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ABSTRACT

Personalization has become a pivotal field of study in contemporary intelligent
systems. While large language models (LLMs) excel at general knowledge tasks,
they often struggle with personalization, i.e., adapting their outputs to individual
user expectations. Existing approaches that steer LLM behavior to meet users’
implicit preferences and behavior patterns, primarily relying on tune-free methods
(e.g., RAG, PAG) or parameter fine-tuning methods (e.g., LoRA), face challenges
in effectively balancing effectiveness and efficiency. Moreover, the mechanisms
underlying personalized preferences remain underexplored. To address these
challenges, we first uncover key patterns of user-specific information embedded in
the representation space. Specifically, we find that (1) personalized information
lies within a low-rank subspace represented by vectors, and (2) these vectors
demonstrate both a collective shift shared across users and a personalized shift
unique to each individual user. Building on these insights, we introduce PerFit,
a novel two-stage solution that directly fine-tunes interventions in the hidden
representation space by addressing both collective and user-specific shifts, thereby
achieving precise steering of LLM with minimal parameter overhead. Experimental
results demonstrate that PerFit delivers strong performance across six datasets
while cutting the number of parameters by an average of 92.3% compared to
the state-of-the-art method. The code is available at the anonymous repository.

1 INTRODUCTION

Large language models (LLMs) demonstrate remarkable abilities in text generation and complex
reasoning (Radford et al.; Chang et al., 2024; Hu et al., 2024; Zhang et al., 2024d;c; Zhu et al., 2024;
Wang et al., 2023; 2024a), thanks to comprehensive pre-training on diverse and large-scale datasets
that equip them with broad general knowledge. Nonetheless, their optimization for wide-ranging
tasks means they often struggle to adapt to individual user preferences. For instance, different users
may expect distinct outputs even when given the same input. Accordingly, integrating user tastes and
preferences into LLMs has propelled personalized large language models (PLLMs) to the forefront of
research (Liu et al., 2025; Chen, 2023; Zhang et al., 2024e; Liu et al., 2024). In real-world scenarios,
user preferences are often implicit, like writing style and tone (Salemi et al., 2023; Tan et al., 2024b;
Zhuang et al., 2024). Enabling LLMs to grasp this implicit information and generalize effectively to
user queries remains a core research challenge for PLLMs.

Existing techniques can be broadly categorized into tune-free methods, such as retrieval-augmented
generation (RAG) (Fan et al., 2024) and profile-augmented generation (PAG), and parameter-
efficient fine-tuning methods (PEFT), like low-rank adaptation (LoRA) (Hu et al., 2021; Yang et al.,
2024). Non-tuned methods (Madaan et al., 2022; Salemi et al., 2023; Zhuang et al., 2024) emphasize
efficiency and flexibility by leveraging external information or user profiles without modifying model
parameters, but often struggle to achieve high personalization and generalization capability, especially
when retrieved contexts contain noise that is misaligned with the user’s real intent (Shi et al., 2023).
In contrast, parameter fine-tuning methods (Tan et al., 2024b;a; Wagner et al., 2024; Qi et al., 2024)
update model parameters based on user data, enabling deeper and better personalization. Taking
into account both model performance and the protection of user privacy, a prevalent approach is to
allocate an individual PEFT module for each user (Tan et al., 2024b;a; Qi et al., 2024; Wagner et al.,
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Figure 1: Illustration of our personalized fine-tuning method in representation space PerFit:
(a) instead of tuning parameters, PerFit directly fine-tunes the hidden representations, where
represents fine-tuning with learnable parameters. (b) Experimental results show PerFit similarly
strong performance on six datasets while reducing parameters by 92.3% on average compared to
OPPU (Tan et al., 2024b).

2024; Gao & Zhang, 2024). LoRA still requires millions of parameters for good performance, though
it reduces parameter counts (Wu et al., 2024; Cho et al., 2024; Guo et al., 2024). This leads to high
communication costs and limited scalability in edge-cloud setups—where the base LLM runs in the
cloud and personalized parameters reside on user devices such as phones (Qi et al., 2024; Wagner
et al., 2024) (Appendix A). Therefore, striking a balance between effectiveness and efficiency
remains a significant challenge for existing methods.

To solve this problem, we take the initial step of investigating how personalized information is
captured by LLMs, thereby laying the groundwork for our alternative lightweight fine-tuning solution.
This effort is motivated by recent advances in activation engineering (Wang et al., 2024c; Arditi et al.;
Turner et al., 2023; Zhang et al., 2024b), which allows precise control of LLM outputs by targeting
internal representation interventions related to attributes like harmlessness (Bolukbasi et al., 2016;
Park et al.), truthfulness (Li et al., 2023), and humor (Von Rütte et al., 2024). Therefore, the key
question we investigate in this paper is:

Does personalized information induce discernible patterns in LLMs’ hidden representation
space that enable efficient guidance of model behavior?

We conduct exploratory experiments to uncover personalized information encoded in the hidden
representation space, named δ-vectors (Section 3), revealing two key observations. (1) The δ-vectors
can be effectively represented within a low-dimensional orthogonal subspace (Observation 1). This
suggests learning a low-rank subspace to get interventions representing user information in the
representation space. (2) Vectors for all users in the low-rank subspace exhibit a clear collective
shift, characterized by a common direction of deviation. Based on the collective shift, the vectors
subsequently disperse towards multiple directions for different users (Observation 2). This suggests a
two-stage approach to learn the collective and personalized shifts, respectively.

The intriguing findings inspire our personalized fine-tuning approach, which directly fine-tunes
LLMs in the low-rank hidden representation subspace rather than model parameters, named PerFit.
Specifically, we first train the collective shift using data from all users, and then, based on this, learn
the personalized shifts for each user. To the best of our knowledge, this is the first work to fine-
tune LLMs in representation space tailored to personalized LLM tasks. The learned collective
shift, combined with the personalized shift, is directly added to the model’s hidden representation
space as an intervention to steer the model’s output toward fulfilling individual users’ personalized
requirements. Experimental results demonstrate that PerFit delivers strong performance across
six personalization datasets while cutting the number of parameters by an average of 92.3%
compared to the LoRA-based methods.
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2 PRELIMINARY

2.1 PROBLEM STATEMENT

Let U = {ui}Ni=1 be a set of N users. Each user ui is associated with a set of input queries
Qi = {q(i)j }ni

j=1 and corresponding desired outputs Yi = {y(i)j }ni
j=1, which implies the user’s

personalized preferences and expectations. Here, ni denotes the number of queries for user ui. The
base (i.e., non-personalized) LLM, denoted by M0, generates generic outputs ŷ0j := M0(q

(i)
j ) for any

input query qij ∈ Qi. Suppose Θ0 denotes the base model parameters and Θi denotes the parameters
for user ui, and the personalized parameters increment as ∆Θi := Θi \Θ0.

Our objective is to adapt M0 into personalized models Mi for each user ui such that for every q
(i)
j ,

the personalized output ŷ(i)j = Mi(q
(i)
j ) closely matches the desired output y(i)j while minimizing

parameter overhead |∆Θi|. Formally, this can be expressed as minimizing the aggregate loss:

min
{Mi}N

i=1

N∑
i=1

Mi∑
j=1

L
(
Mi(q

(i)
j ), y

(i)
j

)
,

where L(·, ·) measures the discrepancy between model output and user target. This formulation
encapsulates personalized fine-tuning of the base LLM to PLLM.

2.2 HIDDEN STATE REPRESENTATIONS AND ACTIVATION STEERING

Hidden State Representation. Our work concentrates on decoder-only transformer architec-
tures (Liu et al., 2018). For the base model M0, each layer ℓ ∈ L comprises the multi-head
attention and feed-forward modules MHAℓ

0 and FFNℓ
0. Thus, the model can be expressed as:

M0 = ⃝ℓ∈L

(
FFNℓ

0 ◦MHAℓ
0

)
, ⃝ denotes the composition of functions applied in sequence. The

parameter set Θ0 is partitioned accordingly: Θ0 =
⋃

ℓ∈L

(
ΘMHAℓ

0 ∪ΘFFNℓ

0

)
, where

⋃
denotes the

union of sets. The layer ℓ of the base model M0 updates the hidden state hℓ
t ∈ Rd of the token t as

follows:
hℓ+1
t = hℓ

t + FFNℓ
0

(
hℓ
t +MHAℓ

0(h
ℓ
1:t)

)
,

where MHAℓ
0 attends causally over tokens 1 through t, d is the hidden dimension.

Activation Steering. Recent studies have explored how certain features are linearly represented
in model hidden representation space utilizing activation steering (Tigges et al., 2023; Zhang et al.,
2024b; Arditi et al.), such as harmlessness (Bolukbasi et al., 2016; Park et al.), truthfulness (Li
et al., 2023), and humor (Von Rütte et al., 2024). These feature directions serve as effective causal
mechanisms, enabling precise control over model behavior and outputs via simple linear interventions.
Activation steering adds an intervention (i.e., vector) vℓ ∈ Rd to the hidden state at layer ℓ, modifying
the model’s behavior: h̃ℓ

t = hℓ
t +vℓ. The next layer uses h̃ℓ

t instead of hℓ
t : h

ℓ+1
t = h̃ℓ

t +FFNℓ
(
h̃ℓ
t +

MHAℓ(h̃ℓ
1:t)

)
. This can be applied at any layer(s) to steer the model’s output.

3 UNCOVERING PERSONALIZATION IN REPRESENTATION SPACE

Building on the insights of activation steering (Section 2.2), in this section, we aim to investigate
whether patterns related to personalized information exist within the hidden representation space.
If so, we can develop methods that leverage these patterns to guide personalization directly in
representation space, achieving a better balance between effectiveness and parameter efficiency.

3.1 EXTRACTING PERSONALIZATION VECTORS

Following the analysis paradigm of activation engineering (Arditi et al.), for each user ui ∈ U , given
their original query set Qorig

i , we enhance each query by incorporating the most relevant personalized

3
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Figure 2: (1) The first row depicts the low-rank vector representations projected onto the first two
principal components, with mean vectors indicated by yellow stars, demonstrating directional bias in
the reduced-dimensional space. (2) The second row comprises violin plots of the coordinate value
distributions across the first five feature dimensions. Here, the zeroth dimension shows a significant
mean shift from zero, indicating a shared directional bias (i.e., collective shift) among users, whereas
the remaining dimensions have means near zero with relatively large standard deviations, reflecting
individual user variability (i.e., personalized shifts).

information. The resulting personalization-enhanced query set is denoted as Qper
i . At layer ℓ, let

h
(ℓ)
t (q) ∈ Rd be the hidden state (residual stream activation) corresponding to the last token t

of the input query q. The mean residual representations for the original and personalized inputs
are defined as m(ℓ)

i = 1

|Qorig
i |

∑
q∈Qorig

i
h
(ℓ)
t (q),n

(ℓ)
i = 1

|Qpers
i |

∑
q∈Qpers

i
h
(ℓ)
t (q). The difference-in-

means (Belrose, 2024) personalization vector at the layer ℓ is then v
(ℓ)
i = n

(ℓ)
i −m

(ℓ)
i , which captures

the principal change in the model’s internal representation induced by personalized information of
user i.

