parameter-Efficient Fine-Tuning
835 (PEFT) model tailored to each user using low-rank adaptation (LoRA)(Hu et al., 2021; Yang et al.,
836 2024; Zhang et al., 2024a). OPPU(Tan et al., 2024b) encodes personalized user information in PEFT
837 parameters, enhancing the overall user experience. While research following OPPU primarily focuses
838 on framework enhancements, such as parameter collaboration in privacy-sensitive contexts (Qi et al.,
839 2024; Wagner et al., 2024), the area of enhancing personalized fine-tuning remains underexplored.
840841 *Limitations.* Despite the strong performance of the LoRA architecture, it still requires millions of
842 parameters, which poses a significant burden in personalized scenarios with a large number of users.
843844 Note that some methods for aligning human preferences in LLMs use reinforcement learning. While
845 these approaches vary—some requiring fine-tuning (Rame et al., 2024; Lau et al., 2024; Poddar et al.,
846 2024; Shi et al., 2024) and others not (Chen et al., 2024) — they mainly rely on reward models based
847 on average annotator preferences. This approach requires predefined (explicit) preferences and fails
848 to account for how different users might want different outputs for the same prompt, which differs
849 from our task and objectives that propose a novel personalized fine-tuning method that captures users’
850 implicit tastes and strikes a balance between effectiveness and efficiency.
851852 B SUPPLEMENTARY MATERIALS FOR THE ANALYTICAL STUDY
853854 In this section, we provide supplementary materials related to the analytical study, including the study
855 setup in [Appendix B.1](#) and supplementary tables and figures in [Appendix B.2](#). Moreover, we include
856 further analysis to support our observations, answering the following questions:
857858 1. Do the observations also hold in other base LLM models ([Appendix B.2](#))?
859 2. Are the observations genuinely driven by personalized signals ([Appendix B.3](#))?
860 3. Do the personalized shifts of the δ -vectors encompass personalization ([Appendix B.4](#))?
861 4. [Do low-rank patterns reveal layer-wise structures? \(Appendix B.5\)](#)
862 5. Do collective shifts stay consistent across different tasks ([Appendix B.6](#))?
863

864 B.1 ANALYTICAL STUDY SETUP

865 Using Llama2-7B as the base (i.e., non-personalized) LLM (Tan et al., 2024b;a; Kong et al., 2024),
866 we conducted an analytical study on the widely-used personalization benchmark LaMP (Salemi et al.,
867

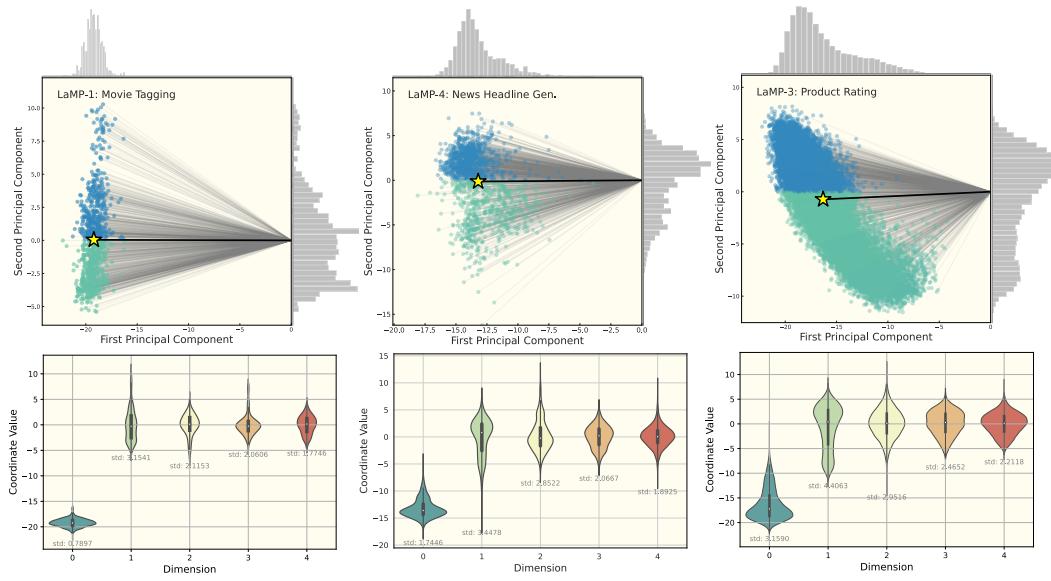


Figure 7: Supplementary figure of Figure 2 of other datasets. (1) The first row depicts the low-rank vector representations projected onto the first two principal components, with mean vectors indicated by yellow stars, demonstrating directional bias in the reduced-dimensional space. (2) The second row comprises violin plots of the coordinate value distributions across the first five feature dimensions. Here, the zeroth dimension shows a significant mean shift from zero, indicating a shared directional bias (i.e., collective shift) among users, whereas the remaining dimensions have means near zero with relatively large standard deviations, reflecting individual user variability (i.e., personalized shifts).

2024b). To isolate the personalized information, We focus on the residual stream representation of the last token, $\mathbf{h}^\ell := \mathbf{h}_n^\ell$, which aggregates information from the entire input sequence at layer ℓ , specifically analyzing the 16th layer following previous activation steering approaches (Arditi et al.). The personalized information we concatenate for each user $\mathcal{Q}_i^{\text{orig}}$, is derived via the BM25 algorithm to identify the most relevant details of each query from the user’s historical documents.

Here, we need to clarify the difference between our analysis and StyleVector (Zhang et al., 2025). StyleVector uses GPT-3.5-turbo outputs as general responses, creating contrastive pairs by combining the same query with these general outputs and the personalized outputs. However, the tokens that truly drive personalization **reside in the tokens of the query** for fine-tuning, not the last token of the response, since the query’s final token influences the generation process starting from earlier tokens. Besides, relying on GPT-3.5-turbo outputs as general responses may not consistently provide a reliable baseline across different models. Moreover, the Stylevector analyzes individual user representations, like other activation steering methods, focusing on a single user dimension **without considering all users and their interrelations**.

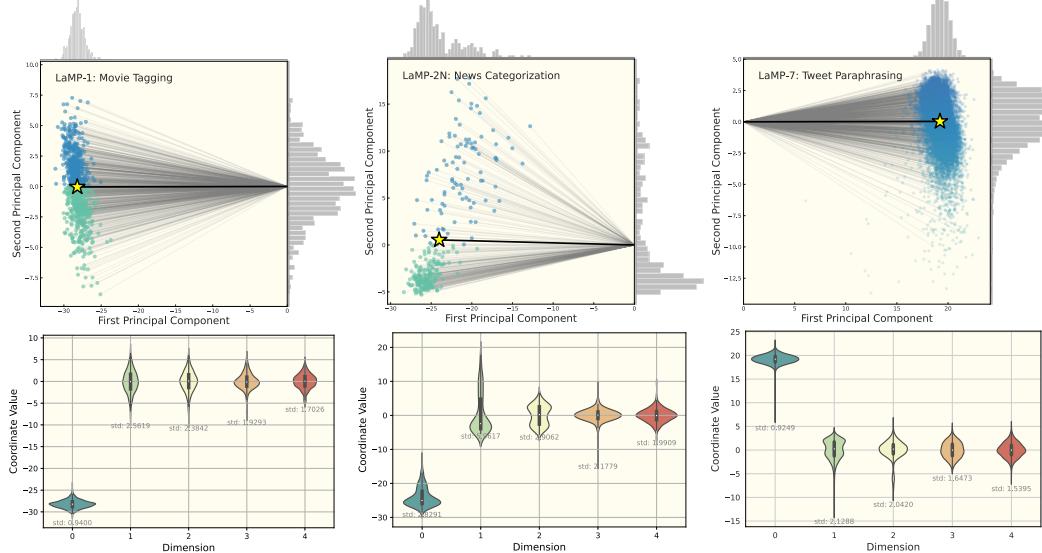
This analysis aims to uncover how personalized signals are represented in the hidden representation space *before response generation for all users*, so as to design the fine-tuning process directly based on the observations.

B.2 SUPPLEMENTARY RESULTS

The supplementary figure of Figure 2 is shown in Figure 7, the figure of Figure 1 is supplemented by Table 5. This indicates that the observed pattern (Observation 2 and Observation 1) is universal across all datasets. Next, we will conduct the same analytical experiments on the Qwen model to determine whether our observations still apply to other models Figure 8. The results indicate that similar patterns persist, with the Qwen-2.5-7B model demonstrating a relatively larger shift. Additionally, the direction of the collective shift in the dataset is consistent: the Tweet Paraphrase task tends to orient towards the positive direction, whereas other tasks show a negative orientation.

918
 919 Table 5: Minimum feature dimensions r needed to explain variance levels of 0.8, 0.85, 0.9, and 0.95.
 920 The ratio refers to the proportion of the feature dimension to the hidden representation dimension
 921 (4096 for Llama).

