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Abstract

Robustness to rotation is critical for point cloud understanding tasks as point cloud fea-
tures can be affected dramatically with respect to prevalent rotation changes. In this
work, we introduce a novel self-supervised learning framework, dubbed SeLCA, that pre-
dicts a canonical axis of point clouds in a probabilistic manner. In essence, we pro-
pose to learn rotational-equivariance by predicting the canonical axis of point clouds, and
achieve rotational-invariance by aligning the point clouds using their predicted canonical
axis. When integrated into a rotation-sensitive pipeline, SeLCA achieves competitive per-
formances on the ModelNet40 classification task under unseen rotations. Our proposed
method also shows high robustness to various real-world point cloud corruption presented
by the ModelNet40-C dataset, compared to the state-of-the-art rotation-invariant method.

Keywords: SO(3)-equivariance, point cloud understanding, rotation invariance

1. Introduction

With recent advances in deep learning, there have been successful attempts to reason about
3D point clouds (Wang et al., 2019; Wu et al., 2019). However, consistent inference with
respect to different rotations on point clouds remains challenging. Existing approaches to
tackling this issue can be divided into two categories: a) learning to extract rotation-robust
features using rotation-equivariant or invariant networks (Rao et al., 2019; Poulenard et al.,
2019), and b) achieving rotation invariance by predicting a canonical pose via principal
component analysis and aligning the point cloud to it (Kim et al., 2020; Li et al., 2021a).

In this paper, we focus on a major drawback of existing methods that has received little
attention - their brittleness to real-world corruption, e.g., occlusion and noise. Existing
methods either have a strong reliance on the plane symmetries or the intrinsic geometries
of point clouds (Li et al., 2021a; Xiao and Wachs, 2021), which are largely affected by point
cloud corruption, therefore having limited applicability to real-world settings.

Our contribution can be summarized as follows:

• We introduce a novel self-supervised framework, dubbed SeLCA, that predicts a
rotation-equivariant canonical axis of 3D point clouds.

• We propose a novel alignment scheme on geodesic spherical tessellations to effectively
represent the canonical orientation distribution of a point cloud.

∗ * denotes equal contribution
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• We demonstrate the superior robustness of SeLCA against realistic point cloud cor-
ruption of the ModelNet40-C dataset, while being competitive on the ModelNet40
dataset for point cloud classification.
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Figure 1: Overview of the proposed SeLCA pipeline. Our self-supervised pipeline
trains the network by matching the histograms from a pair of rotated point clouds.

2. Self-Supervised Learning of Canonical Axis

It is impossible to provide strong supervision of canonical axes due to the absence of standard
rules to pre-define the canonical axis of a point cloud. To this end, we train our SeLCA
pipeline to output a canonical axis distribution that satisfies the following property: when
a rotation R is applied to the point cloud then the predicted canonical axis distribution
should reflect the corresponding rotation by R, i.e. the canonical axis distribution should be
equivariant to the rotation of point clouds. Figure 1 illustrates the overall training pipeline.

2.1. Geodesic Spherical Tessellation: Regular Icosahedron

We take inspiration from the axis-angle representation of 3D rotation to represent our
canonical axis. As we want the output of our network to represent the canonical axis
distribution, we need a discrete representation which can represent as many equispaced
points on a unit sphere i.e., a geodesic spherical tessellation. We therefore use a regular
icosahedron to represent our canonical axis distribution, noting the icosahedral group is the
largest finite subgroup of SO(3).

2.2. Self-Supervised Training

First, we randomly select a rotation matrix from the icosahedral group to transform a point
cloud. We feed the original point cloud and the rotated point cloud into our DGCNN
feature extraction network to extract a 12-dimensional feature for each point cloud. We
apply softmax on this feature to yield a 12-bin histogram, where each bin represents a vertex
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Table 1: Classification accuracy (%) on the ModelNet40 dataset. The Acc. drop
column represents the drop in accuracy from SO(3)/SO(3) to z/SO(3).