Table 1: Minimum feature dimensions r needed
to explain 0.8 and 0.9 of variance. ‰ represents
the r as a per mille of total dimensions.

0.8 0.9 0.95

r ‰ r ‰ r ‰

LaMP-2N 1 3.65 4 14.60 20 72.90
LaMP-5 4 0.98 40 9.77 203 49.56
LaMP-7 3 0.73 32 7.81 177 43.21

Note that personalized information, unlike
clear-cut traits such as harmlessness or helpful-
ness that can be manipulated via a single vector,
is inherently more complex and diverse. There-
fore, we consider each user a special personality
and analyze all users together to capture both col-
lective and personalized aspects. The collection
of v(ℓ)

i for all users i ∈ U is called δ-vectors in
this paper for simplicity. More details are shown
in Appendix B.1.

3.2 OBSERVATIONS

Based on the δ-vectors, which isolate the personalized information of all users, we proceed to uncover
the underlying personalization patterns. Below are the key observations.

Observation 1 (Low-rank Subspace). The δ-vectors can be effectively represented within
a low-dimensional orthogonal subspace, significantly reducing the original feature space
dimensionality.

4
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We performed singular value decomposition (SVD) (Stewart, 1993) on the obtained δ-vectors to
determine the intrinsic rank required to represent them with minimal loss of information. Table 1
reveals that the effective rank is significantly lower than the full dimensionality of the feature matrix,
accounting for approximately 0.073% of the original dimensions. This observation suggests that
the δ-vectors vectors lie predominantly within a low-dimensional orthogonal subspace, suggesting
substantial redundancy in the high-dimensional representations.

Observation 2 (Collective and Personalized Shifts). The δ-vectors exhibit a collective shift,
accompanied by personalized shifts reflecting individual variability.

We further plotted the mean and standard deviation of each dimension within the low-rank subspace
based on the SVD. As shown in Figure 2, there is a significant shift with small variance in the
low-rank subspace, indicating a collective shift across all vectors.

4 METHODOLOGY: PERFIT

These findings have practical implications: understanding and isolating personalized representations
enables the development of more efficient, lightweight fine-tuning methods with reduced compu-
tational demand. Leveraging the observations, the personalized method PerFit is proposed to
directly fine-tune the representation low-rank subspace and the intervention vector, rather than
the model parameters. Inspired by the representation fine-tuning paradigm (Wu et al., 2024), we
propose a novel two-stage formulation specifically designed to achieve the personalization goal 1.

PerFit — Personalized Fine-Tuning in Representation Space [Algorithm 1]

ΦPerFit(h) = (ϕ∆Θ(2) ◦ ϕ∆Θ(1)) (h), (1)
where for s = 1, 2,

ϕ∆Θ(s) : Rd → Rd, ϕ∆Θ(s)(x) := x+R(s)⊤(W(s)x+ b(s) −R(s)x
)︸ ︷︷ ︸

intervention vector v(s)

. (2)

Here, h,x ∈ Rd and ◦ is the functional composition, and ∆Θ(s) =
(
R(s),W(s),b(s)

)
are

trainable parameter sets with R(s),W(s) ∈ Rrs×d, b(s) ∈ Rrs , where, rs ≪ d, R(s) is a
row-wise orthogonal matrix satisfying R(s)(R(s))⊤ = Irs .

Intuitive Explanation. PerFit is designed to align with our key observations (Figure 3).
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(a) Stage 1: Collective shift (b) Stage 2: Personalized shifts

Figure 3: Illustration of two-stage personalized fine-tuning PerFit. (a) The first stage tunes on
all users to obtain the collective shift. (b) The second-stage intervention vector is learned from the
intervened representation of stage 1 and fine-tuned individually for each user.

1For simplicity, we remove the layer index ℓ in the notation.
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• R is an orthogonal matrix that projects vectors from a high-dimensional space onto a low-
dimensional subspace, consistent with the low-rank subspace observation (Observation 1).
Its transpose, R⊤, performs the inverse mapping by projecting vectors from the low-
dimensional subspace back to the original high-dimensional space. The intervention vector
v corresponds to the δ-vectors , and the model directly learns these vectors during training.

• Two-stage fine-tuning functions ϕ∆Θ(2) ◦ ϕ∆Θ(1) are designed based on Observation 2 that
∆Θ(1) is tuned by all users’ data U to get the collective shift for the first stage. Then, we
fine-tune ∆Θ

(2)
i for each user ui ∈ U to get the personalized shifts. More explanations and

analysis are shown in Appendix C .

In addition to the intuitive design guided by our observations, we theoretically show that LoRA-based
methods, due to structural constraints of the framework, cannot in general achieve the desired
formulation of collective and personalized representation shifts. (Details are in Appendix C.3).

5 EXPERIMENTS

We conduct extensive experiments to evaluate our proposed PerFit method across six diverse tasks
from the LaMP benchmark. Our evaluation mainly focuses on the following three research questions:
RQ1. How does PerFit perform compared to state-of-the-art personalized approaches in terms
of both effectiveness and efficiency? (Section 5.2) RQ2. To what extent does PerFit improve
computational and memory efficiency while maintaining competitive performance? (Section 5.3)
RQ3. How does our two-stage training approach contribute to the model’s performance, and what
is the impact of each stage? (Section 5.4) Beyond the primary research questions, we further
examine several supplementary aspects of our method, such as stability, extended ablation studies,
and performance in cold-start scenarios (Appendix E).

5.1 EXPERIMENTAL SETUP

This section outlines the experimental settings for evaluating our proposed PerFit method. We
describe the datasets, baseline models, and key implementation parameters used in our evaluation.
For additional setup details, please refer to the corresponding subsections in Appendix D.

Datasets. We conduct experiments on six diverse tasks from the LaMP benchmark (Salemi et al.,
2024b): three classification tasks (News Categorization, Movie Tagging, Product Rating) and three
generation tasks (News Headline Generation, Scholarly Title Generation, Tweet Paraphrasing).
Following established practices (Tan et al., 2024b), data from approximately 100 users with the most
extensive interaction histories for each task constitute our test set, while the remaining data is used
for training the base (i.e., non-personalized) LLM. Details are provided in Appendix D.1.

Baselines. PerFit is compared against a range of baselines, all implemented using Llama2-7B
as the base model. These include Non-Tuned Methods: Non-Personalized, Profile Augmented
Generation (PAG) (Richardson et al., 2023), Retrieval Augmented Generation (RAG) (Salemi et al.,
2024b) (with k ∈ {1, 2, 4} retrieved documents), and StyleVector (Zhang et al., 2025); and Tuned
Methods: Collective LoRA (Hu et al., 2021) (LoRA-C), Personalized LoRA (LoRA-P), LoFiT (Yin
et al., 2024), OPPU (Tan et al., 2024b). Details of each baseline are available in Appendix D.3. The
implementation details are in Appendix D.4 and full specifics on hyperparameters in Appendix D.5.

5.2 MAIN RESULTS (RQ1)

We evaluate PerFit against state-of-the-art personalized approaches across six diverse tasks from
the LaMP benchmark. The results are presented in Tables 2 and 3, which demonstrate the effectiveness
of our method in both personalized classification and generation scenarios2.

Personalized Classification Tasks. On classification tasks, PerFit achieves superior performance
across all metrics. For LaMP-2N, our method attains the highest accuracy of 81.8%, surpassing OPPU
by 0.8 percentage points. In LaMP-2M, PerFit achieves the best results with 63.0% accuracy and

2TLE (Time Limit Exceeded) indicates that the method ran much longer than other methods on some large
datasets, making it impractical to report the results in a reasonable time frame.
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Table 2: Results on classification tasks. We report Accuracy (Acc) and F1 Score (F1) for LaMP-2N
and LaMP-2M, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for LaMP-3. For
PerFit, we show the parameter percentage relative to the total model and the parameter reduction
compared to OPPU. Blue and red numbers represent Stage-1 and Stage-2 parameters, respectively.

Method
News Categorization Movie Tagging Product Rating

(LaMP-2N) (LaMP-2M) (LaMP-3)

Acc ↑ F1 ↑ Acc ↑ F1 ↑ MAE ↓ RMSE ↓
LoRA-C 0.787 0.538 0.478 0.425 0.223 0.491
LoRA-P 0.591 0.397 0.528 0.383 0.183 0.502
LoFiT 0.758 0.525 0.566 0.440 TLE TLE
OPPU 0.810 0.589 0.600 0.493 0.179 0.443
Ours (PerFit) 0.818 0.586 0.630 0.518 0.179 0.443
- Param. Percentage ↓ (%) 0.0058 0.0117 0.0078 0.0010 0.0117 0.0015
- Param. Reduction ↑ (%) 93.75 81.25 91.67 98.44 87.50 97.66

Table 3: Results on generation tasks. We report ROUGE-1 (R-1) and ROUGE-L (R-L) metrics for
LaMP-4, LaMP-5, and LaMP-7 tasks. The table compares both Non-Tuned Methods and Tuned
Methods to demonstrate the effectiveness of different personalization approaches. For PerFit, we
show the parameter percentage relative to the total model size and the parameter reduction compared
to OPPU. Blue and red numbers represent Stage-1 and Stage-2 parameters respectively.

Method
News Headline Gen. Scholarly Title Gen. Tweet Paraphrasing

(LaMP-4) (LaMP-5) (LaMP-7)

R-1 ↑ R-L ↑ R-1 ↑ R-L ↑ R-1 ↑ R-L ↑
Non-Tuned Methods
Non-Personalized 0.030 0.029 0.145 0.118 0.126 0.123
PAG 0.098 0.082 0.149 0.121 0.135 0.124
RAG (k=1) 0.101 0.085 0.152 0.122 0.149 0.140
RAG (k=2) 0.106 0.088 0.167 0.132 0.136 0.130
RAG (k=4) 0.110 0.092 0.169 0.135 0.164 0.157
StyleVector 0.104 0.086 0.156 0.125 0.132 0.127

Tuned Methods
LoRA-C 0.186 0.167 0.476 0.415 0.527 0.474
LoRA-P 0.120 0.108 0.489 0.435 0.398 0.333
LoFiT 0.199 0.179 TLE TLE 0.272 0.256
OPPU 0.191 0.171 0.519 0.442 0.539 0.483
Ours (PerFit) 0.207 0.186 0.521 0.451 0.525 0.472
- Param. Percentage ↓ (%) 0.0117 0.0015 0.0039 0.0010 0.0078 0.0039
- Param. Reduction ↑ (%) 87.50 97.66 95.83 98.44 91.67 93.75

51.8% F1 score, demonstrating substantial improvements over baselines. For LaMP-3, PerFit
achieves comparable performance to OPPU with an MAE of 0.179 and RMSE of 0.443, while
utilizing significantly fewer parameters.