	LaMP-2M		LaMP-2N		LaMP-3		LaMP-4		LaMP-5		LaMP-7	
	r	Ratio	r	Ratio	r	Ratio	r	Ratio	r	Ratio	r	Ratio
0.8	1	0.00121	1	0.00365	3	0.00073	34	0.02203	4	0.00098	3	0.00073
0.85	1	0.00121	2	0.00730	7	0.00171	91	0.05898	14	0.00342	10	0.00244
0.9	3	0.00362	4	0.01460	18	0.00439	167	0.10823	40	0.00977	22	0.00781
0.95	12	0.01448	20	0.07299	93	0.02271	368	0.23850	203	0.04956	177	0.04321

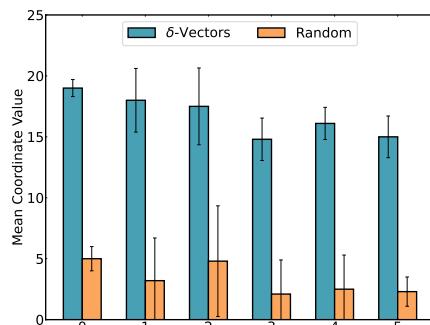


948 Figure 8: Projected vectors from Qwen-2.5-7B. A similar pattern also appears in the Qwen model.
 949

950 B.3 VALIDATING PERSONALIZED SIGNALS: BEYOND INPUT LENGTH EFFECTS

951 As demonstrated in [Appendix B.1](#), we introduced
 952 personalized information prior to the query to effectively
 953 isolate personalized information. In this case,
 954 the lengths of personalized input tokens are greater
 955 than those of their non-personalized counterparts.
 956 This raises a question: *“Are the observations based
 957 on personalized signals instead of merely artifacts
 958 of input text length?”* Our goal in this section is to
 959 show that the phenomena observed are attributed to
 960 personalized representations.

961 To substantiate this claim, we conducted an ablation
 962 study in which the personalized information
 963 prepended to each query was systematically substi-
 964 tuted with randomly generated text of equivalent
 965 length. This careful and controlled manipulation
 966 enabled us to closely examine the distribution of
 967 δ -vectors within the representation space, thereby providing valuable insights into the role of
 968 personalized signals in shaping our observations, while effectively eliminating the influence of other
 969 interfering factors. The results show [Figure 9](#) that the random prefix does cause a slight shift in
 970 the vector representation; however, the degree of this shift is much smaller than the significant
 971 deviation caused by δ -vectors. This indicates that our observations are indeed based on personalized
 972 information rather than merely the added text length of the prefix to the query.



973 Figure 9: Comparison of the mean absolute co-
 974 ordinate values between δ -vectors and random
 975 vectors.

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

Personalized Information:
 abstract: <abstract>. title:
 <title>
Query:
 Given this author's previous publications, try to describe a template for their titles. I want to be able to accurately predict the title of one of the papers from the abstract. abstract:
 <query_abstract>. title:

Figure 10: Personalized information template. Replace the content inside the <> with the actual descriptions of the abstract and title for each query.

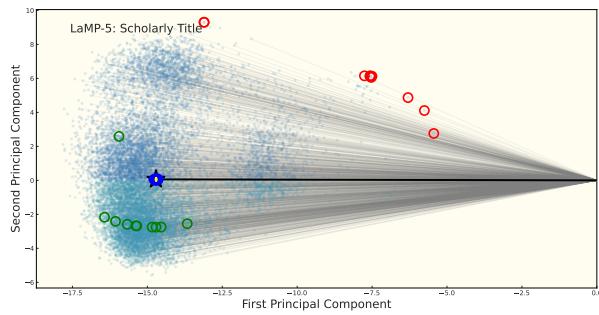


Figure 11: Selected samples from the representation space. The red circle, green circle, and blue circle represent the 10 points that are farthest, at an intermediate distance, and closest to the collective vector, respectively.

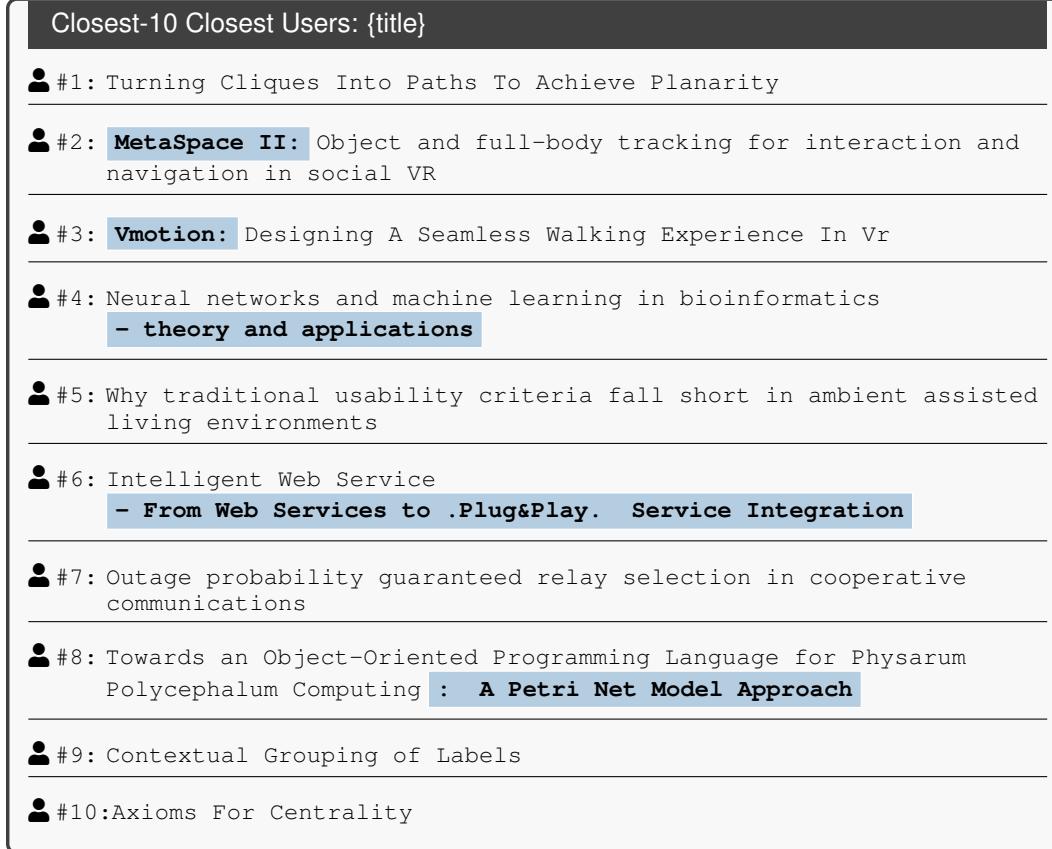


Figure 12: Closest-10 closest users. These sentences indicate that a majority of individuals prefer to employ punctuation marks, such as commas and dashes.

B.4 PERSONALIZED SHIFTS: A CASE STUDY

This section aims to answer the question: "*Do the personalized shifts of the δ -vectors encompass personalization?*" The personalized information regarding implicit styles in the LaMP dataset is challenging to quantify. To explore this, we select samples within the representation space for a case study to determine whether nearby representations exhibit similar styles.

1026
1027 **Intermediate-10 Users: {title}**

1028 **• #1:** Exploiting temporal influence in online recommendation

1029 **• #2:** On measuring affects of github issues' commenters

1030 **• #3:** Evaluation of tone mapping operators **using** a High Dynamic Range display

1031

1032 **• #4:** Differential Entropy Preserves Variational Information of Near-Infrared Spectroscopy Time Series **Associated With** Working Memory

1033

1034 **• #5:** Toward real-time endoscopically-guided robotic navigation **based on** a 3D virtual surgical field model

1035

1036 **• #6:** Time-varying noise estimation for speech enhancement and recognition **using** sequential Monte Carlo method

1037

1038 **• #7:** On collision-free reinforced barriers for multi domain IoT **with** heterogeneous UAVs

1039

1040 **• #8:** Dense depth maps **by** active color illumination and image pyramids

1041

1042 **• #9:** New results on optimizing rooted triplets consistency

1043

1044 **• #10:** Machine learning-based detection of open source license exceptions

1045

1046

1047

1048

1049

1050

1051

1052

1053

Figure 13: Intermediate-10 closest users. The titles of these examples rarely use punctuation marks; instead, they favor terms such as 'based on' and 'using' to indicate specific methodologies. Additionally, the descriptions of the titles are more precise compared to those of the closest users.

1059
1060 Farthest-10 Users: {query_abstract}
1061
1062 #1: An abstract is **not available** ×5
1063
1064 #2: However, not ... (**incomplete**) ×3
1065
1066 #3: After the publication of the DOI version
1067
1068 #4: <http://www.w3.org/1998/Math/MathML>"
1069

Figure 14: Farthest-10 closest users. The distant points are all outliers, and the query of users lacks effective abstract information. As shown above, there is no indication of the user’s methodology.

1075 For instance, in the context of Tweet Paraphrase, the template of added personalized information and
 1076 the queries is illustrated in [Figure 10](#). Using the collective shift vector as a reference, we identify
 1077 the top 10 users with the nearest vectors, the top 10 vectors at an intermediate distance, and the 10
 1078 farthest vectors. We then present their corresponding personalized information regarding the titles
 1079 generated by the user previously, aligning with the user’s preferences, as illustrated in [Figure 12](#),
[Figure 13](#), and [Figure 14](#), respectively. The points we select are highlighted in [Figure 11](#).

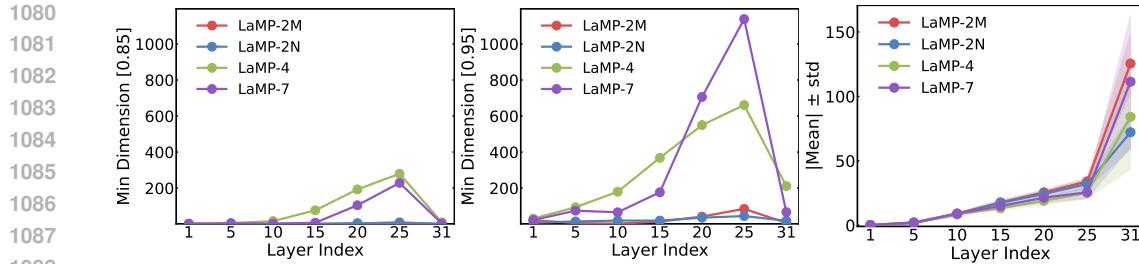


Figure 15: Layer-wise analysis of Observation 1. The first two panels show, for each layer, the minimum feature dimension r needed to explain variance levels of 0.85 and 0.95, revealing the layer-wise rank patterns. The right panel reports $|\text{mean}| \pm \text{std}$ of users’ coordinates on the first principal component after SVD; for each task and layer, the mean is computed over all users.