Method Inputs z/z z/SO(3) SO(3)/SO(3) Acc. drop

Rotation-sensitive

PointNet (Qi et al., 2017a) xyz 88.5 16.4 70.5 54.1
DGCNN (Wang et al., 2019) xyz 92.2 20.6 81.1 60.5
PointNet++ (Qi et al., 2017b) xyz 89.3 28.6 85.0 56.4
PointConv (Wu et al., 2019) xyz 91.6 - 85.6 -

Rotation-equivariant

a3SCNN (Liu et al., 2019) voxel 89.6 87.9 88.7 0.8
SFCNN (Rao et al., 2019) xyz 91.4 84.8 90.1 5.3
SFCNN (Rao et al., 2019) xyz + normal 92.3 85.3 91.0 5.7

RotPredictor (Fang et al., 2020) xyz 92.1 - 90.8 -

Rotation-invariant

Li et al. (2021b) feature 89.4 89.4 89.3 0.1
RI-GCN (Kim et al., 2020) xyz 89.5 89.5 89.5 0.0
RI-GCN (Kim et al., 2020) xyz + normal 91.0 91.0 91.0 0.0
LGR-Net (Zhao et al., 2019) xyz + normal + feature 90.9 90.9 91.1 0.2

Li et al. (2021a) xyz 90.2 90.2 90.2 0.0

Ours (k = 1) xyz 88.4 86.1 87.0 0.9
Ours (k = 3) xyz 89.4 86.9 87.9 1.0

on a regular icosahedron, and each bin value represents the probability of a vector from the
origin to the vertex to be the canonical axis of the point cloud. Note that we can map the
selected rotation matrix (from the first step) to a permutation order of the histogram due
to the closure of the icosahedral group. Then, we permute the histogram from the original
point cloud using this permutation order, then supervise the two histograms - the permuted
histogram from the original point cloud, and the histogram from the rotated histogram -
to be close to one another, such that the canonical axis distribution of a point cloud is
equivariant with respect to rotation. Formally, our loss is defined as:

L(po, pR) = − log(
12∑
i=1

po,ipR,i), (1)

where po and pR denote the output histogram bin of the original and rotated point clouds.

3. Experiments

3.1. Object Classification

We evaluate our model on the ModelNet40 dataset (Wu et al., 2015) on the task of classifica-
tion. The results are presented in Table 1. We can see that our method achieves competitive
performances compared to most rotation-equivariant methods and rotation-invariant meth-
ods despite not using equivariance-guaranteed architectures or representations. Also, we
can see that the accuracy drop of our method from SO(3)/SO(3) to z/SO(3) is smaller
than the majority of rotation-equivariant methods, showing that leveraging our learned ro-
tational equivariance to model rotational invariance is empirically effective. We can also
select up to top-k canonical axis candidates to perform test-time augmentation e.g., k = 3
denotes using a soft ensemble of output results from using top-k argmax positions of the
output canonical axis distribution. We guide the readers to the appendix for elaborate
implementation details and evaluation settings.
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Figure 2: Overall accuracy on the ModelNet40-C dataset. We report the clas-
sification results of ours (green circle), Li et al. (2021a) (blue cross), and
DGCNN (Wang et al., 2019) (orange square) with 6 different corruption and
five severity levels increasing from left to right.

3.2. Classification on Noisy Real-world Datasets

We evaluate our method on the ModelNet40-C dataset (Sun et al., 2022) on the task of
classification against DGCNN (Wang et al., 2019) and Li et al. (2021a), the current state-of-
the-art PCA-based rotation-invariant method. The ModelNet40-C dataset is based on the
ModelNet40 validation set, but augmented with 15 corruption types at 5 severity levels. We
report the results for 6 corruption types in Figure 2. We refer the readers to the appendix
for the full results. It can be seen that our method shows the highest performance overall
under various types of point cloud corruption, where our robustness is especially pronounced
under background, cutout and density corruption.