Personalized Generation Tasks. In generation tasks, PerFit demonstrates consistent improve-
ments over existing approaches. For LaMP-4, our method achieves the highest ROUGE-1 score
of 20.7% and ROUGE-L score of 18.6%, outperforming both Non-tuned and Tuned baselines. On
LaMP-5, PerFit achieves the best performance with a ROUGE-1 score of 52.1% and ROUGE-L
score of 45.1%. While OPPU achieves marginally better performance on LaMP-7, our method
maintains competitive results while utilizing significantly fewer parameters.

5.3 EFFICIENCY ANALYSIS (RQ2)

We conduct a detailed analysis of parameter efficiency based on the results in the main tables.
As shown in Tables 2 and 3, our PerFit method consistently achieves state-of-the-art or highly
competitive performance while dramatically reducing the number of trainable parameters. Specifically,
in the first stage, PerFit requires only 0.0058% to 0.0117% of the total model parameters for
classification tasks, and 0.0039% to 0.0117% for generation tasks. In the second stage, it uses an
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Figure 4: Performance versus parameter count
on four datasets. Marker size reflects the relative
training time3.

Figure 5: Impact of Collective and
Personalized Rank on Movie Tag-
ging Performance.

even smaller proportion of 0.0010% to 0.0015% for classification tasks and 0.0010% to 0.0039%
for generation tasks. This two-stage design achieves a remarkable parameter reduction of 81.25%
to 98.44% compared to strong baselines such as OPPU. This substantial reduction highlights the
efficiency of our approach in both memory and computational cost. The accompanying Figure 4
provides a visual summary of these findings, plotting model performance against the proportion of
trainable parameters for four representative datasets. Notably, PerFit not only reduces parameter
count but also achieves a 17.0% to 35.8% reduction in training time compared to existing fine-tuning
baselines. This demonstrates that our method achieves parameter and runtime efficiency without
sacrificing performance, offering a practical and scalable solution for personalized LLM adaptation.

5.4 ABLATION STUDY (RQ3)

To validate our two-stage design and low-rank subspace intervention, we conduct an ablation study
across diverse tasks (Table 4). Using only Stage-1 (collective shift learning) results in 2.6%-16.4%
accuracy drops, confirming the importance of personalized adaptation in Stage-2. When training
only Stage-2, both Ours@Stage-2 (C+P) and Ours@Stage-2 (P) configurations show limited per-
formance without Stage-1’s collective information. However, the higher rank configuration (C+P)
still outperforms Ours@Stage-2 (P), demonstrating that increased rank helps capture more dimen-
sions of user-specific information, though with diminishing returns. This aligns with Observation 1,
suggesting that essential personalized information lies within a lower rank subspace.

5.5 HYPERPARAMETER ANALYSIS

Layer-wise Intervention. Figure 6 (left and middle) presents the results of intervening at a single
layer for both Movie Tagging and News Headline Gen. tasks. We observe a clear trend: as the
intervention layer moves from lower (earlier) to higher (later) layers, the overall performance—across
all metrics—steadily declines. This finding is particularly intriguing when contrasted with prior
work in knowledge editing (KE), where middle layers are typically used for learning and storing new
knowledge (Meng et al., 2022). In our case, however, intervening at earlier layers yields better results.
We hypothesize that this difference arises because our method’s first stage must absorb and encode a
large amount of user-specific information.

3Larger markers indicate longer training times. Note that these training times refer to the first stage of training
and are provided for reference only, as they are influenced by various factors including dataset size and hardware
specifications. The size primarily serve to illustrate the relative time relationships between different methods.

3@Stage-2 degenerates into a one-stage model, equivalent to the ReFT model detailed in Appendix D.3
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Table 4: Ablation results across diverse tasks, evaluating the impact of different training stages and
configurations. Here, C refers to the collective (Stage-1) rank, and P refers to the personalized
(Stage-2) rank, as defined in Table 9 (LRank and ULRank, respectively). Ours@Stage-2 (C+P)
denotes the configuration where the rank is set to the sum of both stages’ ranks (LRank + ULRank),
while Ours@Stage-2 (P) uses only the personalized rank (ULRank). ref. LoRA-P represents the
reference values using LoRA-P.

Method News Categorization Movie Tagging News Headline Tweet Paraphrasing

Acc ↑ F1 ↑ Acc ↑ F1 ↑ R-1 ↑ R-L ↑ R-1 ↑ R-L ↑
Ours 0.818 0.586 0.630 0.518 0.207 0.186 0.525 0.472
@Stage-1 0.792 0.529 0.466 0.415 0.189 0.169 0.493 0.450
@Stage-2 (C+P) 0.803 0.604 0.620 0.496 0.194 0.175 0.483 0.438
@Stage-2 (P) 0.801 0.594 0.599 0.473 0.190 0.171 0.478 0.433
ref. LoRA-P 0.591 0.397 0.528 0.383 0.120 0.108 0.398 0.333

Figure 6: Layer-wise and cumulative intervention analysis. Left & Middle: Performance metrics
(Acc, F1, R-1, R-L) versus single intervention layer position for Movie Tagging and News Headline
Generation tasks. Right: Performance on Movie Tagging versus number of intervention layers4.

Cumulative Intervention. As shown in the right panel of Figure 6, increasing the number of
intervention layers generally leads to improved performance on the Movie Tagging task. This
suggests that leveraging more layers allows the model to better capture and utilize personalized
information. However, we observe that when interventions are applied to as many as all layers,
performance unexpectedly drops. This indicates that editing too many layers may introduce negative
side effects, possibly due to interference or redundancy among the interventions at different layers.

Collective vs. Personalized Rank. Figure 5 presents a heatmap analysis of the impact of collective
(Stage-1) and personalized (Stage-2) rank on Movie Tagging performance, measured by both accuracy
and F1 score. Overall, we observe that increasing either the collective rank or the personalized rank
generally leads to improved performance. However, the effect of the personalized rank appears to be
more pronounced: even when the collective rank is low, a sufficiently high personalized rank can
achieve near-optimal results.

6 CONCLUSIONS AND FUTURE WORK

By uncovering fundamental patterns in user-specific information—including shared collective and
unique personalized shifts—our work introduces a novel two-stage method that fine-tunes interven-
tions directly in the hidden representation space. Extensive experiments across six diverse tasks show
that this approach achieves efficient personalization with significantly reduced parameter overhead
while maintaining strong performance. This work paves the way for scalable, effective personalization
in intelligent systems and reveals insights into user-specific information in LLMs. Future work could
explore finer-grained personalization styles, such as community-level and group-level relationships,
and investigate applications in more diverse scenarios like personalized memory.

4The layers are selected symmetrically around layer 15, with the spacing between layers determined as (#
Model Layers / # Intervened Layer).
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ETHICS STATEMENT

Personalized Large Language Models (LLMs) hold great promise for enhancing human-computer
interaction and information access by enabling tailored communication and adaptive learning ex-
periences. Their deployment also faces ethical and societal considerations. Personalization may
inadvertently encode sensitive user information, posing privacy and security risks. It can also amplify
biases in training data, reinforce filter bubbles or echo chambers, and increase susceptibility to
personalized misinformation and manipulation, thereby threatening user autonomy. To mitigate these
risks, we emphasize the need for robust privacy-preserving mechanisms, systematic bias detection
and mitigation, and transparent user controls. Establishing clear ethical guidelines and fostering
collaboration among researchers, ethicists, and policymakers will be essential to ensure that personal-
ized LLMs are developed and applied responsibly, maximizing societal benefits while minimizing
potential harms.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive details across multiple compo-
nents of our submission. An overview of our experimental setup is presented in Section 5.1, while a
detailed description is provided in Appendix D, including dataset descriptions in Appendix D.1, base-
line configurations in Appendix D.3, and argument specifics in Appendix D.5. Specifically, dataset
information and preprocessing steps are detailed in Appendix D.1. We use standard benchmark
datasets OPPU with publicly available data splits following established protocols (Tan et al., 2024b).
Source code implementing our method is made publicly available through our anonymous repository
link provided in the abstract.
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A RELATED WORK

The methods for personalized large language models (PLLMs) can be mainly divided into two types
based on whether fine-tuning is involved (Liu et al., 2025): one type is the method that does not
require fine-tuning of the large language models (LLMs), and the other type is the method that
requires fine-tuning.

Tune-Free Methods. Tune-free methods primarily use three approaches: input prompting, vector
steering, and logits steering. (1) For input prompting, key approaches include profile-augmented
generation (PAG) (Richardson et al., 2023), which uses an instruction-tuned language model to
create a textual user profile from the user’s personalized data, and retrieval-augmented generation
(RAG) (Salemi et al., 2024a), which enhances responses by retrieving relevant entries from user
history. (2) Vector steering, as implemented in StyleVector (Zhang et al., 2025), uses a separate LLM
to generate contrastive pairs of personalized and non-personalized responses to modify model behavior.
This method depends on pre-constructed contrastive pairs and doesn’t tune model parameters; it
has limited understanding of personalization. (3) Logits steering: CoS (He et al., 2024) achieves
personalization by summing the logits from two rounds of outputs from the LLM: one round uses a
standard prompt, while the other incorporates a user’s explicit context in the prompt. Its main focus
differs from our implicit personalization tasks.

Limitations: Although tune-free methods are efficient because they use external data sources, their
personalization capabilities are limited since they rely on historical information instead of adapting
the model’s internal parameters, especially for capturing users’ implicit tastes and style.

Fine-Tuning Methods. The one PEFT per user paradigm trains a Parameter-Efficient Fine-Tuning
(PEFT) model tailored to each user using low-rank adaptation (LoRA)(Hu et al., 2021; Yang et al.,
2024; Zhang et al., 2024a). OPPU(Tan et al., 2024b) encodes personalized user information in PEFT
parameters, enhancing the overall user experience. While research following OPPU primarily focuses
on framework enhancements, such as parameter collaboration in privacy-sensitive contexts (Qi et al.,
2024; Wagner et al., 2024), the area of enhancing personalized fine-tuning remains underexplored.

Limitations. Despite the strong performance of the LoRA architecture, it still requires millions of
parameters, which poses a significant burden in personalized scenarios with a large number of users.

Note that some methods for aligning human preferences in LLMs use reinforcement learning. While
these approaches vary—some requiring fine-tuning (Rame et al., 2024; Lau et al., 2024; Poddar et al.,
2024; Shi et al., 2024) and others not (Chen et al., 2024) — they mainly rely on reward models based
on average annotator preferences. This approach requires predefined (explicit) preferences and fails
to account for how different users might want different outputs for the same prompt, which differs
from our task and objectives that propose a novel personalized fine-tuning method that captures users’
implicit tastes and strikes a balance between effectiveness and efficiency.

B SUPPLEMENTARY MATERIALS FOR THE ANALYTICAL STUDY

In this section, we provide supplementary materials related to the analytical study, including the study
setup in Appendix B.1 and supplementary tables and figures in Appendix B.2. Moreover, we include
further analysis to support our observations, answering the following questions:

1. Do the observations also hold in other base LLM models (Appendix B.2)?
2. Are the observations genuinely driven by personalized signals (Appendix B.3)?
3. Do the personalized shifts of the δ-vectors encompass personalization (Appendix B.4)?
4. Do low-rank patterns reveal layer-wise structures? (Appendix B.5)
5. Do collective shifts stay consistent across different tasks (Appendix B.6)?