From these examples, it is evident that while the style may not convey significant information, users with personalized vectors that represent different regions in the embedding space exhibit clear and intuitive differences in their corresponding personalized information.

Moreover, an interesting discovery is that the **points that are farther from the collective shift tend to be outliers**. The queries associated with these outlier points lack effective information, resulting in the inability to incorporate meaningful personalization. Consequently, compared to the collective shift, there is a considerable deviation in these instances. This further validates and supports the direct correlation between δ -vectors and personalized information in the embedding space. It also demonstrates that the personalized shift, based on the collective shift, can effectively reflect individualized information.

B.5 LOW-RANK PATTERNS: A LAYER-WISE ANALYSIS

Building on the previous findings (Observation 1) that the δ -vectors in the middle layers display a pronounced low-rank structure, this section extends the investigation to address the question: “*Does the low-rank property consistently appear at every layer of the model?*” To address this question, the layer-wise ranks of δ -vectors were computed for each dataset, as shown in Figure 15. Two key observations emerge from this analysis.

First, the results of the first two subfigures of Figure 15 reveal a consistent trend: **early and middle layers exhibit relatively low ranks**, while a sharp increase emerges after layer 15, particularly for generation tasks. This pattern aligns with prior findings showing that deeper layers of large language models increasingly specialize in task-level semantics and generation (Geva et al., 2021; Ji et al., 2024; Song et al., 2025), leading to heavily entangled user- and task-related features. Consequently, these layers are less suitable for isolating and controlling style-level personalization. In contrast, top-middle layers compress user inputs into shared semantic representations (Wang et al., 2024b), thereby making stylistic shifts more cleanly expressed and naturally forming a low-rank personalization subspace.

Second, further evidence comes from projecting user representations onto the first SVD component (right panel in Figure 15). Early and middle layers show **minimal variance across users, reflecting a strong collective shift**. In contrast, deeper layers exhibit substantially larger variance, indicating that user representations become more dispersed as stylistic and task-specific factors intertwine—consistent with the increased entanglement observed in later layers.

It is worth noting that although the δ -vectors at the final layer also appear low-rank, their representation directions are highly dispersed, showing no collective shift and large variance in user-specific offsets. Thus, it is unsuitable for intervention. This distinctive behavior of the last layer has also been highlighted in prior work (Skean et al., 2024).

The observations in this section are consistent with the experimental analysis in Appendix E.2, that interventions applied around layers 5–10 yield the strongest performance, while those at deeper layers interfere degrade personalization quality, especially at the last layer.

In summary, the low-rank and collective shift personalized patterns (Observation 1 and Observation 2) reside mainly in the early–middle layers, not in the deep layers, where they entangled generative factors and distort personalization signals.

1134
1135

B.6 TASK-SPECIFIC PATTERNS: A CROSS-TASK ANALYSIS

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

The previous analysis demonstrated that personalized information exhibits a collective shift. We further explored the relationships among the personalized vectors in the LaMP dataset, as illustrated in Figure 16. Our findings indicate that the collective shifts differ across various tasks. For instance, classification tasks, such as Movie Tagging and News Categorization, show a closer distribution compared to text generation tasks. Specifically, tasks like News Headline generation and Scholarly Title generation exhibit a more similar pattern. The distribution of Tweet Paraphrase differs from that of other personalization tasks, which aligns with our findings regarding the variation in their shift directions in Figure 2. These insights suggest that when developing personalized LLMs in the future, **it is important to consider inter-task relationships**; especially in complex tasks and scenarios, effective analysis and explanations can be derived from their representations. This type of analysis can enhance our understanding of the underlying dynamics within personalized models.

1154
1155
1156
1157
1158
1159
1160
1161
1162

To summarize, this section validates the following key observations and conclusions:

- The observations are universal across multiple datasets, tasks, and LLMs.
- δ -vectors reflect personalized information, confirmed by isolating interfering factors.
- Personalized shifts in the representation space correlate with users’ stylistic traits.
- Personalized patterns primarily reside in the early–middle layers.
- Differences in collective shift may exist across tasks.

1163

1164
1165

C SUPPLEMENTARY MATERIALS FOR METHODOLOGY

1166

1167

C.1 ALGORITHM PSEUDOCODE OF `PERFIT`1168
1169
1170
1171
1172

Note that, for simplicity in implementation, we do not initialize the Stage 2 parameters $\Delta\Theta^{(2)}$ separately for each user; instead, they are computed directly during Stage 1 initialization. This is not the main focus or core contribution of our work and can be flexibly modified if needed. Here, we present the details of this procedure in the pseudocode (Algorithm 1).

1173
1174

This algorithm takes a set of users with their queries and targets, and a base model M_0 with parameters Θ_0 . Line 1 initializes shared Stage 1 and Stage 2 intervention parameters.

1175
1176
1177
1178
1179
1180
1181
1182

- In Stage 1 (lines 4–13), for each user and query, the base model encodes the query, then the representation is transformed successively by shared Stage 1 and Stage 2 functions, and the resulting output from the base model after intervention is used to compute loss for updating both shared parameter sets.
- In Stage 2 (lines 14–23), user-specific Stage 2 parameters are fine-tuned individually by applying the shared Stage 1 followed by the personalized Stage 2 transformation on the encoded queries, only fine-tuning $\Delta\Theta^{(2)}$.

1183
1184
1185
1186
1187

The algorithm returns personalized models composed of the base parameters plus the shared Stage 1 and user-specific Stage 2 parameters (line 24). This two-stage approach enables learning a shared adaptation and personalized refinements efficiently.

Besides the description above, the representation \mathbf{h} can correspond to the output of any one or multiple layers from the first layer to the last layer \mathcal{L} of the model; if multiple layers are used, then

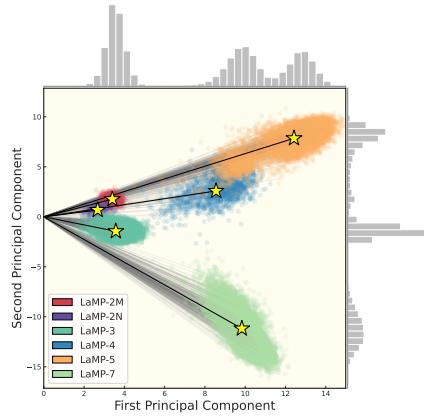


Figure 16: Representation of combined δ -vectors from diverse datasets, with each color denoting a distinct dataset.

1188 each layer’s representation $\mathbf{h}^{(\ell)}$ requires its own set of intervention parameters, i.e., $\Delta\Theta^{(\ell)(1)}$ and
 1189 $\Delta\Theta^{(\ell)(2)}$, respectively. For simplicity, we also omit specifying the exact layer(s) here.
 1190

1191 Algorithm 1: PerFit

1192 **Input** :Users $\mathcal{U} = \{u_i\}_{i=1}^N$, queries \mathcal{Q}_i , targets \mathcal{Y}_i for each u_i , base (non-personalized) LLM M_0 with
 1193 parameters Θ_0 // [Section 2.1](#)
 1194 **Output** :Personalized models $\{M_i = \Theta_0 + (\Delta\Theta^{(1)}, \Delta\Theta_i^{(2)})\}_{i=1}^N$ for each user $u_i \in \mathcal{U}$
 1195 1 Initialize parameters of Stage 1 and Stage 2: $\Delta\Theta = \{\Delta\Theta^{(s)}\}_{s=1}^2 = \{(\mathbf{R}^{(s)}, \mathbf{W}^{(s)}, \mathbf{b}^{(s)})\}_{s=1}^2$.
 1196 2 **Function** $\text{Phi_stage}(\mathbf{x}, \Delta\Theta^{(s)})$:
 1197 | **return** $\mathbf{x} + \mathbf{R}^{(s)\top}(\mathbf{W}^{(s)}\mathbf{x} + \mathbf{b}^{(s)} - \mathbf{R}^{(s)}\mathbf{x})$; // [Equation \(2\)](#)
 1198 4 **Stage 1: Train shared intervention** :
 1199 5 **for** each user $u_i \in \mathcal{U}$ **do**
 1200 | 6 **for** each query $q_j^{(i)} \in \mathcal{Q}_i$ with target $y_j^{(i)} \in \mathcal{Y}_i$ **do**
 1201 | | 7 Compute \mathbf{h}_j from $M_0(q_j^{(i)})$;
 1202 | | 8 Compute intervened representation $\tilde{\mathbf{h}}_j \leftarrow \text{Phi_stage}(\mathbf{h}_j, \Delta\Theta^{(1)})$;
 1203 | | 9 Compute intervened representation $\hat{\mathbf{h}}_j \leftarrow \text{Phi_stage}(\tilde{\mathbf{h}}_j, \Delta\Theta^{(2)})$; // [Equation \(1\)](#)
 1204 | | 10 Compute loss $\mathcal{L}(\tilde{y}_j, y_j^{(i)})$ where \tilde{y}_j decoded from $\tilde{\mathbf{h}}_j$;
 1205 | | 11 **end**
 1206 | 12 **end**
 1207 | 13 Update $\Delta\Theta^{(1)}$ and $\Delta\Theta^{(2)}$ to minimize total loss over all users;
 1208 14 **Stage 2: Fine-Tune user-specific interventions** :
 1209 15 **for** each user $u_i \in \mathcal{U}$ **do**
 1210 | 16 $\Delta\Theta_i^{(2)} \leftarrow \Delta\Theta^{(2)}$;
 1211 | 17 **for** each query $q_j^{(i)} \in \mathcal{Q}_i$ with target $y_j^{(i)} \in \mathcal{Y}_i$ **do**
 1212 | | 18 Compute \mathbf{h}_j from $M_0(q_j^{(i)})$;
 1213 | | 19 Compute personalized representation $\hat{\mathbf{h}}_j \leftarrow \text{Phi_stage}(\text{Phi_stage}(\mathbf{h}_j, \Delta\Theta^{(1)}), \Delta\Theta_i^{(2)})$;
 1214 | | 20 Compute loss $\mathcal{L}(\hat{y}_j, y_j^{(i)})$ where \hat{y}_j decoded from $\hat{\mathbf{h}}_j$;
 1215 | | 21 **end**
 1216 | | 22 Update $\Delta\Theta_i^{(2)}$ to minimize total loss for user u_i ;
 1217 | 23 **end**
 1218 | 24 **return** personalized models $\{M_i = \Theta_0 + (\Delta\Theta^{(1)}, \Delta\Theta_i^{(2)})\}_{i=1}^N$;

