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Abstract

Most learning algorithms with formal regret guar-
antees assume that all mistakes are recoverable
and essentially rely on trying all possible behav-
iors. This approach is problematic when some
mistakes are catastrophic, i.e., irreparable. We
propose an online learning problem where the
goal is to minimize the chance of catastrophe.
Specifically, we assume that the payoff in each
round represents the chance of avoiding catastro-
phe in that round and try to maximize the product
of payoffs (the overall chance of avoiding catastro-
phe) while allowing a limited number of queries to
a mentor. We also assume that the agent can trans-
fer knowledge between similar inputs. We first
show that in general, any algorithm either queries
the mentor at a linear rate or is nearly guaranteed
to cause catastrophe. However, in settings where
the mentor policy class is learnable in the standard
online model, we provide an algorithm whose
regret and rate of querying the mentor both ap-
proach 0 as the time horizon grows. Although our
focus is the product of payoffs, we provide match-
ing bounds for the typical additive regret. Concep-
tually, if a policy class is learnable in the absence
of catastrophic risk, it is learnable in the presence
of catastrophic risk if the agent can ask for help.

1. Introduction
There has been mounting concern over catastrophic risk
from AI, including but not limited to autonomous weapon
accidents (Abaimov & Martellini, 2020), bioterrorism (Mou-
ton et al., 2024), cyberattacks on critical infrastructure
(Guembe et al., 2022), and loss of control (Bengio et al.,
2024). See Critch & Russell (2023) and Hendrycks et al.
(2023) for taxonomies of societal-scale AI risks. In this
paper, we use “catastrophe” to refer to any kind of irrepara-
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ble harm. In addition to the large-scale risks above, our
definition also covers smaller-scale (yet still unacceptable)
incidents such as serious medical errors (Rajpurkar et al.,
2022), crashing a robotic vehicle (Kohli & Chadha, 2020),
and discriminatory sentencing (Villasenor & Foggo, 2020).

The gravity of these risks contrasts starkly with the dearth
of theoretical understanding of how to avoid them. Nearly
all of learning theory explicitly or implicitly assumes that
no single mistake is too costly. We focus on online learning,
where an agent repeatedly interacts with an unknown
environment and uses its observations to gradually improve
its performance. Most online learning algorithms essentially
try all possible behaviors and see what works well. We do
not want autonomous weapons or surgical robots to try all
possible behaviors.

More precisely, trial-and-error-style algorithms only work
when catastrophe is assumed to be impossible. This assump-
tion can take multiple forms, such as that the agent’s actions
do not affect future inputs (e.g., Slivkins, 2011), that no ac-
tion has irreversible effects (e.g., Jaksch et al., 2010) or that
the environment is reset at the start of each “episode” (e.g.,
Azar et al., 2017). One could train an agent entirely in a con-
trolled lab setting where one of those assumptions does hold,
but we argue that sufficiently general agents will inevitably
encounter novel scenarios when deployed in the real world.
Machine learning models often behave unpredictably in un-
familiar environments (see, e.g., Quiñonero-Candela et al.,
2022), and we do not want AI biologists or robotic vehicles
to behave unpredictably.

The goal of this paper is to understand the conditions un-
der which it is possible to formally guarantee avoidance of
catastrophe in online learning. Certainly some conditions
are necessary, because the problem is hopeless if the agent
must rely purely on trial-and-error: any untried action could
lead to paradise or disaster and the agent has no way to pre-
dict which. In the real world, however, one need not learn
through pure trial-and-error: one can also ask for help. We
think it is critical for high-stakes AI applications to employ a
designated supervisor who can be asked for help. Examples
include a human doctor supervising AI doctors, a robotic
vehicle with a human driver who can take over in emer-
gencies, autonomous weapons with a human operator, and
many more. We hope that our work constitutes a step in the
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direction of practical safety guarantees for such applications.

1.1. Our model

We propose an online learning model of avoiding catastro-
phe with mentor help. On each time step, the agent observes
an input, selects an action or queries the mentor, and ob-
tains a payoff. Each payoff represents the probability of
avoiding catastrophe on that time step (conditioned on no
prior catastrophe). The agent’s goal is to maximize the prod-
uct of payoffs, which is equal to the overall probability of
avoiding catastrophe.1 As is standard in online learning, we
consider the product of payoffs obtained while learning, not
the product of payoffs of some final policy.

The (possibly suboptimal) mentor has a stationary policy,
and when queried, the mentor illustrates their policy’s action
for the current input. We want the agent’s regret – defined as
the gap between the mentor’s performance and the agent’s
performance – to go to zero as the time horizon T grows. In
other words, with enough time, the agent should avoid catas-
trophe nearly as well as the mentor. We also expect the agent
to become self-sufficient over time: the number of queries
to the mentor should be sublinear in T , or equivalently, the
rate of querying the mentor should go to zero.

1.2. Our assumptions

The agent needs some way to make inferences about un-
queried inputs in order to decide when to ask for help. Much
past work has used Bayesian inference, which suffers from
tractability issues in complex environments.2 We instead
assume that the mentor policy satisfies a novel property that
we call local generalization: informally, if the mentor told
us that an action was safe for a similar input, then that action
is probably also safe for the current input. For example, if it
is safe to ignore a 3 mm spot on an X-ray, it is likely (but not
certainly) also safe to ignore a 3.1 mm spot with the same
density, location, etc. Unlike Bayesian inference, local gen-
eralization only requires computing distances and is compat-
ible with any input space that admits a distance metric. See
Section 5.2 for further discussion of local generalization.

Unlike the standard online learning model, we assume that
the agent does not observe payoffs. This is because the
payoff in our model represents the chance of avoiding catas-
trophe on that time step. In the real world, one only observes
whether catastrophe occurred, not its probability.3

1Conditioning on no prior catastrophe means we do not need to
assume that these probabilities are independent (and if catastrophe
has already occurred, this time step does not matter). This is due
to the chain rule of probability.

2For the curious reader, Betancourt (2018) provides a thorough
treatment. See also Section 2.

3One may be able to detect “close calls” in some cases, but
observing the precise probability seems unrealistic.

Table 1: Comparison between the standard online learning model
and our model.

Standard model Our model

Objective Sum of payoffs Product of payoffs

Regret goal Sublinear Subconstant

Feedback Every time step Only from queries

Mentor No Yes

Local generalization No Yes

1.3. Standard online learning

To properly understand our results, it is important to un-
derstand standard online learning. In the standard model,
the agent observes an input on each time step and must
choose an action. An adversary then reveals the correct
action, which results in some payoff to the agent. The goal
is sublinear regret with respect to the sum of payoffs, or
equivalently, the average regret per time step should go to
0 as T → ∞. Table 1 delineates the precise differences
between the standard model and our model.

If the adversary’s choices are unconstrained, the problem
is hopeless: if the adversary determines the correct action
on each time step randomly and independently, the agent
can do no better than random guessing. However, sublinear
regret becomes possible if (1) the hypothesis class has finite
Littlestone dimension (Littlestone, 1988), or (2) the hypoth-
esis class has finite VC dimension (Vapnik & Chervonenkis,
1971) and the input is σ-smooth4 (Haghtalab et al., 2024).

The goal of sublinear regret in online learning implicitly
assumes catastrophe is impossible: the agent can make ar-
bitrarily many (and arbitrarily costly) mistakes as long as
the average regret per time step goes to 0. In contrast, we
demand subconstant regret: the total probability of catastro-
phe should go to 0. Furthermore, standard online learning
allows the agent to observe payoffs on every time step, while
our agent only receives feedback on time steps with queries.
However, the combination of a mentor and local generaliza-
tion allows our agent to learn without trying actions directly,
which is enough to offset all of the above disadvantages.

1.4. Our results

At a high level, we show that avoiding catastrophe with the
help of a mentor and local generalization is no harder than
online learning without catastrophic risk.

We first show that in general, any algorithm with sublinear
queries to the mentor has unbounded regret in the worst-
case (Theorem 4.1). As a corollary, even when the mentor

4Informally, the adversary chooses a distribution over inputs
instead of a precise input. See Section 3 for the formal definition.
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can avoid catastrophe with certainty, any algorithm either
needs extensive supervision or is nearly guaranteed to cause
catastrophe (Corollary 4.1.1).

Our primary result is a simple algorithm whose total regret
and rate of querying the mentor both go to 0 as T → ∞
when either (1) the mentor policy class has finite Littlestone
dimension or (2) the mentor policy class has finite VC di-
mension and the input sequence is σ-smooth (Theorem 5.2).
Conceptually, the algorithm has two components: (1) for “in-
distribution” inputs, run a standard online learning algorithm
(adjusted to account for only receiving feedback in response
to queries), and (2) for “out-of-distribution” inputs, ask for
help. Our algorithm can handle an unbounded input space
and does not need to know the local generalization constant.

Although we focus on the product of payoffs, we show
that the results above (both positive and negative) hold for
the typical additive regret as well. In fact, we show that
multiplicative regret and additive regret are tightly related
in our setting (Lemma A.1).

In summary, the combination of local generalization and a
mentor allows us to reduce the regret by an entire factor of
T , resulting in subconstant regret (multiplicative or additive)
instead of the typical sublinear regret.

2. Related work
Learning with irreversible costs. Despite the ubiquity of
irreversible costs in the real world, theoretical work on this
topic remains limited. This may be due to the fundamental
modeling question of how the agent should learn about
novel inputs or actions without trying them directly.

The most common approach is to allow the agent to ask for
help. This alone is insufficient, however: the agent must
have some way to decide when to ask for help. A popular so-
lution is to perform Bayesian inference on the world model,
but this has two tricky requirements: (1) a prior distribution
which contains the true world model (or an approximation),
and (2) an environment where computing (or approximating)
the posterior is tractable. A finite set of possible environ-
ments satisfies both conditions but is unrealistic in many
real-world scenarios. In contrast, our algorithm can handle
an uncountable policy class and a continuous unbounded
input space, which is crucial for many real-world scenarios
in which one never sees the exact same input twice.

Bayesian inference combined with asking for help is studied
by Cohen et al. (2021); Cohen & Hutter (2020); Kosoy
(2019); Mindermann et al. (2018). We also mention
Hadfield-Menell et al. (2017); Moldovan & Abbeel (2012);
Turchetta et al. (2016), who utilize Bayesian inference in
the context of safe (online) reinforcement learning without
asking for help (and without regret bounds).

We are only aware of two papers that theoretically address
irreversibility without Bayesian inference: Grinsztajn et al.
(2021) and Maillard et al. (2019). The former proposes
to sample trajectories and learn reversibility based on
temporal consistency between states: intuitively, if s1
always precedes s2, we can infer that s1 is unreachable from
s2. Although the paper theoretically grounds this intuition,
there is no formal regret guarantee. The latter presents an
algorithm which asks for help in the form of rollouts from
the current state. However, the regret bound and number
of rollouts are both linear in the worst case, due to the de-
pendence on the γ∗ parameter which roughly captures how
bad an irreversible action can be. In contrast, our algorithm
achieves good regret even when actions are maximally bad.

To our knowledge, we are the first to provide an algorithm
which formally guarantees avoidance of catastrophe (with
high probability) without Bayesian inference. We are also
not aware of prior results comparable to our negative result,
including in the Bayesian regime.

Safe reinforcement learning (RL). The safe RL problem is
typically formulated as a constrained Markov Decision Pro-
cess (CMDP) (Altman, 2021). In CMDPs, the agent must
maximize reward while also satisfying safety constraints.
See Gu et al. (2024); Zhao et al. (2023); Wachi et al. (2024)
for surveys. The two most relevant safe RL papers are Liu
et al. (2021) and Stradi et al. (2024), both of which provide
algorithms guaranteed to satisfy initially unknown safety
constraints. Since neither paper allows external help, they
require strong assumptions to make the problem tractable:
the aforementioned results assume that the agent (1) knows
a strictly safe policy upfront (i.e., a policy which satisfies the
safety constraints with slack), (2) is periodically reset, and
(3) observes the safety costs. In contrast, our agent has no
prior knowledge, is never reset, and never observes payoffs.

Online learning. See Cesa-Bianchi & Lugosi (2006) and
Chapter 21 of Shalev-Shwartz & Ben-David (2014) for
introductions to online learning. A classical result states
that sublinear regret is possible if and only if the hypothesis
class has finite Littlestone dimension (Littlestone, 1988).
However, even some simple hypothesis classes have infinite
Littlestone dimension, such as the class of thresholds on
[0, 1] (Example 21.4 in Shalev-Shwartz & Ben-David,
2014). Recently, Haghtalab et al. (2024) showed that if the
adversary only chooses a distribution over inputs rather than
the precise input, only finite VC dimension (Vapnik & Cher-
vonenkis, 1971) is needed for sublinear regret. Specifically,
they assume that each input is sampled from a distribution
whose concentration is upper bounded by 1

σ times the
uniform distribution. This framework is known as smoothed
analysis, originally due to Spielman & Teng (2004).

Multiplicative objectives. Although online learning
traditionally studies the sum of payoffs, there is some work
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which aims to maximize the product of payoffs (or equiva-
lently, the sum of logarithms). See, e.g., Chapter 9 of Cesa-
Bianchi & Lugosi (2006). However, these regret bounds
are still sublinear in T , in comparison to our subconstant
regret bounds. Also, like most online learning work, those
results assume that payoffs are observed on every time step.
In contrast, our agent only receives feedback in response to
queries (Table 1) and never observes payoffs. Barman et al.
studied a multiplicative objective in a multi-armed bandit
context, but their objective is the geometric mean of payoffs
instead of the product. Interpreted in our context, their
regret bounds imply that the average chance of catastrophe
goes to zero, while we guarantee that the total chance of
catastrophe goes to zero. This distinction is closely related
to the difference between subconstant and sublinear regret.

Active learning and imitation learning. Our assumption
that the agent only receives feedback in response to queries
falls under the umbrella of active learning (Hanneke, 2014).
This contrasts with passive learning, where the agent re-
ceives feedback automatically. The way our agent learns
from the mentor is also reminiscent of imitation learning
(Osa et al., 2018). Although ideas from these areas could be
useful in our setting, we are not aware of any results from
that literature which account for irreversible costs.