B.1 ANALYTICAL STUDY SETUP

Using Llama2-7B as the base (i.e., non-personalized) LLM (Tan et al., 2024b;a; Kong et al., 2024),
we conducted an analytical study on the widely-used personalization benchmark LaMP (Salemi et al.,
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Figure 7: Supplementary figure of Figure 2 of other datasets. (1) The first row depicts the low-rank
vector representations projected onto the first two principal components, with mean vectors indicated
by yellow stars, demonstrating directional bias in the reduced-dimensional space. (2) The second row
comprises violin plots of the coordinate value distributions across the first five feature dimensions.
Here, the zeroth dimension shows a significant mean shift from zero, indicating a shared directional
bias (i.e., collective shift) among users, whereas the remaining dimensions have means near zero with
relatively large standard deviations, reflecting individual user variability (i.e., personalized shifts).

2024b). To isolate the personalized information, We focus on the residual stream representation of
the last token, hℓ := hℓ

n, which aggregates information from the entire input sequence at layer ℓ,
specifically analyzing the 16th layer following previous activation steering approaches (Arditi et al.).
The personalized information we concatenate for each user Qorig

i , is derived via the BM25 algorithm
to identify the most relevant details of each query from the user’s historical documents.

Here, we need to clarify the difference between our analysis and StyleVector (Zhang et al., 2025).
StyleVector uses GPT-3.5-turbo outputs as general responses, creating contrastive pairs by combining
the same query with these general outputs and the personalized outputs. However, the tokens that
truly drive personalization reside in the tokens of the query for fine-tuning, not the last token of
the response, since the query’s final token influences the generation process starting from earlier
tokens. Besides, relying on GPT-3.5-turbo outputs as general responses may not consistently provide
a reliable baseline across different models. Moreover, the Stylevector analyzes individual user
representations, like other activation steering methods, focusing on a single user dimension without
considering all users and their interrelations.

This analysis aims to uncover how personalized signals are represented in the hidden rep-
resentation space before response generation for all users, so as to design the fine-tuning
process directly based on the observations.

B.2 SUPPLEMENTARY RESULTS

The supplementary figure of Figure 2 is shown in Figure 7, the figure of Figure 1 is supplemented
by Table 5. This indicates that the observed pattern (Observation 2 and Observation 1) is universal
across all datasets. Next, we will conduct the same analytical experiments on the Qwen model
to determine whether our observations still apply to other models Figure 8. The results indicate
that similar patterns persist, with the Qwen-2.5-7B model demonstrating a relatively larger shift.
Additionally, the direction of the collective shift in the dataset is consistent: the Tweet Paraphrase
task tends to orient towards the positive direction, whereas other tasks show a negative orientation.
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Table 5: Minimum feature dimensions r needed to explain variance levels of 0.8, 0.85, 0.9, and 0.95.
The ratio refers to the proportion of the feature dimension to the hidden representation dimension
(4096 for Llama).

LaMP-2M LaMP-2N LaMP-3 LaMP-4 LaMP-5 LaMP-7

r Ratio r Ratio r Ratio r Ratio r Ratio r Ratio

0.8 1 0.00121 1 0.00365 3 0.00073 34 0.02203 4 0.00098 3 0.00073
0.85 1 0.00121 2 0.00730 7 0.00171 91 0.05898 14 0.00342 10 0.00244
0.9 3 0.00362 4 0.01460 18 0.00439 167 0.10823 40 0.00977 22 0.00781
0.95 12 0.01448 20 0.07299 93 0.02271 368 0.23850 203 0.04956 177 0.04321

Figure 8: Projected vectors from Qwen-2.5-7B. A similar pattern also appears in the Qwen model.

B.3 VALIDATING PERSONALIZED SIGNALS: BEYOND INPUT LENGTH EFFECTS
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Figure 9: Comparison of the mean absolute co-
ordinate values between δ-vectors and random
vectors.

As demonstrated in Appendix B.1, we introduced
personalized information prior to the query to effec-
tively isolate personalized information. In this case,
the lengths of personalized input tokens are greater
than those of their non-personalized counterparts.
This raises a question: "Are the observations based
on personalized signals instead of merely artifacts
of input text length?" Our goal in this section is to
show that the phenomena observed are attributed to
personalized representations.

To substantiate this claim, we conducted an abla-
tion study in which the personalized information
prepended to each query was systematically substi-
tuted with randomly generated text of equivalent
length. This careful and controlled manipulation
enabled us to closely examine the distribution of
δ-vectors within the representation space, thereby providing valuable insights into the role of per-
sonalized signals in shaping our observations, while effectively eliminating the influence of other
interfering factors. The results show Figure 9 that the random prefix does cause a slight shift in
the vector representation; however, the degree of this shift is much smaller than the significant
deviation caused by δ-vectors . This indicates that our observations are indeed based on personalized
information rather than merely the added text length of the prefix to the query.
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Personalized Information:
abstract: <abstract>. title:
<title>

Query:
Given this author’s previous
publications, try to describe a template
for their titles. I want to be able to
accurately predict the title of one of the
papers from the abstract. abstract:
<query_abstract>. title:

Figure 10: Personalized information
template. Replace the content inside the
<> with the actual descriptions of the ab-
stract and title for each query.
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LaMP-5: Scholarly Title

Figure 11: Selected samples from the representation
space. The red circle, green circle, and blue circle rep-
resent the 10 points that are farthest, at an intermediate
distance, and closest to the collective vector, respectively.

Closest-10 Closest Users: {title}

  #1: Turning Cliques Into Paths To Achieve Planarity

  #2: MetaSpace II: Object and full-body tracking for interaction and
navigation in social VR

  #3: Vmotion: Designing A Seamless Walking Experience In Vr

  #4: Neural networks and machine learning in bioinformatics
- theory and applications

  #5: Why traditional usability criteria fall short in ambient assisted
living environments

  #6: Intelligent Web Service
- From Web Services to .Plug&Play. Service Integration

  #7: Outage probability guaranteed relay selection in cooperative
communications

  #8: Towards an Object-Oriented Programming Language for Physarum
Polycephalum Computing : A Petri Net Model Approach

  #9: Contextual Grouping of Labels

  #10:Axioms For Centrality

Figure 12: Closest-10 closest users. These sentences indicate that a majority of individuals prefer to
employ punctuation marks, such as commas and dashes.

B.4 PERSONALIZED SHIFTS: A CASE STUDY

This section aims to answer the question: "Do the personalized shifts of the δ-vectors encompass
personalization?" The personalized information regarding implicit styles in the LaMP dataset is
challenging to quantify. To explore this, we select samples within the representation space for a case
study to determine whether nearby representations exhibit similar styles.
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Intermediate-10 Users: {title}

  #1: Exploiting temporal influence in online recommendation

  #2: On measuring affects of github issues’ commenters

  #3: Evaluation of tone mapping operators using a High Dynamic Range
display

  #4: Differential Entropy Preserves Variational Information of
Near-Infrared Spectroscopy Time Series Associated With Working
Memory

  #5: Toward real-time endoscopically-guided robotic navigation
based on a 3D virtual surgical field model

  #6: Time-varying noise estimation for speech enhancement and
recognition using sequential Monte Carlo method

  #7: On collision-free reinforced barriers for multi domain IoT with
heterogeneous UAVs

  #8: Dense depth maps by active color illumination and image pyramids

  #9: New results on optimizing rooted triplets consistency

  #10:Machine learning-based detection of open source license
exceptions

Figure 13: Intermediate-10 closest users. The titles of these examples rarely use punctuation
marks; instead, they favor terms such as ’based on’ and ’using’ to indicate specific methodologies.
Additionally, the descriptions of the titles are more precise compared to those of the closest users.

Farthest-10 Users: {query_abstract}

  #1: An abstract is not available ×5

  #2: However, not ... ( incomplete ) ×3

  #3: After the publication of the DOI version

  #4: ḧttp://www.w3.org/1998/Math/MathML¨

Figure 14: Farthest-10 closest users. The distant points are all outliers, and the query of users lacks
effective abstract information. As shown above, there is no indication of the user’s methodology.

For instance, in the context of Tweet Paraphrase, the template of added personalized information and
the queries is illustrated in Figure 10. Using the collective shift vector as a reference, we identify
the top 10 users with the nearest vectors, the top 10 vectors at an intermediate distance, and the 10
farthest vectors. We then present their corresponding personalized information regarding the titles
generated by the user previously, aligning with the user’s preferences, as illustrated in Figure 12,
Figure 13, and Figure 14, respectively. The points we select are highlighted in Figure 11.
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Figure 15: Layer-wise analysis of Observation 1. The first two panels show, for each layer, the
minimum feature dimension r needed to explain variance levels of 0.85 and 0.95, revealing the
layer-wise rank patterns. The right panel reports |mean| ± std of users’ coordinates on the first
principal component after SVD; for each task and layer, the mean is computed over all users.

From these examples, it is evident that while the style may not convey significant information, users
with personalized vectors that represent different regions in the embedding space exhibit clear and
intuitive differences in their corresponding personalized information.

Moreover, an interesting discovery is that the points that are farther from the collective shift
tend to be outliers. The queries associated with these outlier points lack effective information,
resulting in the inability to incorporate meaningful personalization. Consequently, compared to the
collective shift, there is a considerable deviation in these instances. This further validates and supports
the direct correlation between δ-vectors and personalized information in the embedding space. It
also demonstrates that the personalized shift, based on the collective shift, can effectively reflect
individualized information.

B.5 LOW-RANK PATTERNS: A LAYER-WISE ANALYSIS

Building on the previous findings (Observation 1) that the δ-vectors in the middle layers display a
pronounced low-rank structure, this section extends the investigation to address the question: “Does
the low-rank property consistently appear at every layer of the model?” To address this question,
the layer-wise ranks of δ-vectors were computed for each dataset, as shown in Figure 15. Two key
observations emerge from this analysis.

First, the results of the first two subfigures of Figure 15 reveal a consistent trend: early and middle
layers exhibit relatively low ranks, while a sharp increase emerges after layer 15, particularly for
generation tasks. This pattern aligns with prior findings showing that deeper layers of large language
models increasingly specialize in task-level semantics and generation (Geva et al., 2021; Ji et al., 2024;
Song et al., 2025), leading to heavily entangled user- and task-related features. Consequently, these
layers are less suitable for isolating and controlling style-level personalization. In contrast, top–middle
layers compress user inputs into shared semantic representations (Wang et al., 2024b), thereby making
stylistic shifts more cleanly expressed and naturally forming a low-rank personalization subspace.

Second, further evidence comes from projecting user representations onto the first SVD compo-
nent (right panel in Figure 15). Early and middle layers show minimal variance across users,
reflecting a strong collective shift. In contrast, deeper layers exhibit substantially larger variance,
indicating that user representations become more dispersed as stylistic and task-specific factors
intertwine—consistent with the increased entanglement observed in later layers.

It is worth noting that although the δ-vectors at the final layer also appear low-rank, their representation
directions are highly dispersed, showing no collective shift and large variance in user-specific offsets.
Thus, it is unsuitable for intervention. This distinctive behavior of the last layer has also been
highlighted in prior work (Skean et al., 2024).