 1219
 1220
 1221

C.2 PARAMETER EFFICIENCY ANALYSIS

1222 For a weight matrix $W \in \mathbb{R}^{d_{out} \times d_{in}}$, LoRA decomposes the weight update $\Delta W = AB$ with
 1223 $A \in \mathbb{R}^{d_{out} \times r}$, $B \in \mathbb{R}^{r \times d_{in}}$, incurring parameter count $N_{\text{LoRA}} = r(d_{in} + d_{out}) \approx 2r(d_{in} + d_{out})$.
 1224 Conversely, PerFit $\phi_{\Delta\Theta}$ operates on representation $x \in \mathbb{R}^d$ via the transformation $\phi_{\Delta\Theta}(x) =$
 1225 $x + \mathbf{R}^\top(\mathbf{W}^{(s)}x + \mathbf{b}^{(s)}) - \mathbf{R}^\top\mathbf{R}x$, where $\mathbf{R} \in \mathbb{R}^{r \times d_{out}}$, $\mathbf{W}^{(s)} \in \mathbb{R}^{r \times d_{out}}$, $\mathbf{b}^{(s)} \in \mathbb{R}^r$, with
 1226 parameter count $N_{\phi_{\Delta\Theta}} \approx 2rd_{out}$; however, LoRA requires M such blocks per layer, resulting
 1227 in $N_{\text{LoRA, layer}} = M \times 2rd$, PerFit necessitates only one module per representation layer with
 1228 $N_{\phi_{\Delta\Theta, \text{layer}}} = 2rd$, thereby achieving substantial parameter efficiency when $M \gg 1$. From the
 1229 experiments in [Figure 6](#) (right), our one-layer method outperforms the best setting of LoRA, which
 1230 combines all layers with LoRA. Therefore, the total number of parameters required by LoRA is
 1231 significantly smaller than that of our method.
 1232

C.3 TWO-STAGE PEFT VS. PERFIT

1233 Consider the hidden state update at layer ℓ of a decoder-style Transformer:

$$1234 \quad \mathbf{h}_t^{\ell+1} = \mathbf{h}_t^\ell + \text{FFN}_0^\ell \left(\mathbf{h}_t^\ell + \text{MHA}_0^\ell(\mathbf{h}_{1:t}^\ell) \right),$$

1235 as defined in [Section 2.2](#) (with hidden dimension d). We study whether LoRA-based interventions on
 1236 FFN or MHA layers can induce a *representation shift* that can be expressed as an *input-independent, additive constant vector* decomposable into a collective and a personalized shift as our observations:
 1237

$$1238 \quad \mathbf{h} \mapsto \mathbf{h} + \mathbf{s}_c + \mathbf{s}_p.$$

1242 **Proposition 1.** LoRA-induced shifts $\Delta_{\text{LoRA}}(\mathbf{x})$ in FFN/MHA are input-dependent, piecewise-affine
 1243 functions and cannot, except in degenerate cases, equal a constant additive vector $\mathbf{s}_c + \mathbf{s}_p$.
 1244

1245 *Proof.* Consider a two-layer MLP:

$$1246 \quad \text{FFN}(\mathbf{x}) = \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2, \quad \sigma = \text{ReLU}.$$

1248 After inserting LoRA at \mathbf{W}_1 and \mathbf{W}_2 , the modified network becomes

$$1249 \quad \text{FFN}_{\text{LoRA}}(\mathbf{x}) = (\mathbf{W}_2 + \mathbf{B}_2 \mathbf{A}_2) \sigma((\mathbf{W}_1 + \mathbf{B}_1 \mathbf{A}_1) \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2,$$

1251 and the induced shift is

$$1252 \quad \Delta_{\text{LoRA}}(\mathbf{x}) = \text{FFN}_{\text{LoRA}}(\mathbf{x}) - \text{FFN}(\mathbf{x}).$$

1253 To analyze this shift, define

$$1255 \quad \mathbf{z}_0 = \mathbf{W}_1 \mathbf{x} + \mathbf{b}_1, \quad \mathbf{z}_1 = (\mathbf{W}_1 + \mathbf{B}_1 \mathbf{A}_1) \mathbf{x} + \mathbf{b}_1, \quad \mathbf{D}_i = \text{diag}(\mathbf{1}_{\mathbf{z}_i > 0}).$$

1256 Here \mathbf{D}_i are binary diagonal matrices representing the input-dependent ReLU gates. Expanding gives

$$1257 \quad \Delta_{\text{LoRA}}(\mathbf{x}) = (\mathbf{B}_2 \mathbf{A}_2 \mathbf{D}_1 + \mathbf{W}_2 (\mathbf{D}_1 - \mathbf{D}_0) \mathbf{W}_1) \mathbf{x} + (\mathbf{B}_2 \mathbf{A}_2 \mathbf{D}_1 + \mathbf{W}_2 (\mathbf{D}_1 - \mathbf{D}_0)) \mathbf{b}_1.$$

1259 This expression shows that $\Delta_{\text{LoRA}}(\mathbf{x})$ is an affine function of \mathbf{x} within each ReLU region (where
 1260 $\mathbf{D}_0, \mathbf{D}_1$ are fixed). Crucially, both the effective linear term

$$1262 \quad \mathbf{B}_2 \mathbf{A}_2 \mathbf{D}_1 + \mathbf{W}_2 (\mathbf{D}_1 - \mathbf{D}_0) \mathbf{W}_1$$

1263 and the bias term depend on the gating matrices $\mathbf{D}_0, \mathbf{D}_1$, which in turn depend on \mathbf{x} . Therefore, across
 1264 different regions of the input space, $\Delta_{\text{LoRA}}(\mathbf{x})$ changes discontinuously and is piecewise-affine.

1265 For $\Delta_{\text{LoRA}}(\mathbf{x})$ to be a constant vector independent of \mathbf{x} , the effective matrix must vanish for *all* possi-
 1266 ble pairs $(\mathbf{D}_0, \mathbf{D}_1)$. This imposes extremely restrictive algebraic constraints on $(\mathbf{W}_1, \mathbf{W}_2, \mathbf{A}_1, \mathbf{B}_1)$,
 1267 which only hold in measure-zero degenerate cases. Thus, in general, LoRA cannot induce an
 1268 input-independent constant shift.

1269 The situation becomes even stricter for MHA layers: the softmax introduces multiplicative query-key
 1270 coupling, yielding nonlinear dependencies on \mathbf{x} . Hence $\Delta_{\text{LoRA}}(\mathbf{x})$ cannot represent a constant
 1271 additive vector in attention either. \square

1273 **Proposition 2.** Two-stage LoRA updates are not additive:

$$1274 \quad \Delta_{\text{LoRA}}^{(p \circ c)}(\mathbf{x}) \neq \Delta_{\text{LoRA}}^{(c)}(\mathbf{x}) + \Delta_{\text{LoRA}}^{(p)}(\mathbf{x}).$$

1276 *Proof.* Stage p operates on hidden states already altered by stage c , so its gating matrices differ from
 1277 those under raw input \mathbf{x} . Hence the resulting Δ_{LoRA} cannot decompose additively. \square

1279 **Proposition 3.** PerFit yields approximately additive shifts in a low-rank subspace:

$$1280 \quad (\phi_{\Delta_{\Theta^{(2)}}} \circ \phi_{\Delta_{\Theta^{(1)}}})(\mathbf{x}) = \mathbf{x} + \mathbf{v}^{(1)}(\mathbf{x}) + \mathbf{v}^{(2)}(\mathbf{x}) + O(\|\mathbf{D}\mathbf{v}^{(2)}\| \cdot \|\mathbf{v}^{(1)}(\mathbf{x})\|).$$

1282 *Proof.* Let $\mathbf{v}(\mathbf{x}) = \mathbf{R}^\top (\mathbf{W}\mathbf{x} + \mathbf{b} - \mathbf{R}\mathbf{x}) \in \text{Im}(\mathbf{R}^\top)$. Then

$$1284 \quad (\phi_{\Delta_{\Theta^{(2)}}} \circ \phi_{\Delta_{\Theta^{(1)}}})(\mathbf{x}) = \mathbf{x} + \mathbf{v}^{(1)}(\mathbf{x}) + \mathbf{v}^{(2)}(\mathbf{x} + \mathbf{v}^{(1)}(\mathbf{x})).$$

1285 First-order expansion:

$$1287 \quad \mathbf{v}^{(2)}(\mathbf{x} + \mathbf{v}^{(1)}(\mathbf{x})) = \mathbf{v}^{(2)}(\mathbf{x}) + O(\|\mathbf{D}\mathbf{v}^{(2)}\| \|\mathbf{v}^{(1)}(\mathbf{x})\|).$$

1288 Thus both collective and personal shifts lie in $\text{Im}(\mathbf{R}^\top)$ and combine additively up to a small,
 1289 controllable cross term. \square

1291 **Remark 1.** The above results highlight a key distinction: LoRA induces input-dependent, non-
 1292 additive shifts, making it ill-suited for modeling clean personalization. This explains OPPU’s
 1293 performance degradation under fewer adapted layers (Table 11). In contrast, PerFit
 1294 enforces low-rank additive structure, yielding interpretable and controllable collective +
 1295 personal shifts, perfectly aligning our observations.