3. Model
Inputs. Let N denote the strictly positive integers and let
T ∈ N be the time horizon. Let x = (x1, x2, . . . , xT ) ∈
X T be the sequence of inputs. In the fully adversarial set-
ting, each xt can have arbitrary (possibly randomized) de-
pendence on the events of prior time steps. In the smoothed
setting, the adversary only chooses the distribution Dt from
which xt is sampled. Formally, a distribution D over X
is σ-smooth if for any S ⊆ X , D(S) ≤ 1

σU(S). (In the
smoothed setting, we assume that X supports a uniform
distribution U .5) If each xt is sampled from a σ-smooth Dt,
we say that x is σ-smooth. The sequence D = D1, . . . ,DT

can still be adaptive, i.e., the choice of Dt can depend on
the events of prior time steps.

Actions and payoffs. Let Y be a finite set of actions. There
also exists a special action ỹ which corresponds to querying
the mentor. For k ∈ N, let [k] = {1, 2, . . . , k}. On each
time step t ∈ [T ], the agent must select action yt ∈ Y∪{ỹ},
which generates a payoff. Let y = (y1, . . . , yT ). We allow
the payoff function to vary between time steps: let µ =
(µ1, . . . , µT ) ∈ (X × Y → [0, 1])T be the sequence of
payoff functions. Then µt(xt, yt) ∈ [0, 1] is the agent’s
payoff at time t. Like D, we allow µ to be adaptive. Unless

5For example, it suffices for X to have finite Lebesgue mea-
sure. Note that this does not imply boundedness. Alternatively,
σ-smoothness can be defined with respect to a different distribu-
tion; see Definition 1 of Block et al. (2022).

otherwise noted, all expectations are over any randomization
in the agent’s decisions, any randomization in x, and any
randomization in the adaptive choice of µ.

Asking for help. The mentor is endowed with a (possibly
suboptimal) policy πm : X → Y . When action ỹ is chosen,
the mentor informs the agent of the action πm(xt) and
the agent obtains payoff µt(xt, π

m(xt)). For brevity, let
µm
t (x) = µt(x, π

m(x)). The agent never observes payoffs:
the only way to learn about µ is by querying the mentor.

We would like an algorithm which becomes “self-sufficient”
over time: the rate of querying the mentor should go
to 0 as T → ∞, or equivalently, the cumulative num-
ber of queries should be sublinear in T . Formally, let
QT (µ, π

m) = {t ∈ [T ] : yt = ỹ} be the random vari-
able denoting the set of time steps with queries. Then we
say that the (expected) number of queries is sublinear in T
if supµ,πm E[|QT (µ, π

m)|] ∈ o(T ). In other words, there
must exist g : N→ N which does not depend on µ or πm

such that g(T ) ∈ o(T ) and supµ,πm E[|QT (µ, π
m)|] ≤

g(T ). For brevity, we will usually write QT = QT (µ, π
m).

Local generalization. We assume that µ and πm satisfy
local generalization. Informally, if the agent is given an
input x, taking the mentor action for a similar input x′ is
almost as good as taking the mentor action for x. Formally,
we assume X ⊆ Rn and there exists L > 0 such that for all
x, x′ ∈ X and t ∈ [T ], |µm

t (x)− µt(x, π
m(x′))| ≤ L||x−

x′||, where || · || denotes Euclidean distance. This represents
the ability to transfer knowledge between similar inputs:∣∣ µt(x, π

m(x))︸ ︷︷ ︸
Taking the right action

− µt(x, π
m(x′))︸ ︷︷ ︸

Using what you learned in x′

∣∣ ≤ L||x− x′||︸ ︷︷ ︸
Input similarity

This ability seems fundamental to intelligence and is well-
understood in psychology (e.g., Esser et al., 2023) and ed-
ucation (e.g., Hajian, 2019). Note that the input space X ⊆
Rn can be any encoding of the agent’s situation, not just its
physical positioning. See Section 5.2 for further discussion.

All suprema over µ, πm pairs are assumed to be restricted
to µ, πm pairs which satisfy local generalization.

Regret. If µt(xt, yt) ∈ [0, 1] is the chance of avoiding
catastrophe at time t (conditioned on no prior catastrophe),
then by the chain rule of probability,

∏T
t=1 µt(xt, yt) is the

agent’s overall chance of avoiding catastrophe. For given
x,y,µ, πm, the agent’s multiplicative regret6 is

R×
T (x,y,µ, π

m) = log

T∏
t=1

µm
t (xt)− log

T∏
t=1

µt(xt, yt)

6One could also define the multiplicative regret as R′
T =∏T

t=1 µ
m
t (xt) −

∏T
t=1 µt(xt, yt), but our definition is actually

stricter: limT→∞ R×
T → 0 implies limT→∞ R′

T → 0, while the
reverse is not true. In particular, limT→∞ R′

T → 0 is trivial if
limT→∞

∏T
t=1 µ

m
t (xt) → 0.
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when all payoffs are strictly positive. To handle the case
where some payoffs are zero, we assume the existence
of µm

0 > 0 such that µm(xt) ≥ µm
0 always. Thus only

the agent’s payoffs can be zero, so we can safely define
R×

T (x,y,µ, π
m) = ∞ whenever µt(xt, yt) = 0 for some

t ∈ [T ]. We write R×
T = R×

T (x,y,µ, π
m) for brevity.

The assumption of µm(xt) ≥ µm
0 > 0 means that the men-

tor cannot be abysmal. In fact, we argue that high-stakes AI
applications should employ a mentor who is almost always
safe, i.e., µm

0 ≈ 1. If no such mentor exists for some applica-
tion, perhaps that application should be avoided altogether.

We also define the agent’s additive regret as

R+
T (x,y,µ, π

m) =

T∑
t=1

µm
t (xt)−

T∑
t=1

µt(xt, yt)

and similarly write R+
T = R+

T (x,y,µ, π
m) for brevity. For

both objectives, we desire subconstant worst-case regret: the
total (not average) expected regret should go to 0 for any µ
and πm. Formally, we want limT→∞ supµ,πm E[R×

T ] = 0

and limT→∞ supµ,πm E[R+
T ] = 0.

VC and Littlestone dimensions. VC dimension (Vapnik &
Chervonenkis, 1971) and Littlestone dimension (Littlestone,
1988) are standard measures of learning difficulty which
capture the ability of a hypothesis class (in our case, a
policy class) to realize arbitrary combinations of labels (in
our case, actions). We omit the precise definitions since we
only utilize these concepts via existing results. See Shalev-
Shwartz & Ben-David (2014) for a comprehensive overview.

Misc. The diameter of a set S ⊆ X is defined by
diam(S) = maxx,x′∈S ||x− x′||. All logarithms and expo-
nents are base e unless otherwise noted.

4. Avoiding catastrophe with sublinear queries
is impossible in general

We first show that in general, any algorithm with sublinear
mentor queries has unbounded regret in the worst-case, even
when inputs are i.i.d. on [0, 1] and µ does not vary over
time. The formal proofs are deferred to Appendix A, but we
provide intuition and define the construction here.

Theorem 4.1. Any algorithm with sublinear queries has un-
bounded worst-case regret (both multiplicative and additive)
as T →∞. Specifically,

sup
µ,πm

E[R×
T ], sup

µ,πm
E[R+

T ] ∈ Ω

(
L

√
T

supµ,πm E[|QT |]+1

)

Intuitively, the regret decreases as the number of queries in-
creases. However, as long as the number of queries remains
sublinear in T , the regret is unbounded as T →∞.

We also have the following corollary of Theorem 4.1:
Corollary 4.1.1. Even when µm

t (x) = 1 for all t and x,
any algorithm with sublinear queries satisfies

lim
T→∞

sup
µ,πm

E

[
T∏

t=1

µt(xt, yt)

]
= 0

In other words, even if the mentor never causes catastrophe,
any algorithm with sublinear queries causes catastrophe
with probability 1 as T →∞ in the worst case.

4.1. Intuition

We partition X into equally-sized sections that are “inde-
pendent” in the sense that querying an input in section i
provides no information about section j. There will be
f(T ) sections, where f is a function that we will choose.
If |QT | ∈ o(f(T )), most of these sections will never con-
tain a query. When the agent sees an input in a section not
containing a query, it essentially must guess, meaning it
will be wrong about half the time. We then choose a payoff
function (which is the same for all time steps) which makes
the wrong guesses as costly as possible, subject to the local
generalization constraint. Figure 1 fleshes out this idea.

The choice of f is crucial. One idea is f(T ) = T . If the
agent is wrong about half the time, and the average payoff
for wrong actions is 1− L

4T , we can estimate the regret as

R×
T = log

T∏
t=1

µm
t (xt)− log

T∏
t=1

µt(xt, yt)

≈ log 1− log

(
1− L

4T

)T/2

= − T

2
log

(
1− L

4T

)
≈ T

2
· L

4T

=
L

8

Thus f(T ) = T can at best give us a constant lower
bound on regret. Instead, we choose f such that
|QT | ∈ o(f(T )) and f(T ) ∈ o(T ). Specifically, we choose

f(T ) = max(
√
supµ,πm E[|QT |]T , 1). Most sections still

will not contain a query, so the agent is still wrong about half
the time, but the payoff for wrong actions is worse. Then

R×
T ≈ log 1− log

(
1− L

4f(T )

)T/2

≈ LT

8f(T )

∈ Ω

(
L

√
T

supµ,πm E[|QT |] + 1

)
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input x

payoff µ

µ(x, 0)

µ(x, 1)

L

2f(T )

1
f(T )

2
f(T )

3
f(T )

f(T )−1
f(T )

. . . 10

1

Figure 1: An illustration of the construction we use to prove Theorem 4.1 (not to scale). The horizontal axis indicates the input
x ∈ [0, 1] = X and the vertical axis indicates the payoff µ(x, y) ∈ [0, 1]. The solid line represents µ(x, 0) and the dotted line represents
µ(x, 1). In each section, one of the actions has the optimal payoff of 1, and the other action has the worst possible payoff allowed by L,
reaching a minimum of 1− L

2f(T )
. Crucially, both actions result in a payoff of 1 at the boundaries between sections: this allows us to

“reset” for the next section. As a result, we can freely toggle the optimal action for each section independently.

which produces the bound in Theorem 4.1.

VC dimension. The class of mentor policies in our con-
struction has VC dimension f(T ); across all possible values
of T , this implies infinite VC (and Littlestone) dimension.
We know that this is necessary given our positive results.

4.2. Formal definition of construction

Let X = [0, 1] and Dt = U(X ) for each t ∈ [T ], where
U(X ) is the uniform distribution on X . Assume that L ≤ 1;
this will simplify the math and only makes the problem
easier for the agent. We define a family of payoff functions
parameterized by a function f : N → N and a bit string
a = (a1, a2, . . . , af(T )) ∈ {0, 1}f(T ). The bit aj will
denote the optimal action in section j. Note that f(T ) ≥ 1.

For each j ∈ [f(T )], we refer to Xj =
[

j−1
f(T ) ,

j
f(T )

]
as

the jth section. Let mj = j−0.5
f(T ) be the midpoint of Xj .

Assume that each xt belongs to exactly one Xj (this happens
with probability 1, so this assumption does not affect the
expected regret). Let j(x) denote the index of the section
containing input x. Then µf,a is defined by

µf,a(x, y) =


1 if y = aj(x)

1− L

(
1

2f(T )
− |mj(x) − x|

)
if y ̸= aj(x)

We use this payoff function for all time steps: µt = µf,a for
all t ∈ [T ]. Let πm be any optimal policy for µf,a. Note
that there is a unique optimal action for each xt, since each
xt belongs to exactly one Xj ; formally, πm(xt) = aj(xt).

For any a ∈ {0, 1}f(T ), µf,a is piecewise linear (trivially)
and continuous (because both actions have payoff 1 on the
boundary between sections). Since the slope of each piece
is in {−L, 0, L}, µf,a is Lipschitz continuous. Thus by

Proposition E.1, πm satisfies local generalization.

5. Avoiding catastrophe given finite VC or
Littlestone dimension

Theorem 4.1 shows that avoiding catastrophe is impossible
in general. What if we restrict ourselves to settings where
standard online learning is possible? Specifically, we as-
sume that πm belongs to a policy class Π where either (1)
Π has finite VC dimension d and x is σ-smooth or (2) Π
has finite Littlestone dimension d.7 This section presents a
simple algorithm which guarantees subconstant regret (both
multiplicative and additive) and sublinear queries under ei-
ther of those assumptions. Formal proofs are deferred to
Appendix B but we provide intuition and a proof sketch here.

5.1. Intuition behind the algorithm

Algorithm 1 has two simple components: (1) run a modified
version of the Hedge algorithm for online learning, but (2)
ask for help for unfamiliar inputs (specifically, when the
input is very different from any queried input with the same
action under the proposed policy). Hedge ensures that the
number of mistakes (i.e., the number of time steps where
the agent’s action doesn’t match the mentor’s) is small, and
asking for help for unfamiliar inputs ensures that when we
do make a mistake, the cost isn’t too high. This algorithmic
structure seems quite natural: mostly follow a baseline
strategy, but ask for help when out-of-distribution.

Hedge. Hedge (Freund & Schapire, 1997) is a standard
online learning algorithm which ensures sublinear regret
when the number of hypotheses (in our case, the number of

7Recall from Section 1.3 that standard online learning becomes
tractable under either of these assumptions.
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policies in Π) is finite.8 We would prefer not to assume that
Π is finite. Luckily, any policy in Π can be approximated
within ε when either (1) Π has finite VC dimension and x is
σ-smooth or (2) Π has finite Littlestone dimension. Thus we
can run Hedge on this approximative policy class instead.

One other modification is necessary. In standard online
learning, losses are observed on every time step, but our
agent only receives feedback in response to queries. To
handle this, we modify Hedge to only perform updates on
time steps with queries and to issue a query with probability
p on each time step. Continuing our lucky streak, Russo
et al. (2024) analyze exactly this modification of Hedge.

5.2. Local generalization

Local generalization is vital: this is what allows us to detect
when an input is unfamiliar. Crucially, our algorithm does
not need to know how inputs are encoded in Rn and does
not need to know L: it only needs to be able to compute the
nearest-neighbor distance min(x,y)∈S:y=πt(xt) ||xt − x||.
Thus we only need to assume that there exists some
encoding satisfying local generalization.

To elaborate, recall the example that a 3 mm spot and a 3.1
mm spot on X-rays likely have similar risk levels (assuming
similar density, location, etc.). If the risk level abruptly
increases for any spot over 3 mm, then local generalization
may not hold for a naive encoding which treats size as
a single dimension. However, a more nuanced encoding
would recognize that these two situations – a 3 mm vs 3.1
mm spot – are in fact not similar. Constructing a suitable
encoding may be challenging, but we do not require the
agent to have explicit access to such an encoding: the agent
only needs a nearest-neighbor distance oracle.