The observations in this section are consistent with the experimental analysis in Appendix E.2, that
interventions applied around layers 5–10 yield the strongest performance, while those at deeper layers
interfere degrade personalization quality, especially at the last layer.

In summary, the low-rank and collective shift personalized patterns (Observation 1 and Observation 2)
reside mainly in the early–middle layers, not in the deep layers, where they entangled generative
factors and distort personalization signals.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.6 TASK-SPECIFIC PATTERNS: A CROSS-TASK ANALYSIS
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Figure 16: Representation of combined
δ-vectors from diverse datasets, with
each color denoting a distinct dataset.

The previous analysis demonstrated that personalized in-
formation exhibits a collective shift. We further explored
the relationships among the personalized vectors in the
LaMP dataset, as illustrated in Figure 16. Our findings
indicate that the collective shifts differ across various tasks.
For instance, classification tasks, such as Movie Tagging
and News Categorization, show a closer distribution com-
pared to text generation tasks. Specifically, tasks like
News Headline generation and Scholarly Title generation
exhibit a more similar pattern. The distribution of Tweet
Paraphrase differs from that of other personalization tasks,
which aligns with our findings regarding the variation in
their shift directions in Figure 2. These insights suggest
that when developing personalized LLMs in the future, it
is important to consider inter-task relationships; espe-
cially in complex tasks and scenarios, effective analysis
and explanations can be derived from their representations.
This type of analysis can enhance our understanding of
the underlying dynamics within personalized models.

To summarize, this section validates the following key observations and conclusions:

• The observations are universal across multiple datasets, tasks, and LLMs.
• δ-vectors reflect personalized information, confirmed by isolating interfering factors.
• Personalized shifts in the representation space correlate with users’ stylistic traits.
• Personalized patterns primarily reside in the early–middle layers.
• Differences in collective shift may exist across tasks.

C SUPPLEMENTARY MATERIALS FOR METHODOLOGY

C.1 ALGORITHM PSEUDOCODE OF PERFIT

Note that, for simplicity in implementation, we do not initialize the Stage 2 parameters ∆Θ(2)

separately for each user; instead, they are computed directly during Stage 1 initialization. This is not
the main focus or core contribution of our work and can be flexibly modified if needed. Here, we
present the details of this procedure in the pseudocode (Algorithm 1).

This algorithm takes a set of users with their queries and targets, and a base model M0 with parameters
Θ0. Line 1 initializes shared Stage 1 and Stage 2 intervention parameters.

• In Stage 1 (lines 4–13), for each user and query, the base model encodes the query, then the
representation is transformed successively by shared Stage 1 and Stage 2 functions, and the
resulting output from the base model after intervention is used to compute loss for updating
both shared parameter sets.

• In Stage 2 (lines 14–23), user-specific Stage 2 parameters are fine-tuned individually by
applying the shared Stage 1 followed by the personalized Stage 2 transformation on the
encoded queries, only fine-tuning ∆Θ(2).

The algorithm returns personalized models composed of the base parameters plus the shared Stage 1
and user-specific Stage 2 parameters (line 24). This two-stage approach enables learning a shared
adaptation and personalized refinements efficiently.

Besides the description above, the representation h can correspond to the output of any one or
multiple layers from the first layer to the last layer L of the model; if multiple layers are used, then
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each layer’s representation h(ℓ) requires its own set of intervention parameters, i.e., ∆Θ(ℓ)(1) and
∆Θ(ℓ)(2), respectively. For simplicity, we also omit specifying the exact layer(s) here.

Algorithm 1: PerFit

Input :Users U = {ui}Ni=1, queriesQi, targets Yi for each ui, base (non-personalized) LLM M0 with
parameters Θ0 // Section 2.1

Output :Personalized models {Mi = Θ0 + (∆Θ(1),∆Θ
(2)
i )}Ni=1 for each user ui ∈ U

1 Initialize parameters of Stage 1 and Stage 2: ∆Θ = {∆Θ(s)}2s=1 = {(R(s),W(s),b(s))}2s=1.
2 Function Phi_stage(x,∆Θ(s)):
3 return x+R(s)⊤(W(s)x+ b(s) −R(s)x

)
; // Equation (2)

4 Stage 1: Train shared intervetion ;
5 for each user ui ∈ U do
6 for each query q

(i)
j ∈ Qi with target y(i)

j ∈ Yi do
7 Compute hj from M0(q

(i)
j );

8 Compute intervened representation h̃j ← Phi_stage(hj ,∆Θ(1));
9 Compute intervened representation h̃j ← Phi_stage(h̃j ,∆Θ(2)); // Equation (1)

10 Compute loss L(ỹj , y(i)
j ) where ỹj decoded from h̃j ;

11 end
12 end
13 Update ∆Θ(1) and ∆Θ(2) to minimize total loss over all users;

14 Stage 2: Fine-Tune user-specific interventions ;
15 for each user ui ∈ U do
16 ∆Θ

(2)
i ← ∆Θ(2) ;

17 for each query q
(i)
j ∈ Qi with target y(i)

j ∈ Yi do
18 Compute hj from M0(q

(i)
j );

19 Compute personalized representation ĥj ← Phi_stage(Phi_stage(hj ,∆Θ(1)), ∆Θ
(2)
i );

20 Compute loss L(ŷj , y(i)
j ) where ŷj decoded from ĥj ;

21 end
22 Update ∆Θ

(2)
i to minimize total loss for user ui;

23 end
24 return personalized models {Mi = Θ0 + (∆Θ(1),∆Θ

(2)
i )}Ni=1;

C.2 PARAMETER EFFICIENCY ANALYSIS

For a weight matrix W ∈ Rdout×din , LoRA decomposes the weight update ∆W = AB with
A ∈ Rdout×r, B ∈ Rr×din , incurring parameter count NLoRA = r(din + dout) ≈ 2r(din + dout).
Conversely, PerFit ϕ∆Θ operates on representation x ∈ Rd via the transformation ϕ∆Θ(x) =
x + R⊤(W(s)x + b(s)

)
− R⊤Rx, where R ∈ Rr×dout ,W(s) ∈ Rr×dout ,b(s) ∈ Rr, with

parameter count Nϕ∆Θ ≈ 2rdout; however, LoRA requires M such blocks per layer, resulting
in NLoRA, layer = M × 2rd, PerFit necessitates only one module per representation layer with
Nϕ∆Θ,layer = 2rd, thereby achieving substantial parameter efficiency when M ≫ 1. From the
experiments in Figure 6 (right), our one-layer method outperforms the best setting of LoRA, which
combines all layers with LoRA. Therefore, the total number of parameters required by LoRA is
significantly smaller than that of our method.

C.3 TWO-STAGE PEFT VS. PERFIT

Consider the hidden state update at layer ℓ of a decoder-style Transformer:

hℓ+1
t = hℓ

t + FFNℓ
0

(
hℓ
t +MHAℓ

0(h
ℓ
1:t)

)
,

as defined in Section 2.2 (with hidden dimension d). We study whether LoRA-based interventions on
FFN or MHA layers can induce a representation shift that can be expressed as an input-independent,
additive constant vector decomposable into a collective and a personalized shift as our observations:

h 7→ h+ sc + sp.
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Proposition 1. LoRA-induced shifts ∆LoRA(x) in FFN/MHA are input-dependent, piecewise-affine
functions and cannot, except in degenerate cases, equal a constant additive vector sc + sp.

Proof. Consider a two-layer MLP:

FFN(x) = W2σ(W1x+ b1) + b2, σ = ReLU.

After inserting LoRA at W1 and W2, the modified network becomes

FFNLoRA(x) = (W2 +B2A2)σ
(
(W1 +B1A1)x+ b1

)
+ b2,

and the induced shift is
∆LoRA(x) = FFNLoRA(x)− FFN(x).

To analyze this shift, define

z0 = W1x+ b1, z1 = (W1 +B1A1)x+ b1, Di = diag(1zi>0).

Here Di are binary diagonal matrices representing the input-dependent ReLU gates. Expanding gives

∆LoRA(x) = (B2A2D1 +W2(D1 −D0)W1)x+ (B2A2D1 +W2(D1 −D0))b1.

This expression shows that ∆LoRA(x) is an affine function of x within each ReLU region (where
D0,D1 are fixed). Crucially, both the effective linear term

B2A2D1 +W2(D1 −D0)W1

and the bias term depend on the gating matrices D0,D1, which in turn depend on x. Therefore, across
different regions of the input space, ∆LoRA(x) changes discontinuously and is piecewise-affine.

For ∆LoRA(x) to be a constant vector independent of x, the effective matrix must vanish for all possi-
ble pairs (D0,D1). This imposes extremely restrictive algebraic constraints on (W1,W2,A1,B1),
which only hold in measure-zero degenerate cases. Thus, in general, LoRA cannot induce an
input-independent constant shift.

The situation becomes even stricter for MHA layers: the softmax introduces multiplicative query–key
coupling, yielding nonlinear dependencies on x. Hence ∆LoRA(x) cannot represent a constant
additive vector in attention either.

Proposition 2. Two-stage LoRA updates are not additive:

∆
(p◦c)
LoRA(x) ̸= ∆

(c)
LoRA(x) + ∆

(p)
LoRA(x).

Proof. Stage p operates on hidden states already altered by stage c, so its gating matrices differ from
those under raw input x. Hence the resulting ∆LoRA cannot decompose additively.

Proposition 3. PerFit yields approximately additive shifts in a low-rank subspace:

(ϕ∆Θ(2) ◦ ϕ∆Θ(1))(x) = x+ v(1)(x) + v(2)(x) +O(∥Dv(2)∥ · ∥v(1)(x)∥).

Proof. Let v(x) = R⊤(Wx+ b−Rx) ∈ Im(R⊤). Then

(ϕ∆Θ(2) ◦ ϕ∆Θ(1))(x) = x+ v(1)(x) + v(2)(x+ v(1)(x)).

First-order expansion:

v(2)(x+ v(1)(x)) = v(2)(x) +O(∥Dv(2)∥∥v(1)(x)∥).
Thus both collective and personal shifts lie in Im(R⊤) and combine additively up to a small,
controllable cross term.

Remark 1. The above results highlight a key distinction: LoRA induces input-dependent, non-
additive shifts, making it ill-suited for modeling clean personalization. This explains OPPU’s
performance degradation under fewer adapted layers (Table 11). In contrast, PerFit
enforces low-rank additive structure, yielding interpretable and controllable collective +
personal shifts, perfectly aligning our observations.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 6: Dataset statistics for the LaMP benchmark. We present the average sequence length measured
in token count, where #Q represents the quantity of queries, Lin and Lout denote the average input
and output sequence lengths respectively, #History indicates the volume of historical interactions,
and #Classes shows the number of classification categories for classification tasks. #Users shows
the number of users in the base LLM training stage and personal PEFT training stage (format: first
stage/second stage).

.