Table 6: Dataset statistics for the LaMP benchmark. We present the average sequence length measured in token count, where #Q represents the quantity of queries, L_{in} and L_{out} denote the average input and output sequence lengths respectively, #History indicates the volume of historical interactions, and #Classes shows the number of classification categories for classification tasks. #Users shows the number of users in the base LLM training stage and personal PEFT training stage (format: first stage/second stage).

Task	#Users	Base LLM Training			Personal PEFT Training				
		#Q	L_{in}	L_{out}	#Q	#History	L_{in}	L_{out}	#Classes
2M	829 / 100	3,181	92.1	-	3,302	55.6	92.6	-	15
2N	274 / 49	3,662	68.2	-	6,033	219.9	63.5	-	15
3	19,899 / 101	22,388	128.7	-	112	959.8	211.9	-	5
4	1,543 / 100	7,275	33.9	9.2	6,275	270.1	25.2	11.1	-
5	14,581 / 101	16,075	162.1	9.7	107	442.9	171.6	10.3	-
7	13,337 / 100	14,826	29.7	18.3	109	121.2	29.4	18.0	-

Table 7: Specifications of evaluation metrics used in our experiments. For each metric, we indicate the corresponding dataset, task type, and mathematical formulation.

Metric	Dataset	Task Type	Formulation
Acc	LaMP-2N, 2M	Classification	$\frac{TP+TN}{TP+TN+FP+FN}$
F1	LaMP-2N, 2M	Classification	$2 \times \frac{precision \times recall}{precision + recall}$
MAE	LaMP-3	Classification	$\frac{1}{n} \sum_{i=1}^n y_i - \hat{y}_i $
RMSE	LaMP-3	Classification	$\sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$
R-1	LaMP-4,5,7	Generation	$\frac{ S \cap R }{ R }$
R-L	LaMP-4,5,7	Generation	$\frac{LCS(S, R)}{ R }$

D SUPPLEMENTARY MATERIALS FOR THE EXPERIMENTAL SETUP

D.1 DATASETS

Our experiments utilize the LaMP benchmark (Salemi et al., 2024b), a collection of personalization tasks from which we select six distinct tasks - three for classification and three for generation⁵. In alignment with the OPPU framework (Tan et al., 2024b), we recognize the importance of substantial user history for effective model personalization. Consequently, we identify and select about 100 most prolific users (those with the most extensive interaction histories) from the time-ordered LaMP variant to serve as our test cohort. The remaining users’ data is allocated for training the collective LLM in the first stage. The dataset statistics are listed in Table 6.

D.2 METRICS

We employ a comprehensive set of evaluation metrics to assess model performance across different tasks. For classification tasks, we utilize Accuracy (Acc), F1 Score (F1), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). For generation tasks, we employ ROUGE-1 (R-1) and ROUGE-L (R-L) metrics to evaluate the quality of generated text. The detailed specifications of these metrics are presented in Table 7, where TP , TN , FP , and FN represent true positives, true negatives, false positives, and false negatives respectively; y_i and \hat{y}_i denote the ground truth and predicted values; S and R represent the generated and reference sequences; and $LCS(S, R)$ indicates the length of the longest common subsequence between S and R .

⁵We omitted the LaMP-1 citation dataset because we were unable to reproduce results using the OPPU prompt, and for most queries, we could not get outputs in the required format. This may be due to limitations in Llama2’s instruction following capabilities. Like OPPU, we did not use the LaMP-6 dataset due to privacy concerns. The remaining six datasets still ensure task diversity.

1350 D.3 BASELINES
13511352 To provide a comprehensive comparison, we evaluate our method against a diverse set of baselines,
1353 categorized into **Non-Tuned** and **Tuned** approaches. All baseline models are implemented using
1354 Llama2-7B⁶ as the foundation model.
13551356 **Non-Tuned Methods**
13571358 • **Non-Personalized**: This approach utilizes the pre-trained model without any modifications
1359 to generate responses for user queries. It establishes a performance floor for our experiments
1360 and serves as a reference point for measuring the effectiveness of personalization techniques.
1361
1362 • **Profile Augmented Generation (PAG)**: This method synthesizes a textual user profile using
1363 an instruction-tuned language model (e.g., Vicuna-13B⁷), derived from the user’s interaction
1364 history. The generated profile is then prepended to each query to provide explicit contextual
1365 information about user preferences, enabling the model to generate more personalized
1366 responses without parameter updates.
1367
1368 • **Retrieval Augmented Generation (RAG)**: This technique implements the BM25 algorithm
1369 to retrieve the most relevant entries from a user’s history (with $k = 1, 2, 4$) for each query.
1370 These retrieved entries serve as supplementary context for the model during inference,
1371 allowing it to access specific historical interactions that may be relevant to the current query.
1372
1373 • **StyleVector** (Zhang et al., 2025): This framework represents a training-free approach that
1374 disentangles and encodes personalized writing style as a vector within the LLM’s activation
1375 space. StyleVector enables style-controlled generation during inference without requiring
1376 retrieval mechanisms or parameter storage. The style vector is computed as the mean
1377 difference between positive and negative exemplars, and is injected into a specific token
1378 representation at a predetermined layer. Unlike our proposed method, StyleVector depends
1379 on carefully selected sample pairs, making it particularly sensitive to data quality and
1380 quantity, and necessitates more sophisticated vector engineering.
13811382 **Tuned Methods**
13831384 • **Personalized LoRA (LoRA-P)** (Hu et al., 2021): This standard parameter-efficient fine-
1385 tuning (PEFT) methodology creates individual models that are fine-tuned on each user’s
1386 historical data. The approach produces user-specific parameter adaptations that capture
1387 individual preferences and behaviors through low-rank matrix decompositions of weight
1388 updates.
1389
1390 • **Collective LoRA (LoRA-C)** (Hu et al., 2021): This method employs LoRA fine-tuning on
1391 the collective history of all users excluding the 100 test users. The approach quantifies the
1392 benefits of collaborative training without personalization and provides a model that captures
1393 general user behaviors rather than individual preferences.
1394
1395 • **LoFiT** (Yin et al., 2024): This method identifies a subset of attention heads that are most
1396 important for learning a specific task, and then trains offset vectors to add to the model’s
1397 hidden representations at those selected heads. LoFiT requires a two-step process for each
1398 stage: *attention head selection* followed by *bias tuning*. While this approach enables targeted
1399 adaptation, it introduces additional training overhead and computational cost compared to
1400 other methods.
1401
1402 • **OPPU** (Tan et al., 2024b): This technique integrates a two-stage approach combining
1403 collaborative and personalized fine-tuning. The first stage trains on collective user data
1404 (similar to LoRA-C), while the second stage adapts these parameters to individual users
1405 (similar to LoRA-P). This dual-stage process allows the model to benefit from both collective
1406 knowledge and individual customization.1407
1408 ⁶Llama2-7B open-source model: <https://huggingface.co/meta-llama/Llama-2-7b-hf>⁷Vicuna-13B open-source model: <https://lmsys.org/blog/2023-03-30-vicuna/>

1404 **D.4 IMPLEMENTATION DETAILS**

1405
 1406 Key training settings are consistent across both training stages: we use the AdamW optimizer with
 1407 a learning rate of 1×10^{-4} , weight decay of 1×10^{-2} , and BF16 precision. Gradient clipping is
 1408 applied with a maximum norm of 0.3. Batch sizes are generally 16, with exceptions for Product
 1409 Rating (batch size 2) and Scholarly Title Generation (batch size 4) due to computational requirements.
 1410 The base LLM is trained for 3 epochs, and the personal PEFT stage for 2 epochs. For inference, we
 1411 set the temperature to 0.1, top-k sampling to 10, and top-p sampling to 0.9. PEFT-based methods
 1412 (LoRA, OPPU) utilize a LoRA rank $r = 8$ and $\alpha = 8$. For our representation-based methods,
 1413 hyperparameters such as low-rank dimensions, intervention layers, and positions were determined
 1414 via a 20-trial random search.

1415 **D.5 ARGUMENTS**

1416
 1417 This section outlines the key experimental configurations used in our study, including training argu-
 1418 ments, inference parameters, and model-specific hyperparameters for both PEFT and representation-
 1419 based methods. These configurations were carefully chosen to ensure fair comparisons while
 1420 optimizing performance across all approaches.

1421 **D.5.1 TRAINING ARGUMENTS**

1422
 1423 We maintain consistent optimization parameters across both training stages, employing the AdamW
 1424 optimizer with a learning rate of 1×10^{-4} , weight decay of 1×10^{-2} , and a warmup ratio of 0.1.
 1425 All models are trained using Brain Floating Point 16-bit precision (BF16) to balance computational
 1426 efficiency and numerical stability. We apply gradient clipping with a maximum gradient norm
 1427 of 0.3 and utilize a linear learning rate scheduler. For efficient batch processing, we implement
 1428 group_by_length=True to minimize padding overhead. The batch size is set to 16 for most tasks, with
 1429 exceptions for Product Rating (batch size=2) and Scholarly Title (batch size=4) due to their specific
 1430 computational requirements. The training epochs differ between stages: 3 epochs for the base LLM
 1431 training stage and 2 epochs for the personal PEFT training stage, unless otherwise specified for the
 1432 second stage.