Conceptually, the algorithm only needs to be able to detect
when an input is unfamiliar. While this task remains far
from trivial, we argue that it is more tractable than fully con-
structing a suitable encoding. See Section 6 for a discussion
of potential future work on this topic.

We note that these encoding-related questions apply simi-
larly to the more standard assumption of Lipschitz continu-
ity. In fact, Lipschitz continuity implies local generalization
when the mentor is optimal (Proposition E.1). We also men-
tion that without local generalization, avoiding catastrophe
is impossible even when the mentor policy class has finite
VC dimension and x is σ-smooth (Theorem E.2).

5.3. Main result

For simplicity, here we only state our results for Y = {0, 1};
Appendix C extends our result to many actions using the

8Chapter 5 of Slivkins et al. (2019) and Chapter 21 of Shalev-
Shwartz & Ben-David (2014) give modern introductions to Hedge.

Algorithm 1 successfully avoids catastrophe assuming finite
VC or Littlestone dimension.

Inputs: T ∈ N, ε ∈ R>0, d ∈ N, policy class Π
if Π has VC dimension d then

Π̃← any smooth ε-cover of Π of size at most (41/ε)d

(see Definition 5.3)
else

Π̃ ← any adversarial cover of size at most (eT/d)d

(see Definition 5.4)
S ← ∅
w(π)← 1 for all π ∈ Π̃
p← 1/

√
εT

η ← max
(√p log |Π̃|

2T , p2

√
2

)
for t from 1 to T do

Run one step of Hedge, which selects policy πt

with probability p : hedgeQuery← true
with probability 1− p : hedgeQuery← false
if hedgeQuery9 then

Query mentor and observe πm(xt)
ℓ(t, π)← 1(π(xt) ̸= πm(xt)) for all π ∈ Π̃
ℓ∗ ← minπ∈Π̃ ℓ(t, π)

w(π)← w(π) ·exp(−η(ℓ(t, π)−ℓ∗)) for all π ∈ Π̃
πt ← argminπ∈Π̃ ℓ(t, π)

else
P (π)← w(π)/

∑
π′∈Π̃ w(π′) for all π ∈ Π̃

Sample πt ∼ P
if S = ∅ or min(x,y)∈S:y=πt(xt) ||xt−x|| > ε1/n then

Ask for help if out-of-distribution
Query mentor (if not already queried this round)
and observe πm(xt)
S ← S ∪ {(xt, π

m(xt))}
else

Otherwise, follow Hedge’s chosen policy
Take action πt(xt)

standard “one versus rest” reduction. We first prove regret
and query bounds parametrized by ε:

Theorem 5.1. Let Y = {0, 1}. Assume πm ∈ Π where
either (1) Π has finite VC dimension d and x is σ-smooth,
or (2) Π has finite Littlestone dimension d. Then for any

T ∈ N and ε ∈
[
1

T
,
(
µm
0

2L

)n]
, Algorithm 1 satisfies

E
[
R×

T

]
∈ O

(
dL

σµm
0

Tε1+1/n log(T + 1/ε)

)
E
[
R+

T

]
∈ O

(
dL

σ
Tε1+1/n log(T + 1/ε)

)
E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(T+1/ε) +

E[diam(x)n]

ε

)
9The reader may notice that we do not update S in this case.

This is simply because those updates are not necessary for the
desired bounds and omitting these updates simplifies the analysis.
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In Case 1, the expectation is over the randomness of both
x and the algorithm, while in Case 2, the expectation is
over only the randomness of the algorithm. The bounds
clearly have no dependence on σ in Case 2, but we include
σ anyway to avoid writing two separate sets of bounds.

To obtain subconstant regret and sublinear queries, we can
choose ε = T

−2n
2n+1 . This also satisfies 2Lε1/n ≤ µm

0 for
large enough T .
Theorem 5.2. Let Y = {0, 1}. Assume πm ∈ Π where
either (1) Π has finite VC dimension d and x is σ-smooth
or (2) Π has finite Littlestone dimension d. Then for any
T ∈ N, Algorithm 1 with ε = T

−2n
2n+1 satisfies

E
[
R×

T

]
∈ O

(
dL

σµm
0

T
−1

2n+1 log T

)
E
[
R+

T

]
∈ O

(
dL

σ
T

−1
2n+1 log T

)
E[|QT |] ∈ O

(
T

4n+1
4n+2

(
d

σ
log T + E[diam(x)n]

))
Before proceeding to the proof sketch, we highlight some
advantages of our algorithm.

Limited knowledge required. Our algorithm needs to
know Π, as is standard. However, the algorithm does not
need to know σ (in the smooth case) or L. Although Al-
gorithm 1 as written does require T as an input, it can be
converted into an infinite horizon/anytime algorithm via the
standard “doubling trick” (see, e.g., Slivkins et al., 2019).

Unbounded environment. Our algorithm can handle an
unbounded input space: the number of queries simply scales
with the maximum distance between observed inputs in the
form of E[diam(x)n].

Simultaneous bounds for all µ. Recall that the agent never
observes payoffs and only learns from mentor queries. This
means that the agent’s behavior does not depend on µ at all.
In other words, the distribution of (x,y) depends on πm

but not µ. Consequently, a given πm induces a single dis-
tribution (x,y) which satisfies the bounds in Theorem 5.2
simultaneously for all µ satisfying local generalization.

5.4. Proof sketch

The formal proof of Theorem 5.1 can be found in Ap-
pendix B, but we outline the key elements here. The regret
analysis consists of two ingredients: analyzing the Hedge
component and analyzing the “ask for help when out-of-
distribution” component. The former will bound the number
of mistakes made by the algorithm (i.e., the number of time
steps where the agent’s action doesn’t match the mentor’s),
and the latter will bound the cost of any single mistake. We
must also show that the latter does not result in excessively
many queries, which we do via a novel packing argument.

We begin by formalizing two notions of approximating a
policy class:

Definition 5.3. Let U be the uniform distribution over X .
For ε > 0, a policy class Π̃ is a smooth ε-cover of a policy
class Π if for every π ∈ Π, there exists π̃ ∈ Π̃ such that
Prx∼U [π(x) ̸= π̃(x)] ≤ ε.

Definition 5.4. A policy class Π̃ is an adversarial cover
of a policy class Π if for every x ∈ X T and π ∈ Π, there
exists π̃ ∈ Π̃ such that π(xt) = π̃(xt) for all t ∈ [T ].

An adversarial cover is a perfect cover by definition. The
idea of a smooth ε-cover is that if the probability of dis-
agreement over the uniform distribution is small, then the
probability of disagreement over a σ-smooth distribution
cannot be too much larger.

Lemma 5.1. Let Π̃ be a smooth ε-cover of Π and let D be
a σ-smooth distribution. Then for any π ∈ Π, there exists
π̃ ∈ Π̃ such that Prx∼D[π(x) ̸= π̃(x)] ≤ ε/σ.

Proof. Define S(π̃) = {x ∈ X : π(x) ̸= π̃(x)}. By
the definition of a smooth ε-cover, there exists π̃ ∈ Π̃
such that Prx∼U [x ∈ S(π̃)] ≤ ε. Since D is σ-smooth,
Prx∼D[π(x) ̸= π̃(x)] = Prx∼D[x ∈ S(π̃)] ≤
Prx∼U [x ∈ S(π̃)]/σ ≤ ε/σ, as claimed.

The existence of small covers is crucial:

Lemma 5.2 (Lemma 7.3.2 in Haghtalab (2018)10). For all
ε > 0, any policy class of VC dimension d admits a smooth
ε-cover of size at most (41/ε)d.

Lemma 5.3 (Lemmas 21.13 and A.5 in Shalev-Shwartz &
Ben-David (2014)). Any policy class of Littlestone dimen-
sion d admits an adversarial cover of size at most (eT/d)d.

We will run a variant of Hedge on Π̃. The vanilla Hedge
algorithm operates in the standard online learning model
where on each time step, the agent selects a policy (or more
generally, a hypothesis), and observes the loss of every
policy. In general the loss function can depend arbitrarily
on the time step, the policy, and prior events, but we will
only use the indicator loss function ℓ(t, π) = 1(π(xt) ̸=
πm(xt)). Crucially, whenever we query and learn πm(xt),
we can compute ℓ(t, π) for every π ∈ Π̃.

We cannot afford to query on every time step, however.
Recently, Russo et al. (2024) analyzed a variant of Hedge
where losses are observed only in response to queries, which
they call “label-efficient feedback”. They proved a regret
bound when a query is issued on each time step with fixed
probability p. Lemma 5.4 restates their result in a form that
is more convenient for us. See Appendices B.1 and B.3 for
details on our usage of results from Russo et al. (2024). Full

10See also Haussler & Long (1995) or Lemma 13.6 in
Boucheron et al. (2013) for variants of this lemma.
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pseudocode for HEDGEWITHQUERIES can also be found
in the appendix (Algorithm 2).

Lemma 5.4 (Lemma 3.5 in Russo et al., 2024). Assume Π̃
is finite. Then for any loss function ℓ : [T ]× Π̃→ [0, 1] and
query probability p > 0, HEDGEWITHQUERIES enjoys the
regret bound

T∑
t=1

E[ℓ(t, πt)]−min
π̃∈Π̃

T∑
t=1

E[ℓ(t, π)] ≤ log |Π̃|
p2

where πt is the policy chosen at time t and the expectation
is over the randomness of the algorithm.

We apply Lemma 5.4 with ℓ(t, π) = 1(π(xt) ̸= πm(xt))
and combine this with Lemmas 5.2 and 5.1 (in the σ-smooth
case) and with Lemma 5.3 (in the adversarial case). This
yields a O

(
d
σTε log(1/ε) log T

)
bound on the number of

mistakes made by Algorithm 1 (Lemma B.1).

The other key ingredient of the proof is analyzing the “ask
for help when out-of-distribution” component. Combined
with the local generalization assumption, this allows us to
fairly easily bound the cost of a single mistake (Lemma B.2).
The trickier part is bounding the number of resulting queries.
It is tempting to claim that the inputs queried in the out-of-
distribution case must all be separated by at least ε1/n and
thus form an ε1/n-packing, but this is actually false.

Instead, we bound the number of data points (i.e., queries)
needed to cover a set with respect to the realized actions
of the algorithm (Lemma B.6). This contrasts with vanilla
packing arguments which consider all data points in aggre-
gate. The key to our analysis is that the number of mistakes
made by the algorithm – which we already bounded in
Lemma B.1 – gives us crucial information about how data
points are distributed with respect to the actions of the al-
gorithm. Our technique might be useful in other contexts
where a more refined packing argument is needed and a
bound on the number of mistakes already exists.

6. Conclusion and future work
In this paper, we proposed a model of avoiding catastrophe
in online learning. We showed that achieving subconstant
regret in our problem (with the help of a mentor and local
generalization) is no harder than achieving sublinear regret
in standard online learning.

Remaining technical questions. First, we have not re-
solved whether our problem is tractable for finite VC di-
mension and fully adversarial inputs (although Appendix D
shows that the problem is tractable for at least some classes
with finite VC but infinite Littlestone dimension). Second,
the time complexity of Algorithm 1 currently stands at a
hefty Ω(|Π̃|) per time step plus the time to compute Π̃. In
the standard online learning setting, Block et al. (2022)

and Haghtalab et al. (2022) show how to replace discretiza-
tion approaches like ours with oracle-efficient approaches,
where a small number of calls to an optimization oracle are
made per round. We are optimistic about leveraging such
techniques to obtain efficient algorithms in our setting.

Local generalization. Our algorithm crucially relies on the
ability to detect when an input is unfamiliar, i.e., differs sig-
nificantly from prior observations in a metric space which
satisfies local generalization. Without this ability, the practi-
cality of our algorithm would be fundamentally limited. One
option is to use out-of-distribution (OOD) detection, which
is conceptually similar and well-studied (see Yang et al.,
2024 for a survey). However, it is an open question whether
standard OOD detection methods are measuring distance in
a metric space which satisfies local generalization.

We are also interested in alternatives to local generalization.
Theorem E.2 shows that our positive result breaks down if
local generalization is removed, so some sort of assumption
is necessary. One possible alternative is Bayesian inference.
We intentionally avoided Bayesian approaches in this pa-
per due to tractability concerns, but it seems premature to
abandon those ideas entirely.

MDPs. Finally, we are excited to apply the ideas in
this paper to Markov Decision Processes (MDPs): specif-
ically, MDPs where some actions are irreversible (“non-
communicating”) and the agent only gets one attempt
(“single-episode”). In such MDPs, the agent must not
only avoid catastrophe but also obtain high reward. As
discussed in Section 2, very little theory exists for RL in
non-communicating single-episode MDPs. Can an agent
learn near-optimal behavior in high-stakes environments
while becoming self-sufficient over time? Formally, we
pose the following open problem:

Is there an algorithm for non-communicating
single-episode undiscounted MDPs which ensures that both
the regret and the number of mentor queries are sublinear

in T?

Impact statement
As AI systems become increasingly powerful, we believe
that the safety guarantees of such systems should become
commensurately robust. Irreversible costs are especially
worrisome, and we hope that our work plays a small part in
mitigating such risks. We do not believe that our work has
any concrete potential risks that should be highlighted here.

9



Avoiding Catastrophe in Online Learning by Asking for Help

Author contributions
B. Plaut conceived the project. B. Plaut designed the mathe-
matical model with feedback from H. Zhu and S. Russell. B.
Plaut proved all of the results. H. Zhu participated in proof
brainstorming and designed counterexamples for several
early conjectures. B. Plaut wrote the paper, with feedback
from H. Zhu and S. Russell. S. Russell supervised the
project and secured funding.

Acknowledgements
This work was supported in part by a gift from Open Phi-
lanthropy to the Center for Human-Compatible AI (CHAI)
at UC Berkeley. This paper also benefited from discus-
sions with many other researchers. We would like to espe-
cially thank (in alphabetical order) Aly Lidayan, Bhaskar
Mishra, Cameron Allen, Juan Liévano-Karim, Matteo
Russo, Michael Cohen, Nika Haghtalab, and Scott Emmons.
We would also like to thank our anonymous reviewers for
helpful feedback.