Task #Users Base LLM Training Personal PEFT Training

#Q Lin Lout #Q #History Lin Lout #Classes

2M 829 / 100 3,181 92.1 - 3,302 55.6 92.6 - 15
2N 274 / 49 3,662 68.2 - 6,033 219.9 63.5 - 15
3 19,899 / 101 22,388 128.7 - 112 959.8 211.9 - 5
4 1,543 / 100 7,275 33.9 9.2 6,275 270.1 25.2 11.1 -
5 14,581 / 101 16,075 162.1 9.7 107 442.9 171.6 10.3 -
7 13,337 / 100 14,826 29.7 18.3 109 121.2 29.4 18.0 -

Table 7: Specifications of evaluation metrics used in our experiments. For each metric, we indicate
the corresponding dataset, task type, and mathematical formulation.

Metric Dataset Task Type Formulation

Acc LaMP-2N, 2M Classification TP+TN
TP+TN+FP+FN

F1 LaMP-2N, 2M Classification 2× precision×recall
precision+recall

MAE LaMP-3 Classification 1
n

∑n
i=1 |yi − ŷi|

RMSE LaMP-3 Classification
√

1
n

∑n
i=1(yi − ŷi)2

R-1 LaMP-4,5,7 Generation |S∩R|
|R|

R-L LaMP-4,5,7 Generation LCS(S,R)
|R|

D SUPPLEMENTARY MATERIALS FOR THE EXPERIMENTAL SETUP

D.1 DATASETS

Our experiments utilize the LaMP benchmark (Salemi et al., 2024b), a collection of personalization
tasks from which we select six distinct tasks - three for classification and three for generation5. In
alignment with the OPPU framework (Tan et al., 2024b), we recognize the importance of substantial
user history for effective model personalization. Consequently, we identify and select about 100
most prolific users (those with the most extensive interaction histories) from the time-ordered LaMP
variant to serve as our test cohort. The remaining users’ data is allocated for training the collective
LLM in the first stage. The dataset statistics are listed in Table 6.

D.2 METRICS

We employ a comprehensive set of evaluation metrics to assess model performance across different
tasks. For classification tasks, we utilize Accuracy (Acc), F1 Score (F1), Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE). For generation tasks, we employ ROUGE-1 (R-1)
and ROUGE-L (R-L) metrics to evaluate the quality of generated text. The detailed specifications
of these metrics are presented in Table 7, where TP , TN , FP , and FN represent true positives,
true negatives, false positives, and false negatives respectively; yi and ŷi denote the ground truth
and predicted values; S and R represent the generated and reference sequences; and LCS(S,R)
indicates the length of the longest common subsequence between S and R.

5We omitted the LaMP-1 citation dataset because we were unable to reproduce results using the OPPU
prompt, and for most queries, we could not get outputs in the required format. This may be due to limitations
in Llama2’s instruction following capabilities. Like OPPU, we did not use the LaMP-6 dataset due to privacy
concerns. The remaining six datasets still ensure task diversity.
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D.3 BASELINES

To provide a comprehensive comparison, we evaluate our method against a diverse set of baselines,
categorized into Non-Tuned and Tuned approaches. All baseline models are implemented using
Llama2-7B6 as the foundation model.

Non-Tuned Methods

• Non-Personalized: This approach utilizes the pre-trained model without any modifications
to generate responses for user queries. It establishes a performance floor for our experiments
and serves as a reference point for measuring the effectiveness of personalization techniques.

• Profile Augmented Generation (PAG): This method synthesizes a textual user profile using
an instruction-tuned language model (e.g., Vicuna-13B7), derived from the user’s interaction
history. The generated profile is then prepended to each query to provide explicit contextual
information about user preferences, enabling the model to generate more personalized
responses without parameter updates.

• Retrieval Augmented Generation (RAG): This technique implements the BM25 algorithm
to retrieve the most relevant entries from a user’s history (with k = 1, 2, 4) for each query.
These retrieved entries serve as supplementary context for the model during inference,
allowing it to access specific historical interactions that may be relevant to the current query.

• StyleVector (Zhang et al., 2025): This framework represents a training-free approach that
disentangles and encodes personalized writing style as a vector within the LLM’s activation
space. StyleVector enables style-controlled generation during inference without requiring
retrieval mechanisms or parameter storage. The style vector is computed as the mean
difference between positive and negative exemplars, and is injected into a specific token
representation at a predetermined layer. Unlike our proposed method, StyleVector depends
on carefully selected sample pairs, making it particularly sensitive to data quality and
quantity, and necessitates more sophisticated vector engineering.

Tuned Methods

• Personalized LoRA (LoRA-P) (Hu et al., 2021): This standard parameter-efficient fine-
tuning (PEFT) methodology creates individual models that are fine-tuned on each user’s
historical data. The approach produces user-specific parameter adaptations that capture
individual preferences and behaviors through low-rank matrix decompositions of weight
updates.

• Collective LoRA (LoRA-C) (Hu et al., 2021): This method employs LoRA fine-tuning on
the collective history of all users excluding the 100 test users. The approach quantifies the
benefits of collaborative training without personalization and provides a model that captures
general user behaviors rather than individual preferences.

• LoFiT (Yin et al., 2024): This method identifies a subset of attention heads that are most
important for learning a specific task, and then trains offset vectors to add to the model’s
hidden representations at those selected heads. LoFiT requires a two-step process for each
stage: attention head selection followed by bias tuning. While this approach enables targeted
adaptation, it introduces additional training overhead and computational cost compared to
other methods.

• OPPU (Tan et al., 2024b): This technique integrates a two-stage approach combining
collaborative and personalized fine-tuning. The first stage trains on collective user data
(similar to LoRA-C), while the second stage adapts these parameters to individual users
(similar to LoRA-P). This dual-stage process allows the model to benefit from both collective
knowledge and individual customization.

6Llama2-7B open-source model: https://huggingface.co/meta-llama/Llama-2-7b-hf
7Vicuna-13B open-source model: https://lmsys.org/blog/2023-03-30-vicuna/
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D.4 IMPLEMENTATION DETAILS

Key training settings are consistent across both training stages: we use the AdamW optimizer with
a learning rate of 1 × 10−4, weight decay of 1 × 10−2, and BF16 precision. Gradient clipping is
applied with a maximum norm of 0.3. Batch sizes are generally 16, with exceptions for Product
Rating (batch size 2) and Scholarly Title Generation (batch size 4) due to computational requirements.
The base LLM is trained for 3 epochs, and the personal PEFT stage for 2 epochs. For inference, we
set the temperature to 0.1, top-k sampling to 10, and top-p sampling to 0.9. PEFT-based methods
(LoRA, OPPU) utilize a LoRA rank r = 8 and α = 8. For our representation-based methods,
hyperparameters such as low-rank dimensions, intervention layers, and positions were determined
via a 20-trial random search.

D.5 ARGUMENTS

This section outlines the key experimental configurations used in our study, including training argu-
ments, inference parameters, and model-specific hyperparameters for both PEFT and representation-
based methods. These configurations were carefully chosen to ensure fair comparisons while
optimizing performance across all approaches.

D.5.1 TRAINING ARGUMENTS

We maintain consistent optimization parameters across both training stages, employing the AdamW
optimizer with a learning rate of 1 × 10−4, weight decay of 1 × 10−2, and a warmup ratio of 0.1.
All models are trained using Brain Floating Point 16-bit precision (BF16) to balance computational
efficiency and numerical stability. We apply gradient clipping with a maximum gradient norm
of 0.3 and utilize a linear learning rate scheduler. For efficient batch processing, we implement
group_by_length=True to minimize padding overhead. The batch size is set to 16 for most tasks, with
exceptions for Product Rating (batch size=2) and Scholarly Title (batch size=4) due to their specific
computational requirements. The training epochs differ between stages: 3 epochs for the base LLM
training stage and 2 epochs for the personal PEFT training stage, unless otherwise specified for the
second stage.

D.5.2 INFERENCE ARGUMENTS

During inference, we carefully control the generation process to ensure consistent and high-quality
outputs. We set the temperature parameter to 0.1, which produces more deterministic and focused
responses by reducing randomness in the token selection process. For sampling, we employ both
top-k and top-p (nucleus) sampling strategies in combination: top-k is set to 10, limiting consideration
to only the 10 most probable next tokens, while top-p is set to 0.9, ensuring that the model samples
from tokens comprising the top 90% of the probability mass. These parameters strike a balance
between output diversity and coherence, allowing for some controlled variation while maintaining
response quality and relevance to the personalized context.

D.5.3 MODEL HYPERPARAMETERS

For our experiments, we carefully configured the hyperparameters for both parameter-efficient
fine-tuning (PEFT) and representation-based fine-tuning (ReFT) methods to ensure fair comparison.

PEFT Methods (LoRA-P/LoRA-C/OPPU) For PEFT methods, we maintained consistent LoRA
configurations across both training stages with a rank (r) of 8 to control the dimensionality of LoRA
matrices, a scaling factor (α) of 8 to determine the magnitude of LoRA updates, and a dropout rate of
0.05 to regulate overfitting in LoRA layers. In the first stage (Base LLM Training), we applied these
configurations to all projection matrices including "q_proj", "v_proj", and "k_proj" modules, while
in the second stage (Personal PEFT Training), we focused only on the query and value projection
matrices ("q_proj" and "v_proj").

Localized Fine-Tuning (LoFiT) Following the original LoFiT implementation (Yin et al., 2024),
we conducted a two-step process for the personalization training stage: attention head selection
followed by bias tuning. In the first step, we selected the top 160 attention heads based on their
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importance scores. In the second step, we refined our focus by selecting the top 32 heads specifically
and tuning bias vectors at these locations. The l1-regularization coefficient was set to 0.005 in the
first step. Note that LoFiT was only applied during the second stage of training, as it is designed for
personalized adaptation.

Representation-Based Methods (ReFT and PerFit) For our representation-based methods, we
conducted a random search across 20 trials to explore various hyperparameter combinations due
to computational constraints. The search space, detailed in Table 8, included low-rank dimensions
ranging from 4 to 64, user low-rank dimensions from 4 to 64, different intervention layer combinations
(single layer "15" to multiple layers "14;15;16;17;18"), various position configurations (from "f7+l7"
to "l5"), and maximum epochs ranging from 2 to 6. To ensure fair comparison between ReFT and our
proposed PerFit method, we used identical hyperparameters with the exception that ReFT’s rank
dimension was set to the sum of our global and local ranks, maintaining equivalent parameter counts.
All other hyperparameters for ReFT, including intervention layers, positions, and maximum epochs,
were kept consistent with our optimal configurations. The optimal hyperparameter configurations
determined through our experiments are presented in Table 98.

Table 8: Hyperparameter search space for representation-based methods

Hyperparameter Values

Low-Rank Dimension {4, 8, 16, 32, 64}
User Low-Rank Dimension {4, 8, 16, 32, 64}
Intervention Layers (sep. w/ ’;’) {"15", "14;15", "14;15;16", "14;15;16;17;18"}
Positions (Prefix+Suffix) {"f7+l7", "f5+l5", "l7", "l5"}
Maximum Epochs {2, 4, 6}

Table 9: Optimal hyperparameter configurations for representation-based methods (LRank: Low-
Rank dim, ULRank: User Low-Rank dim, IL: Intervention Layers, PL: Position Layers, EP: EPochs)
across tasks.