1433 **D.5.2 INFERENCE ARGUMENTS**

1434
 1435 During inference, we carefully control the generation process to ensure consistent and high-quality
 1436 outputs. We set the temperature parameter to 0.1, which produces more deterministic and focused
 1437 responses by reducing randomness in the token selection process. For sampling, we employ both
 1438 top-k and top-p (nucleus) sampling strategies in combination: top-k is set to 10, limiting consideration
 1439 to only the 10 most probable next tokens, while top-p is set to 0.9, ensuring that the model samples
 1440 from tokens comprising the top 90% of the probability mass. These parameters strike a balance
 1441 between output diversity and coherence, allowing for some controlled variation while maintaining
 1442 response quality and relevance to the personalized context.

1443 **D.5.3 MODEL HYPERPARAMETERS**

1444
 1445 For our experiments, we carefully configured the hyperparameters for both parameter-efficient
 1446 fine-tuning (PEFT) and representation-based fine-tuning (ReFT) methods to ensure fair comparison.
 1447

1448 **PEFT Methods (LoRA-P/LoRA-C/OPPU)** For PEFT methods, we maintained consistent LoRA
 1449 configurations across both training stages with a rank (r) of 8 to control the dimensionality of LoRA
 1450 matrices, a scaling factor (α) of 8 to determine the magnitude of LoRA updates, and a dropout rate of
 1451 0.05 to regulate overfitting in LoRA layers. In the first stage (Base LLM Training), we applied these
 1452 configurations to all projection matrices including "q_proj", "v_proj", and "k_proj" modules, while
 1453 in the second stage (Personal PEFT Training), we focused only on the query and value projection
 1454 matrices ("q_proj" and "v_proj").

1455 **Localized Fine-Tuning (LoFiT)** Following the original LoFiT implementation (Yin et al., 2024),
 1456 we conducted a two-step process for the personalization training stage: attention head selection
 1457 followed by bias tuning. In the first step, we selected the top 160 attention heads based on their

importance scores. In the second step, we refined our focus by selecting the top 32 heads specifically and tuning bias vectors at these locations. The l_1 -regularization coefficient was set to 0.005 in the first step. Note that LoFiT was only applied during the second stage of training, as it is designed for personalized adaptation.

Representation-Based Methods (ReFT and PerFit) For our representation-based methods, we conducted a random search across 20 trials to explore various hyperparameter combinations due to computational constraints. The search space, detailed in [Table 8](#), included low-rank dimensions ranging from 4 to 64, user low-rank dimensions from 4 to 64, different intervention layer combinations (single layer "15" to multiple layers "14;15;16;17;18"), various position configurations (from "f7+l7" to "l5"), and maximum epochs ranging from 2 to 6. To ensure fair comparison between ReFT and our proposed PerFit method, we used identical hyperparameters with the exception that ReFT's rank dimension was set to the sum of our global and local ranks, maintaining equivalent parameter counts. All other hyperparameters for ReFT, including intervention layers, positions, and maximum epochs, were kept consistent with our optimal configurations. The optimal hyperparameter configurations determined through our experiments are presented in [Table 9](#)⁸.

[Table 8](#): Hyperparameter search space for representation-based methods

Hyperparameter	Values
Low-Rank Dimension	{4, 8, 16, 32, 64}
User Low-Rank Dimension	{4, 8, 16, 32, 64}
Intervention Layers (sep. w/ ',')	{"15", "14;15", "14;15;16", "14;15;16;17;18"}
Positions (Prefix+Suffix)	{"f7+l7", "f5+l5", "l7", "l5"}
Maximum Epochs	{2, 4, 6}

[Table 9](#): Optimal hyperparameter configurations for representation-based methods (*LRank*: Low-Rank dim, *ULRank*: User Low-Rank dim, *IL*: Intervention Layers, *PL*: Position Layers, *EP*: EPochs) across tasks.

Task	LRank	ULRank	IL	PL	EP
News Categorization	16	32	14;15;16	f7+l7	6
Movie Tagging	32	4	14;15	f7+l7	4
Product Rating	32	4	14;15;16	l7	4
News Headline Generation	32	4	14;15;16	l7	4
Scholarly Title Generation	32	8	15	f7+l7	4
Tweet Paraphrasing	32	16	14;15	f7+l7	4

D.6 DATASET DESCRIPTIONS AND PROMPTS

For detailed dataset composition and descriptions, please refer to LaMP⁹ ([Salemi et al., 2023](#)). OPPU presents a specific setting on the LaMP dataset, and its prompts can be found in OPPU¹⁰ ([Tan et al., 2024b](#)).

E SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we present comprehensive experimental results to complement our main findings, focusing on answering the following key research questions:

⁸Note that due to computational resource constraints, our hyperparameter search was limited to a restricted space with a maximum of 20 trials. While these configurations represent the best results found within our search space, they may not be globally optimal. There remains significant potential for further parameter reduction and performance improvement through more extensive hyperparameter exploration.

⁹LaMP benchmark official website with dataset download links: <https://lamp-benchmark.github.io/download>

¹⁰OPPU official GitHub repository containing implementation details and prompt templates: <https://github.com/TamSiuHin/OPPU>

1512 1. How stable and statistically significant are our performance improvements across multiple
 1513 runs ([Appendix E.1](#))?
 1514 2. What is the optimal layer for intervention ([Appendix E.2](#))?
 1515 3. How does our method compare with collective LoRA approaches in terms of efficiency and
 1516 effectiveness ([Appendix E.3](#))?
 1517 4. How robust is our method across different backbone models ([Appendix E.4](#))?
 1518 5. How well does our method perform in cold-start scenarios with limited collective users ([Ap-](#)
 1519 [pendix E.5](#))?
 1520 6. How transferable is the collective shift across different users and tasks ([Appendix E.6](#))?
 1521 7. How does our method affect the model’s general deployment capability ([Appendix E.7](#))?
 1522

1523 **E.1 PERFORMANCE STABILITY ANALYSIS**

1524 **Table 10** shows the mean and standard deviation of our method’s performance across multiple runs
 1525 on all tasks. Our method demonstrates statistically significant improvements ($p < 0.05$) over OPPU in
 1526 several key metrics including LaMP-2N Accuracy, LaMP-2M Accuracy and F1, LaMP-4 R-1, and
 1527 LaMP-5 R-L.

1528 Table 10: Comparison of our method and OPPU results (mean \pm std) with statistical significance
 1529 (p -value) across all tasks.

		LaMP-2N		LaMP-2M		LaMP-3	
		Acc \uparrow	F1 \uparrow	Acc \uparrow	F1 \uparrow	MAE \downarrow	RMSE \downarrow
Ours	0.818 \pm 3.2e-5	0.586 \pm 2.8e-5	0.630 \pm 2.5e-5	0.518 \pm 5.4e-5	0.179 \pm 5.2e-3	0.443 \pm 5.9e-3	
OPPU	0.810 \pm 3.2e-3	0.589 \pm 6.3e-3	0.600 \pm 3.4e-3	0.493 \pm 6.3e-3	0.179 \pm 5.2e-3	0.443 \pm 5.9e-3	
p-value	0.026	0.089	0.007	0.003	0.256	0.632	
		LaMP-4	LaMP-5	LaMP-7			
		R-1 \uparrow	R-L \uparrow	R-1 \uparrow	R-L \uparrow	R-1 \uparrow	R-L \uparrow
Ours	0.207 \pm 9.1e-5	0.186 \pm 6.2e-5	0.521 \pm 3.3e-3	0.451 \pm 2.5e-3	0.525 \pm 3.1e-3	0.472 \pm 2.3e-3	
OPPU	0.191 \pm 5.3e-3	0.171 \pm 9.6e-3	0.519 \pm 1.2e-2	0.442 \pm 6.7e-3	0.539 \pm 1.0e-2	0.483 \pm 5.2e-3	
p-value	0.024	0.055	0.089	0.011	0.401	0.119	

1547 **E.2 MORE ANALYSIS ABOUT LAYER-WISE INTERVENTION**

1548 **Table 11** presents a comprehensive comparison of model performance when interventions are applied
 1549 at different transformer layers. We observe that intervening at lower to middle layers (e.g., layers 5 and
 1550 10) yields the best results across both classification and generation tasks. Specifically, performance
 1551 peaks around layer 10 for Movie Tagging and News Categorization, and around layer 5 for News
 1552 Headline Generation. As the intervention moves to higher layers, performance consistently declines,
 1553 with a dramatic drop at the final layer 31, where the model fails to properly format and respond to the
 1554 query according to the specified instructions. This trend suggests that user-specific information is
 1555 most effectively injected and utilized in the earlier and middle layers of the model, while late-layer
 1556 interventions may disrupt the learned representations or fail to propagate personalization signals.
 1557 These findings highlight the importance of carefully selecting the intervention layer to maximize the
 1558 benefits of representation-level personalization and align with our empirical layer-wise study about
 1559 the low-rank pattern and collective shift in [Appendix B.5](#).

1560
 1561 Our layer-wise intervention analysis reveals a "sweet spot" in transformer architecture: per-
 1562 sonalization signals are most effective when injected in the middle layers (5-10), while higher-
 1563 layer interventions can be detrimental. This finding not only guides optimal intervention
 1564 placement but also suggests that personalization is fundamentally a mid-level representation
 1565 learning problem, rather than a high-level semantic or low-level feature adaptation task.

1566 Table 11: Layer-wise intervention results across three representative tasks: Movie Tagging (LaMP-
 1567 2M), News Categorization (LaMP-2N), and News Headline Generation (LaMP-4). For classification
 1568 tasks, we report Accuracy (Acc) and F1 score; for the generation task, we report ROUGE-1 (R-1) and
 1569 ROUGE-L (R-L). Each row corresponds to interventions at a specific transformer layer. This table
 1570 illustrates how the effectiveness of personalization varies with the intervention layer. Best results are
 1571 highlighted in **bold**.