References
Abaimov, S. and Martellini, M. Artificial Intelligence in

Autonomous Weapon Systems, pp. 141–177. Springer
International Publishing, Cham, 2020.

Altman, E. Constrained Markov Decision Processes. Rout-
ledge, 2021.

Azar, M. G., Osband, I., and Munos, R. Minimax Regret
Bounds for Reinforcement Learning. In Proceedings of
the 34th International Conference on Machine Learning,
pp. 263–272. PMLR, July 2017. ISSN: 2640-3498.

Barman, S., Khan, A., Maiti, A., and Sawarni, A. Fairness
and welfare quantification for regret in multi-armed ban-
dits. In Proceedings of the Thirty-Seventh Conference on
Artificial Intelligence (AAAI 2023).

Bengio, Y., Hinton, G., Yao, A., Song, D., Abbeel, P., Dar-
rell, T., Harari, Y. N., Zhang, Y.-Q., Xue, L., Shalev-
Shwartz, S., et al. Managing extreme AI risks amid rapid
progress. Science, 384(6698):842–845, 2024.

Betancourt, M. A Conceptual Introduction to Hamiltonian
Monte Carlo, July 2018. arXiv:1701.02434 [stat].

Block, A., Dagan, Y., Golowich, N., and Rakhlin, A.
Smoothed online learning is as easy as statistical learn-
ing. In Conference on Learning Theory, pp. 1716–1786.
PMLR, 2022.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
Inequalities: A Nonasymptotic Theory of Independence.
Oxford University Press, 02 2013.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Cohen, M. K. and Hutter, M. Pessimism About Unknown
Unknowns Inspires Conservatism. In Proceedings of
Thirty Third Conference on Learning Theory, pp. 1344–
1373. PMLR, July 2020. ISSN: 2640-3498.

Cohen, M. K., Catt, E., and Hutter, M. Curiosity Killed
or Incapacitated the Cat and the Asymptotically Optimal
Agent. IEEE Journal on Selected Areas in Information
Theory, 2(2):665–677, June 2021. Conference Name:
IEEE Journal on Selected Areas in Information Theory.

Critch, A. and Russell, S. TASRA: a taxonomy and anal-
ysis of societal-scale risks from AI. arXiv preprint
arXiv:2306.06924, 2023.

Esser, S., Haider, H., Lustig, C., Tanaka, T., and Tanaka, K.
Action–effect knowledge transfers to similar effect stim-
uli. Psychological Research, 87(7):2249–2258, October
2023.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

Grinsztajn, N., Ferret, J., Pietquin, O., Preux, P., and Geist,
M. There Is No Turning Back: A Self-Supervised Ap-
proach for Reversibility-Aware Reinforcement Learning.
In Advances in Neural Information Processing Systems,
volume 34, pp. 1898–1911. Curran Associates, Inc., 2021.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J.,
and Knoll, A. A review of safe reinforcement learning:
Methods, theories, and applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 46(12):
11216–11235, 2024.

Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-
Sanz, L., and Pospelova, V. The Emerging Threat of
AI-driven Cyber Attacks: A Review. Applied Artificial
Intelligence, 36(1), December 2022.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S., and
Dragan, A. D. Inverse reward design. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pp. 6768–6777, Red Hook,
NY, USA, December 2017. Curran Associates Inc.

Haghtalab, N. Foundation of Machine Learning, by the
People, for the People. PhD thesis, Microsoft Research,
2018.

Haghtalab, N., Han, Y., Shetty, A., and Yang, K. Oracle-
efficient online learning for smoothed adversaries. Ad-
vances in Neural Information Processing Systems, 35:
4072–4084, 2022.

10



Avoiding Catastrophe in Online Learning by Asking for Help

Haghtalab, N., Roughgarden, T., and Shetty, A. Smoothed
analysis with adaptive adversaries. Journal of the ACM,
71(3):1–34, 2024.

Hajian, S. Transfer of Learning and Teaching: A Review
of Transfer Theories and Effective Instructional Practices.
IAFOR Journal of Education, 7(1):93–111, 2019. Pub-
lisher: International Academic Forum ERIC Number:
EJ1217940.

Hanneke, S. Theory of Disagreement-Based Active Learn-
ing, volume 7. Now Publishers Inc., Hanover, MA, USA,
June 2014.

Haussler, D. and Long, P. M. A generalization of Sauer’s
lemma. Journal of Combinatorial Theory, Series A, 71
(2):219–240, August 1995.

Hendrycks, D., Mazeika, M., and Woodside, T. An
overview of catastrophic AI risks. arXiv preprint
arXiv:2306.12001, 2023.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal Regret
Bounds for Reinforcement Learning. Journal of Machine
Learning Research, 11(51):1563–1600, 2010.

Jung, H. Ueber die kleinste kugel, die eine räumliche figur
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A. Proof of Theorem 4.1
A.1. Proof notation

1. Let Mj be the set of time steps t ≤ T where |mj − xt| ≤
1

4f(T )
. In words, xt is relatively close to the midpoint of Xj .

This will imply that the suboptimal action is in fact quite suboptimal. This also implies that xt is in Xj , since each Xj

has length 1/f(T ).
2. Let J¬Q = {j ∈ [f(T )] : xt ̸∈ Xj ∀t ∈ QT } be the set of sections that are never queried. Since each query appears in

exactly one section (because each input appears in exactly one section), |J¬Q| ≥ f(T )− |QT |.
3. For each j ∈ J¬Q, let yj be the most frequent action among time steps in Mj : yj = argmaxy∈{0,1} |{t ∈Mj : y = yt}|.
4. Let J ′

¬Q = {j ∈ J¬Q : aj ̸= yj} be the set of sections where the more frequent action is wrong according to µf,a.
5. Let M ′

j = {t ∈Mj : yt ̸= aj} be the set of time steps where the agent chooses the wrong action according to µf,a, and
xt is close to the midpoint of section j.

Since x,y, and a are random variables, all variables defined on top of them (such as Mj) are also random variables. In
contrast, the partition X = {X1, . . . , Xf(T )} and properties thereof (like the midpoints mj) are not random variables.

A.2. Proof roadmap

The proof considers an arbitrary algorithm with sublinear queries, and proceeds via the following steps:

1. Show that multiplicative regret and additive regret are tightly related (Lemma A.1). We will also use this lemma for our
positive results.

2. Prove an asymptotic density lemma which we will use to show that f(T ) =
√
|QT |T is asymptotically between |QT |

and T (Lemma A.2).
3. Prove a simple variant of the Chernoff bound which we will apply multiple times (Lemma A.3).
4. Show that with high probability,

∑
j∈S |Mj | is large for any subset of sections S (Lemma A.4).

5. Prove that |J ′
¬Q| is large with high probability (Lemma A.5).

6. The key lemma is Lemma A.6, which shows that a randomly sampled a produces poor agent performance with high
probability. The central idea is that at least f(T )− |QT | sections are never queried (which is large, by Lemma A.2), so
the agent has no way of knowing the optimal action in those sections. As a result, the agent picks the wrong answer
at least half the time on average (and at least a quarter of the time with high probability). Lemma A.4 implies that a
constant fraction of those time steps will have significantly suboptimal payoffs, again with high probability.

7. Apply sup
µ,πm

E
x,y

R×
T (x,y,µ, π

m) ≥ E
πm,a∼U({0,1}f(T ))

E
x,y

R×
T (x,y, µf,a, π

m). Here U({0, 1}f(T )) is the uniform

distribution over bit strings of length f(T ) and we write πm,a ∼ U({0, 1}f(T )) with slight abuse of notation, since πm

is not drawn from U({0, 1}f(T )) but rather is determined by a which is drawn from U({0, 1}f(T )).
8. The analysis above results in a lower bound on R+

T . The last step is to use Lemma A.1 to obtain a lower bound on R×
T .

Step 7 is essentially an application of the probabilistic method: if a randomly chosen µf,a has high expected regret, then the
worst-case µ also has high expected regret. We have included subscripts in the expectations above to distinguish between
the randomness over a and x,y. When subscripts are omitted, the expected value is over all randomness, i.e., a,x, and y.

A.3. Proof

Lemma A.1. If µm
t (xt) ≥ µt(xt, yt) for all t, then R+

T ≤ R×
T . If µt(xt, yt) > 0 for all t, then R×

T ≤
R+

T

mint∈[T ] µt(xt, yt)
.

Proof. Recall the standard inequalities 1− 1
a ≤ log a ≤ a− 1 for any a > 0.

Part 1: R+
T ≤ R×

T . If µt(xt, yt) = 0 for any t ∈ [T ], then R×
T = ∞ and the claim is trivially satisfied. Thus assume

µt(xt, yt) > 0 for all t ∈ [T ].

R+
T =

T∑
t=1

µm
t (xt)−

T∑
t=1

µt(xt, yt) (Definition of R+
T )

13
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=

T∑
t=1

µm
t (xt)− µt(xt, yt)

µm
t (xt)

(µt(xt, yt) ≤ µm
t (xt) and 0 ≤ µm

t (xt) ≤ 1)

≤
T∑

t=1

log

(
µm
t (xt)

µt(xt, yt)

) (
1− 1

a
≤ log a for any a > 0

)
= log

T∏
t=1

µm
t (xt)− log

T∏
t=1

µt(xt, yt) (Properties of logarithms)

= R×
T (Definition of R×

T )

Part 2: R×
T ≤ R+

T /mint∈[T ] µt(xt, yt). We have

R×
T = log

T∏
t=1

µm
t (xt)− log

T∏
t=1

µt(xt, yt) (Definition of R×
T given µt(xt, yt) > 0 ∀t ∈ [T ])

=

T∑
t=1

log

(
µm
t (xt)

µt(xt, yt)

)
(Properties of logarithms)

≤
T∑

t=1

(
µm
t (xt)− µt(xt, yt)

µt(xt, yt)

)
(log a ≤ a− 1 for any a > 0)

≤
T∑

t=1

µt(xt, yt)

mini∈[T ] µi(xi, yi)

(
µm
t (xt)− µt(xt, yt)

µt(xt, yt)

)
(µt(xt, yt) ≥ min

i∈[T ]
µi(xi, yt) > 0 ∀t ∈ [T ])

=
1

mint∈[T ] µt(xt, yt)

T∑
t=1

(µm
t (xt)− µt(xt, yt)) (Arithmetic)

=
R+

T

mint∈[T ] µt(xt, yt)
(Definition of R+

T )

as claimed.

Lemma A.2. Let a, b : R>0 → R>0 be functions such that a(x) ∈ o(b(x)). Then c(x) =
√
a(x)b(x) satisfies a(x) ∈

o(c(x)) and c(x) ∈ o(b(x)).

Proof. Since a and b are strictly positive (and thus c is as well), we have

a(x)

c(x)
=

a(x)√
a(x)b(x)

=

√
a(x)

b(x)
=

√
a(x)b(x)

b(x)
=

c(x)

b(x)

Then a(x) ∈ o(b(x)) implies

lim
x→∞

a(x)

c(x)
= lim

x→∞

c(x)

b(x)
= lim

x→∞

√
a(x)

b(x)
= 0

as required.

Lemma A.3. Let z1, . . . , zn be i.i.d. variables in {0, 1} and let Z =
∑n

i=1 zi. If E[Z] ≥ W , then Pr
[
Z ≤ W/2

]
≤

exp(−W/8).

Proof. By the Chernoff bound for i.i.d. binary variables, we have Pr[Z ≤ E[Z]/2] ≤ exp(−E[Z]/8). Since−E[Z] ≤ −W
and exp is an increasing function, we have exp(−E[Z]/8) ≤ exp(−W/8). Also, W/2 ≤ E[Z]/2 implies Pr[Z ≤W/2] ≤
Pr[Z ≤ E[Z]/2]. Combining these inequalities proves the lemma.
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Lemma A.4. Let S ⊆ [f(T )] be any nonempty subset of sections. Then

Pr

∑
j∈S

|Mj | ≤
T |S|
4f(T )

 ≤ exp

(
−T

16f(T )

)

Proof. Fix any j ∈ [f(T )]. For each t ∈ [T ] , define the random variable zt by zt = 1 if t ∈ Mj for some j ∈ S and 0
otherwise. We have t ∈ Mj iff xt falls within a particular interval of length 1

2f(T ) . Since these intervals are disjoint for

different j’s, we have zt = 1 iff xt falls within a portion of the input space with total measure |S|
2f(T ) . Since xt is uniformly

random across [0, 1], we have E[zt] = |S|
2f(T ) . Then E[

∑T
t=1 zt] = E[

∑
j∈S |Mj |] = T |S|

2f(T ) . Furthermore, since x1, . . . , xT

are i.i.d., so are z1, . . . , zT . Then by Lemma A.3,

Pr

∑
j∈S

|Mj | ≤
T |S|
4f(T )

 ≤ exp

(
−T |S|
16f(T )

)
≤ exp

(
−T

16f(T )

)

with the last step due to |S| ≥ 1.

Lemma A.5. We have

Pr

[
|J ′

¬Q| ≤
f(T )− E[|QT |]

4

]
≤ exp

(
−f(T )− E[|QT |]

16

)
Proof. Define a random variable zj = 1j∈J′

¬Q
for each j ∈ J¬Q. By definition, if j ∈ J¬Q, no input in Xj is queried.

Since queries outside of Xj provide no information about aj , the agent’s actions must be independent of aj . In particular,
the random variables aj and yj are independent. Combining that independence with Pr[aj = 0] = Pr[aj = 1] = 0.5 yields
Pr[zj = 1] = 0.5 for all j ∈ J¬Q. Then

E
[
|J ′

¬Q|
]
= E

 ∑
j∈J¬Q

zj


= |J¬Q|/2

≥ f(T )− E[|QT |]
2

Furthermore, since a1, . . . , af(T ) are independent, the random variables {zj : j ∈ J¬Q} are also independent. Applying
Lemma A.3 yields the desired bound.