Task LRank ULRank IL PL EP

News Categorization 16 32 14;15;16 f7+l7 6
Movie Tagging 32 4 14;15 f7+l7 4
Product Rating 32 4 14;15;16 l7 4

News Headline Generation 32 4 14;15;16 l7 4
Scholarly Title Generation 32 8 15 f7+l7 4

Tweet Paraphrasing 32 16 14;15 f7+l7 4

D.6 DATASET DESCRIPTIONS AND PROMPTS

For detailed dataset composition and descriptions, please refer to LaMP9 (Salemi et al., 2023). OPPU
presents a specific setting on the LaMP dataset, and its prompts can be found in OPPU10 (Tan et al.,
2024b).

E SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we present comprehensive experimental results to complement our main findings,
focusing on answering the following key research questions:

8Note that due to computational resource constraints, our hyperparameter search was limited to a restricted
space with a maximum of 20 trials. While these configurations represent the best results found within our search
space, they may not be globally optimal. There remains significant potential for further parameter reduction and
performance improvement through more extensive hyperparameter exploration.

9LaMP benchmark official website with dataset download links: https://lamp-benchmark.github.io/download
10OPPU official GitHub repository containing implementation details and prompt templates:

https://github.com/TamSiuhin/OPPU
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1. How stable and statistically significant are our performance improvements across multiple
runs (Appendix E.1)?

2. What is the optimal layer for intervention (Appendix E.2)?

3. How does our method compare with collective LoRA approaches in terms of efficiency and
effectiveness (Appendix E.3)?

4. How robust is our method across different backbone models (Appendix E.4)?

5. How well does our method perform in cold-start scenarios with limited collective users (Ap-
pendix E.5)?

6. How transferable is the collective shift across different users and tasks (Appendix E.6)?

7. How does our method affect the model’s general deployment capability (Appendix E.7)?

E.1 PERFORMANCE STABILITY ANALYSIS

Table 10 shows the mean and standard deviation of our method’s performance across multiple runs
on all tasks. Our method demonstrates statistically significant improvements (p < 0.05) over OPPU in
several key metrics including LaMP-2N Accuracy, LaMP-2M Accuracy and F1, LaMP-4 R-1, and
LaMP-5 R-L.

Table 10: Comparison of our method and OPPU results (mean ± std) with statistical significance
(p-value) across all tasks.

LaMP-2N LaMP-2M LaMP-3
Acc ↑ F1 ↑ Acc ↑ F1 ↑ MAE ↓ RMSE ↓

Ours 0.818±3.2e−5 0.586±2.8e−5 0.630±2.5e−5 0.518±5.4e−5 0.179±5.2e−3 0.443±5.9e−3

OPPU 0.810±3.2e−3 0.589±6.3e−3 0.600±3.4e−3 0.493±6.3e−3 0.179±5.2e−3 0.443±5.9e−3

p-value 0.026 0.089 0.007 0.003 0.256 0.632

LaMP-4 LaMP-5 LaMP-7
R-1 ↑ R-L ↑ R-1 ↑ R-L ↑ R-1 ↑ R-L ↑

Ours 0.207±9.1e−5 0.186±6.2e−5 0.521±3.3e−3 0.451±2.5e−3 0.525±3.1e−3 0.472±2.3e−3

OPPU 0.191±5.3e−3 0.171±9.6e−3 0.519±1.2e−2 0.442±6.7e−3 0.539±1.0e−2 0.483±5.2e−3

p-value 0.024 0.055 0.089 0.011 0.401 0.119

E.2 MORE ANALYSIS ABOUT LAYER-WISE INTERVENTION

Table 11 presents a comprehensive comparison of model performance when interventions are applied
at different transformer layers. We observe that intervening at lower to middle layers (e.g., layers 5 and
10) yields the best results across both classification and generation tasks. Specifically, performance
peaks around layer 10 for Movie Tagging and News Categorization, and around layer 5 for News
Headline Generation. As the intervention moves to higher layers, performance consistently declines,
with a dramatic drop at the final layer 31, where the model fails to properly format and respond to the
query according to the specified instructions. This trend suggests that user-specific information is
most effectively injected and utilized in the earlier and middle layers of the model, while late-layer
interventions may disrupt the learned representations or fail to propagate personalization signals.
These findings highlight the importance of carefully selecting the intervention layer to maximize the
benefits of representation-level personalization and align with our empirical layer-wise study about
the low-rank pattern and collective shift in Appendix B.5.

Our layer-wise intervention analysis reveals a "sweet spot" in transformer architecture: per-
sonalization signals are most effective when injected in the middle layers (5-10), while higher-
layer interventions can be detrimental. This finding not only guides optimal intervention
placement but also suggests that personalization is fundamentally a mid-level representation
learning problem, rather than a high-level semantic or low-level feature adaptation task.
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Table 11: Layer-wise intervention results across three representative tasks: Movie Tagging (LaMP-
2M), News Categorization (LaMP-2N), and News Headline Generation (LaMP-4). For classification
tasks, we report Accuracy (Acc) and F1 score; for the generation task, we report ROUGE-1 (R-1) and
ROUGE-L (R-L). Each row corresponds to interventions at a specific transformer layer. This table
illustrates how the effectiveness of personalization varies with the intervention layer. Best results are
highlighted in bold.

Layer Movie Tagging News Categorization News Headline Gen.
Acc ↑ F1 ↑ Acc ↑ F1 ↑ R-1 ↑ R-L ↑

0 0.598 0.479 0.809 0.599 0.207 0.186

5 0.630 0.522 0.808 0.593 0.208 0.187

10 0.634 0.523 0.817 0.603 0.203 0.183

15 0.616 0.506 0.805 0.587 0.190 0.171

20 0.609 0.486 0.796 0.569 0.170 0.153

25 0.590 0.468 0.795 0.560 0.161 0.145

31 0.000 0.000 0.000 0.000 0.031 0.030

Table 12: Comparison of different personalization approaches across four representative tasks. We
evaluate our method (PerFit), collective LoRA with PerFit-P where the first-stage fine-tuning
layers match PerFit’s intervention layers (LoRA-C (partial)), and collective LoRA with PerFit-P
where all layers are fine-tuned (LoRA-C (all)). The Param. Ratio shows the collective parameter
ratio between the PerFit and the LoRA-C (all). Best results are highlighted in bold.

Method LaMP-2N LaMP-2M
Acc ↑ F1 ↑ Acc ↑ F1 ↑

PerFit 0.818 0.586 0.630 0.518

LoRA-C (partial) + PerFit-P 0.788 0.582 0.604 0.467

LoRA-C (all) + PerFit-P 0.791 0.584 0.640 0.529

Param. Ratio 1/16 1/12

Method LaMP-4 LaMP-7
R-1 ↑ R-L ↑ R-1 ↑ R-L ↑

PerFit 0.207 0.186 0.525 0.472

LoRA-C (partial) + PerFit-P 0.193 0.173 0.509 0.461

LoRA-C (all) + PerFit-P 0.205 0.186 0.561 0.515

Param. Ratio 1/8 1/12

E.3 COLLECTIVE LORA AND PERSONALIZED PERFIT

Table 12 presents a comprehensive comparison between our PerFit approach and two variants
of collective LoRA with PerFit-P. The results reveal several interesting patterns: First, while
LoRA-C (all) + PerFit-P achieves the best performance across most metrics, the improvement
over our original PerFit method is relatively modest, particularly for News Categorization and
News Headline Generation. This suggests that our layer-wise intervention approach already captures
most of the benefits of personalization. Second, LoRA-C (partial) + PerFit-P generally performs
worse than both other approaches, indicating that selective layer fine-tuning may not be as effective
as either full fine-tuning or our targeted intervention approach. Finally, the parameter ratios show
that our method achieves competitive performance while using significantly fewer parameters (8-16x
fewer), highlighting its efficiency in terms of both computational resources and storage requirements.
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This finding challenges the conventional wisdom that more parameters necessarily lead to
better personalization, suggesting that strategic intervention at key layers may be the key to
efficient and effective model adaptation.

E.4 BACKBONE ABLATION STUDY

To give a more comprehensive understanding of our method’s effectiveness, we conducted an ablation
study using different backbone models, including LLaMA3-8B, Qwen2.5-7B, LLaMA3-3B, and
LLaMA3-1B. We compared our method (PerFit) against other personalization approaches such as
LoRA-C, LoRA-P, and OPPU across four representative tasks: Movie Tagging, News Categorization,
News Headline Generation, and Tweet Paraphrasing. For simplicity, we maintained consistent
hyperparameter configurations across all backbone models in our PerFit experiments: we set both
the low-rank dimension and user low-rank dimension to 32, applied interventions at layers 7, 9, and
11, used both front and last 7 positions (f7+l7) for intervention, and trained for 2 epochs. We choose
these settings considering the balance between performance and computational efficiency, which can
be further optimized for each specific backbone. The uniformity in hyperparameters ensures that
performance differences are attributable to the backbone model rather than tuning variations. This is
also a practical choice for followers who may not have the resources for extensive hyperparameter
tuning for each model.

The results, summarized in Table 13. Notably, the performance gap between PerFit and other
methods widens as the model size decreases, indicating that our approach is particularly effective for
smaller models where parameter efficiency is crucial. This suggests that PerFit not only enhances
personalization but also maintains robustness across varying model capacities.

Table 13: Performance comparison across different backbone models and personalization methods.
Trainable parameters and percentages are also reported.

Method LaMP-2M LaMP-2N LaMP-4 LaMP-7 #Param %Param
Acc F1 Acc F1 R-1 R-L R-1 R-L

LLaMA3-8B

LoRA-C 0.537 0.494 0.798 0.554 0.201 0.181 0.553 0.501 4.72M 0.059%
LoRA-P 0.212 0.125 0.539 0.333 0.094 0.086 0.136 0.120 3.41M 0.042%
OPPU 0.627 0.529 0.802 0.587 0.209 0.188 0.494 0.442 8.13M 0.051%
PerFit 0.644 0.550 0.818 0.612 0.201 0.180 0.533 0.487 1.57M 0.010%

Qwen2.5-7B

LoRA-C 0.429 0.384 0.792 0.519 0.177 0.159 0.526 0.469 3.44M 0.045%
LoRA-P 0.485 0.305 0.781 0.560 0.164 0.147 0.446 0.400 2.52M 0.033%
OPPU 0.567 0.451 0.789 0.555 0.185 0.166 0.524 0.473 5.96M 0.039%
PerFit 0.612 0.508 0.808 0.612 0.182 0.164 0.532 0.482 1.38M 0.009%

LLaMA3-3B

LoRA-C 0.438 0.401 0.783 0.510 0.175 0.156 0.534 0.477 3.21M 0.100%
LoRA-P 0.163 0.063 0.688 0.501 0.124 0.110 0.201 0.171 2.29M 0.071%
OPPU 0.579 0.464 0.792 0.566 0.185 0.165 0.512 0.460 5.51M 0.086%
PerFit 0.644 0.550 0.818 0.612 0.201 0.180 0.533 0.487 1.18M 0.018%

LLaMA3-1B

LoRA-C 0.402 0.349 0.771 0.491 0.147 0.132 0.524 0.474 1.18M 0.095%
LoRA-P 0.105 0.041 0.490 0.309 0.075 0.067 0.160 0.143 0.85M 0.069%
OPPU 0.529 0.405 0.780 0.545 0.157 0.141 0.376 0.338 2.03M 0.082%
PerFit 0.563 0.448 0.796 0.577 0.146 0.130 0.500 0.456 0.79M 0.032%

E.5 COLD-START WITH LIMITED COLLECTIVE USERS

To evaluate our method’s robustness in cold-start scenarios and data-scarce conditions, we conducted
experiments with limited collective users in the first training stage. This setting simulates real-world

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

scenarios where new users arrive and only limited collective data is available for learning the initial
representation shift. We compared performance with varying numbers of collective users (10 and
100) against OPPU across multiple tasks.