4. Discussion and Future Work

Albeit the rotational equivariance of our canonical axis distribution is not theoretically
guaranteed as we do not rely on equivariant or invariant networks, the probabilistic nature of
our approach enables our approach to be significantly more robust to various types of point
cloud corruption compared to existing rotation-equivariant and -invariant representations,
while yielding competent results on synthetic datasets. A promising future direction would
be to build on our approach to improve the empirical rotational equivariance of the predicted
canonical axis distribution. Another limitation of our approach is that we only predict the
canonical axis of a point cloud, but not the canonical angle around the predicted canonical
axis. Correctly predicting the canonical angle together with the canonical angle is expected
to achieve a significant performance improvement, which we leave for future endeavors.
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Appendix A. Implementation Details

We employ DGCNN (Wang et al., 2019) as both our network structure to output the
canonical pose distribution of a point cloud, and also as the base model for all downstream
task experiments carried out in this paper. At train time, we first train our network in a
self-supervised manner as explained in Section 2, and then train the downstream network
while leaving our orientation estimator to be frozen. We add weight normalization (Salimans
and Kingma, 2016) on the last layer during training. We use RAdam optimizer and cosine
annealing learning rate scheduler with the initial learning rate 0.0005. The dropout ratio
of DGCNN is set to 0.5 and the weight decay is set to 0.0001. We use centering (Caron
et al., 2021) on each histogram bin. We randomly sample 1024 points from 2048 points of
point clouds for each iteration. We follow the original training settings of DGCNN when
training for downstream networks except for setting the initial learning rate to 0.01. For
our experiments, we follow existing work (Li et al., 2021a) to compare different methods in
3 different ways: (1) z/z: both the train and test sets are rotated only around the z-axis,
(2)z/SO(3): the train set is rotated only around the z-axis and the test set is randomly
rotated, and (3) SO(3)/SO(3): both the train and test sets are randomly rotated.

Appendix B. Geometry-Aware Icosahedral Permutation

We go over the details of the geometry-aware icosahedral permutation, which is applied
on the output of our ATP method in correspondence to the rotation applied on the point
cloud, in order to provide self-supervision. The main idea here is that each histogram bin
i.e., entry in our normalized output, corresponds to a single vertex on the icosahedron.
Therefore, applying a rotation sampled from the icosahedral rotational symmetry group
to the icosahedron results in a permutation of the vertices i.e., the histogram bins. This
guarantees the rotated coordinates v̂ are a permutation of v. For further details, refer to
Algo 1.

Algorithm 1 Geometry-aware Icosahedral Permutation

Original Histogram Bin: {hi}12i=1

Coordinates of Icosahedron: {vi}12i=1

Rotation Matrix R
Output: Permuted Histogram ĥ
for i = {1, 2, · · · , 12} do

v̂i = Rvi
j∗ = argmax12j=1 ||v̂i − vj ||2

ĥi = hj∗

end for

Appendix C. Full Results on the ModelNet40-C Dataset

In this section, we present the full set of results on the ModelNet40-C dataset, which
accounts for a total of 3 settings (z/z, z/SO(3) and SO(3)/SO(3)), 15 corruption types and
5 severity levels.
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Figure 3: Overall accuracy on the ModelNet40-C dataset using the (z/z) setting.
We report the classification results of ours (green circle), Li et al. (2021a) (blue
cross), and DGCNN (Wang et al., 2019) (orange square) with 15 different corrup-
tion and five severity levels increasing from left to right. Under most corruption
types, Li et al. (2021a) shows lower performances than other methods.
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Figure 4: Overall accuracy on the ModelNet40-C dataset using the (z/SO(3))
setting. We report the classification results of ours (green circle), Li et al.
(2021a) (blue cross), and DGCNN (Wang et al., 2019) (orange square) with 15
different corruption types and five severity levels increasing from left to right. In
most corruption types, DGCNN shows much lower classification accuracy than
the others. Ours shows the best performance overall.
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Figure 5: Overall accuracy on the ModelNet40-C dataset using the (SO(3)/SO(3))
setup. We report the classification results of ours (green circle), Li et al. (2021a)
(blue cross), and DGCNN (Wang et al., 2019) (orange square) with 15 different
corruption types and five severity levels increasing from left to right. DGCNN
and ours show similar performances, while Li et al. (2021a) shows much lower
classification performances under several corruption types.
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