Lemma A.6. Suppose f : N→ N and independently sample a ∼ U({0, 1}f(T )) and x ∼ U(X )T .11 Then with probability
at least 1− exp

( −T
16f(T )

)
− exp

(
− f(T )−E[|QT |]

16

)
,

R+
T ≥

LT (f(T )− E[|QT |])
27f(T )2

Proof. Consider any j ∈ J ′
¬Q and t ∈M ′

j ⊆Mj . By definition of Mj , we have |mj − xt| ≤ 1
4f(T ) . Then by the definition

of µf,a,

µf,a(xt, yt) = 1− L

(
1

2f(T )
− |xt −mj |

)
≤ 1− L

(
1

2f(T )
− 1

4f(T )

)
= 1− L

4f(T )

11That is, the entire set {a1, . . . , af(T ), x1, . . . , xT } is mutually independent.
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Since µm
f,a(xt) ≥ µf,a(xt, yt) always, we can safely restrict ourselves to time steps t ∈ M ′

j for some j ∈ J ′
¬Q and still

obtain a lower bound:

R+
T =

T∑
t=1

(µm
f,a(xt)− µf,a(xt, yt)) (Definition of R+

T )

≥
∑

j∈J′
¬Q

∑
t∈M ′

j

(
µm
f,a(xt)− µf,a(xt, yt)

)
(µm

f,a(xt) ≥ µf,a(xt, yt))

≥
∑

j∈J′
¬Q

∑
t∈M ′

j

(1− µf,a(xt, yt)) (µm
f,a(xt) = 1 always)

≥
∑

j∈J′
¬Q

∑
t∈M ′

j

(
1− 1 +

L

4f(T )

)
(bound on µf,a(xt, yt) for t ∈M ′

j)

=
∑

j∈J′
¬Q

L|M ′
j |

4f(T )
(Simplifying inner sum)

Since j ∈ J¬Q, the mentor is not queried on any time step t ∈Mj , so yt ∈ {0, 1} for all t ∈Mj . Since the agent chooses
one of two actions for each t ∈Mj , the more frequent action must be chosen at least half of the time: yt = yj for at least
half of the time steps in Mj . Since aj ̸= yj for j ∈ J ′

¬Q, we have yt = yj ̸= aj for those time steps, so |M ′
j | ≥ |Mj |/2.

Thus

R+
T ≥

∑
j∈J′

¬Q

L|Mj |
8f(T )

By Lemma A.4, Lemma A.5, and the union bound, with probability at least 1− exp
( −T
16f(T )

)
− exp

(
− f(T )−E[|QT |]

16

)
we

have
∑

j∈J′
¬Q
|Mj | ≥

T |J ′
¬Q|

4f(T )
for all j ∈ [f(T )] and |J ′

¬Q| ≥
f(T )− E[|QT |]

4
. Assuming those inequalities hold, we have

R+
T ≥

∑
j∈J′

¬Q

L|Mj |
8f(T )

≥ L

8f(T )
·
T |J ′

¬Q|
4f(T )

≥ L

8f(T )
· T

4f(T )
· f(T )− E[|QT |]

4

=
LT (f(T )− E[|QT |])

27f(T )2

as required.

For a given f : N→ N, define αf (T ) = exp
( −T
16f(T )

)
+ exp

(
− f(T )−E[|QT |]

16

)
for brevity.

Theorem 4.1. Any algorithm with sublinear queries has unbounded worst-case regret (both multiplicative and additive) as
T →∞. Specifically,

sup
µ,πm

E[R×
T ], sup

µ,πm
E[R+

T ] ∈ Ω

(
L

√
T

supµ,πm E[|QT |]+1

)

Proof. If the algorithm has sublinear queries, then there exists g(T ) ∈ o(T ) such that supµ,πm Ex,y[|QT |] ≤ g(T ).
Consider any such g(T ) satisfying g(T ) > 0. Since this holds for every µ, it also holds in expectation over a ∼
U({0, 1})f(T ), so Ea,x,y[|QT |] = E[|QT |] ≤ g(T ).

Next, Lemma A.2 gives us g(T ) ∈ o(
√
g(T )T ) and

√
g(T )T ∈ o(T ). Let f(T ) = ⌈

√
g(T )T ⌉: then f(T ) ∈ Θ(

√
g(T )T ),

so g(T ) ∈ o(f(T )) and f(T ) ∈ o(T ). First, this implies that limT→∞ αf (T ) = 0. Second, g(T ) ∈ o(f(T )) implies that

16
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exists T0 such that g(T ) ≤ f(T )/2 for all T ≥ T0. We also have R+
T ≥ 0 always since µm

f,a(xt) ≥ µf,a(xt, yt) always.
Then for all T ≥ T0 we have

E
πm,a∼U({0,1}f(T ))

E
x,y

[
R+

T (x,y,µ, π
m)
]

≥ αf (T ) · 0 +
(
1− αf (T )

)(LT (f(T )− E[|QT |]
27f(T )2

)
(Lemma A.6 and R+

T ≥ 0)

≥
(
1− αf (T )

)(LT (f(T )− g(T ))

27f(T )2

)
(E[QT ] ≤ g(T ))

≥
(
1− αf (T )

)( LT

28f(T )

)
(g(T ) ≤ f(T )/2)

Since limT→∞ αf (T ) = 0,

sup
µ,πm

E
x,y

[
R+

T (x,y,µ, π
m)
]
≥ E

πm,a∼U({0,1}f(T ))
E
x,y

[
R+

T (x,y, (µf,a, . . . , µf,a), π
m)
]

≥
(
1− αf (T )

)( LT

28f(T )

)
∈ Ω

(
LT

f(T )

)
= Ω

(
L

√
T

g(T )

)

This holds for any g(T ) ∈ o(T ) such that supµ E[|QT |] ≤ g(T ) and g(T ) > 0. Thus we can simply set g(T ) =
supµ,πm E[|QT |] + 1, since supµ,πm E[|QT |] is indeed a function of only T .

Since µm
f,a(xt) ≥ µf,a(xt, yt) for all t ∈ [T ], Lemma A.1 implies that

sup
µ,πm

E
x,y

[
R×

T (x,y,µ, π
m)
]
≥ E

πm,a∼U({0,1}f(T ))
E
x,y

[
R×

T (x,y, (µf,a, . . . , µf,a), π
m)
]

∈ Ω

(
L

√
T

supµ,πm E[|QT |] + 1

)

completing the proof.

Corollary 4.1.1. Even when µm
t (x) = 1 for all t and x, any algorithm with sublinear queries satisfies

lim
T→∞

sup
µ,πm

E

[
T∏

t=1

µt(xt, yt)

]
= 0

Proof. We have
∏T

t=1 µ
m
f,a(xt) = 1 from our construction. Then Lemma A.1 implies that R×

T ≥ R+
T , so

exp(−R+
T ) ≥ exp(−R×

T )

= exp

(
log

T∏
t=1

µf,a(xt, yt)− log 1

)

=

T∏
t=1

µf,a(xt, yt)

Then by Lemma A.6, with probability 1− αf (T ),

T∏
t=1

µf,a(xt, yt) ≤ exp

(
−LT (f(T )− E[|QT |])

27f(T )2

)
≤ exp

(
− LT

28f(T )

)
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Since
∏T

t=1 µf,a(xt, yt) ≤ 1 always,

lim
T→∞

E
πm,a∼U({0,1}f(T ))

E
x,y

[
T∏

t=1

µf,a(xt, yt)

]
≤ lim

T→∞
E

πm,a∼U({0,1}f(T ))
E
x,y

[
T∏

t=1

µf,a(xt, yt)

]

≤ lim
T→∞

(
1 · αf (T ) + (1− αf (T )) · exp

(
− LT

28f(T )

))
≤ lim

T→∞
(1− αf (T )) · lim

T→∞
exp

(
− LT

28f(T )

)
= 1 · exp(−∞)

= 0

Since this upper bound holds for a randomly chosen µf,a, π
m, the same upper bound holds for a worst-case choice of µ, πm

among µ, πm which satisfy µm
t (x) = 1 for all t ∈ [T ], x ∈ X . Formally,

lim
T→∞

sup
µ,πm:µt(x)=1 ∀t,x

E

[
T∏

t=1

µt(xt, yt)

]
≤ 0

Since
∏T

t=1 µt(xt, yt) ≥ 0 always, the inequality above holds with equality.

B. Proof of Theorem 5.2
B.1. Context on Lemma 5.4

Before diving into the main proof, we provide some context on Lemma 5.4 from Section 5:
Lemma 5.4 (Lemma 3.5 in Russo et al., 2024). Assume Π̃ is finite. Then for any loss function ℓ : [T ]× Π̃ → [0, 1] and
query probability p > 0, HEDGEWITHQUERIES enjoys the regret bound

T∑
t=1

E[ℓ(t, πt)]−min
π̃∈Π̃

T∑
t=1

E[ℓ(t, π)] ≤ log |Π̃|
p2

where πt is the policy chosen at time t and the expectation is over the randomness of the algorithm.

Lemma 5.4 is a restatement and simplification of Lemma 3.5 in Russo et al. (2024) with the following differences:

1. They parametrize their algorithm by the expected number of queries k̂ instead of the query probability p = k̂/T .
2. They include a second parameter k, which is the eventual target number of queries for their unconditional query bound.

In our case, an expected query bound is sufficient, so we simply set k = k̂.
3. They provide a second bound which is tighter for small k; that bound is less useful for us so we omit it.
4. Their “actions” correspond to policies in our setting, not actions in Y . Their number of actions n corresponds to |Π̃|.
5. We include an expectation over both loss terms, while they only include an expectation over the agent’s loss. This is

because an adaptive adversary may choose the loss function for time t in a randomized manner. Since we eventually set
ℓ(t, π) = 1(π(xt) ̸= πm(xt)), the randomization in ℓ corresponds to the randomization in xt.

Altogether, since Russo et al. (2024) set η = max
(

1
T

√
k̂ logn

2 , kk̂√
2T 2

)
, we end up with η = max

(√
p log |Π̃|

2T , p2

√
2

)
.

Algorithm 2 provides precise pseudocode for the HEDGEWITHQUERIES algorithm to which Lemma 5.4 refers.

B.2. Main proof

We use the following notation throughout the proof:

1. For each t ∈ [T ], let St refer to the value of S at the start of time step t.
2. Let MT = {t ∈ [T ] : πt(xt) ̸= πm(xt)} be the set of time steps where Hedge’s proposed action doesn’t match the

mentor’s. Note that |MT | upper bounds the number of mistakes the algorithm makes (the number of mistakes could be
smaller, since the algorithm sometimes queries instead of taking action πt(xt)).
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Algorithm 2 A variant of the Hedge algorithm which only observes losses in response to queries.

function HEDGEWITHQUERIES(p ∈ (0, 1], finite policy class Π̃, unknown ℓ : [T ]× Π̃→ [0, 1])
w(π)← 1 for all π ∈ Π̃

η ← max
(√p log |Π̃|

2T , p2

√
2

)
for t from 1 to T do

with probability p : hedgeQuery← true
with probability 1− p : hedgeQuery← false
if hedgeQuery then

Query and observe ℓ(t, π) for all π ∈ Π̃
ℓ∗ ← minπ∈Π̃ ℓ(t, π)

w(π)← w(π) · exp(−η(ℓ(t, π)− ℓ∗)) for all π ∈ Π̃
Select policy argminπ∈Π̃ ℓ(t, π)

else
P (π)← w(π)/

∑
π′∈Π̃ w(π′) for all π ∈ Π̃

Sample πt ∼ P
Select policy πt

3. For S ⊆ X , let vol(S) denote the n-dimensional Lebesgue measure of S.
4. With slight abuse of notation, we will use inequalities of the form f(T ) ≤ g(T ) +O(h(T )) to mean that there exists a

constant C such that f(T ) ≤ g(T ) + Ch(T ).
5. We will use “Case 1” to refer to finite VC dimension and σ-smooth x and “Case 2” to refer to finite Littlestone dimension.

Lemma B.1. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and x is σ-smooth, or (2) Π
has finite Littlestone dimension d. Then for any T ∈ N and ε ≥ 1/T ,12 Algorithm 1 satisfies

E[|MT |] ∈ O

(
d

σ
Tε log(T + 1/ε)

)

Proof. Define ℓ : [T ] × Π̃ → [0, 1] by ℓ(t, π) = 1(π(xt) ̸= πm(xt)), and let wh and πh
t denote the values of w and πt

respectively in HEDGEWITHQUERIES, while w and πt refer to the variables in Algorithm 1. Then w and wh evolve in
the exact same way, so the distributions of πt and πh

t coincide. Also, ε ≥ 1/T implies that p = 1/
√
εT ∈ (0, 1]. Thus by

Lemma 5.4,

T∑
t=1

E[ℓ(t, πt)]−min
π̃∈Π̃

T∑
t=1

E[ℓ(t, π̃)] ≤ log |Π̃|
p2

= Tε log |Π̃|

Since |MT | =
∑T

t=1 1(πt(xt) ̸= πm(xt)) =
∑T

t=1 ℓ(t, πt), we have

E[|MT |] ≤ Tε log |Π̃|+min
π̃∈Π̃

T∑
t=1

E[1(π̃(xt) ̸= πm(xt))]

Case 1: Since Π̃ is a smooth ε-cover and πm ∈ Π, Lemma 5.1 implies that E[1(π̃(xt) ̸= πm(xt))] ≤ ε/σ for any π̃ ∈ Π̃.
Since |Π̃| ≤ (41/ε)d by construction (and such a Π̃ is guaranteed to exist by Lemma 5.2), we get

E[|MT |] ≤ Tε log((41/ε)d) + min
π̃∈Π̃

T∑
t=1

ε

σ

= dTε log(41/ε) +
Tε

σ

12Note that this lemma omits the assumption of ε ≤ (
µm
0

2L
)n, since we do not need it for this lemma, and we would like to apply this

lemma in the multi-action case without that assumption.
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∈ O

(
d

σ
Tε log(T + 1/ε)

)
Case 2: Since Π̃ is an adversarial cover of Π and πm ∈ Π, there exists π̃ ∈ Π̃ such that

∑T
t=1 1(π̃(xt) ̸= πm(xt)) = 0.

Since |Π̃| ≤ (eT/d)d (with such a Π̃ guaranteed to exist by Lemma 5.3),

E[|MT |] ≤ Tε log |Π̃|+min
π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

≤ Tεd ln(eT/d)

∈ O

(
d

σ
Tε log(T + 1/ε)

)
as required.

Lemma B.2. For all t ∈ [T ], µt(xt, yt) ≥ µm
t (xt)− Lε1/n.

Proof. Consider an arbitrary t ∈ [T ]. If t ∈ QT , then µt(xt, yt) = µm
t (xt) trivially, so assume t ̸∈ QT . Let (x′, y′) =

argmin(x,y)∈St:πt(xt)=y ||xt − x||. Since t ̸∈ QT , we must have ||xt − x′|| ≤ ε1/n.