Layer	Movie Tagging		News Categorization		News Headline Gen.	
	Acc ↑	F1 ↑	Acc ↑	F1 ↑	R-1 ↑	R-L ↑
0	0.598	0.479	0.809	0.599	0.207	0.186
5	0.630	0.522	0.808	0.593	0.208	0.187
10	0.634	0.523	0.817	0.603	0.203	0.183
15	0.616	0.506	0.805	0.587	0.190	0.171
20	0.609	0.486	0.796	0.569	0.170	0.153
25	0.590	0.468	0.795	0.560	0.161	0.145
31	0.000	0.000	0.000	0.000	0.031	0.030

1582
 1583
 1584
 1585 Table 12: Comparison of different personalization approaches across four representative tasks. We
 1586 evaluate our method (`PerFit`), collective LoRA with `PerFit-P` where the first-stage fine-tuning
 1587 layers match `PerFit`’s intervention layers (LoRA-C (partial)), and collective LoRA with `PerFit-P`
 1588 where all layers are fine-tuned (LoRA-C (all)). The *Param. Ratio* shows the collective parameter
 1589 ratio between the `PerFit` and the LoRA-C (all). Best results are highlighted in **bold**.

Method	LaMP-2N		LaMP-2M	
	Acc ↑	F1 ↑	Acc ↑	F1 ↑
PerFit	0.818	0.586	0.630	0.518
LoRA-C (partial) + PerFit-P	0.788	0.582	0.604	0.467
LoRA-C (all) + PerFit-P	0.791	0.584	0.640	0.529
<i>Param. Ratio</i>	1/16		1/12	

Method	LaMP-4		LaMP-7	
	R-1 ↑	R-L ↑	R-1 ↑	R-L ↑
PerFit	0.207	0.186	0.525	0.472
LoRA-C (partial) + PerFit-P	0.193	0.173	0.509	0.461
LoRA-C (all) + PerFit-P	0.205	0.186	0.561	0.515
<i>Param. Ratio</i>	1/8		1/12	

1609 E.3 COLLECTIVE LORA AND PERSONALIZED PERFIT

1610
 1611 Table 12 presents a comprehensive comparison between our `PerFit` approach and two variants
 1612 of collective LoRA with `PerFit-P`. The results reveal several interesting patterns: First, while
 1613 LoRA-C (all) + `PerFit-P` achieves the best performance across most metrics, the improvement
 1614 over our original `PerFit` method is relatively modest, particularly for News Categorization and
 1615 News Headline Generation. This suggests that our layer-wise intervention approach already captures
 1616 most of the benefits of personalization. Second, LoRA-C (partial) + `PerFit-P` generally performs
 1617 worse than both other approaches, indicating that selective layer fine-tuning may not be as effective
 1618 as either full fine-tuning or our targeted intervention approach. Finally, the parameter ratios show
 1619 that our method achieves competitive performance while using significantly fewer parameters (8-16x
 fewer), highlighting its efficiency in terms of both computational resources and storage requirements.

1620
1621
1622
1623
1624

This finding challenges the conventional wisdom that more parameters necessarily lead to better personalization, suggesting that strategic intervention at key layers may be the key to efficient and effective model adaptation.

1625
1626

E.4 BACKBONE ABLATION STUDY

1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

To give a more comprehensive understanding of our method’s effectiveness, we conducted an ablation study using different backbone models, including LLaMA3-8B, Qwen2.5-7B, LLaMA3-3B, and LLaMA3-1B. We compared our method (`PerFit`) against other personalization approaches such as LoRA-C, LoRA-P, and OPPU across four representative tasks: Movie Tagging, News Categorization, News Headline Generation, and Tweet Paraphrasing. For simplicity, we maintained consistent hyperparameter configurations across all backbone models in our `PerFit` experiments: we set both the low-rank dimension and user low-rank dimension to 32, applied interventions at layers 7, 9, and 11, used both front and last 7 positions (f7+l7) for intervention, and trained for 2 epochs. We choose these settings considering the balance between performance and computational efficiency, which can be further optimized for each specific backbone. The uniformity in hyperparameters ensures that performance differences are attributable to the backbone model rather than tuning variations. This is also a practical choice for followers who may not have the resources for extensive hyperparameter tuning for each model.

1640
1641
1642
1643

The results, summarized in [Table 13](#). Notably, the performance gap between `PerFit` and other methods widens as the model size decreases, indicating that our approach is particularly effective for smaller models where parameter efficiency is crucial. This suggests that `PerFit` not only enhances personalization but also maintains robustness across varying model capacities.

1644
1645
1646

Table 13: Performance comparison across different backbone models and personalization methods. Trainable parameters and percentages are also reported.

Method	LaMP-2M		LaMP-2N		LaMP-4		LaMP-7		#Param	%Param
	Acc	F1	Acc	F1	R-1	R-L	R-1	R-L		
LLaMA3-8B										
LoRA-C	0.537	0.494	0.798	0.554	0.201	0.181	0.553	0.501	4.72M	0.059%
LoRA-P	0.212	0.125	0.539	0.333	0.094	0.086	0.136	0.120	3.41M	0.042%
OPPU	0.627	0.529	0.802	0.587	0.209	0.188	0.494	0.442	8.13M	0.051%
<code>PerFit</code>	0.644	0.550	0.818	0.612	0.201	0.180	0.533	0.487	1.57M	0.010%
Qwen2.5-7B										
LoRA-C	0.429	0.384	0.792	0.519	0.177	0.159	0.526	0.469	3.44M	0.045%
LoRA-P	0.485	0.305	0.781	0.560	0.164	0.147	0.446	0.400	2.52M	0.033%
OPPU	0.567	0.451	0.789	0.555	0.185	0.166	0.524	0.473	5.96M	0.039%
<code>PerFit</code>	0.612	0.508	0.808	0.612	0.182	0.164	0.532	0.482	1.38M	0.009%
LLaMA3-3B										
LoRA-C	0.438	0.401	0.783	0.510	0.175	0.156	0.534	0.477	3.21M	0.100%
LoRA-P	0.163	0.063	0.688	0.501	0.124	0.110	0.201	0.171	2.29M	0.071%
OPPU	0.579	0.464	0.792	0.566	0.185	0.165	0.512	0.460	5.51M	0.086%
<code>PerFit</code>	0.644	0.550	0.818	0.612	0.201	0.180	0.533	0.487	1.18M	0.018%
LLaMA3-1B										
LoRA-C	0.402	0.349	0.771	0.491	0.147	0.132	0.524	0.474	1.18M	0.095%
LoRA-P	0.105	0.041	0.490	0.309	0.075	0.067	0.160	0.143	0.85M	0.069%
OPPU	0.529	0.405	0.780	0.545	0.157	0.141	0.376	0.338	2.03M	0.082%
<code>PerFit</code>	0.563	0.448	0.796	0.577	0.146	0.130	0.500	0.456	0.79M	0.032%

1669

1670

E.5 COLD-START WITH LIMITED COLLECTIVE USERS

1671
1672
1673

To evaluate our method’s robustness in cold-start scenarios and data-scarce conditions, we conducted experiments with limited collective users in the first training stage. This setting simulates real-world

1674 scenarios where new users arrive and only limited collective data is available for learning the initial
 1675 representation shift. We compared performance with varying numbers of collective users (10 and
 1676 100) against OPPU across multiple tasks.
 1677

1678
 1679 Table 14: Performance comparison under limited collective users. Results show both OPPU and our
 1680 method (*PerFit*) with 10 and 100 users in the first training stage.
 1681

Method	LaMP-2N		LaMP-2M		LaMP-4		LaMP-7	
	Acc	F1	Acc	F1	R-1	R-L	R-1	R-L
10 (OPPU)	0.783	0.569	0.168	0.075	0.197	0.177	0.142	0.136
10 (<i>PerFit</i>)	0.800	0.589	0.535	0.398	0.199	0.179	0.465	0.418
100 (OPPU)	0.801	0.600	0.538	0.385	0.197	0.177	0.472	0.428
100 (<i>PerFit</i>)	0.812	0.598	0.587	0.464	0.201	0.181	0.476	0.429

1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690 As shown in Table 14, our method demonstrates remarkable resilience under data scarcity. Even
 1691 with only 10 collective users, *PerFit* maintains stable performance across all tasks, while OPPU
 1692 experiences significant degradation, particularly in Movie Tagging (LaMP-2M) and Tweet Paraphras-
 1693 ing (LaMP-7). This robustness can be attributed to our approach’s focus on learning approximate
 1694 common biases in the representation space during the first stage, rather than attempting to capture
 1695 fine-grained user patterns.
 1696

1697 The results suggest that our method is particularly well-suited for real-world applications where
 1698 collecting extensive collective user data may be challenging or impractical. The stable performance
 1699 under limited data conditions also indicates that the learned representation shifts effectively capture
 1700 fundamental patterns that generalize well to new users.
 1701

1702 Beyond the number of collective users, we further investigate how sensitive *PerFit* is to the specific
 1703 composition and behavioral diversity of the Stage-1 user set. To this end, we randomly sample five
 1704 different user groups for Stage-1 (each containing the same number of users), learn a collective shift
 1705 for each group, and then fine-tune on a fixed set of unseen users in Stage-2. Table 15 reports the
 1706 downstream performance for Movie Tagging, News Categorize, and Tweet Paraphrase across these
 1707 user batches.
 1708