Table 14: Performance comparison under limited collective users. Results show both OPPU and our
method (PerFit) with 10 and 100 users in the first training stage.

Method LaMP-2N LaMP-2M LaMP-4 LaMP-7
Acc F1 Acc F1 R-1 R-L R-1 R-L

10 (OPPU) 0.783 0.569 0.168 0.075 0.197 0.177 0.142 0.136
10 (PerFit) 0.800 0.589 0.535 0.398 0.199 0.179 0.465 0.418

100 (OPPU) 0.801 0.600 0.538 0.385 0.197 0.177 0.472 0.428
100 (PerFit) 0.812 0.598 0.587 0.464 0.201 0.181 0.476 0.429

As shown in Table 14, our method demonstrates remarkable resilience under data scarcity. Even
with only 10 collective users, PerFit maintains stable performance across all tasks, while OPPU
experiences significant degradation, particularly in Movie Tagging (LaMP-2M) and Tweet Paraphras-
ing (LaMP-7). This robustness can be attributed to our approach’s focus on learning approximate
common biases in the representation space during the first stage, rather than attempting to capture
fine-grained user patterns.

The results suggest that our method is particularly well-suited for real-world applications where
collecting extensive collective user data may be challenging or impractical. The stable performance
under limited data conditions also indicates that the learned representation shifts effectively capture
fundamental patterns that generalize well to new users.

Beyond the number of collective users, we further investigate how sensitive PerFit is to the specific
composition and behavioral diversity of the Stage-1 user set. To this end, we randomly sample five
different user groups for Stage-1 (each containing the same number of users), learn a collective shift
for each group, and then fine-tune on a fixed set of unseen users in Stage-2. Table 15 reports the
downstream performance for Movie Tagging, News Categorize, and Tweet Paraphrase across these
user batches.

Table 15: Sensitivity of PerFit to Stage-1 collective user composition. We report results on a fixed
set of unseen users when the Stage-1 collective shift is learned on five different randomly sampled
user batches (each with the same number of users). The variance across batches is extremely small,
indicating that PerFit is robust to the specific choice of collective users.

User batch Movie Tagging News Categorize Tweet Paraphrase
Acc F1 Acc F1 R-1 R-L

0 0.600 0.478 0.804 0.588 0.482 0.440
1 0.604 0.485 0.808 0.600 0.489 0.445
2 0.601 0.482 0.804 0.591 0.488 0.446
3 0.599 0.478 0.809 0.595 0.482 0.442
4 0.597 0.476 0.810 0.592 0.475 0.433

Variance 5.0× 10−6 1.1× 10−5 6.0× 10−6 1.7× 10−5 2.5× 10−5 2.1× 10−5

These results show that the performance of PerFit remains remarkably stable across different
Stage-1 user batches, with only negligible variance in both classification and generation metrics.
This suggests that the learned collective shift captures a dominant, population-level direction in
the representation space, which is preserved even when the underlying user subset is resampled.
Consequently, Stage-2 personalization operates on top of a robust shared structure, and PerFit is
not overly sensitive to the particular composition or behavioral distribution of the collective user set,
consistent with our analysis of the representation geometry in Section 3 and Appendix B.6.
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E.6 TRANSFERABILITY OF THE COLLECTIVE SHIFT ACROSS USERS AND TASKS

The "collective shift" in our framework captures a robust, population-level personalization trend that
generalizes across both users and tasks, rather than merely acting as a domain-specific adaptation. This
is primarily evidenced by its transferability: the Stage-1 collective shift directly benefits previously
unseen users in Stage-2 without retraining, and further proves effective even when transferred across
different tasks. As shown in Table 16, a collective shift learned on one task remains functional for
distinct downstream tasks, suggesting it encodes fundamental personalization characteristics beyond
single-dataset statistics.

Crucially, this transfer behavior is consistent with the geometric structure of the learned represen-
tations analyzed in Appendix B.6. We observe that tasks located closer in the δ-space (e.g., Movie
Tagging and News Categorization) exhibit smoother transfer, whereas pairs with large geometric
separation (e.g., Tweet Paraphrase and News Headline) show a more pronounced performance drop.
This alignment confirms that the collective shift captures structural personalization patterns that are
often shared across related domains.

Table 16: Cross-task transferability of the collective shift. The rows indicate the task used for Stage-1
training, while the columns indicate the task used for Stage-2 training and evaluation.

Stage-1 Task Movie Tagging News Categorize News Headline Tweet Paraphrasing
Acc F1 Acc F1 R-1 R-L R-1 R-L

Movie Tagging 0.636 0.520 0.815 0.591 0.194 0.174 0.466 0.420
News Categorize 0.545 0.408 0.818 0.588 0.195 0.175 0.467 0.419
News Headline 0.540 0.381 0.814 0.586 0.207 0.186 0.212 0.203
Tweet Paraphrase 0.521 0.364 0.795 0.579 0.196 0.176 0.490 0.447

These results show that the Stage-1 collective shift exhibits non-trivial cross-task transferability,
suggesting a connection to task-level personalization characteristics rather than a single dataset.
This observation is consistent with our δ-vectors analysis and points to an interesting direction for
future work on understanding when and how such collective shifts transfer across tasks by exploring
benchmarks with more complex and diverse tasks.

E.7 IMPACT OF PERSONALIZATION INTERVENTIONS ON GENERAL CAPABILITIES

PerFit injects low-rank personalization interventions at multiple transformer layers, including rel-
atively early layers, which raises a natural concern about potential interference with the model’s
generic language understanding and reasoning abilities. To empirically assess this, we evaluate frozen
personalized models (after Stage-2) on widely used general-purpose benchmarks, including com-
monsense reasoning tasks (BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, OBQA)
and the GLUE benchmark . The personalized models are obtained by applying PerFit to different
user-facing datasets (Movie Tagging for Qwen2.5-7B and Tweet Paraphrase for Llama-2-7B), while
the underlying backbone weights remain frozen after Stage-2.11

Formally, we compare the following two settings: (i) Base, the original pretrained model without any
personalization, and (ii) PerFit, the same backbone with the learned low-rank interventions activated
after Stage-2 personalization. As summarized in Tables 17 and 18, the performance differences
between Base and PerFit are consistently negligible across all benchmarks, with fluctuations well
within typical evaluation noise. These results indicate that PerFit’s low-rank interventions effec-
tively preserve the backbone’s generic capabilities in commonsense reasoning and natural language
understanding, while still enabling strong user-level personalization on downstream tasks.

Overall, these evaluations provide empirical evidence that multi-layer personalization via PerFit does
not come at the expense of the model’s generic capabilities on standard benchmarks. The learned
interventions remain sufficiently localized in representation space, enabling user-specific adaptation
while preserving the backbone’s broader linguistic and reasoning competence.

11We follow the standard evaluation protocol and prompts of each benchmark.
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Table 17: Impact of PerFit personalization on commonsense reasoning benchmarks (Accuracy ↑).
PerFit is applied to user-level datasets (Movie Tagging and Tweet Paraphrase), and the resulting
personalized models are evaluated on standard commonsense tasks. Performance differences between
Base and PerFit are negligible.

Model BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Qwen2.5-7B (Movie Tagging)
Base 0.846 0.787 0.547 0.600 0.730 0.804 0.479 0.336 0.641
PerFit 0.846 0.787 0.548 0.600 0.732 0.804 0.482 0.338 0.642

Llama-2-7B (Tweet Paraphrase)
Base 0.777 0.781 0.461 0.572 0.690 0.763 0.434 0.314 0.599
PerFit 0.764 0.784 0.459 0.571 0.691 0.759 0.424 0.316 0.596

Table 18: Impact of PerFit personalization on GLUE tasks (Accuracy ↑, CoLA is reported as MCC,
STS-B as Pearson). Personalized Qwen2.5-7B (Movie Tagging) maintains similar performance to the
base model across all tasks.

Model SST-2 CoLA MRPC QQP QNLI MNLI RTE Avg.

Base 0.919 0.257 0.672 0.860 0.648 0.621 0.812 0.684
PerFit 0.919 0.256 0.672 0.860 0.648 0.620 0.809 0.683

F BROADER IMPACTS

Personalized Large Language Models (LLMs), particularly through methods like fine-tuning in
representation space, offer transformative potential for human-computer interaction and information
access. This approach, by subtly adapting LLMs via their underlying representation space rather
than full model retraining, significantly enhances resource efficiency and scalability, making deep
personalization feasible for a broader range of applications and users. This personalized tailoring
promises to revolutionize user experience by matching communication style, vocabulary, and level of
detail to individual needs, improving efficiency in tasks, and fostering hyper-personalized learning.
Such adaptation inherently boosts accessibility, bridging communication gaps for diverse users.

However, these advancements come with substantial ethical and societal challenges. Personalization,
even when achieved in representation space, risks implicitly encoding sensitive user information,
raising significant privacy and data security concerns through potential re-identification. It can
also inadvertently amplify existing biases within training data, leading to skewed or discriminatory
information delivery. Furthermore, by constantly curating content to individual preferences, personal-
ized LLMs can create restrictive "filter bubbles" and "echo chambers," limiting exposure to diverse
viewpoints and potentially enabling sophisticated, personalized misinformation or manipulation
campaigns that could subtly erode user autonomy. The opaque nature of these models, further
compounded by personalization, also complicates transparency and explainability.

Addressing these critical impacts requires a proactive, multi-faceted approach. Robust privacy-
preserving techniques, comprehensive bias detection and mitigation strategies, and transparent user
controls are essential. Developing clear ethical guidelines and fostering interdisciplinary collaboration
among researchers, ethicists, and policymakers are crucial steps to ensure that PLLMs are developed
and deployed responsibly, maximizing their societal benefits while minimizing potential harms.
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G USE OF LLMS

This work utilizes large language models (LLMs), including ChatGPT https://chat.openai.
com/ and Claude Code https://claude.ai/chats, as general-purpose tools for writing
assistance. These tools were employed for polishing text, correcting formatting errors, and checking
grammar throughout the writing process.

This use of LLMs complies with the ICLR 2026 Author Guide https://iclr.cc/
Conferences/2026/AuthorGuide, ensuring adherence to the conference’s guidelines for
AI assistance in academic writing.
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