We have y′ = πm(x′) by construction of St and πt(xt) = y′ by construction of y′. Combining these with the local
generalization assumption, we get

µt(xt, yt) = µt(xt, πt(xt))

= µt(xt, π
m(x′))

≥ µm
t (xt)− L||xt − x′||

≥ µm
t (xt)− Lε1/n

as required.

Lemma B.3. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

E
[
R×

T

]
∈ O

(
dL

σµm
0

Tε1+1/n log(T + 1/ε)

)
E
[
R+

T

]
∈ O

(
dL

σ
Tε1+1/n log(T + 1/ε)

)
Proof. We first claim that yt = πm(xt) for all t ̸∈MT . If t ∈ QT , the claim is immediate. If not, we have yt = πt(xt) by
the definition of the algorithm and πt(xt) = πm(xt) by the definition of t ̸∈MT . Thus µt(xt, yt) = µm

t (xt) for t ̸∈MT .
For t ∈MT , Lemma B.2 implies that µm

t (xt)− µt(xt, yt) ≤ Lε1/n, so

R+
T =

∑
t∈MT

(µm
t (xt)− µt(xt, yt))

≤
∑

t∈MT

Lε1/n

= |MT |Lε1/n (1)

Since ε ≤
(
µm
0

2L

)n
by assumption, we have Lε1/n ≤ µm

0 /2 and thus µt(xt, yt) ≥ µm
t (xt) − Lε1/n ≥ µm

0 − µm
0 /2 =

µm
0 /2 > 0 for all t ∈ [T ]. Then by Lemma A.1,

R×
T ≤

R+
T

µm
0 /2

≤ 2|MT |Lε1/n

µm
0

(2)

Taking the expectation and applying Lemma B.1 to Equations 1 and 2 completes the proof.
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Definition B.1. Let (K, || · ||) be a normed vector space and let δ > 0. Then a multiset S ⊆ K is a δ-packing of K if for all
a, b ∈ S, ||a− b|| > δ. The δ-packing number of K, denotedM(K, || · ||, δ), is the maximum cardinality of any δ-packing
of K.

We only consider the Euclidean distance norm, so we just write M(K, || · ||, δ) = M(K, δ).
Lemma B.4 (Theorem 14.2 in (Wu, 2020)). If K ⊂ Rn is convex, bounded, and contains a ball with radius δ > 0, then

M(K, δ) ≤ 3n vol(K)

δn vol(B)

where B is a unit ball.
Lemma B.5 (Jung’s Theorem (Jung, 1901)). If S ⊂ Rn is compact, then there exists a closed ball with radius at most
diam(S)

√
n

2(n+1) containing S.

Lemma B.6. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(T + 1/ε) +

E[diam(x)n]

ε

)

Proof. If t ∈ QT , then either hedgeQuery = true, S = ∅, or min(x,y)∈St:πt(xt)=y ||xt − x|| > ε1/n. The expected
number of time steps with hedgeQuery = true is pT =

√
T/ε. There is a single time step with S = ∅ since we always

query on the first time step. It remains to bound the third case; let Q̂ = {t ∈ QT : min(x,y)∈St:πt(xt)=y ||xt − x|| > ε1/n}.
These three cases are not totally disjoint, so E[|QT |] ≤

√
T/ε + 1 + E[|Q̂|] may not hold with equality, but this is fine

since we only need an upper bound. We further subdivide Q̂ into Q̂1 = {t ∈ Q̂ : πt(xt) ̸= πm(xt)} and Q̂2 = {t ∈ Q̂ :
πt(xt) = πm(xt)}. Since Q̂1 ⊆MT , Lemma B.1 implies that E[|Q̂1|] ∈ O

(
d
σTε log(1/ε)

)
.

Next, fix a y ∈ Y and let Xy = {x ∈ x : πm(x) = y} be the multiset of observed inputs whose mentor action is y.
Also let X̂2 = {xt : t ∈ Q̂2} be the multiset of inputs associated with time steps in Q̂2. Note that |X̂2| = |Q̂2|, since
X̂2 is a multiset. We claim that X̂2 ∩ Xy is a ε1/n-packing of Xy. Suppose instead that there exists x, x′ ∈ X̂2 ∩ Xy,
with ||x − x′|| ≤ ε1/n. WLOG assume x was queried after x′ and let t be the time step on which x was queried. Then
(x′, πm(x′)) ∈ St. Also, since x, x′ ∈ X̂2 we have πt(xt) = πm(xt) = y = πm(x′). Therefore

min
(x′′,y′′)∈St:y′′=πt(xt)

||xt − x′′|| ≤ ||xt − x′|| ≤ ε1/n

which contradicts t ∈ Q̂. Thus X̂2 ∩Xy is a ε1/n-packing of Xy .

By Lemma B.5, there exists a ball B1 of radius R := diam(x)
√

n
2(n+1) which contains x. Let B2 be the ball with the same

center as B1 but with radius max(R, ε1/n). Since Xy ⊂ x ⊂ B1 ⊂ B2 and X̂2 ∩Xy is a ε1/n-packing of Xy , X̂2 ∩Xy is
also a ε1/n-packing of B2. Also, B2 must contain a ball of radius ε1/n, so Lemma B.4 implies that

|X̂2 ∩Xy| ≤M(B2, ε
1/n)

≤ 3n vol(B2)

ε vol(B)

=
(
max(R, ε1/n)

)n 3n vol(B)

ε vol(B)

= max

(
diam(x)n

(
n

2(n+ 1)

)n/2

, ε

)
3n

ε

≤ O

(
diam(x)n

ε
+ 1

)
(The +1 is necessary for now since diam(x) could theoretically be zero.) Since X̂2 ⊆ {x1, . . . , xT } ⊆ ∪y∈YXy , we have
|X̂2| ≤

∑
y∈Y |X̂2 ∩Xy| by the union bound. Therefore

E[|QT |] ≤
√

T

ε
+ 1 + E[|Q̂|]
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=

√
T

ε
+ 1 + E[|Q̂1|] + E[|Q̂2|]

=

√
T

ε
+ 1 + E[|Q̂1|] + E[|X̂2|]

≤
√

T

ε
+ 1 + E[|Q̂1|] + E

∑
y∈Y
|X̂2 ∩Xy|


≤
√

T

ε
+ 1 +O

(
d

σ
Tε log(T + 1/ε)

)
+
∑
y∈Y

O

(
E[diam(x)n]

ε
+ 1

)

≤
√

T

ε
+ 1 +O

(
d

σ
Tε log(T + 1/ε)

)
+ |Y| ·O

(
E[diam(x)n]

ε
+ 1

)
≤ O

(√
T

ε
+

d

σ
Tε log(T + 1/ε) +

E[diam(x)n]

ε

)
as required.

Theorem 5.1 follows from Lemmas B.3 and B.6:

Theorem 5.1. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and x is σ-smooth, or (2)

Π has finite Littlestone dimension d. Then for any T ∈ N and ε ∈
[
1

T
,
(
µm
0

2L

)n]
, Algorithm 1 satisfies

E
[
R×

T

]
∈ O

(
dL

σµm
0

Tε1+1/n log(T + 1/ε)

)
E
[
R+

T

]
∈ O

(
dL

σ
Tε1+1/n log(T + 1/ε)

)
E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(T+1/ε) +

E[diam(x)n]

ε

)

We then perform some arithmetic to obtain Theorem 5.2:

Theorem 5.2. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and x is σ-smooth or (2) Π
has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with ε = T

−2n
2n+1 satisfies

E
[
R×

T

]
∈ O

(
dL

σµm
0

T
−1

2n+1 log T

)
E
[
R+

T

]
∈ O

(
dL

σ
T

−1
2n+1 log T

)
E[|QT |] ∈ O

(
T

4n+1
4n+2

(
d

σ
log T + E[diam(x)n]

))
Proof. We have

E
[
R×

T

]
∈ O

(
dL

σµm
0

T 1− 2n
2n+1−

2
2n+1

(
log T + log(T

2n
2n+1 )

))
= O

(
dL

σµm
0

T
−1

2n+1 log T

)
and similarly for E[R+

T ]. For E[|QT |],

E[|QT |] ∈ O

(√
T 1+ 2n

2n+1 +
d

σ
T 1− −2n

2n+1

(
log T + log(T

2n
2n+1 )

)
+ T

2n
2n+1 E[diam(x)n]

)
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= O

(
T

2n+0.5
2n+1 +

d

σ
T

1
2n+1 log T + T

2n
2n+1 E[diam(x)n]

)
≤ O

(
T

4n+1
4n+2

( d
σ
log T + E[diam(x)n]

))

B.3. Adaptive adversaries

If st is allowed to depend on the events of prior time steps, we say that the adversary is adaptive. In contrast, a non-adaptive
or “oblivious” adversary must choose the entire input upfront. This distinction is not relevant for deterministic algorithms,
since an adversary knows exactly how the algorithm will behave for any input. In other words, the adversary gains no new
information during the execution of the algorithm. For randomized algorithms, an adaptive adversary can base the choice of
st on the results of randomization on previous time steps (but not on the current time step), while an oblivious adversary
cannot.

In the standard online learning model, Hedge guarantees sublinear regret against both oblivious and adaptive adversaries
(Chapter 5 of Slivkins et al. (2019) or Chapter 21 of Shalev-Shwartz & Ben-David (2014)). However, Russo et al. (2024)
state their result only for oblivious adversaries. In order for our overall proof of Theorem 5.1 to hold for adaptive adversaries,
Lemma 5.4 (Lemma 3.5 in Russo et al., 2024) must also hold for adaptive adversaries. In this section, we argue why the
proof of Lemma 5.4 (Lemma 3.5 in their paper) goes through for adaptive adversaries as well. For this rest of Appendix B.3,
lemma numbers refer to the numbering in Russo et al. (2024).

The importance of independent queries. Recall from Appendix B.1 that Russo et al. (2024) allow two separate parameters
k and k̂, which we unify for simplicity. Recall also that Lemma 3.5 refers to the variant of Hedge which queries with
probability p = k̂/T = k/T independently on each time step (Algorithm 2. More precisely, on each time step t, the
algorithm samples Xt ∼ Bernoulli(p) and queries if Xt = 1. The key idea is that Xt is independent of events on previous
time steps. Thus even conditioning on the history up to time t, for any for any random variable Yt we can write

E[Yt] = (1− p)E[Yt | Xt = 0] + pE[Yt | Xt = 1]

This insight immediately extends Observation 3.3 to adaptive adversaries (with the minor modification that queries are now
issued independently with probability p on each time step instead of issuing k uniformly distributed queries). Specifically,
using the notation from Russo et al. (2024) where it is the action chosen at time t, i0t is the action chosen at time t if a query
is not issued, and i∗t is the optimal action at time t, we have

E[ℓt(it)] = (1− p)E[ℓt(i0t )] + pE[ℓt(i∗t )]

=

(
1− k

T

)
E[ℓt(i0t )] +

k

T
E[ℓt(i∗t )]

The same logic applies to other statements like E[ℓ̂t(i) | X≤t−1, I≤t−1] = ℓt(i)− ℓt(i
∗
t ) and immediately extends those

statements to adaptive adversaries as well.

Applying Observation 3.3. The other tricky part of the proof is applying Observation 3.3 using a new loss function ℓ̂
defined by ℓ̂t(i) =

T
k̂
(ℓt(i)− ℓt(i

∗
t ))1(Xt = 1). To do so, we must argue that standard Hedge run on ℓ̂ is the “counterpart

without queries” of HEDGEWITHQUERIES. Specifically, both algorithms must have the same weight vectors on every time
step, and the only difference should be that HEDGEWITHQUERIES takes the optimal action on each time step independently
with probability p (and otherwise behaves the same as standard Hedge). On time steps with Xt = 0, standard Hedge
observes ℓ̂t(i) = 0 for all actions i and thus makes no updates, and HEDGEWITHQUERIES makes no updates by definition.
On time steps with Xt = 1, both algorithms perform the typical updates wt+1(i) = wt(i) · exp(−η(ℓ̂t(i)− ℓ̂t(i

∗
t ))). Thus

the weight vectors are the same for both algorithms on every time step. Furthermore, HEDGEWITHQUERIES takes the
optimal action at time t iff Xt = 1, which occurs independently with probability p on each time step. Thus standard Hedge
run on ℓ̂ is the “counterpart without queries” of HEDGEWITHQUERIES. Note that since ℓ̂ is itself a random variable, the law
of iterated expectation is necessary to formalize this.
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Algorithm 3 extends Algorithm 1 to many actions.
Inputs: T ∈ N, ε ∈ R>0, d ∈ N, policy class Π
for y ∈ Y do

if Πy has VC dimension d then
Π̃y ← any smooth ε-cover of Π of size at most (41/ε)d

else if Π has Littlestone dimension d then
Π̃y ← any adversarial cover of size at most (eT/d)d

for t from 1 to T do
for y ∈ Y do
byt ← action at time t from the copy of Algorithm 1 running on Πy (with the same T, ε, d)

if byt ̸= ỹ ∀y ∈ Y and ∃a ∈ Y : byt = 1 then
Take any action y with byt = 1

else
Take an arbitrary action in Y

The rest of the proof. The other elements of the proof of Lemma 3.5 are as follows:

1. Lemma 3.1, which analyzes the standard version of Hedge (i.e., no queries and losses are observed on every time step).
2. Applying Lemma 3.1 to ℓ̂.
3. Arithmetic and rearranging terms.

The proof of Lemma 3.1 relies on simple arithmetic properties of the Hedge weights. Regardless of the adversary’s behavior,
ℓ̂ is a well-defined loss function, so Lemma 3.1 can be applied. Step 3 clearly has no dependence on the type of adversary.
Thus we conclude that Lemma 3.5 extends to adaptive adversaries.

C. Generalizing Theorem 5.2 to many actions
We use the standard “one versus rest” reduction (see, e.g., Chapter 29 of Shalev-Shwartz & Ben-David, 2014). For each
action y, we will learn a binary classifier which predicts whether action y is the mentor’s action. Formally, for each y ∈ Y ,
define the policy class Πy = {πy : π ∈ Π and πy(x) = 1(π(x) = y)) ∀x ∈ X}. In words, for each policy π : X → Y in
Π, there exists a policy πy : X → {0, 1} in Πy such that πy(x) = 1(π(x) = y) for all x ∈ X .