1709 Table 15: Sensitivity of *PerFit* to Stage-1 collective user composition. We report results on a fixed
 1710 set of unseen users when the Stage-1 collective shift is learned on five different randomly sampled
 1711 user batches (each with the same number of users). The variance across batches is extremely small,
 1712 indicating that *PerFit* is robust to the specific choice of collective users.
 1713

User batch	Movie Tagging		News Categorize		Tweet Paraphrase	
	Acc	F1	Acc	F1	R-1	R-L
0	0.600	0.478	0.804	0.588	0.482	0.440
1	0.604	0.485	0.808	0.600	0.489	0.445
2	0.601	0.482	0.804	0.591	0.488	0.446
3	0.599	0.478	0.809	0.595	0.482	0.442
4	0.597	0.476	0.810	0.592	0.475	0.433
Variance	5.0×10^{-6}	1.1×10^{-5}	6.0×10^{-6}	1.7×10^{-5}	2.5×10^{-5}	2.1×10^{-5}

1720
 1721
 1722 These results show that the performance of *PerFit* remains remarkably stable across different
 1723 Stage-1 user batches, with only negligible variance in both classification and generation metrics.
 1724 This suggests that the learned collective shift captures a dominant, population-level direction in
 1725 the representation space, which is preserved even when the underlying user subset is resampled.
 1726 Consequently, Stage-2 personalization operates on top of a robust shared structure, and *PerFit* is
 1727 not overly sensitive to the particular composition or behavioral distribution of the collective user set,
 1728 consistent with our analysis of the representation geometry in Section 3 and Appendix B.6.
 1729

1728 **E.6 TRANSFERABILITY OF THE COLLECTIVE SHIFT ACROSS USERS AND TASKS**
1729

1730 The "collective shift" in our framework captures a robust, population-level personalization trend that
 1731 generalizes across both users and tasks, rather than merely acting as a domain-specific adaptation. This
 1732 is primarily evidenced by its transferability: the Stage-1 collective shift directly benefits previously
 1733 unseen users in Stage-2 without retraining, and further proves effective even when transferred across
 1734 different tasks. As shown in Table 16, a collective shift learned on one task remains functional for
 1735 distinct downstream tasks, suggesting it encodes fundamental personalization characteristics beyond
 1736 single-dataset statistics.

1737 Crucially, this transfer behavior is consistent with the geometric structure of the learned represen-
 1738 tations analyzed in Appendix B.6. We observe that tasks located closer in the δ -space (e.g., Movie
 1739 Tagging and News Categorization) exhibit smoother transfer, whereas pairs with large geometric
 1740 separation (e.g., Tweet Paraphrase and News Headline) show a more pronounced performance drop.
 1741 This alignment confirms that the collective shift captures structural personalization patterns that are
 1742 often shared across related domains.

1743
1744 Table 16: Cross-task transferability of the collective shift. The rows indicate the task used for Stage-1
1745 training, while the columns indicate the task used for Stage-2 training and evaluation.

1747 Stage-1 Task	1748 Movie Tagging		1749 News Categorize		1750 News Headline		1751 Tweet Paraphrasing	
	1752 Acc	1753 F1	1754 Acc	1755 F1	1756 R-1	1757 R-L	1758 R-1	1759 R-L
1759 Movie Tagging	0.636	0.520	0.815	0.591	0.194	0.174	0.466	0.420
1760 News Categorize	0.545	0.408	0.818	0.588	0.195	0.175	0.467	0.419
1761 News Headline	0.540	0.381	0.814	0.586	0.207	0.186	0.212	0.203
1762 Tweet Paraphrase	0.521	0.364	0.795	0.579	0.196	0.176	0.490	0.447

1763 These results show that the Stage-1 collective shift exhibits non-trivial cross-task transferability,
 1764 suggesting a connection to task-level personalization characteristics rather than a single dataset.
 1765 This observation is consistent with our δ -vectors analysis and points to an interesting direction for
 1766 future work on understanding when and how such collective shifts transfer across tasks by exploring
 1767 benchmarks with more complex and diverse tasks.

1768 **E.7 IMPACT OF PERSONALIZATION INTERVENTIONS ON GENERAL CAPABILITIES**

1769 PerFit injects low-rank personalization interventions at multiple transformer layers, including rel-
 1770 atively early layers, which raises a natural concern about potential interference with the model's
 1771 generic language understanding and reasoning abilities. To empirically assess this, we evaluate frozen
 1772 personalized models (after Stage-2) on widely used general-purpose benchmarks, including com-
 1773 monsense reasoning tasks (BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, OBQA)
 1774 and the GLUE benchmark . The personalized models are obtained by applying PerFit to different
 1775 user-facing datasets (Movie Tagging for Qwen2.5-7B and Tweet Paraphrase for Llama-2-7B), while
 1776 the underlying backbone weights remain frozen after Stage-2.¹¹

1777 Formally, we compare the following two settings: (i) **Base**, the original pretrained model without any
 1778 personalization, and (ii) **PerFit**, the same backbone with the learned low-rank interventions activated
 1779 after Stage-2 personalization. As summarized in Tables 17 and 18, the performance differences
 1780 between Base and PerFit are consistently negligible across all benchmarks, with fluctuations well
 1781 within typical evaluation noise. These results indicate that PerFit's low-rank interventions effec-
 1782 tively preserve the backbone's generic capabilities in commonsense reasoning and natural language
 1783 understanding, while still enabling strong user-level personalization on downstream tasks.

1784 Overall, these evaluations provide empirical evidence that multi-layer personalization via PerFit does
 1785 not come at the expense of the model's generic capabilities on standard benchmarks. The learned
 1786 interventions remain sufficiently localized in representation space, enabling user-specific adaptation
 1787 while preserving the backbone's broader linguistic and reasoning competence.

1788
1789 ¹¹We follow the standard evaluation protocol and prompts of each benchmark.

1782 Table 17: Impact of PerFit personalization on commonsense reasoning benchmarks (Accuracy \uparrow).
 1783 PerFit is applied to user-level datasets (Movie Tagging and Tweet Paraphrase), and the resulting
 1784 personalized models are evaluated on standard commonsense tasks. Performance differences between
 1785 Base and PerFit are negligible.

Model	BoolQ	PIQA	SIQA	HellaS	WinoG	ARC-e	ARC-c	OBQA	Avg.
Qwen2.5-7B (Movie Tagging)									
Base	0.846	0.787	0.547	0.600	0.730	0.804	0.479	0.336	0.641
PerFit	0.846	0.787	0.548	0.600	0.732	0.804	0.482	0.338	0.642
Llama-2-7B (Tweet Paraphrase)									
Base	0.777	0.781	0.461	0.572	0.690	0.763	0.434	0.314	0.599
PerFit	0.764	0.784	0.459	0.571	0.691	0.759	0.424	0.316	0.596

1795 Table 18: Impact of PerFit personalization on GLUE tasks (Accuracy \uparrow , CoLA is reported as MCC,
 1796 STS-B as Pearson). Personalized Qwen2.5-7B (Movie Tagging) maintains similar performance to the
 1797 base model across all tasks.

Model	SST-2	CoLA	MRPC	QQP	QNLI	MNLI	RTE	Avg.
Base	0.919	0.257	0.672	0.860	0.648	0.621	0.812	0.684
PerFit	0.919	0.256	0.672	0.860	0.648	0.620	0.809	0.683

F BROADER IMPACTS

1806 Personalized Large Language Models (LLMs), particularly through methods like fine-tuning in
 1807 representation space, offer transformative potential for human-computer interaction and information
 1808 access. This approach, by subtly adapting LLMs via their underlying representation space rather
 1809 than full model retraining, significantly enhances resource efficiency and scalability, making deep
 1810 personalization feasible for a broader range of applications and users. This personalized tailoring
 1811 promises to revolutionize user experience by matching communication style, vocabulary, and level of
 1812 detail to individual needs, improving efficiency in tasks, and fostering hyper-personalized learning.
 1813 Such adaptation inherently boosts accessibility, bridging communication gaps for diverse users.

1814 However, these advancements come with substantial ethical and societal challenges. Personalization,
 1815 even when achieved in representation space, risks implicitly encoding sensitive user information,
 1816 raising significant privacy and data security concerns through potential re-identification. It can
 1817 also inadvertently amplify existing biases within training data, leading to skewed or discriminatory
 1818 information delivery. Furthermore, by constantly curating content to individual preferences, personal-
 1819 alized LLMs can create restrictive "filter bubbles" and "echo chambers," limiting exposure to diverse
 1820 viewpoints and potentially enabling sophisticated, personalized misinformation or manipulation
 1821 campaigns that could subtly erode user autonomy. The opaque nature of these models, further
 1822 compounded by personalization, also complicates transparency and explainability.

1823 Addressing these critical impacts requires a proactive, multi-faceted approach. Robust privacy-
 1824 preserving techniques, comprehensive bias detection and mitigation strategies, and transparent user
 1825 controls are essential. Developing clear ethical guidelines and fostering interdisciplinary collaboration
 1826 among researchers, ethicists, and policymakers are crucial steps to ensure that PLLMs are developed
 1827 and deployed responsibly, maximizing their societal benefits while minimizing potential harms.

1836 **G USE OF LLMs**
18371838 This work utilizes large language models (LLMs), including ChatGPT [https://chat.openai.](https://chat.openai.com/)
1839 <https://claude.ai/chats>, as general-purpose tools for writing
1840 assistance. These tools were employed for polishing text, correcting formatting errors, and checking
1841 grammar throughout the writing process.1842 This use of LLMs complies with the ICLR 2026 Author Guide [https://iclr.cc/](https://iclr.cc/Conferences/2026/AuthorGuide)
1843 [Conferences/2026/AuthorGuide](https://iclr.cc/Conferences/2026/AuthorGuide), ensuring adherence to the conference's guidelines for
1844 AI assistance in academic writing.
1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889