Algorithm 3 runs one copy of our binary-action algorithm (Algorithm 1) for each action y ∈ Y . At each time step t, the
copy for action y returns an action byt , with byt = 1 indicating a belief that y = πm(xt) and byt = 0 indicating a belief that
y ̸= πm(xt). (Note that byt = ỹ is also possible, indicating that the mentor was queried.)

The key idea is that if byt is correct for each action y, there will be exactly one y such that byt = 1, and specifically it will
be y = πm(xt). Thus we are guaranteed to take the mentor’s action on such time steps. The analysis for Theorem 5.2
(specifically, Lemma B.1) bounds the number of time steps when a given copy of Algorithm 1 is incorrect, so by the union
bound, the number of time steps where any copy is incorrect is |Y| times that bound. That in turn bounds the number of
time steps where Algorithm 3 takes an action other than the mentor’s. Similarly, the number of queries made by Algorithm 3
is at most |Y| times the bound from Theorem 5.2. The result is the following theorem:

Theorem C.1. Assume πm ∈ Π where either (1) Πy has finite VC dimension d and x is σ-smooth or (2) Πy has finite
Littlestone dimension d for all y ∈ Y . Then for any T ∈ N, Algorithm 3 with ε = T

−2n
2n+1 satisfies

E
[
R×

T

]
∈ O

(
|Y|dL
σµm

0

T
−1

2n+1 log T

)
E
[
R+

T

]
∈ O

(
|Y|dL
σ

T
−1

2n+1 log T

)
E[|QT |] ∈ O

(
|Y|T

4n+1
4n+2

(
d

σ
log T + E[diam(x)n]

))

We use the following terminology and notation in the proof of Theorem C.1:
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1. We refer to the copy of Algorithm 1 running on Πy as “copy y of Algorithm 1”.
2. Recall that St refers to the value of S at the start of time step t in Algorithm 1. Let πy

t and Sy
t refer to the values of πt

and St for copy y of Algorithm 1.
3. Let πmy : X → {0, 1} be the policy defined by πmy(x) = 1(πm(xt) = y). Note that querying the mentor tells the

agent πm(xt), which allows the agent to compute πmy(xt): this is necessary when Algorithm 1 queries while running
on some Πy .

4. Let My
T = {t ∈ [T ] : byt ̸= πmy(xt)} be the set of time steps where πy

t does not correctly determine whether the mentor
would take action y and let MT = {t ∈ [T ] : yt ̸= πm(xt)} be the set of time steps where the agent’s action does not
match the mentor’s.

Lemma C.1. We have |MT | ≤
∑

y∈Y |M
y
T |.

Proof. We claim that MT ⊆ ∪y∈YM
y
T . Suppose the opposite: then there exists t ∈ MT such that byt = πmy(xt) for all

y ∈ Y . Since πm(xt) ∈ Y , there is exactly one y ∈ Y such that 1(πm(xt) = y) = πmy(xt) = byt = 1. Specifically, this
holds for y = πm(xt). But then Algorithm 3 takes action min{y ∈ Y : byt = 1} = πm(xt), which contradicts t ∈ MT .
Therefore MT ⊆ ∪y∈YM

y
T , and applying the union bound completes the proof.

Lemma C.2. For all t ∈ [T ], µm
t (xt)− µt(xt, yt) ≤ Lε1/n.

Proof. The argument is similar to the proof of Lemma B.2. If µm
t (xt) ̸= µt(xt, yt), then yt = y for some y ∈ Y where byt =

1. Therefore copy y of Algorithm 1 did not query at time t and πy
t (xt) = 1. Let (x′, y′) = argmin(x,y)∈Sy

t :π
y
t (xt)=y ||xt−x||.

Then ||xt − x′|| ≤ ε1/n and y′ = πy
t (xt) = 1.

By construction of Sy
t , y′ = πmy(x′) so πmy(x′) = 1 which implies πm(x′) = y. Then by the local generalization

assumption,
µt(xt, yt) = µt(xt, y) = µt(xt, π

m(x′)) ≥ µm
t (xt)− L||xt − x′|| ≥ µm

t (xt)− Lε1/n

as required.

We now proceed to the proof of Theorem C.1.

Proof of Theorem C.1. Theorem 5.2 implies that each copy of Algorithm 1 makes O
(
T

4n+1
4n+2

(
d
σ log T + E[diam(x)n]

))
queries in expectation. Thus by linearity of expectation the expected number of queries made by Algorithm 3 is
O
(
|Y|T

4n+1
4n+2

(
d
σ log T + E[diam(x)n]

))
.13 Similar to the proof of Lemma B.3, we have

R+
T =

∑
t∈MT

(µm
t (xt)− µt(xt, yt)) (µm

t (xt) = µt(xt, yt) for all t ̸∈MT )

≤
∑

t∈MT

Lε1/n (Lemma C.2)

= |MT |Lε1/n (Simplying sum)

≤ Lε1/n
∑
y∈Y
|My

T | (Lemma C.1)

Since each copy satisfies the conditions of Lemma B.1, we get

E[R+
T ] ≤ Lε1/n

∑
y∈Y

O

(
d

σ
Tε log(1/ε) log T

)
= O

(
|Y|Lε1/n d

σ
Tε log(1/ε) log T

)
Since limT→∞ ε = 0, there exists T0 such that Lε1/n ≤ µm

0 /2 for all T ≥ T0. Then by Lemma A.1,

E[R×
T ] ≤

E[R+
T ]

µm
0 /2

∈ O

(
|Y|Lε1/n d

σµm
0

Tε log(1/ε) log T

)
(3)

Plugging ε = T
−2n
2n+1 to the bounds above on E[R+

T ] and E[R×
T ] yields the desired bounds (see the arithmetic in the proof of

Theorem 5.2 in Appendix B).
13This is an overestimate because the agent makes at most one query per time step, even if multiple copies request a query.
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D. There exist policy classes which are learnable in our setting but not in the standard online
model

This section presents another algorithm with subconstant regret and sublinear queries, but under different assumptions.
The primary takeaway here is that our algorithm can handle the class of thresholds on [0, 1], which is known to have
infinite Littlestone dimension and thus be hard in the standard online learning model. (Example 21.4 in Shalev-Shwartz &
Ben-David, 2014).

Specifically, we assume a 1D input space and we allow the input sequence to be fully adversarial chosen. Instead of
VC/Littlestone dimension, we consider the following notion of simplicity:

Definition D.1. Given a mentor policy πm, partition the input space X into intervals such that all inputs within each interval
share the same mentor action. Let {X1, . . . , Xk} be a partition that minimizes the number of intervals. We call each Xj a
segment. Let S(πm) denote the number of segments in πm.

Bounding the number of segments is similar conceptually to VC dimension in that it limits the ability of the policy class to
realize arbitrary combinations of labels (i.e., mentor actions) on x. For example, if Π is the class of thresholds on [0, 1],
every π ∈ Π has at most two segments, and thus the positive result in this section will apply. This demonstrates the existence
of policy classes which are learnable in our setting but not learnable in the standard online learning model, meaning that the
two settings do not exactly coincide.

Unlike our primary algorithm (Algorithm 1), this algorithm does require direct access to the input encoding. However, the
point of this section is not to present a practical algorithm: it is simply to demonstrate that our setting and the standard
online setting do not exactly coincide.

We prove the following regret bound. Like our previous results, this bound applies to both multiplicative and additive regret.

Theorem D.2. For any x ∈ X T , any πm with S(πm) ≤ K, and any function g : N → N satisfying g(T ) ≥ 2L/µm
0 ,

Algorithm 4 satisfies

R×
T ≤

4LKT

g(T )2µm
0

R+
T ≤

2LKT

g(T )2

|QT | ≤ (diam(x) + 4)g(T )

Choosing g(T ) = T c for c ∈ (1/2, 1) is sufficient to subconstant regret and sublinear queries:

Theorem D.3. For any c ∈ (1/2, 1), Algorithm 4 with g(T ) = T c satisfies

R×
T ∈ O

(
LKT 1−2c

µm
0

)
R+

T ∈ O
(
LKT 1−2c

)
|QT | ∈ O(T c(diam(x) + 1))

D.1. Intuition behind the algorithm

We call our algorithm “Dynamic Bucketing With Routine Querying”, or DBWRQ (pronounced “DBWRQ”). The algorithm
maintains a set of buckets which partition the observed portion of the input space. Each bucket’s length determines the
maximum loss in payoff we will allow from that subset of the input space. As long as the bucket contains a query from a
prior time step, local generalization allows us to bound µm

t (xt)− µt(xt, yt) based on the length of the bucket containing xt.
We always query if the bucket does not contain a prior query; in this sense the querying is “routine”.

The granularity of the buckets is controlled by a function g, with the initial buckets having length 1/g(T ). Since we can
expect one query per bucket, we need g(T ) ∈ o(T ) to ensure sublinear queries.

Regardless of the bucket length, the adversary can still place multiple segments in the same bucket B. A single query only
tells us the optimal action for one of those segments, so we risk a payoff as bad as µm

t (xt) − O(len(B)) whenever we
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Algorithm 4 achieves subconstant regret when the mentor’s policy has a bounded number of segments.
1: function DBWRQ(T ∈ N, g : N→ N)
2: XQ ← ∅ (previously queried inputs)
3: π ← ∅ (records πm(x) for each x ∈ XQ)
4: B ← ∅ (The set of active buckets)
5: for t from 1 to T do
6: EVALUATEINPUT(xt)
7: end for
8: end function
9: function EVALUATEINPUT(x ∈ X )

10: if x ̸∈ B for all B ∈ B then
11: B ←

[
j−1
g(T ) ,

j
g(T )

]
for j ∈ Z such that x ∈ B

12: B ← B ∪ {B}
13: nB ← 0
14: EVALUATEINPUT(x)
15: else
16: B ← any bucket containing x
17: if XQ ∩B = ∅ then
18: Query mentor and observe πm(x)
19: π(x)← πm(x)
20: XQ ← XQ ∪ {x}
21: nB ← nB + 1
22: else if nB < T/g(T ) then
23: Let x′ ∈ XQ ∩B
24: Take action π(x′)
25: nB ← nB + 1
26: else
27: B = [a, b]

28: (B1, B2)←
( [

a, a+b
2

]
,
[
a+b
2 , b

] )
29: (xB1 , xB2)← (0, 0)
30: B ← B ∪ {B1, B2} \B
31: EVALUATEINPUT(x)
32: end if
33: end if
34: end function

choose not to query. We can endure a limited number of such payoffs, but if we never query again in that bucket, we may
suffer Θ(T ) such payoffs. Letting µm

t (xt) = 1 for simplicity, that would lead to
∏T

t=1 µt(xt, yt) ≤
(
1 − 1

O(g(T ))

)Θ(T )
,

which converges to 0 (i.e., guaranteed catastrophe) when g(T ) ∈ o(T ).

This failure mode suggests a natural countermeasure: if we start to suffer significant (potential) losses in the same bucket,
then we should probably query there again. One way to structure these supplementary queries is by splitting the bucket in
half when enough time steps have involved that bucket. It turns out that splitting after T/g(T ) time steps is a sweet spot.

D.2. Proof notation

We will use the following notation throughout the proof of Theorem D.2:

1. Let MT = {t ∈ [T ] : µt(xt, yt) < µm
t (xt)} be the set of time steps with a suboptimal payoff.

2. Let Bt be the bucket that is used on time step t (as defined on line 16 of Algorithm 4).
3. Let d(B) be the depth of bucket B.

(a) Buckets created on line 11 are depth 0.
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(b) We refer to B1, B2 created on line 28 as the children of the bucket B defined on line 16.
(c) If B′ is the child of B, d(B′) = d(B) + 1.

(d) Note that len(B) =
1

g(T )2d(B)
.

4. Viewing the set of buckets as a binary tree defined by the “child” relation, we use the terms “ancestor” and ”descendant”
in accordance with their standard tree definitions.

5. Let BV = {B : ∃t ∈MT s.t. Bt = B} be the set of buckets that ever produced a suboptimal payoff.
6. Let B′V = {B ∈ BV : no descendant of B is in BV }.

D.3. Proof roadmap

The proof proceeds in the following steps:

1. Bound the total number of buckets and therefore the total number of queries (Lemma D.1).
2. Bound the suboptimality on a single time step based on the bucket length and L (Lemma D.2).
3. Bound the sum of bucket lengths on time steps where we make a mistake (Lemma D.4), with Lemma D.3 as an

intermediate step. This captures the “total amount of suboptimality”.
4. Lemma D.5 uses Lemma D.2 and Lemma D.4 to bound the regret.
5. Theorem D.2 directly follows from Lemmas D.1 and D.5.

D.4. Proof

Lemma D.1. Algorithm 4 performs at most (diam(x) + 4)g(T ) queries.

Proof. Algorithm 4 performs at most one query per bucket, so the total number of queries is bounded by the total number of
buckets. There are two ways to create a bucket: from scratch (line 11), or by splitting an existing bucket (line 28).

Since depth 0 buckets overlap only at their boundaries, and each depth 0 bucket has length 1/g(T ), at most
g(T )maxt,t′∈[T ] |xt−xt′ | = g(T ) diam(x) depth 0 buckets are subsets of the interval [mint∈[T ] xt,maxt∈[T ] xt]. At most
two depth 0 buckets are not subsets of that interval (one at each end), so the total number of depth 0 buckets is at most
g(T ) diam(x) + 2.

We split a bucket B when nB reaches T/g(T ), which creates two new buckets. Since each time step increments nB

for a single bucket B, and there are a total of T time steps, the total number of buckets created via splitting is at most
2T

T/g(T )
= 2g(T ). Therefore the total number of buckets ever in existence is (diam(x)+2)g(T )+2 ≤ (diam(x)+4)g(T ),

so Algorithm 4 performs at most (diam(x) + 4)g(T ) queries.

Lemma D.2. For each t ∈ [T ], µt(xt, yt) ≥ µm
t (xt)− L len(Bt).

Proof. If we query at time t, then µt(xt, yt) = µm
t (xt). Thus assume we do not query at time t: then there exists x′ ∈ Bt

(as defined on line 23 of Algorithm 4) such that yt = π(x′) = πm(x′). Since xt and x′ are both in Bt, |xt − x′| ≤ len(Bt).
Then by local generalization, µt(xt, yt) = µt(xt, π

m(x′)) ≥ µm
t (xt)− L||xt − x′|| ≥ µm

t (xt)− L len(Bt).

Lemma D.3. If πm has at most K segments, |B′V | ≤ K.

Proof. Now consider any B ∈ B′V . By definition of B′V , there exists t ∈MT such that xt ∈ B. Then there exists x′ ∈ B
(as defined in Algorithm 4) such that yt = π(x′) = πm(x′). Since t ∈MT , we have πm(xt) ̸= yt = πm(x′). Thus xt and
x′ are in different segments, but are both in B. Therefore any B ∈ B′V must intersect at least two segments. Since B is an
interval, if it intersects two segments, it must intersect two adjacent segments Xj and Xj+1. Furthermore, B must contain
an open neighborhood centered on the boundary between Xj and Xj+1.

Now consider some B′ ∈ B′V with B ̸= B′. We |B∩B′| ≤ 1: otherwise one must be the descendant of the other, which con-
tradicts the definition of B′V . Suppose B′ also intersects both Xj and Xj+1: since B′ is also an interval, B′ must also contain
an open neighborhood centered on the boundary between those two segments. But then |B∩B′| > 1, which is a contradiction.
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Therefore any pair of adjacent segments Xj and Xj+1, there is at most one bucket in B′V which contains an open neighbor-
hood around their boundary. Since there are at most K − 1 pairs of adjacent segments, we have |B′V | ≤ K − 1 ≤ K.

Lemma D.4. We have
∑

t∈MT

len(Bt) ≤
2KT

g(T )2
.

Proof. For every t ∈MT , we have Bt = B for some B ∈ BV , so∑
t∈MT

len(Bt) =
∑

B∈BV

∑
t∈MT :B=Bt

len(Bt)

Next, observe that every B ∈ BV \B′V must have a descendant in B′V : otherwise we would have B ∈ B′V . LetA(B) denote
the set of ancestors of B, plus B itself. Then we can write∑

t∈MT

len(Bt) ≤
∑

B′∈B′
V

∑
B∈A(B′)

∑
t∈MT :B=Bt

len(Bt)

=
∑

B′∈B′
V

∑
B∈A(B′)

|{t ∈MT : B = Bt}| · len(Bt)

For any bucket B, the number of time steps t with B = Bt is at most T/g(T ). Also recall that len(B) =
1

g(T )2d(B)
, so

∑
B∈A(B′)

|{t ∈MT : B = Bt}|
g(T )2d(B)

≤ T

g(T )2

∑
B∈A(B′)

1

2d(B)

=
T

g(T )2

d(B′)∑
d=0

1

2d

≤ T

g(T )2

∞∑
d=0

1

2d

=
2T

g(T )2

Then by Lemma D.3, ∑
t∈MT

len(Bt) ≤
∑

B′∈B′
V

2T

g(T )2
=

2T |B′V |
g(T )2

≤ 2KT

g(T )2

as claimed.

Lemma D.5. Under the conditions of Theorem D.2, Algorithm 4 satisfies

R×
T ≤

2LKT

µm
0 g(T )2

R+
T ≤

2LKT

g(T )2

Proof. We have

R+
T ≤

∑
t∈MT

(µm
t (xt)− µt(xt, yt)) (µt(xt, yt) ≥ µm

t (xt) for t ̸∈MT )

≤
∑

t∈MT

L len(Bt) (Lemma D.2)

≤ 2LKT

g(T )2
(Lemma D.4)
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Since g(T ) ≥ 2L/µm
0 and every bucket length is at most 1

g(T ) ,

µt(xt, yt) ≥ µm
t (xt)− L len(Bt)

≥ µm
0 −

L

g(T )

≥ µm
0 − µm

0 /2

≥ µm
0 /2

> 0

Invoking Lemma A.1 completes the proof:

R×
T ≤

2R+
T

µm
0

≤ 4LKT

g(T )2µm
0

Theorem D.2 follows from Lemma D.1 and Lemma D.5.

E. Properties of local generalization
Proposition E.1 states that Lipschitz continuity implies local generalization when the mentor is optimal.

Proposition E.1. Assume that µ satisfies Lipschitz continuity: for all x, x′ ∈ X and y ∈ Y , |µ(x, y)−µ(x′, y)| ≤ L||x−x′||.
Also assume that µ(x, πm(x)) = maxy∈Y µ(x, y) for all x ∈ X . Then µ satisfies local generalization with constant 2L.

Proof. For any x, x′ ∈ X , we have

µ(x, πm(x′)) ≥ µ(x′, πm(x′))− L||x− x′|| (Lipschitz continuity of µ)
≥ µ(x′, πm(x))− L||x− x′|| (πm is optimal for x′)
≥ µ(x, πm(x))− 2L||x− x′|| (Lipschitz continuity of µ again)
= µm(x)− 2L||x− x′|| (Definition of µm(x))

Since πm is optimal for x, we have

µm(x) + 2L||x− x′|| ≥ µm(x) ≥ µ(x, πm(x′))

So −2L||x− x′|| ≤ µ(x, πm(x′))− µm(x) ≤ 2L||x− x′|| and therefore |µ(x, πm(x′))− µm(x)| ≤ 2L||x− x′||.

Theorem E.2 shows that avoiding catastrophe is impossible without local generalization, even when x is σ-smooth and Π
has finite VC dimension. The first insight is that without local generalization, we can define µ(x, y) = 1(y = πm(x)) so
that a single mistake causes

∏T
t=1 µ(xt, yt) = 0. To lower bound Pr

[∏T
t=1 µ(xt, yt) = 0

]
, we use a similar approach to

the proof of Theorem 4.1: divide X = [0, 1] into f(T ) independent sections with |QT | << f(T ) << T , so that the agent
can only query a small fraction of these sections. However, the proof of Theorem E.2 is a bit easier, since we only need the
agent to make a single mistake.

Note that Theorem E.2 as stated only provides a bound on R×
T . A similar bound can be obtained for R+

T , but it is more
tedious and we do not believe it would add much to the paper.

Theorem E.2. LetX = [0, 1] and Y = {0, 1}. Let each input be sampled i.i.d. from the uniform distribution onX and define
the mentor policy class as the set of intervals within X , i.e., Π = {π : ∃a, b ∈ [0, 1] s.t π(x) = 1(x ∈ [a, b]) ∀x ∈ X}. Then
without the local generalization assumption, any algorithm with sublinear queries satisfies limT→∞ supµ,πm E[R×

T ] =∞.

Proof. Part 1: Setup. Consider any algorithm which makes sublinear worst-case queries: then there exists g : N→ N where
supµ,πm E[|QT |] ≤ g(T ) and g(T ) ∈ o(T ). WLOG assume g(T ) ≥ 0 for all T ; if not, redefine g(T ) to be max(g(T ), 1).

Define f(T ) := ⌈
√

g(T )T ⌉; by Lemma A.2, g(T ) ∈ o(f(T )) and f(T ) ∈ o(T ). Divide X into f(T ) equally sized sections
X1, . . . , Xf(T ) in the exactly the same way as in Section 4.2; see also Figure 1. Assume that each xt is in exactly one
section: this assumption holds with probability 1, so it does not affect the regret.
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We use the probabilistic method: sample a segment jm ∈ [f(T )] uniformly at random, define πm by πm(x) = 1(x ∈ Xjm),
and define µ by µ(x, y) = 1(y = πm(x)). In words, the mentor takes action 1 iff the input is in section jm, and the agent
receives payoff 1 if its action matches the mentor’s and zero otherwise. Since any choice of jm defines a valid µ and πm,

sup
µ,πm

E
x,y

[R+
T (x,y,µ, π

m)] ≥ E
jm

E
x,y

[R+
T (x,y, (µ, . . . , µ), π

m)]

Let J¬Q = {j ∈ [f(T )] : xt ̸∈ Xj ∀t ∈ QT } be the set of sections which are never queried. Let j1, . . . , jk be the sequence
of sections queried by the agent: then k = |QT | ≤ g(T ).

Part 2: The agent is unlikely to determine jm. By the chain rule of probability,

Pr[jm ∈ J¬Q] = Pr
[
ji ̸= jm ∀i

]
=

k∏
i=1

Pr
[
ji ̸= jm | jr ̸= jm ∀r < i

]
Now fix i and assume jr ̸= jm ∀r < i. Queries in sections other than jm provide no information about the value of jm, so
jm is uniformly distributed across the set of sections not yet queried, i.e., {j ∈ [f(T )] : jr ̸= j ∀r < i}. There are at least
f(T )− i+1 such sections, since there are i−1 prior queries at this point. Thus Pr[ji ̸= jm | jr ̸= jm ∀r < i] ≥ f(T )−i

f(T )−i+1

(the inequality is because this probability could also be 1 if ji = jr for some i < r). Therefore

Pr
[
jm ∈ J¬Q

]
≥

k∏
i=1

f(T )− i

f(T )− i+ 1

=
f(T )− 1

f(T )
· f(T )− 2

f(T )− 1
. . .

f(T )− k + 1

f(T )− k + 2
· f(T )− k

f(T )− k + 1

=
f(T )− k

f(T )

≥ 1− g(T )

f(T )

Part 3: If the agent fails to determine jm, it is likely to make at least one mistake. For each j ∈ J¬Q, let Vj =
{t ∈ [T ] : xt ∈ Xj} be the set of time steps with inputs in section j. By Lemma A.4, Pr[|Vjm | = 0] ≤ exp

(
T

16f(T )

)
.

Then by the union bound, Pr[jm ∈ J¬Q and |Vjm | > 0] ≥ 1 − g(T )
f(T ) − exp

( −T
16f(T )

)
. For the rest of Part 3, assume

jm ∈ J¬Q and |Vjm | > 0.

Case 1: For all j ∈ J¬Q and t ∈ Vj , we have yt = 0. In particular, this holds for j = jm, and we
know there exists at least one t ∈ Vjm since |Vjm | > 0. Then yt ̸= πm(xt), so µ(xt, yt) = 0 and thus

Pr
[∏T

r=1 µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0 and yt = 0 ∀j ∈ J¬Q, t ∈ Vj

]
= 1.

Case 2: There exists j ∈ J¬Q and t ∈ Vj with yt = 1. Then µ(xt, yt) = 0 unless j = jm, so

Pr

[
T∏

r=1

µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0 and ∃j ∈ J¬Q, t ∈ Vj s.t. yt = 1

]
≥ Pr

[
µ(xt, yt) = 0

∣∣∣ jm ∈ J¬Q and |Vjm | > 0 and ∃j ∈ J¬Q, t ∈ Vj s.t. yt = 1
]

= Pr
[
j ̸= jm

∣∣∣ jm ∈ J¬Q and |Vjm | > 0 and ∃j ∈ J¬Q, t ∈ Vj s.t. yt = 1
]

Since jm ∈ J¬Q, the agent has no information about jm other than that it is in J¬Q. This means that jm is uniformly
distributed across J¬Q, so

Pr

[
T∏

r=1

µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0 and ∃j ∈ J¬Q, t ∈ Vj s.t. yt = 1

]
≥ 1− 1

|J¬Q|
≥ 1− 1

f(T )− g(T )

Combining Case 1 and Case 2, we get the overall bound of

Pr

[
T∏

t=1

µ(xt, yt) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
≥ 1− 1

f(T )− g(T )
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and thus

Pr

[
T∏

t=1

µ(xt, yt) = 0

]
≥ Pr

[
T∏

t=1

µ(xt, yt) = 0 and jm ∈ J¬Q and |Vjm | > 0

]

= Pr

[
T∏

t=1

µ(xt, yt) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
· Pr

[
jm ∈ J¬Q and |Vjm | > 0

]
≥
(
1− 1

f(T )− g(T )

)(
1− g(T )

f(T )
− exp

(
−T

16f(T )

))
For brevity, let α(T ) denote this final bound. Since g(T ) ∈ o(f(T )) and f(T ) ∈ o(T ), we have

lim
T→∞

α(T ) = lim
T→∞

(
1− 1

f(T )− g(T )

)(
1− g(T )

f(T )
− exp

(
−T

16f(T )

))
= (1− 0)(1− 0− 0) = 1

Part 4: Putting it all together. Consider any ε ∈ (0, 1]; to avoid dealing with infinite expectations, we will deal with
Pr[
∏T

t=1 µ(xt, yt) ≤ ε] instead of Pr[
∏T

t=1 µ(xt, yt) = 0]. Since
∏T

t=1 µ(xt, yt) ≤ 1 always, we have

E
jm

E
x,y

[
log

T∏
t=1

µ(xt, yt)

]
= E

jm
E
x,y

[
log

T∏
t=1

µ(xt, yt)
∣∣∣ T∏

t=1

µ(xt, yt) ≤ ε

]
· Pr

[
T∏

t=1

µ(xt, yt) ≤ ε

]

+ E
jm

E
x,y

[
log

T∏
t=1

µ(xt, yt)
∣∣∣ T∏

t=1

µ(xt, yt) > ε

]
· Pr

[
T∏

t=1

µ(xt, yt) > ε

]

≤ log ε · Pr

[
T∏

t=1

µ(xt, yt) ≤ ε

]
+ 1 ·

(
1− Pr

[
T∏

t=1

µ(xt, yt) ≤ ε

])

≤ 1− (1− log ε) Pr

[
T∏

t=1

µ(xt, yt) ≤ ε

]

Since ε ∈ (0, 1], we have 1− log ε > 0. Also, Pr[
∏T

t=1 µ(xt, yt) ≤ ε] ≥ Pr[
∏T

t=1 µ(xt, yt) = 0], so

E
jm

E
x,y

[
log

T∏
t=1

µ(xt, yt)

]
≤ 1− (1− log ε) Pr

[
T∏

t=1

µ(xt, yt) ≤ ε

]

≤ 1− (1− log ε) Pr

[
T∏

t=1

µ(xt, yt) = 0

]
≤ 1− (1− log ε)α(T )

Since
∏T

t=1 µ
m(xt) = 1 always, we have

sup
µ,πm

E
x,y

[R+
T (x,y,µ, π

m)] ≥ E
jm

E
x,y

[R+
T (x,y, (µ, . . . , µ), π

m)]

= log 1− E
jm

E
x,y

[
log

T∏
t=1

µ(xt, yt)

]
≥ − 1 + (1− log ε)α(T )

Therefore

lim
T→∞

sup
µ,πm

E
x,y

[R+
T (x,y,µ, π

m)] ≥ − 1 + (1− log ε) lim
T→∞

α(T )

≥ − 1 + (1− log ε)

≥ − log ε

This holds for every ε ∈ (0, 1], which is only possible if limT→∞ supµ,πm Ex,y [R+
T (x,y,µ, π

m)] =∞, as desired.
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